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ABSTRACT

Spherical microphone array processing is commonly performed in
a spatial transform domain, due to theoretical and practical advan-
tages related to sound field capture and beamformer design and
control. Multichannel encoding filters are required to implement a
discrete spherical harmonic transform and extrapolate the captured
sound field coefficients from the array radius to the far field. These
spherical harmonic encoding filters can be designed based on a the-
oretical array model or on measured array responses. Various meth-
ods for both design approaches are presented and compared, and
differences between modeled and measurement-based filters are in-
vestigated. Furthermore, a flexible filter design approach is pre-
sented that combines the benefits of previous methods and is suit-
able for deriving both modeled and measurement-based filters.

Index Terms— Spherical arrays, spherical harmonics, spatial
sound, multichannel inversion

1. INTRODUCTION

Spherical microphone arrays (SMAs) allow capturing and analyz-
ing sound fields spatially by evaluating the sound pressure recorded
at various locations on the sphere. A convenient way to describe
and process a sound field captured by an SMA is in the spheri-
cal harmonic domain (SHD) [1, 2, 3, 4, 5, 6, 7, 8]. Several ap-
proaches have been proposed previously to encode SMA signals
into the SHD, based on modeled and measured SMA responses.
Encoding filters aim to recover the spherical harmonic (SH) co-
efficients of the sound-field pressure, seen as an amplitude distri-
bution of incident plane waves, from the finite radius of the mea-
surement sphere. Two well-known issues occur in the encoding
process. Firstly, spatial aliasing occurs due to the discretization
of the SH transform (SHT) with a finite number of sensors, re-
sulting in lower spatial frequencies being contaminated by higher
ones. Secondly, high spatial frequencies vanish rapidly at low tem-
poral frequencies, making it impossible to capture all spatial coef-
ficients of interest with a frequency-independent performance with-
out excessive amplification of sensor noise. Encoding filters aim
to balance between achieving recovery of these sound field coef-
ficients while maintaining microphone noise amplification below
some application-dependent acceptable level.

Various approaches have been proposed for the design of the
encoding filters. The most straightforward one focuses on the re-
lation between the pressure distribution on the sensing sphere and
the sound-field coefficients; ignoring spatial aliasing effects intro-
duced by discrete sampling it reduces to a separable application of
a frequency-independent discrete SHT matrix and frequency equal-

ization of the output channels [3, 2, 9, 10, 11]. Alternatively,
the whole array response can be modeled in the SHD, including
aliasing, and the encoding can be formulated as a multiple-input
multiple-output (MIMO) inversion problem [3, 4, 5]. Model-based
encoding is convenient since it requires only basic knowledge of
the array (microphone positions, sphere radius, baffled or open ar-
ray). However, it is argued in [3, 5, 7] that better encoding perfor-
mance can be achieved if directional array response measurements
exist and are utilized to derive the filters. This is especially true
for arrays that deviate from the model, e.g., due to mismatches of
sensor positions or directivities, or cases that are more complex to
model, such as dual-radius arrays [5]. Contrary to model-based fil-
ters, measurement-based encoding filters can be obtained only via
MIMO inversion of the system response, either using directly the
measurements [3] or by transforming them first to the SHD [5, 12].

In this work we present a review of the various approaches and
evaluate their performance using a real SMA. Order-dependent per-
formance metrics, previously introduced in [3] are revised, along
with an additional metric that is order-independent based on the
directivity index (DI) [5]. Finally, we introduce a variant of the
MIMO inversion approaches proposed in [3, 5] that allows more
flexibility on constraining the inversion.

Example code for simulation, encoding and evaluation of these
methods can be found in [13].

2. ARRAY MODEL

It is assumed that the sound-field can be modeled as a continuous
distribution of incident plane waves with amplitudes a(γγγ), with γγγ
denoting the direction vector of incidence. The Nth-order spherical
harmonic representation of this distribution is given by the SHT as

aN(k) = SHT {a(k,γγγ)} =
∫
γγγ

a(k,γγγ)yN(γγγ) dγγγ (1)

where k is the wavenumber, aN = [a00, ..., anm, ..., aNN]
T are the

sound-field coefficients, and
∫
γγγ
· dγγγ denotes integration over all di-

rections. The vector yN denotes a vector of (N+1)2 real SHs Ynm
of mode-number (n,m), up to a maximum order N, as

yN(γγγ) = [Y00(γγγ), · · · , Ynm(γγγ), · · · , YNN(γγγ)]
T, (2)

where n = 0, 1, · · · ,N and m = −n, · · · , n and (·)T denotes the
transpose. Spherical array processing in the SHD operates on the
plane-wave coefficients a.

The pressure coefficients pN = [p00, · · · , pnm, · · · , pNN]
T

due to this sound field, captured at a radius R from the origin, are

pnm(kR) = bn(kR)anm(k). (3)
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The factors bn depend on the radius, frequency, and sensor type.
Common cases of practical interest are [14, 3]

bn(kR) =

{
injn(kR), open
−in+1

(kR)2h′n(kR)
, baffle (4)

where baffle refers to pressure sensing on the surface of a spherical
rigid baffle of radius R. The functions jn, hn correspond to spher-
ical Bessel and spherical Hankel functions1, and (·)′ denotes the
derivative with respect to the argument. The expansion order N is
chosen according to the properties and size of the array [15, 16].

Alternatively, a general array response can be considered. Let
us assume S sensors at directions ΓS = [γγγ1, · · · , γγγS] and radius
R. A matrix of SHs for the set of directions ΓS is denoted as
YS = [yN(γγγ1), · · · ,yN(γγγS)]

T. Going forward, the wavenum-
ber k is dropped for convenience of notation. Assuming that the
response of the sth sensor is hs(γγγ), the array steering vector is
h(γγγ) = [h1(γγγ), ..., hS(γγγ)]

T. The array response can be expressed
by its SHT coefficients, limited to order N, and resulting in the
S× (N + 1)2 matrix GN = [g

(N)
1 , ...,g

(N)
S ]T, with

g(N)
s = SHT {hs(γγγ)} =

∫
γγγ

hs(γγγ)yN(γγγ) dγγγ. (5)

The steering vector h is obtained from GN via an inverse SHT as

h(γγγ) = GNyN(γγγ). (6)

The relations (5) and (6) are valid for arrays with arbitrary geometry
and directional characteristics. For the idealized models of (4), the
array matrix GN reduces to

GN = YSBN, (7)

where BN = diag {[b0, ..., bn, ..., bN]} is the (N+1)2× (N+1)2

diagonal matrix of the coefficients in (4).
Following the plane wave distribution formalism a(γγγ), and in-

cluding sensor noise n in the model, the array signals x are finally

x =

∫
γγγ

h(γγγ)a(γγγ) dγγγ + n = GNaN + n. (8)

Hence, to recover the sound field coefficients a from the signals
x, (8) should be inverted, with constraints on noise amplification.
Spatial sampling conditions impose a limit on the maximum order
L < N of coefficients that can be recovered; if the microphones are
close to uniformly distributed then L = b

√
S − 1c. The problem

can thus be specified as finding an optimal (L + 1)2 × S encoding
matrix E that estimates aL from the microphone signals

ãL = Ex = EGNaN + En. (9)

We define the SH White Noise Gain (SH-WNG) as the ratio of the
noise power at the recovered coefficients over the noise power at the
microphones. Assuming spectrally and spatially white noise n with
power σ2

n and E
[
nnH

]
= σ2

nIS,

gL = diag
{
E
[
EnnHEH

]} (
σ2
n

)−1
= diag

{
EEH

}
, (10)

where gL = [G1, · · · , G(L+1)2 ]
T is the vector of SH-WNG values

for each SH channel and E [·] denotes statistical expectation.

1Here, with plane wave directions defined by their angle of incidence
rather than propagation, Hankel functions of the second type are used.

3. MODEL-BASED ENCODING FILTERS

3.1. Inversion of radial terms

The most common approach to designing the encoding matrix E
is based on the ideal factorization solution of (3). However, this
ignores spatial aliasing occurring at frequencies f > cL/(2πR), or
equivalently kR > L, where c denotes the speed of sound. Signals
of order n, with 0 ≤ n ≤ L, are equalized as

anm = f(bn)SHT {p(γγγ)} = f(bn)pnm, (11)

where f(bn) is a single-channel inversion of the bn response, being
f(bn) = 1/bn in the unconstrained case. Hence, this radial inver-
sion separates the encoding process into two stages, a frequency-
independent matrix EDSHT performing a discrete SHT (DSHT),
followed by L+1 inversion filters applied to the transformed signals
of each order [3, 2, 9, 10, 11]. In matrix form

E = f(BL)EDSHT. (12)

The DSHT matrix can be of the form

EDSHT =


1
S
ŶT

S , uniform
ŶT

S WS, quadrature
(ŶT

S ŶS)
−1ŶT

S , least-squares (LS)
(ŶT

S WSŶS)
−1ŶT

S WS, weighted LS
(13)

where ŶS is the SH matrix of the sensors up to order L and WS is
a diagonal matrix of sampling weights

∑S
s=1 ws = 1 that restore

orthogonality of the DSHT in the case that the microphones are not
uniformly arranged. In the case of uniformity, all cases reduce to
the first case. Application of the DSHT matrix already results in a
decrease of noise power at the output by a factor of 1/S, or equiv-
alently −10 log10 S dB. Therefore, for a SH-WNG constraint of
Gmax, the maximum gain of the encoding filters should not exceed√
SGmax.

In order to constrain the inversion to such a level, Tikhonov
regularisation can be applied, with the filter responses given by

f(bn) =
b∗n

|bn|2 + β2
(14)

where (·)∗ denotes the complex conjugate, and β is the regularisa-
tion term given as [3]

β2 =
1−

√
1− (SG2

max)−1

1 +
√

1− (SG2
max)−1

. (15)

The regularisation term forces the inverse filter response to de-
cay rapidly at frequencies below the noise threshold. Alternatively,
a maximum threshold for the filter gain can be enforced directly
during the inversion [9, 17]

f(bn) =

{
1
bn
, for 1/|bn| ≤

√
SGmax

b∗n
|bn|

√
SGmax, for 1/|bn| >

√
SGmax

(16)

The above limiting approach induces a discontinuity in the response
of the filter. It has been shown that it is advantageous to apply a
soft-limiting approach as [9]

f(bn) =
2
√
SG

π

b∗n(f)

|bn|
arctan

π

2
√
SG

1

|bn|
. (17)
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Figure 1: (a–c) Spatial correlation Cn and (d–f) level difference Ln for the Eigenmike and n = 0, · · · , 4; (a,d) model-based radinv (14) vs.
softlim (17), and model-based vs. measurement-based LS-solution for (b, e) regLS (19) and (c, f) SVD (24).

3.2. Least-squares solution

The single-channel encoding filters in Section 3.1 may result in
over-amplification of the aliased components at high frequencies.
An alternative is to consider the general array response model of
(9) and solve it as a MIMO least-squares inversion that takes into
account the effects of spatial aliasing. This approach minimizes

argmin
E

||EGNaN − aL||22 ≡ argmin
E

||EGN − ILN||2F

s.t. max {gL} < Gmax (18)

where ILN = [IL0] is a (L+1)2×(N+1)2 identity matrix padded
with zeros that selects SH coefficients up to order L. The || · ||2
and || · ||F denote the L2 vector norm and Frobenius matrix norm
respectively. The regularized least-squares solution to (18) is given
by Jin et al. [5] as

E = ILNGH
N(GNGH

N + β2IS)
−1. (19)

with the regularization value β = 1/(2Gmax).

4. MEASUREMENT-BASED ENCODING FILTERS

Model-based encoding filters are suitable for microphone arrays
conforming with the theoretical response of (3) and (4) or (7). How-
ever, in practical applications the array may violate the assumptions
of ideal behavior due to inaccuracies in sensor positioning, variabil-
ity in sensor directivity and diaphragm size, etc. In this case the
model-based filters may result in suboptimal capture of the SH sig-
nals compared to the theoretical array model. By deriving encoding
filters from array response measurements the actual array proper-
ties can be taken into account. This approach is also useful when
the array properties are unknown.

Assuming that the measured responses for D directions ΓD

have been collected in the S×D matrix HD = [h(γγγ1), ...,h(γγγD)]
T,

and YD is the SH matrix for the same directions up to order L, the
weighted least-squares solution to

argmin
E

||EHD −YT
D||2F s.t. max {gL} < Gmax (20)

is given by Moreau et al. [3]

E = YT
DWDHH

D(HDWDHH
D + β2IS)

−1. (21)

Similar to WS in (13), the D×D matrix WD contains appropriate
sampling weights for the measurement grid directions.

Alternatively, measurement-based filters can be computed with
(19) by estimating the SH array matrix G̃ in the least-squares sense
from the array response measurements via:

argmin
G̃N

||G̃NYT
D −HD||2F (22)

with the solution

G̃N = HDWDYD(Y
T
DWDYD)

−1. (23)

Note that the maximum expansion order N of the array response is
limited by the number D and arrangement of measurements. For
equiangular measurement grids in azimuth and elevation that order
is N ≈ d

√
D/2 − 1e [16]. Since (21) and (19) give equivalent

results, we evaluate only the SH domain-based inversion of (19),
which applies to both the model- and measurement-based approach.

5. FLEXIBLE LS-INVERSION BASED ON SVD

The approaches based on the inversion of the theoretical radial
terms permit flexible single-channel inversion rules suitable for the
target responses, such as the soft-limiting approach of (17). How-
ever, these filters ignore the effect of spatial aliasing, and they can-
not take into account the true measured directional response of the
array, if available. The least-squares solutions of (19) and (21) are
more general, but they lack flexibility other than not exceeding the
desired SH-WNG level, due to the global Tikhonov regularization
parameter. It is more practical to control the inversion with respect
to the output SH channel response, as in the single-channel radial
inversion cases. We propose a simple least-squares solution that can
be applied to both modeled and measured responses, while permit-
ting the design flexibility of the single-channel inversion.

Given the least-squares inversion of (19) and the singular value
decomposition (SVD) of the SH array matrix, GN = UΣVH,

E = ILNGH
N(GNGH

N)
−1

= ILNVΣHUH(UΣ̂2UH)−1

= V̂AUH, (24)
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Figure 2: DI of Eigenmike and custom 64-channel SMA, for a)
model-based and b) measurement-based filters.

where Σ̂2 is the S × S matrix of squared singular values and V̂
is the (L + 1)2 × S sub-matrix of V containing the right singu-
lar vectors contributing to the recovery of the target coefficients up
to order L. A is a diagonal matrix with entries [A]ss = σ−1

s in
the unconstrained case. Constraining the encoding now reduces to
constraining the inversion of the singular values in A:

E = V̂f(A)UH. (25)

For example, if it is desired that the soft-limiting approach of (17)
is applied, then the modified singular values are given by

f([A]ss) =
2Gmax

π

σ∗s
|σs|

arctan
π

2Gmax

1

|σs|
. (26)

6. EVALUATION

The performance of the filters recovering the sound field coefficients
aL can be evaluated via the transformed array response

ŷL(f,γγγ) = E(f)G̃N(f)yN(γγγ), (27)

with ŷL = [Ŷ00, Ŷ1(−1), · · · , ŶLL]
T. Ideally, ŷL is frequency-

independent and equal to the theoretical SH vector, ŷL ≈ yL. A
measure of similarity between these two vectors is the normalized
spatial correlation per order Cn ∈ [0, 1] as [3]

Cn(f) =

∑n
m=−n ŷH

nm(f)WDynm√
An(f)Bn

(28)

where ŷnm = [Ŷnm(γγγ1), · · · , Ŷnm(γγγD)]
T, and ynm =

[Ynm(γγγ1), · · · , Ynm(γγγD)]
T and An, Bn are the energies

An(f) =

n∑
m=−n

ŷH
nm(f)WDŷnm(f), (29)

Bn =

n∑
m=−n

yH
nmWDynm ≈ 1. (30)

The mean diffuse level difference between the ideal and recon-
structed SHs can be defined as [3]

Ln(f) =
An(f)

Bn
. (31)

Note that for appropriate sampling weights WD of the measure-
ment points that approximate integration over the sphere, the ideal
level of SHs should be unity, Bn ≈ 1.

A common order-independent performance metric is the direc-
tivity index (DI) of the maximum-directivity beamformer in the SH
domain. If the array can recover coefficients up to order L, then the
maximum-directivity beamformer weights for any reference direc-
tion are given by the vector yL, with a maximum theoretical DI of
10 log10(L + 1)2 dB. The actual DI is computed as

DI(f) = 10 log10
maxabs

[
yT
LE(f)HD(f)

]2
yT
LE(f)HD(f)WDHH

D(f)E
H(f)yL

, (32)

where maxabs [·] denotes the maximum absolute vector element.
The performance of the various approaches is tested on two real

SMAs based on directional measurements HD, and the computation
of the SHD array matrix G̃N using (23). A commercial 4th-order,
32-channel SMA (Eigenmike) [1, 18] was measured in an anechoic
chamber using an equiangular grid of (5, 10) degrees spacing in az-
imuth and elevation, respectively. A custom 7th-order, 64-channel
SMA described in [19] was measured at 512 directions.

Figure 1 shows the spatial correlation and mean level difference
between ideal SHs and SHs reconstructed by applying the encoding
filters to the measured responses of the Eigenmike array. There are
no significant differences between the two model-based radial inver-
sion filters, radinv (14) and softlim (17), apart from the smoother
low-frequency level decay of the softlim filters. The model-based
LS filters, regLS (19), exhibit similar performance as the radinv
ones, apart from stronger suppression of components above the
aliasing limit, an indication that radinv and softlim over-amplify
them. The measurement-based equivalent filters, regLS (19) and
the proposed SVD (25), offer significant improvements over their
model-based versions. The spatial correlation is extended signifi-
cantly towards lower frequencies, while the level of the captured SH
coefficients is better equalized, especially towards higher frequen-
cies. In general, measurement-based filters achieve performance
much closer to the ideal frequency-independent capture of sound-
field coefficients for wider frequency ranges than the theoretical fil-
ters indicate. The proposed SVD-based filters are similar to the
regularization-based ones, with a somewhat extended performance
towards lower frequencies due to the application of a soft-limiting
rule rather than a global regularization value.

Figure 2 shows the DI for the two measured SMAs, evalu-
ated with (32). The theoretical maximum DIs are 14 dB for the
Eigenmike and 18 dB for the custom 64-channel SMA. While
model-based (a,c) and measurement-based (b,d) filters achieve sim-
ilar performance at mid-to-high frequencies up to the aliasing limit,
measurement-based filters yield a consistently higher DI at low fre-
quencies, effectively extending the frequency range.

7. CONCLUSIONS

This study summarizes model- and measurement-based methods for
deriving SH encoding filters for SMAs, and evaluates them on two
real arrays. The results indicate that least-squares encoding is more
general than simple radial inversion. In line with earlier works,
measurement-based filters capture the sound field coefficients at a
wider frequency range than model-based ones. A least-squares en-
coding is proposed that allows finer control of the inversion pro-
cess and improves low-frequency performance compared to prior
approaches. Future work will study the method’s benefit for com-
plex arrays with more challenging inversion cases.
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