The AAAI-17 Workshop on
Human-Aware Artificial Intelligence
WS-17-10

Learning to Suggest Phrases

Kenneth C. Arnold
Harvard CS
Cambridge, MA

Abstract

Intelligent keyboards can support writing by suggesting con-
tent. Certain types of phrases, when offered as suggestions,
may be systematically chosen more often than their frequency
in a corpus of text would predict. In order to generate those
types of suggestions, we collected a dataset of how human au-
thors responded to suggestions offered to them during open-
ended writing tasks. We present an offline strategy for evalu-
ating suggestions that enables us to learn the parameters of an
improved suggestion generation policy without the expense
of collecting additional data under that policy. We validate
the approach by simulation and on human data by demon-
strating improvement in held-out suggestion acceptance rate.
Our approach can be applied to other scenarios where what is
typical is not necessarily what is desirable.

Introduction

Intelligent systems can help us write by proactively suggest-
ing words or phrases while we type. For example, the virtual
keyboards widely deployed on contemporary touchscreen
devices almost always offer suggestions of the next word
(or completions of partial words) that can be accepted with
a single tap. Although word suggestions actually slow down
typing on average (because of the cost of attending to the
suggestions), they save effort and users prefer them (Quinn
and Zhai 2016). Recent work has shown that by augment-
ing the user interface as illustrated in Figure 1, writers of-
ten take advantage of phrase suggestions as long as five or
six words (Arnold, Gajos, and Kalai 2016). Interestingly,
with longer phrases, writers accept suggestions even when
they were not exactly what they intended to type themselves
(Arnold, Gajos, and Kalai 2016). For example, some partici-
pants reported that the suggestions have ideas for new topics
or creative wordings. But not all suggestions were good or
helpful: participants found some suggested phrases boring
and trite—primarily because the suggestions were generated
by picking the most likely phrases according to a traditional
language model trained to predict the next word based on
previous words in context. Ironically, the predictions may
have been foo accurate; for helping people create, showing
the most likely next step may be uninspiring.

Copyright (© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Kai-Wei Chang
University of Virginia
Charlottesville, VA

607

Adam T. Kalai

Microsoft Research
Cambridge, MA

the food was really tasty. it was definitely a |

.andthe placeis placetogoto. change from a day

(W L W b W T W W W 0 W W N—

(U U G S W) S W) G S—

L N U [NS U) S N M S

Figure 1: We address a new task in human-centered Al: how
to offer suggestions during text composition. The above ex-
ample illustrates how effective suggestions may differ from
accurate predictions. Even though the middle suggestion
is predicted (by an n-gram model) to be about 1,000 times
more likely than the one on the right, the author in our ex-
periment chose to triple-tap on the right button, thereby in-
serting the words “nice change from”. (This interface aug-
ments the standard mobile phone suggestion bar by provid-
ing a preview for the coming words shown below in small
blue text.)

How can a system generate good suggestions that are
likely to be accepted by writers? We propose this challenge
as a new task for Al research. In this paper we address two
primary obstacles facing this task: how to obtain data about
how authors respond to suggestions, and how to learn mod-
els to identify and generate good suggestions from this data.

The obvious approach to obtain data would be to use ex-
isting text corpora. However, since suggestions can affect
even the topics that authors discuss, existing text created
without suggestions is of limited use in evaluating whether
a suggestion is good. In particular, accurate predictions may
be poor suggestions. For example, at the beginning of a sen-
tence of a restaurant review, I love this place” is a reason-
able prediction, but a review writer might prefer a suggestion
of a much less likely phrase such as “This was truly a won-
derful experience”—they may simply not have thought of

this more enthusiastic phrase or taken the additional effort
to type it. (Both examples were drawn from our dataset.)
One alternative would be to show human annotators sug-
gestions in context and ask them to decide which sugges-
tions are most likely to be accepted. A drawback of this
approach is that behavior while using a system may differ
greatly from offline assessments of how one imagines one
(or others) would have behaved.

To obtain data about how authors respond to suggestions,
we asked crowd workers to write reviews of a specific well-
known restaurant. While they were writing those reviews,
our interface (Figure 1) suggests phrases generated by a lan-
guage model trained on restaurant reviews from the Yelp
Academic Dataset.! We logged which phrases were sug-
gested along with the context, the resulting reward (words
accepted), and their probability of generation according to
the policy used when collecting the data (the “reference pol-
icy”). We release this data for other researchers to use.’

But even with this data, it is not trivial to learn to gen-
erate good suggestions, since the data was collected while
offering suggestions according to a different policy than the
one being learned. Traditionally we would have had to test
any proposed new policy in an online experiment such as
an A/B test, but that requires repeated expensive trials. In-
stead, we build on insights from multi-world testing (MWT)
in contextual bandit learning (Li et al. 2011), which uses
logs of actions taken under one stochastic “reference pol-
icy” to compute an unbiased estimate (using importance
weighting) of how any other policy would perform in an
A/B test without having to run that test. Hence, model pa-
rameters can be fit once using a single dataset, rather than
having to run repeated A/B tests to quantify each param-
eter improvement. We adapt MWT to learn to generate
suggestions: intuitively, for every suggestion that gets ac-
cepted, the model tries to learn to increase the likelihood
that it would have generated that suggestion, weighted by
the inverse propensity that the reference policy generated
that suggestion. But since there are exponentially many
possible phrase suggestions in our setting, the variance of
the inverse propensity estimator can be very large. To
bound the estimator’s variance, we truncate our importance
weights, as has been done in related contexts (Ionides 2008;
Swaminathan and Joachims 2015). We then use insights
from discriminative language modeling (Roark et al. 2004)
to apply this approach to generating language.

Our contributions are summarized below:

e We present a new Al application of phrase suggestion for
specific writing domains on mobile phones. We release
the dataset to facilitate further research on this topic.

e We present TIP (Truncated Inverse Propensity sampling),
an offline method for goal-directed training of generative
language models.

e We propose a simple log-linear language model that can
incorporate additional word-level features trained to offer
suggestions that will be accepted, rather than to predict,

"https://www.yelp.com/dataset_challenge
*http://tiny.cc/arnold1 7suggestions-data

608

and show that it increases acceptance rate over various
baselines both in simulation and on our dataset.

Related work

Generative language models have a long history (Reiter,
Dale, and Feng 2000) and play an important role in many
NLP applications, including response generation in social
networks (Sordoni et al. 2015), dialog systems (Rambow,
Bangalore, and Walker 2001), summarization (Mani 2001),
and translation (Johnson et al. 2016). Prior work usually
treats humans as a source of training or validation data;
we are more interested in designing interactive systems that
people find helpful. We do not directly study whether peo-
ple find our system helpful either, but we optimize a proxy
measure: how many of the system’s suggestions they accept.

Based on the theory that people want to see accurate pre-
dictions of the current or upcoming word, deployed key-
boards use n-gram language models (Quinn and Zhai 2016;
Kneser and Ney 1995), or sometimes neural language mod-
els (Kim et al. 2016), trained to predict the next word given
recent context. Recent advances in language modeling have
increased the accuracy of these predictions by, e.g., using ad-
ditional context (Mikolov and Zweig 2012). However, these
approaches all rely on the assumption that accurate predic-
tions are most helpful suggestions, which (Arnold, Gajos,
and Kalai 2016) calls into question.

The difference between suggestion and prediction is more
pronounced when showing phrases rather than just words.
Prior work has extended predictive language modeling to
phrase prediction (Nandi and Jagadish 2007) and sentence
completion (Bickel, Haider, and Scheffer 2005), but to our
knowledge did not evaluate whether people found those sys-
tems helpful. Google’s “Smart Reply” email response sug-
gestion system (Kannan et al. 2016) avoids showing a likely
predicted response if it is too similar to one of the options
already presented, but the approach is heuristic, based on a
priori similarity. Search engine query completion also gen-
erates long phrases that can function as suggestions, but is
typically trained to predict what query is eventually made
(e.g., (Jiang et al. 2014)). Writing assistant systems also try
to generate or retrieve helpful text based on heuristics (Liu
et al. 2000; Chen et al. 2012).

Language generation systems have not tried to optimize
their behavior for human acceptance because this previously
required expensive A/B testing. However, Li et al. showed
how to learn a news article recommendation policy based
on the limited feedback of users interacting with a small
number of articles with an appropriate randomized logging
scheme and inverse propensity sampling (2011).

Additionally, we take a log-linear language model, previ-
ously used to increase predictive accuracy in discriminative
language modeling by leveraging additional features (Roark
et al. 2004), and adapt it to generating suggestions.

Offline Learning of Suggestion Policies

We consider systems that offer suggestions to users perform-
ing a sequential task such as writing, translating, or para-
phrasing, according to a stochastic policy. This setting gen-

eralizes the setting of (Arnold, Gajos, and Kalai 2016); we
will consider this setting as a running example throughout
this paper.

In this section, we provide a formal definition of the phase
suggestion problem and discuss an offline approach to policy
evaluation and learning.

Data and notation. We denote by | A| the size of set A and
A(A) the set of probability distributions over A. A phrase
suggestion dataset D consists of four-tuples (ct, st, ¢t, rt),
fort =1,2,...,T, where ¢! € C is a context, s is a sug-
gestion drawn from the distribution generated with proba-
bility ¢* by a stochastic phrase suggestion policy which we
refer to as ¢ given ¢! (i.e., st ~ q|c+) and the observed reward
rt. We assume there is a fixed distribution p € A(C) over
a fixed set of contexts ¢ € C. For instance, a context can
include the previously typed words, characters of the word
being typed thus far, and possibly other metadata. Let S to
be the space of all possible suggestions, a conditional sug-
gestion distribution p : C — A(S) is a distribution over
suggestions for each context.® This distribution reflects the
distribution of suggestions s € S given by a randomized
suggestion algorithm whose input is context c. The distri-
bution ¢’ is an instance of p, and we use it to generate sug-
gestions s’ in the ¢-th example. For any suggestion s and
context ¢, there is a reward r € [0, B], for some positive
reward bound B > 0, that is drawn from the corresponding
distribution p|,. € A([0, B]). The rewards r can be task-
specific, e.g., the speed that a sentence was written, or an
annotator’s rating of quality; in our case, we take r to be the
number of words accepted.*

Expected Reward. Of particular interest is the expected
reward function R : S x C' — [0, B], which is simply the
expected reward for a given suggestion in a given context,
R(s,c) = Er~p),.[r]. The expected reward of the condi-
tional distribution p generated by a suggestion algorithm,
which we also refer to as its value, is defined in terms of
the underlying distribution on contexts i, and the expected
reward function R. We denote the value by v(p; u, R) =
Ec~p,s~p,. [R(s, ¢)].° The ultimate goal is to learn a sugges-
tion system in which v(p) is (potentially) maximal.

Offline Evaluation. The key challenge here is the reward
R(s,c) is only accessible through interacting with authors
in actual writing tasks, and S is far too large to try every
possibility. Therefore, to estimate v(p), we would have to
deploy a system generating suggestions from p and collect
user logs. Training a system in such a manner would be
impractical.

Inverse Propensity (IP) sampling methods, i.e., impor-
tance weighting, provide us a way to use a pre-obtained

*We write p|.(s) or p(s|c) interchangeably.
* Accepting a word after typing a prefix of it gets a reward of
the fraction of words in the vocabulary that start with that prefix.

SWe write v(p) = v(p; i, R) when y and R are understood
from context.

609

dataset like D to estimate, in an unbiased fashion, the ex-
pected reward of p, v(p). Suppose we have a dataset gen-
erated by a “reference” suggestion policy g. Then we can
evaluate the expected reward of a candidate policy p as:

S,.C)| = S, C p7(8|0)
;NE;(C[R(<] :Eiﬁf [R(’)q(sc)} M

In particular, the expectation of r'p(s|ct)/q" is exactly
v(p). However, the variance of this estimate can be large
if p(s|c)/q(s|c) is large, so a prohibitively large number of
training samples would be required for obtaining a good
model. To reduce the variance of this estimator, we intro-
duce Truncated Inverse Propensity (TIP), defined as

om(p,q, 1, R) = E [R(S,C)min (p(sk),Mﬂ, 2)
e q(slc)

written vy (p) when p, R, and g are clear from context. Note
that vas(p) < v(p) so vy is a lower-bound on the value of
a suggestion algorithm. Moreover, this truncated estimate
vpr(p) can be well-approximated using a fixed dataset with
a bounded number of samples. We will show the theoret-
ical properties and empirical performance of learning with
TIP in the remainder of the paper. Eq. (2) suggests that we
can evaluate v(p) based on a dataset D = (¢!, s?, ¢*, rt)thl
generated by reference distribution g:
t] .t
(2190 1))
¢ (5'[)

When T is sufficiently large, Uas(p) approximates vy (p).
Moreover, as T' increases, we can afford to have a larger
value of M while maintaining accurate estimates of v (p),
which approaches v(p) as M increases without bound.

Assumptions. We make several simplifying assumptions
and leave these directions to future work. First, we as-
sume that the distribution over contexts is fixed and not in-
fluenced by prior suggestions. How past suggestions will
influence future writing is a fascinating issue — once a sug-
gestion interface begins to dramatically influence the distri-
bution over content generated, it has already achieved our
motivating goal of having suggestions accepted. Second,
practical interfaces such as the one we use in our experi-
ments may offer more than one suggestion at a time; the for-
mulation above assumes that suggestions do not interact®.
Some related issues such as diversity of suggestions and
building personalized system have been studied in informa-
tion retrieval and machine learning (e.g., (Shokouhi 2013;
Guzman-Rivera et al. 2014)).

%We experimented with a variation of this mathematical setting
that accounted for the group of three suggestions that our interface
actually offered, but it was unclear how the generation probabilities
of the other two suggestions should be updated.

Learning with Truncated Inverse Propensity. In the
following, we show the theoretical properties of learning
with TIP. Suppose the suggestion policy p is parameter-
ized by § € ©. During the learning, we aim to max-
imize the Truncated Inverse Propensity (TIP), defined as
75 = r* min (pg(s|c)/q", M) for the ¢-th example.

Without truncating the importance weights, the model
could easily overfit. For example, if the model could isolate
and assign probability 1 to a single accepted suggestion, its
reward could be 1/¢, which could be very large if ¢ is small.
Truncating avoids overfitting by a kind of regularization in
the space of suggestion distributions. Following the ideas in
(Ionides 2008; Swaminathan and Joachims 2015), the fol-
lowing lemma shows that maximizing vas(p) ~ Y, 7' /T is
unlikely to overfit data and that it is likely to do almost as
well as those p that are “nearby” ¢ in the sense that they are
rarely larger than M times q.

Lemma 1. Let C,S be finite sets of contexts and sug-

gestions, 1 be an arbitrary distribution over contexts C,

q:C—A(S), M >0,and R : S x C — [0, B]. Then,

1. For any p : C — A(S), we have vM(p,q uw,R) <
v(p, g, i, R) with equality if p(s|c) < Mq(s|c) for all
¢, S.

2. Let 6* = argmaxg vy (pg). Then,

B Pr {pe(ds) > M]

S Lalels)

v(pe~) > max v(po)

3. Let dataset(sttty (T sT gt rT) and 7 =

1
r* min (pg (s)/qt7 M). Then for any & > 0, with proba-
bility > 1 — § over the choice of dataset, simultaneously
forall 6 € O,

1 T
v (pe) = 7 > i
t=1

Proof. Part 1 follows by the definition of vy, and the fact
that min(z, y) < z with equality if z < y. For part 2, note
that because the reward is at most B, for any p,

o [l
-5 & Fez

log(2101/8)

< BM
- 2T

> M} <vm(p)

Combining with vy (p) < vas(pe+) < v(pg+) and maximiz-
ing over p implies part 2.

For part 3, note that our estimates are independent un-
biased estimates of the M-bounded value, ie., E[f§] =
vps(pg). Combining this with Hoeffding’s inequality and the
union bound over the |0 different parameter values com-
pletes the proof. O

This lemma justifies maximizing >, 7§ over § € ©. In
particular, the generalization bound’ in part 3 implies that,

"For simplicity, the generalization bound in 3 is stated in terms
of a finite parameter set © (which is true when relatively few bits
per floating-point parameter suffice), but could also be extended to
infinite sets as long as there are bounds on complexity of class Pg.

610

as long as M is not too large, we will not overfit as the M-
bounded value of each parameter setting will be close to its
estimate from training. Combined with part 2, it implies that
the maximizing this quantity should perform at least as well
as maximizing the expected reward v(pg) over pg “near” q
in the sense that py < M¢q. However, it is still meaningful
when pg is sometimes greater than Mgq.

Comparing Policies using TIP

When using TIP to evaluate performance (e.g., on held-out
data), it is important to use the same threshold M and test set
size for all algorithms to ensure that the comparison is un-
biased. Most importantly, the choice of M is limited by the
width of the resulting confidence intervals—larger values of
M result in larger confidence intervals. Lemma 1 suggests
that the confidence intervals grow roughly O(M/v/T). In
our experiments, we choose M so as to yield reasonably
sized confidence intervals in our comparisons based on the
size of our test sets.

Simulation

In this section we give a concrete example of how a good
suggestion can differ from a good prediction, and demon-
strate how our methodology can be used to learn a sugges-
tion algorithm that increases the likelihood that suggestions
are accepted. We simulate acceptance behavior in order to
validate the performance estimates given by TIP.

Parameterized Language Model

Although our methods will allows us to learn and evaluate
stochastic suggestion policies of any form, for the purposes
of illustration we will use log-linear models with word-level
features throughout this paper.

We consider locally-normalized log-linear language mod-
els (McCallum, Freitag, and Pereira 2000) of the form

exp 0 - f(wile,wr;—q))
NG
Hz 3)

/eXp0 f(|Caw:7,—1])

where f(w;|c,wp;;—1)) is a feature vector for a candi-
date word given its context. (w;_1) is a shorthand for
{wr,wa, .. wi—1}).

Note that the feature vector can include a wide variety
of strong features, such as the conditional log likelihood of
w; under various neural language models (e.g., (Kim et al.
2016)). For the purpose of illustration, we choose a simple
set of features. Our first feature is the log likelihood under
a base language model po(w;|c, wy,;—17); we follow the ap-
proach of (Arnold, Gajos, and Kalai 2016) and use a 5-gram
model trained on the Yelp Academic Dataset with Kneser-
Ney smoothing, implemented using KenLM (Heafield et
al. 2013). We augment that feature with several context-
independent characteristics of w;: a binary feature of if it is
long (> 6 letters), and a one-hot encoding of its most com-
mon POS tag. Note that if the weight vector is zero except
for a weight of 1/ on pg, the model reduces to the base
language model with “temperature” -y which is often used to
control generation from stochastic language models: v = 1

corresponds to sampling from the model, while v — 0 cor-
responds to greedy maximum likelihood generation.

Reference Policy ¢

When collecting a dataset that we intend to use to evaluate
a variety of suggestion models, it is important that a broad
range of types of suggestions be offered. Since good sug-
gestions may be far from the most likely predictions, we
cannot simply follow the approach of (Arnold, Gajos, and
Kalai 2016) and use beam-search to generate maximally
likely phrases. However, if the phrases offered are overly
exploratory, we risk having few phrases accepted. To bal-
ance the extremes of exploration (novelty) and exploitation
(obviousness), we choose the reference suggestion policy ¢
to generate suggestions with a temperature of 0.5. We used
a fixed reference policy to create a consistent dataset, but
future work could refine the reference policy online.

Desirability Model

As Arnold et al. (2016) have shown, people write differently
when shown suggestions than a model trained on a text cor-
pus would predict. In this section, we present an illustrative
model of suggestion acceptance behavior.

Consider a system that displays 3 suggestions at a time.
Suppose further that each suggestion consists of a sequence
of words that the author can accept one word at a time;
we will discuss the first word acceptances here, modeling
the remaining word acceptances proceeds likewise. Let
{p’}3_, denote the likelihood under the predictive model of
the first word of suggestion j among the suggestions offered
at timestep ¢; pg = 1 — Z?Il p; gives the probability of
rejecting the suggestions offered. A user behaving accord-
ing to a pure predictive model would accept the first word of
suggestion j with probability p’.®

We model the desirability of a suggestion by a variable
D; that may depend on all the visible words of a suggestion.
For example, to model a preference for long words, we can
let D be the number of long words in suggestion ss. We
add the desirabilities to the scores of each action:

B =" exp(D")/2,) = vl /20

20 1 _ me

The net effect is to move probablhty mass from the “reject”
action pg to suggestions that are “close enough” to what the
author actually wanted to say but desirable.

—exp(D{)).

Simulation experiment

We randomly sample 500 suggestion locations from the val-
idation set, where a suggestion location is a sentence up to
a specific word, which we cut off and we pretend to re-
type. We generate three phrases from the reference policy
as described earlier, logging their generation likelihoods g.
We then allow the simulated author to pick one of the three
phrases, subject to their preference.

8 Assume that the predictive model is fully accurate; our focus
is entirely on the difference between prediction and suggestion.

611

estimated
—— actual

— refer

nce policy

15

Reward (# words per suggestion)

1500 2000

Figure 2: The model is successfully able to learn to make
suggestions that are more likely to be accepted by the sim-
ulated author who prefers long words. Moreover, the TIP
estimates of expected reward tend to be close to the actual
expected reward obtained by generating suggestions using
the fitted model.

We then use the TIP methodology to find model parame-
ters that are more likely to be accepted. Although the simu-
lator generates three suggestions at once, we treat them as if
offered one at a time, ignoring the interaction. Given a train-
ing data set D = (ct, s?, ¢¢, Tt)le, we optimize the reward-
augmented likelihood (Gimpel and Smith 2010) with TIP
w.r.t. 0:

T T
> = rimin(py(s'|c")/q", M).

t=1 t=1

“4)

Eq. (4) is a concave function and can be maximized by an
off-the-shelf solver such as gradient ascent. Note that eq. (4)
is related to the risk model introduced in (Gimpel and Smith
2010), while the learning protocol is different.

We then evaluate each learned policy on an additional 500
sentences from the test set. We use the fitted suggestion
policy to generate suggestions, compute the probability of
accepting each suggestion (including number of words) ac-
cording to the desirability model. We report the expected
number of words that the new policy would accept.

Figure 2 shows that we can adapt the model parameters to
make suggestions that are more likely to be accepted. More-
over, the TIP estimates are not only useful for learning; they
correlate well with the actual improvement.

Dataset of Interactive Suggestion Acceptances

As we have argued, conventional language corpora do not
suffice for learning what makes a good suggestion; we must
observe how authors respond to actual suggestions. As
Arnold et al. (2016) observed, writers use phrase sugges-
tions more than the same text offered as word suggestions.
So we offered phrase suggestions to authors in a composi-
tion task and recorded which suggestions they accept. We
are then able to use the acceptance data to learn models that
result in suggestions that are accepted more often.

We use the phrase suggestion interface from Arnold et
al. (2016), which augments the standard word-prediction in-
terface with phrase suggestions, which can be accepted one

v tis plce. Eifood s good. IR -~
the burritos are huge and packed with flaver. i got one with chicken and beef and extra quac. it tasted fresh and i couldn't even finish
it s s hug IOYS STOCANONARTE SRR PHEEARHREAE, 1| el comme back o By something diffre

i hate spicy f8@but for some reason i love the fIEVOF Bf chipotle chilefin any form, so i loooove chipotle. i have beefiinervous about
eating here|lately becaliseofthe food poisoning scandals but thankfully i haVelnot'hadlany/problems! i alwaylordefthe burrito’bowls

andthopbrtions are huge! scrvice is just mediocre but ioEHadland you cantlexBEet oo fitich oMia chin restaurant. overall i Would
give chipotle four stars.

chipotiels . i was surprised @HOW much {/enjoyed ihe food and e Serviee. thegSllots
of cople with dietary restrictions and variety of choices for the rest. the price is i UERbut is worth it. the food is of
great quality since! they use{a lot of local ingredients. i had the chicken and it was excellent. i would highly re

this place .

Figure 3: Example reviews from our dataset. A colored
background indicates that the word was inserted by accept-
ing a suggestion. Colors correspond to slots on the sugges-
tion bar (left, middle, or right), so consecutive words with
the same color were inserted as part of a phrase. Some par-
ticipants accepted suggestions frequently, others rarely.

accepted 0 1 2 3 456
count 27,859 1,397 306 130 91 68 107

Table 1: Our dataset includes 29,958 suggestions made by
the system during typing. Authors accepted at least one
word of 2099 suggestions (7%), and at least 2 words in 702
suggestions (2.3%). In total, 3745 out of 5125 words in the
corpus were entered using suggestions. These acceptance
rates are comparable with those observed in other work (e.g.,
8% word acceptance in the best condition in (Quinn and
Zhai 2016).

word at a time. We refer the reader to that prior paper for
further details on the interface. As described above, instead
of their beam-search phrase generation procedure, we use
our reference policy with a temperature of 0.5. We generate
6-word suggestions after every keystroke.

We recruited 74 workers through MTurk to write reviews
of Chipotle Mexican Grill using the phrase suggestion inter-
face. Based on pilot experiments, Chipotle was chosen as a
restaurant that many crowd workers had dined at.

User feedback back was largely positive, and users gen-
erally understood the suggestions’ intent. The users en-
gagement with the suggestions varied greatly — some loved
the suggestions and their entire review consisted of nearly
only words entered with suggestions while others used very
few suggestions. Several users reported that the suggestions
helped them select words to write down an idea or also gave
them ideas of what to write. We did not systematically en-
force quality, but informally we find that most reviews writ-
ten were grammatical and sensible, which indicates that par-
ticipants evaluated suggestions before taking them.

The dataset contains 74 restaurant reviews typed with
phrase suggestions. The mean word count is 69.3,
std=25.70. We are providing the data in the form of times-
tamped logs of what suggestions were offered and what ac-
tion the author took. We also provide code for aggregating
the logs into a table of what suggestions were made and how
many words of each suggestion were accepted. Table 1 re-
ports how many words were accepted.

Learning to Suggest Phrases Using the Dataset

We then demonstrate using the TIP methodology to learn to
suggest phrases using this dataset. We maximize the esti-

612

0.8

0.6

— opt

04 —— predictive

— ref
0.2
20 40 60 80

Figure 4: The fitted model consistently improves expected
reward (averaged across 5 validation folds), regardless of the
M used in estimation. The two baselines shown are the ref-
erence policy under which the suggestions were originally
offered, and the predictive language model.

mated expected reward (with M fixed at 10 for simplicity),
and evaluate the performance of the learned parameters on
held-out data using 5-fold cross-validation. Figure 4 shows
that while the estimated performance of the new model does
vary with the M used when estimating the expected reward,
the relationships are consistent: the reference policy (tem-
perature 0.5) outperforms a purely predictive stochastic pol-
icy (temperature 1.0), and the fitted model consistently gets
higher expected reward. The fitted model weights suggest
that the workers seemed to prefer long words and pronouns,
and eschewed punctuation.

Conclusion

We propose the challenge of learning to suggest phrases to
authors interactively during the composition process. We
provide a dataset of compositions written with interactive
suggestions generated from a reference policy. This dataset
can be used to design and evaluate suggestion algorithms.
We present a simple log-linear suggestion algorithm and
demonstrate in simulation and practice that it can be trained
to generate suggestions that are more likely to be accepted.

One limitation of our work is that our task of crowd-
sourced reviews of a single restaurant may not be repre-
sentative of other tasks or populations of users. However,
the predictive language model is a replaceable component of
our approach, and a stronger model that incorporates more
context (e.g., (Sordoni et al. 2015)) could improve our base-
lines and extend our approach to other domains. Also, our
methodology cannot evaluate a maximum likelihood gener-
ation policy because it is not stochastic.

Several natural questions are left for future work. First,
how can one design better language models that increase the
reward even beyond what we have done with the simple lan-
guage model features used here? Second, in a system which
is capable of offering more than one suggestion, how should
one select a menu of suggestions? (Recall that for simplicity

we ignored the interaction between multiple suggestions.)

Finally, our current methodology does not distinguish be-
tween suggestions that were accepted for convenience and
those that were accepted for their insight or creativity. Some
suggestions may in fact bias the user, e.g., a user who in-
tended to write a negative review may be tempted to accept
a suggestion that favors the restaurant because it is grammat-
ical and colorful. Other suggestions may be inspiring even
if they are not accepted. An interesting open question is how
to make suggestions that improve the quality of writing with
inadvertently biasing the user. Such work could fit into the
TIP framework in this paper by using measures of quality,
not just acceptance, as the reward.

References

Arnold, K. C.; Gajos, K. Z.; and Kalai, A. T. 2016. On sug-
gesting phrases vs. predicting words for mobile text compo-
sition. In Proceedings of UIST ’16.

Bickel, S.; Haider, P.; and Scheffer, T. 2005. Learning to
complete sentences. In Machine Learning: ECML 2005.
Springer. 497-504.

Chen, M.-H.; Huang, S.-T.; Hsieh, H.-T.; Kao, T.-H.; and
Chang, J. S. 2012. Flow: a first-language-oriented writing
assistant system. In Proceedings of the ACL System Demon-
strations, 157-162.

Gimpel, K., and Smith, N. A. 2010. Softmax-margin crfs:
Training log-linear models with cost functions. In Proceed-
ings of the Conference of the North American Chapter of the
Association for Computational Linguistics (NAACL).

Guzman-Rivera, A.; Kohli, P.; Batra, D.; and Rutenbar,
R. A. 2014. Efficiently enforcing diversity in multi-output
structured prediction. In AISTATS.

Heafield, K.; Pouzyrevsky, 1.; Clark, J. H.; and Koehn, P.
2013. Scalable modified Kneser-Ney language model esti-
mation. In Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics, 690-696.

Ionides, E. L. 2008. Truncated importance sampling. Jour-
nal of Computational and Graphical Statistics 17(2):295—
311.

Jiang, J.-Y.; Ke, Y.-Y.; Chien, P-Y.; and Cheng, P.-J.
2014. Learning user reformulation behavior for query auto-
completion. In Proceedings of the 37th International ACM
SIGIR Conference on Research & Development in In-
formation Retrieval, SIGIR ’14, 445-454. New York, NY,
USA: ACM.

Johnson, M.; Schuster, M.; Le, Q. V.; Krikun, M.; Wu, Y.;
Chen, Z.; Thorat, N.; Viégas, F. B.; Wattenberg, M.; Cor-
rado, G.; Hughes, M.; and Dean, J. 2016. Google’s multilin-
gual neural machine translation system: Enabling zero-shot
translation. CoRR abs/1611.04558.

Kannan, A.; Kurach, K.; Ravi, S.; Kaufmann, T.; Tomkins,
A.; Miklos, B.; Corrado, G.; Lukacs, L.; Ganea, M.; Young,
P.; and Ramavajjala, V. 2016. Smart reply: Automated re-
sponse suggestion for email. In Proceedings of the ACM
SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD).

613

Kim, Y.; Jernite, Y.; Sontag, D.; and Rush, A. M. 2016.
Character-aware neural language models. In Proceedings of
the National Conference on Artificial Intelligence (AAAI).

Kneser, R., and Ney, H. 1995. Improved backing-off for
m-gram language modeling. In Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE.

Li, L.; Chu, W.; Langford, J.; and Wang, X. 2011. Un-
biased offline evaluation of contextual-bandit-based news
article recommendation algorithms. In Proceedings of the

International Conference on Web Search and Data Mining
(WSDM), 297-306. ACM.

Liu, T.; Zhou, M.; Gao, J.; Xun, E.; and Huang, C. 2000.
Pens: A machine-aided english writing system for chinese
users. In Proceedings of the Conference of the Association
for Computational Linguistics (ACL).

Mani, I. 2001. Automatic Summarization, volume 3 of Nat-
ural Language Processing. Amsterdam/Philadelphia: John
Benjamins Publishing Company.

McCallum, A.; Freitag, D.; and Pereira, F. 2000. Maximum
entropy Markov models for information extraction and seg-

mentation. In Proceedings of the International Conference
on Machine Learning (ICML).

Mikolov, T., and Zweig, G. 2012. Context dependent recur-
rent neural network language model. In SLT, 234-239.

Nandi, A., and Jagadish, H. 2007. Effective phrase predic-
tion. In Proceedings of the 33rd international conference on
Very large data bases, 219-230. VLDB Endowment.

Quinn, P., and Zhai, S. 2016. A Cost-Benefit Study of Text
Entry Suggestion Interaction. Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems 83—
88.

Rambow, O.; Bangalore, S.; and Walker, M. 2001. Natural
language generation in dialog systems. In Proceedings of
the first international conference on Human language tech-
nology research, 1-4.

Reiter, E.; Dale, R.; and Feng, Z. 2000. Building natural
language generation systems, volume 33. MIT Press.

Roark, B.; Saraclar, M.; Collins, M.; and Johnson, M. 2004.
Discriminative language modeling with conditional random
fields and the perceptron algorithm. In Proceedings of the
Conference of the Association for Computational Linguistics
(ACL), 47.

Shokouhi, M. 2013. Learning to personalize query auto-
completion. In Proceedings of the Conference on Research
and Developments in Information Retrieval (SIGIR). ACM.
Sordoni, A.; Galley, M.; Auli, M.; Brockett, C.; Ji, Y;
Mitchell, M.; Nie, J.-Y.; Gao, J.; and Dolan, B. 2015. A
neural network approach to context-sensitive generation of
conversational responses. In Proceedings of the Conference
of the North American Chapter of the Association for Com-
putational Linguistics (NAACL).

Swaminathan, A., and Joachims, T. 2015. Counterfactual
risk minimization. In Proceedings of the 24th International
Conference on World Wide Web Companion, 939-941. Inter-
national World Wide Web Conferences Steering Committee.

