

Predicting DNA hybridization kinetics from sequence

Q1 Jinny X. Zhang^{1,2}, John Z. Fang¹, Wei Duan¹, Lucia R. Wu¹, Angela W. Zhang¹, Neil Dalchau³, Boyan Yordanov³, Rasmus Petersen³, Andrew Phillips³ and David Yu Zhang^{1,2*}

Hybridization is a key molecular process in biology and biotechnology, but to date there is no predictive model for accurately determining hybridization rate constants based on sequence information. Here, we report a weighted neighbour voting (WNV) prediction algorithm, in which the hybridization rate constant of an unknown sequence is predicted based on similarity reactions with known rate constants. To construct this algorithm we first performed 210 fluorescence kinetics experiments to observe the hybridization kinetics of 100 different DNA target and probe pairs (36 nt sub-sequences of the CYCS and VEGF genes) at temperatures ranging from 28 to 55 °C. Automated feature selection and weighting optimization resulted in a final six-feature WNV model, which can predict hybridization rate constants of new sequences to within a factor of 3 with ~91% accuracy, based on leave-one-out cross-validation. Accurate prediction of hybridization kinetics allows the design of efficient probe sequences for genomics research.

1 **H**ybridization of complementary DNA and RNA sequences is a fundamental molecular mechanism that underlies both biological processes^{1–3} and nucleic acid analytic biotechnologies^{4–7}. The thermodynamics of hybridization have been well studied, and algorithms based on the nearest-neighbour model of base stacking^{8,9} predict minimum free-energy structures and melting temperatures^{10,11} with reasonably good accuracy. In contrast, the kinetics of hybridization remain poorly understood, and no models or algorithms have been reported that accurately predict hybridization rate constants from sequence and reaction conditions (temperature and salinity). This knowledge deficiency has adversely impacted the research community by requiring either trial-and-error optimization of DNA primer and probe sequences for new genetic regions of interest, or brute-force use of thousands of DNA probes for target enrichment.

17 Predictive modelling of hybridization kinetics faces two main challenges. First, the kinetics of very few DNA sequences have been characterized directly, either in bulk solution^{12–16} or at the single-molecule level^{17–19}. The primary reason for the lack of data is the cost of fluorophore-functionalized DNA oligonucleotides, which at roughly \$200 per sequence becomes prohibitive for the hundreds of experiments needed to establish sequence generality. Second, the hybridization of complementary sequences can follow many different pathways¹⁵, rendering simple reaction models inaccurate for a large fraction of DNA sequences.

27 To create a sufficiently representative and sequence-general data set for developing a predictive model of hybridization kinetics, we experimentally characterized the kinetics of 210 individual hybridization reactions on 100 different pairs of complementary sequences. We were able to do this economically through the use of the X-probe architecture, in which universal fluorophore- and quencher-functionalized oligonucleotides are recycled across many different experiments.

35 From our experimental data we made three unexpected findings: (1) most hybridization reactions do not asymptotically reach more than 90% yield; (2) initial hybridization kinetics is

generally uncorrelated with asymptotic yield; and (3) secondary structure in the middle of a DNA target sequence tends to more adversely affect hybridization kinetics. Additionally, we observed that structure-free DNA target/probe sequences generally tended to have faster hybridization kinetics, consistent with literature and our expectations, but even structure-free sequences exhibited more than one order of magnitude of variation in hybridization rate constants.

38 **39** **40** **41** **42** **43** **44** **45** **46** **47** **48** **49** **50** **51** **52** **53** **54** **55** **56** **57** **58** **59** **60** **61** **62** **63** **64** **65** Based on our experimental data, we also constructed a new type of algorithm to predict DNA hybridization rate constants based on the target/probe sequence, called ‘weighted neighbour voting’ (WNV). In WNV, each hybridization reaction is mapped to a set of bioinformatic feature values and can be considered a point in the high-dimensional feature space. Two hybridization reactions that are close in feature space are expected to exhibit similar kinetics. The rate constant of an unknown hybridization reaction is predicted based on the weighted average of observed rate constants of experimentally tested reactions, with weights dropping exponentially for reactions that are farther away in feature space. Under leave-one-out (LOO) cross-validation, our final WNV model predicts rate constants to within a factor of 2 for 80% of reactions, and within a factor of 3 for 91%. Next-generation sequencing (NGS) studies show a significant correlation ($R^2 \approx 0.6$) between the rate constants of DNA hybridization in single-plex versus multiplex, suggesting that the current work is a good starting point for the rational design and selection of DNA probes for highly multiplexed applications, such as target enrichment from genomic DNA⁶.

Experimental results

66 **67** **68** **69** **70** **71** **72** **73** To systematically but economically characterize the hybridization kinetics of many different sequences we used the X-Probe architecture²⁰, which makes use of universal fluorophore and quencher-labelled oligonucleotides (Fig. 1a). A universal fluorophore-labelled oligonucleotide was pre-hybridized to the probe and a universal quencher-labelled oligonucleotide was pre-hybridized to the target. When the target and probe solutions were mixed, the

¹Department of Bioengineering, Rice University, Houston, Texas 77030, USA. ²Systems, Synthetic, and Physical Biology, Rice University, Houston, Texas 77030, USA. ³Microsoft Research, Cambridge CB1 2FB, UK. *e-mail: dyz1@rice.edu

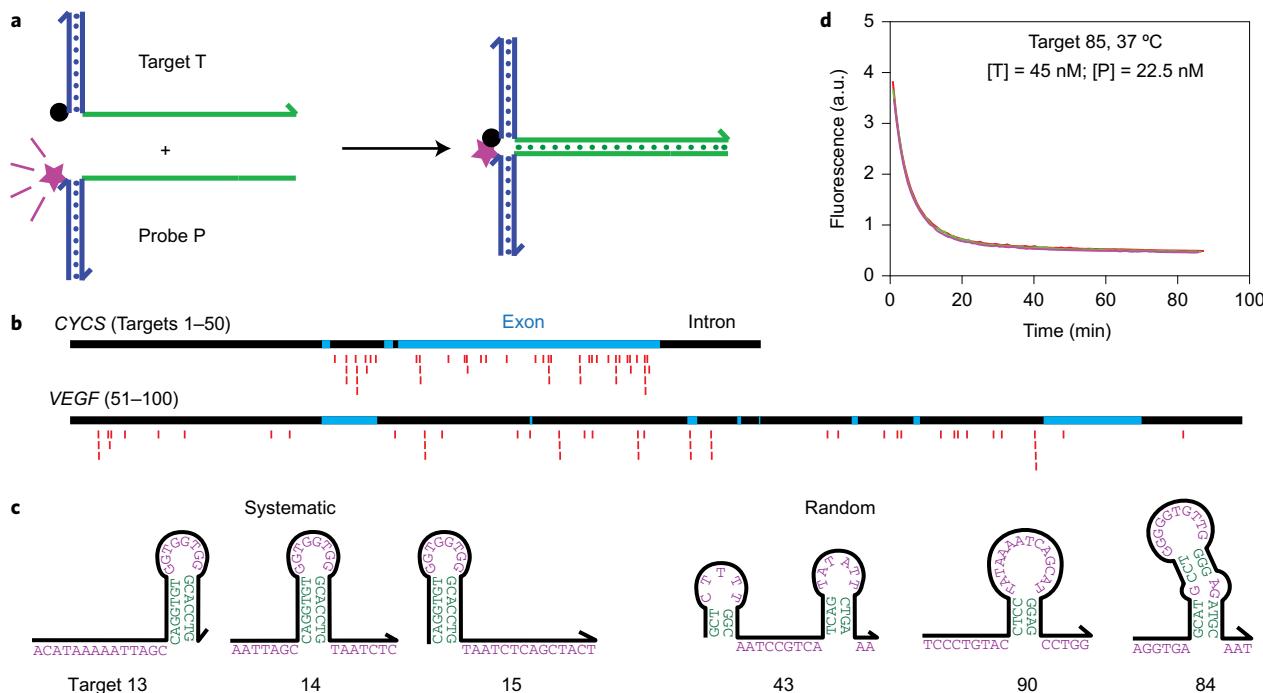


Figure 1 | Experimental characterization of hybridization kinetics. **a**, Fluorescent probes with universal functionalized oligonucleotides. Blue regions are universal sequences and green regions are variable regions corresponding to the target or probe sequence. Fluorescence is initially high and decreases as the hybridization reaction proceeds because the fluorophore (purple star) becomes localized to the quencher (black dot). **b**, A total of 100 different sub-sequences of the CYCS and VEGF genes were selected to be the target sequences. In this study, all target and probe sequences are 36 nt long (excluding universal regions). Then, 25 targets for each gene were chosen randomly with uniform distribution across the entire intron and exon region and another 25 targets were selected as close overlapping frames to systematically test the position effects of secondary structures. Red markers denote the sub-sequences of the genes selected as targets. **c**, Examples of secondary structures encountered in target sequences. Shown are predicted minimum free energy (mfe) structures predicted for the target sequences at 37 °C. Supplementary Table 1 presents the sequences of the 100 targets. **d**, Example kinetics traces (triplicate) of a hybridization reaction. All reactions proceeded in 5× PBS buffer. Supplementary Section 1 provides reproducibility studies and Supplementary Section 2 fluorescence traces for all 210 experiments.

1 solution fluorescence was initially high because the fluorophore was
 2 delocalized from the quencher, but dropped over time as the hybrid-
 3 idation reaction proceeded. The solution fluorescence at any given
 4 time can thus be linearly mapped to the instantaneous hybridization
 5 reaction yield.

6 We selected, as targets, 100 sub-sequences of the CYCS and
 7 VEGF genes, each target sub-sequence being 36 nucleotides (nt)
 8 long. Of the 50 targets for each gene, 25 were selected randomly
 9 with uniform position distribution across the gene and the other
 10 25 were selected systematically so that the effects of secondary
 11 structure position could be examined (Fig. 1b,c).

12 Figure 1d shows triplicate kinetics traces for one hybridization
 13 reaction. A total of 210 hybridization experiments were character-
 14 ized (100 reactions at 37 °C, 96 at 55 °C, 7 at 28 °C and 7 at 46 °C).
 15 There was very low experimental error in our fluorescence experi-
 16 ments; all triplicate data points agreed with each other to within
 17 2%. To obtain maximally reliable experimental data for rate con-
 18 stant inference, we performed multiple experiments until determin-
 19 ing a set of target and probe concentrations such that each
 20 hybridization reaction undergoes between two and ten half-lives
 21 within the 80–180 min observation time.

22 In all experiments, the concentration of the target was at least
 23 double that of the probe, to minimize the effects of slight pipetting
 24 variability. To ensure that the observed kinetics are primarily due to
 25 target/probe sequence rather than synthesis impurities, we experimen-
 26 tally observed kinetics for the hybridization of three sets of
 27 targets and probes, each as three separate syntheses from two differ-
 28 ent vendors (Integrated DNA Technologies and Sigma). The
 29 inferred hybridization rate constants for different syntheses

showed minor variations, and were all consistent to within a 30
 factor of 2 (Supplementary Section 1). 31

Hybridization rate constant (k_{Hyb}) fitting

32 A simple two-state $T + P \rightarrow TP$ reaction model fails to reasonably 33 fit the observed fluorescence kinetics. Notably, over 40% of the 34 reactions asymptote to a final reaction yield of less than 85%, 35 based on the positive control fluorescence where the target 36 and probe are thermally annealed (Supplementary Section 1). 37 We were surprised by the extent and reproducibility of the incom- 38 plete DNA hybridization yield, which may be due to misaligned 39 hybridization or other nonspecific interactions between target 40 and probe. 41

42 We considered three reaction models of hybridization to explain 43 the kinetics data (Fig. 2a). Model H1 assumes that a fraction of the 44 probes P are incapable of proper hybridization with target T or the 45 accompanying fluorescence quenching. Model H2 assumes that all 46 probe P is correctly synthesized, but that some fraction of the 47 $T + P$ reaction undergoes an alternative pathway with rate constant 48 k_1 to result in a state TP_{bad} with high fluorescence. This frustrated 49 state, TP_{bad} , may represent states in which T and P are co-localized 50 by misaligned base pairs. Model H3 is a combination of models H1 51 and H2, wherein there exists both a fraction of bad P as well as the 52 alternative pathway involving TP_{bad} . 53

54 For each of our 210 fluorescence kinetics experiments we per-
 55 formed fitting using each of the three models (Fig. 2b), finding par-
 56 ameters that minimize the sum-of-square relative error RE, where
 57 $RE = ((\text{Data} - \text{Simulation})/\text{Data})$. The RE values of each hybridiz-
 58 ation experiment are summarized as a single root-mean-square 59

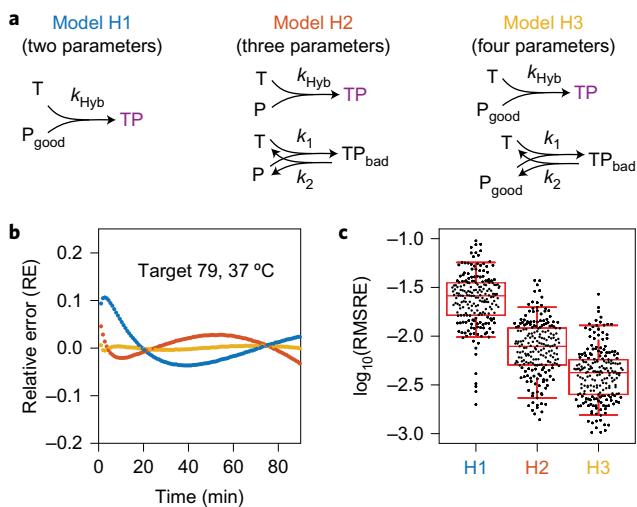


Figure 2 | Hybridization model and rate constant parameterization. **a**, Three different reaction models considered for fitting rate constant k_{Hyb} to fluorescence kinetics data. Based on the root-mean-square relative error (RMSRE) of each of the models in fitting the observed experimental data, model H3 was selected. Model 3 has four fitting parameters for each reaction: k_{Hyb} , bad fraction ($1 - ([P_{\text{good}}]/[P])$), k_1 and k_2 . **b**, Relative error (RE) for three reaction models for a given hybridization reaction. RE is plotted as a function of time for each model using best-fit parameters for each. **c**, Summary of fit quality for the three models across all 210 fluorescence kinetics experiments. Each point corresponds to the RMSRE of all time points for a particular fluorescence experiment. Upper and lower bars are 95th and 5th percentile values, and the box shows 75th, 50th and 25th percentile values. Based on this result, we chose to proceed with model H3 for all subsequent studies.

1 relative error (RMSRE) value, defined as

$$\text{RMSRE} = \sqrt{\frac{1}{\alpha} \sum_t \text{RE}(t)^2} \# \quad (1)$$

Q3 2 where α is the total number of time points t during which fluo- 3 rescence was measured for the reaction. Figure 2c shows the distri- 4 bution of RMSRE values. Model H3 yields the best overall fit to 5 the experimental data. Consequently, H3-fitted parameters (k_{Hyb} 6 and the bad fraction) were used for all subsequent work. See 7 Supplementary Section 2 for best-fit traces using each 8 reaction model.

9 **Summary of observed hybridization kinetics.** The best-fit values of 10 the hybridization rate constant k_{Hyb} at 37 and 55 °C are summarized 11 in Fig. 3a. The observed k_{Hyb} ranged from 3.2 log at 37 °C and 12 2.3 log at 55 °C, significantly exceeding our expectations. 13 Hybridization kinetics are generally faster at 55 °C than at 37 °C 14 (by a factor of 3 on average), and there is a reasonably strong 15 correlation between hybridization rate constants for the same 16 target/probe pair at different temperatures.

17 The asymptotic yield of the fast initial hybridization reaction 18 with rate constant k_{Hyb} can be quantitated as $(1 - \text{bad fraction})$. 19 The bad fraction varies between 0.02 and 0.41 (Fig. 3b), and only 20 appears to be marginally smaller on average at 55 °C than at 21 37 °C. Surprisingly, there are many cases (30 of 96) where the bad 22 fraction is larger at 55 °C than at 37 °C. Because aliquots of the 23 same DNA oligonucleotide molecules were used for both sets of 24 experiments, it is not clear why such inversions are so common. 25 There does not appear to be significant correlation between k_{Hyb} 26 values and the bad fraction (Fig. 3c).

We next examined the systematically designed DNA target/probe sequence pairs for trends in k_{Hyb} (Fig. 3d). The systematic sequences included 13 sets of three DNA target/probe pairs, each frame-shifted a small number of bases so that predicted secondary structure lies in the 5', middle or 3' regions of the target (Fig. 1c). We observed two interesting trends. First, the observed k_{Hyb} values can vary greatly within a cluster: for example, targets 1–3 shows about 30-fold difference in hybridization rate constant, despite all three having similar standard free energies of folding. This indicates that the relative position of secondary structures within a DNA sequence can have a large impact on kinetics. Second, targets with the secondary structure in the middle of the sequence (circles in Fig. 3d) tended to be slower to hybridize than targets with the structure at one end: in 8 of the 13 clusters, the target with central secondary structure was the slowest in each respective cluster.

Literature reports²¹ and our own prior experience suggested that unstructured DNA sequences would hybridize more rapidly and with higher yield than structured ones. To see whether our experimental data are consistent with this observation, we plotted k_{Hyb} and the bad fraction for only the hybridization reactions in which both the target and the probe have an ensemble (partition function) standard free energy ΔG° of >-3 kcal mol⁻¹, as predicted by Nupack¹¹ for hybridization temperature and buffer conditions (Fig. 3e,f). The observed k_{Hyb} values for these structure-free sequences are indeed faster than 'typical' sequences, with all $k_{\text{Hyb}} > 1 \times 10^6$ M⁻¹ s⁻¹. Nonetheless, there is still significant variability in k_{Hyb} , ranging over more than 1 log. The asymptotic yield of the hybridization reactions is only slightly better for structure-free sequences than for other sequences.

Predictive model construction

WNV model. Our WNV model predicts the value of k_{Hyb} for new hybridization reactions based on the similarity of the reaction to hybridization reactions with known rate constants (labelled instances). Each labelled instance makes a weighted vote of $\log_{10}(k_{\text{Hyb}})$, with instances that are more similar to the new reaction being weighted more heavily. The 210 hybridization reactions across 100 different target/probe pairs act as our initial database of labelled instances.

For each hybridization reaction, a number of features f_i are calculated based on the sequences of the target and probe and the hybridization reaction temperature and buffer (Fig. 4b). A total of more than 50 different features were tested, of which 35 showed significant individual correlation with k_{Hyb} (Supplementary Section 4). The disparity between two different hybridization reactions j and m is quantitated as distance $d_{j,m}$, the Euclidean distance between the two hybridization reactions in feature space:

$$d_{j,m} = \sqrt{\sum_i (f_i(j) - f_i(m))^2} \# \quad (2)$$

where $f_i(j)$ is the value of weighted feature i for reaction j . Higher weights result in a wider feature dimension, which can potentially contribute more to the feature space distance (Fig. 4d).

From the database of hybridization experiments m with known $k_{\text{Hyb}}(m)$ values, our WNV model makes the following prediction for $k_{\text{Hyb}}(j)$ of an unknown hybridization reaction j :

$$\log_{10}(\hat{k}_{\text{Hyb}}(j)) = \frac{1}{Z_j} \sum_m 2^{-d_{j,m}} \log_{10}(k_{\text{Hyb}}(m)) \# \quad (3)$$

where $Z_j = \sum_m 2^{-d_{j,m}}$ is the 'partition function' of the distances involving reaction j (Fig. 4e). Figure 4f shows the relationship between feature space distance between a pair of hybridization

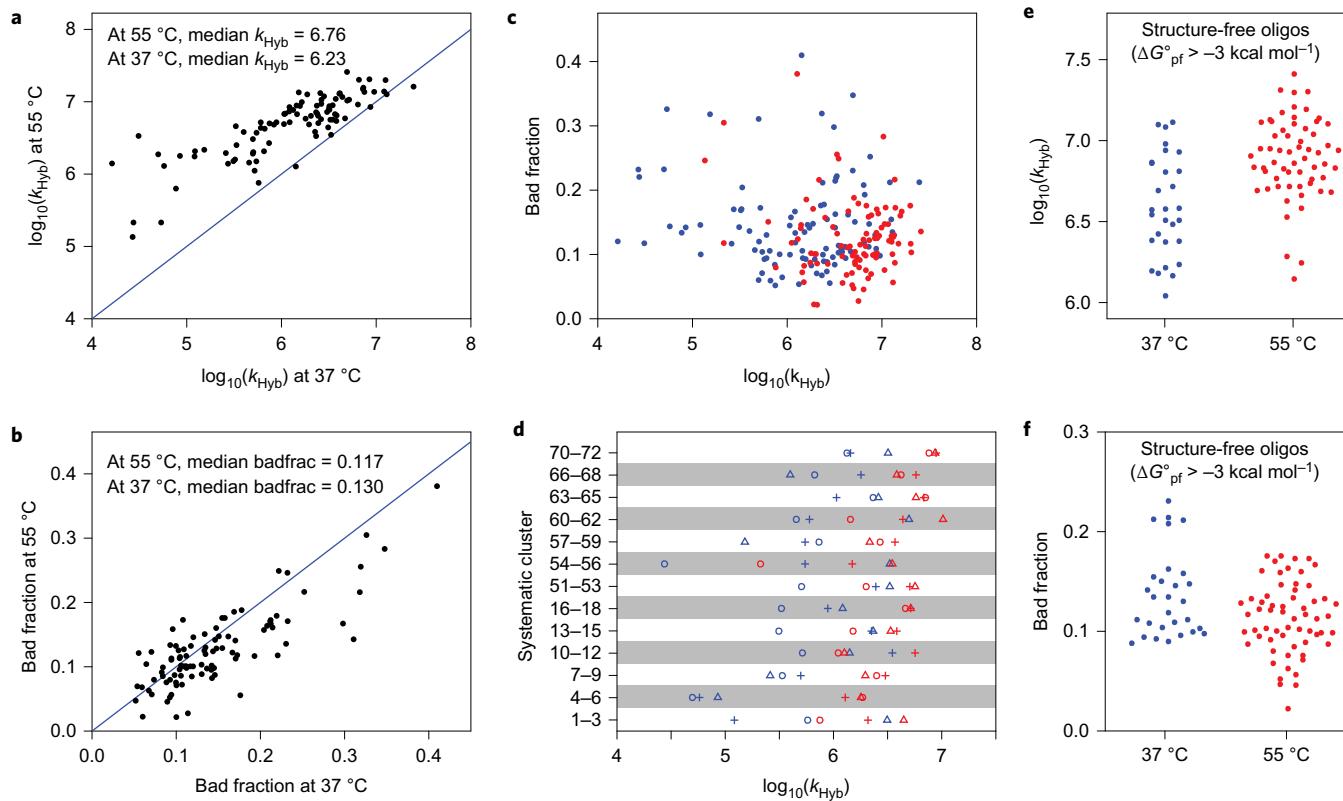


Figure 3 | Summary of observed hybridization kinetics. **a**, Observed k_{Hyb} value (model H3) for 96 targets at 37 and 55 °C. Four A/T targets were excluded from this because they were A/T-rich and did not stably bind to their probes at 55 °C. **b**, Most reactions did not reach completion, instead saturating at between 60 and 100% yield. Yield was determined based on positive control experiments where target and probe were thermally annealed (Supplementary Section 1). We modelled incompleteness of hybridization as a ‘bad fraction’ of probes that becomes kinetically trapped at a high fluorescence state. The best-fit bad fractions for the 96 targets at 37 and 55 °C are plotted. **c**, There appears to be no correlation between k_{Hyb} and asymptotic yield. Blue and red dots show experiments at 37 °C and at 55 °C, respectively. **d**, Systematically designed target/probe sequences included 13 clusters, each comprising three targets. Within each cluster, the target sequences were shifted such that predicted secondary structure is present (1) near the 5' end (plus symbols), (2) near the middle (circles), or (3) near the 3' end of the target (triangles). In 8 of 13 clusters, the target with structure in the middle was slowest. **e**, Because secondary structures are known to slow down kinetics²¹, we examined the target/probe pairs in which both the target and the probe had a predicted ensemble (partition function) standard free energy ($\Delta G^{\circ}_{\text{pf}}$) of greater than -3 kcal mol^{-1} at the experimental hybridization temperature, indicating minimal structure. At 37 °C and 55 °C, 29 of 100 reactions and 61 of 96 reactions satisfied this criterion, respectively. These reactions all have $k_{\text{Hyb}} \geq 1 \times 10^6 \text{ M}^{-1} \text{ s}^{-1}$, but k_{Hyb} values range over more than one order of magnitude. **f**, Minimal-structure targets exhibit significant variability of bad fraction, ranging between 0 and 25%.

1 reactions (using our final feature list and weights) and their difference in observed k_{Hyb} values.

2 The WNV model can be extended to any number of features. In 3 general, the potential improvements in k_{Hyb} prediction accuracy 4 must be balanced against increased model complexity from having 5 a large number of features. Additionally, the higher-dimensional 6 feature space that accompanies an increased number of features 7 makes the weight optimization significantly more difficult, due to 8 the increased number of local fitness maxima. Through a series of 9 computational optimization steps, we determined the optimal 10 number of features to be 6: nGp, Pap, Temp, wPat, GavgMSR1 11 and Gb (see Supplementary Section 3 for the optimization 12 methodology).

13 **Model performance.** To quantitate the overall performance of a 14 particular WNV model (defined by its set of features and 15 corresponding feature weights $w(i)$), we constructed the following 16 ‘Badness’ metric:

$$\text{Badness} = 3 \times (1 - \text{F2acc}) + 3 \times (1 - \text{F3acc}) + 4 \times \text{RMSE} \# \quad (4)$$

17 where F2acc is the fraction of all predicted reactions j in which the 18 predicted $\hat{k}_{\text{Hyb}}(j)$ and the experimental $k_{\text{Hyb}}(j)$ agree to within a

19 factor of 2, F3acc is the fraction that agrees to within a factor of 3, 20 and 21

$$\text{RMSE} = \sqrt{\frac{1}{N} \sum_j \left(\log_{10}(k_{\text{Hyb}}(j)) - \log_{10}(\hat{k}_{\text{Hyb}}(j)) \right)^2} \# \quad (5)$$

22 is the root-mean-square error of the logarithm of the hybridization 23 rate constant (where $N = 210$ is the number of experiments). 24

25 We chose to use this badness metric rather than RMSE only (that 26 is, a least-squares fit) because we felt that it is more relevant for 27 many applications involving the design of DNA oligonucleotide 28 probes and primers. Rather than marginally improving the predictions 29 of outlier sequences that are off by more than an order of magnitude, 30 our badness metric instead emphasizes improving the fraction of 31 predictions that are correct to within a factor of 3, or better yet within 32 a factor of 2. Simultaneously, to allow efficient 33 computational optimization of feature weights, the badness 34 metric to be minimized cannot be locally flat, so RMSE is 35 included as a component of badness. Use of different badness 36 metrics will result in optimized feature weights that exhibit a 37 different tradeoff between the magnitude and frequency of large prediction errors.

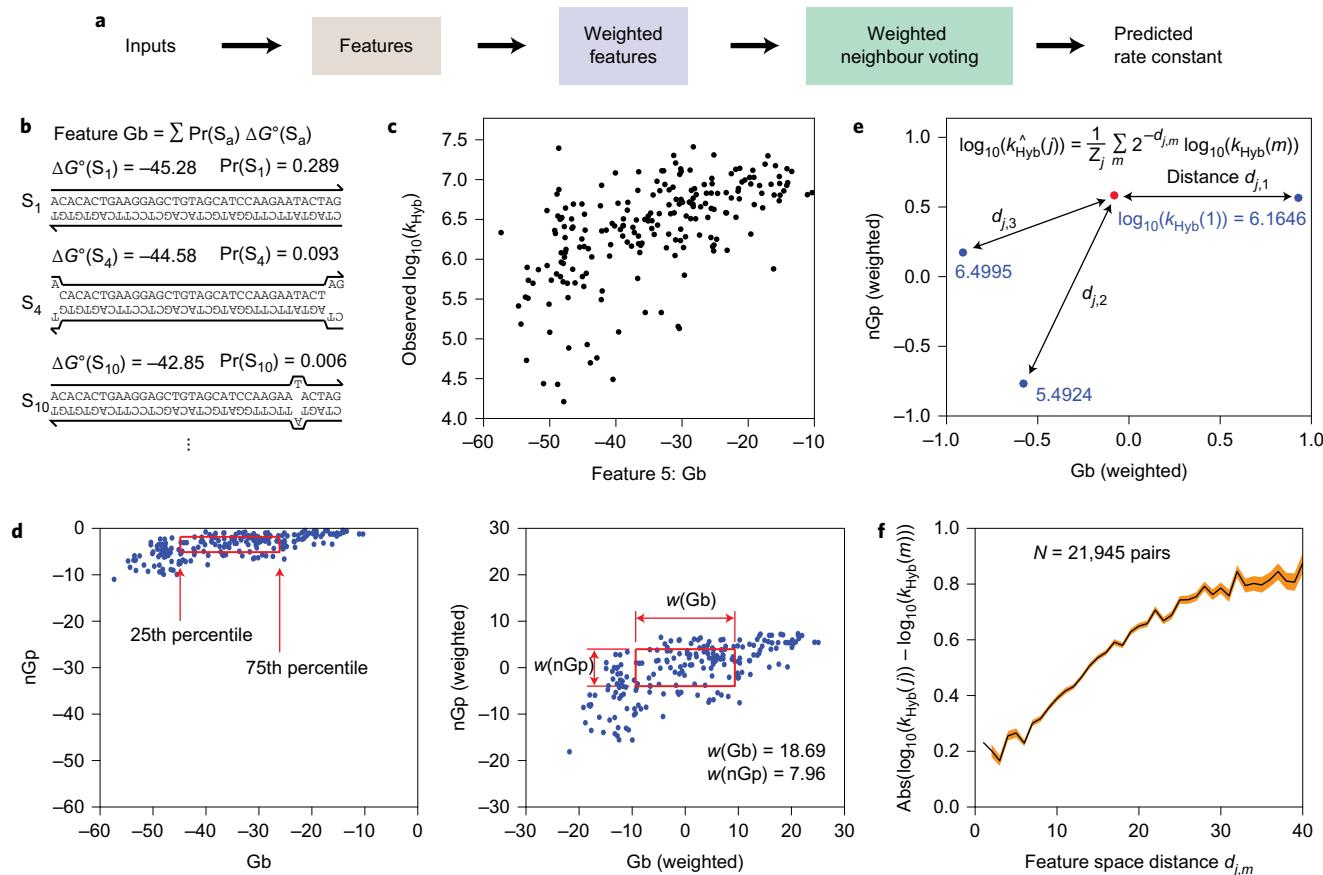


Figure 4 | Rate constant prediction using the WNV model. **a**, For an unknown hybridization reaction whose rate constant is to be predicted, feature values are calculated and compared to those in the database. The observed rate constants in the database are integrated via a weighted voting system, with weight decreasing exponentially based on distance to the target in feature space. **b**, Features are computed based on the sequences of the target and probe, as well as the reaction conditions (temperature, salinity). Shown is an example calculation for feature G_b , the weighted average ΔG° of the hybridized complex. **c**, Relationship between the experimental hybridization rate constants k_{Hyb} (in \log_{10}) versus G_b values for the 210 hybridization experiments. There is moderate correlation between k_{Hyb} and G_b , indicating that G_b may be an effective feature for rate constant prediction. **d**, Feature renormalization. Raw values of the G_b and nG_p features (left) are linearly transformed based on a set of feature weights $w(i)$: the 75th percentile value of a feature i is renormalized to $+(w(i)/2)$ and the 25th percentile value is renormalized to $-(w(i)/2)$. **e**, The distance between renormalized feature values of an unknown reaction (red dot) and of all reactions with known k_{Hyb} values (blue dots) are computed. Prediction weight drops exponentially with distance. **f**, Relationship between feature space distance d and the absolute value of difference in experimental rate constants (\log_{10}) for two hybridization reactions. Pairs of reactions with small d generally have similar rate constants; the converse statement is not true because two very different reactions may coincidentally have similar rate constants. The black line shows the mean and the red region shows ± 1 standard deviation on the mean.

1 One commonly held belief in the field is that the predicted sec-
2 ondary structure in the DNA target and probe sequences is highly
3 inversely correlated with hybridization rate constants. We found
4 this to be partially true: when the WNV model is constrained to
5 the selection of only a single feature, the nG_p feature (denoting
6 the predicted ΔG° of the probe oligonucleotide based on Nupack
7 at the hybridization temperature/buffer) emerged as the single
8 best predictor of k_{Hyb} (Fig. 5a). Prediction using only nG_p was accu-
9 rate to within a factor of 2 for 61% of reactions and within a factor
10 of 3 for 79% of reactions. However, prediction accuracy can be
11 significantly improved by including more features in the WNV model.

12 Figure 5b,c shows the prediction accuracy of the best three-
13 feature WNV model and the final six-feature WNV model. The
14 six-feature WNV model is significantly better at prediction than
15 the one-feature and three-feature models, with 80% accuracy
16 within a factor of 2 and 91% accuracy within a factor of 3. The
17 six features used were nG_p , Pap , $Temp$, $wPat$, $GavgMSR1$ and G_b ,
18 with respective feature weights of 7.96, 15.12, 10.55, 4.44, 10.90
19 and 18.69 (Supplementary Section 4). Although nG_p was the best
20 single feature when considered in isolation, in the six-feature

model its weight is the second smallest. This observation potentially 21 suggests that the other features collectively hold information that 22 overlaps with nG_p . 23

To help the research community predict hybridization rate constants for DNA oligo probes and primers, we have constructed a 24 web-based software tool, available at <http://nablab.rice.edu/nab-tools/kinetics>. The software typically completes predicting k_{Hyb} 25 within 30 s. It is currently seeded with the 210 hybridization exper- 26 iment results performed in this Article and will be updated with 27 additional hybridization experiment results in the future. 28

Enrichment from human genomic DNA

The human genome is over 3 billion nucleotides long, but the 32 coding regions that form the exome collectively only span 1% of 33 the genome. Within the 20,000 genes of the exome, typically there 34 are only between 10 and 400 that are relevant to any particular 35 disease. NGS^{22,23} is the preferred way to perform highly multiplexed 36 analysis of many different DNA sequences within a sample. In NGS, 37 anywhere between 1 million and 1 billion molecules are randomly 38 sampled and the identities of the first 150–300 nt of each molecule 39

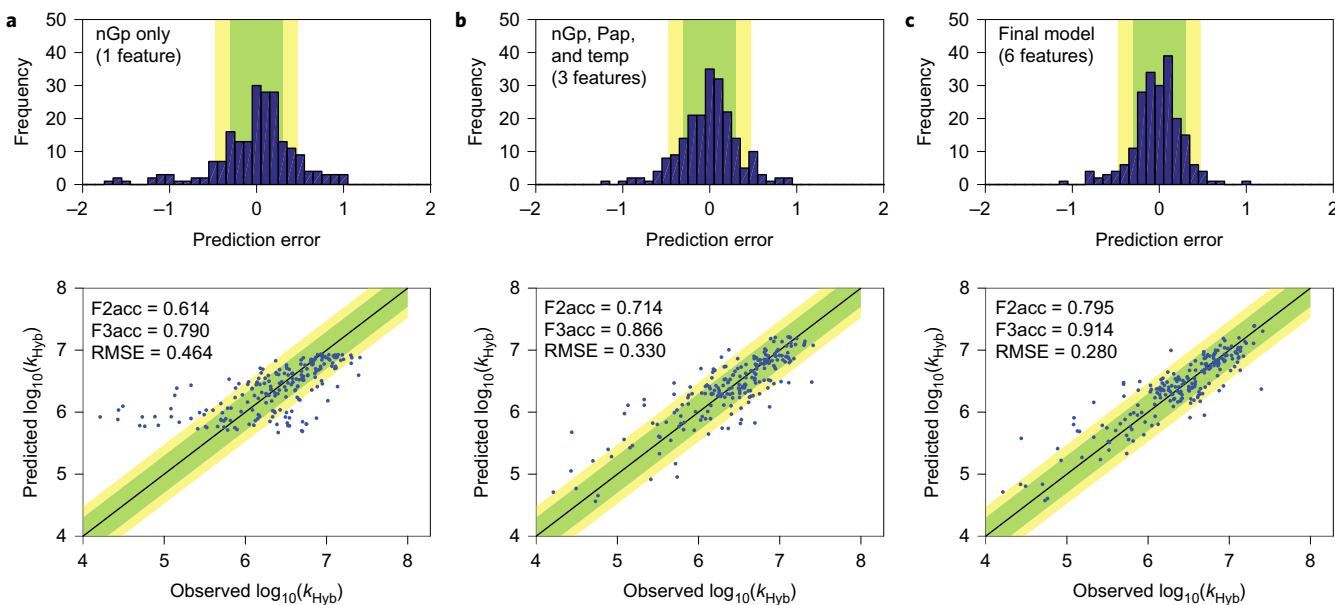


Figure 5 | Prediction accuracy of the WNV model using different numbers of features. **a**, Prediction using a single feature, nGp, denoting the ensemble (partition function) standard free energy of the probe, as predicted by Nupack¹¹ under the reaction conditions of interest. Top: Distribution of prediction error for k_{Hyb} (in \log_{10}). Bottom: Predicted vs observed k_{Hyb} values. Each blue dot plots the predicted $\log_{10}(k_{\text{Hyb}})$ value versus the experimentally observed $\log_{10}(k_{\text{Hyb}})$ value for a single hybridization experiment. Each prediction was performed using a standard leave-one-out (LOO) approach: each k_{Hyb} prediction is based on 209 labelled instances (all reactions except the one to be predicted). The feature weights trained on all 210 data points (see Supplementary Section 3 for more details). **b**, Prediction using a three-feature WNV model, including nGp, Pap and temperature. **c**, Prediction using the final six-feature model.

1 are reported (subject to a sequencing error rate of between 0.1 and 2 1%); each reported sequence is known as a read. To observe potential 3 variability in the DNA sequence at particular genomic regions, it 4 is desirable to sample multiple molecules (high read depth). Solid- 5 phase enrichment using highly multiplexed hybridization by synthetic 6 DNA oligonucleotide probes⁶ is often used for these targeted 7 sequencing applications.

8 Current commercial multiplex hybrid-capture panels generally 9 use a very large number of synthetic probe oligonucleotides to 10 fully tile or overlap-tile the genomic regions of interest (for 11 example, 200,000 probes for whole-exome enrichment). Due to 12 the large number of oligo species involved, the concentration of 13 each species is thus necessarily quite low (tens of picomolar), resulting 14 in hybrid-capture protocols that typically last at least 4 h and 15 more frequently more than 16 h. Because of the varying hybridization- 16 kinetics of different probes (Fig. 3d), it is likely that many 17 probes do not contribute significantly to hybridization yield and 18 in fact slow down the hybrid-capture process by forcing lower 19 concentrations of the fast-hybridizing probes.

20 To experimentally test this possibility, we first applied our 21 hybridization rate constant prediction algorithm to all possible 36 22 nt probes to exon regions of 21 genes. Because the exon regions 23 are typically 3,000 nt long, this corresponds to roughly 3,000 possible 24 probes per gene. Predicted rate constants typically range over 25 about two orders of magnitude (Supplementary Fig. 5), with the 26 fast ($\geq 95^{\text{th}}$ percentile) probes typically being a factor of 3 faster 27 than median probes ($\sim 50^{\text{th}}$ percentile). NGS hybrid-capture enrichment 28 typically uses probes longer than 36 nt (for example, Agilent 29 SureSelect uses 120 nt probes), but there is probably a similar if 30 not greater range of hybridization rate constants for longer 31 probes due to the greater possibility of secondary structure and 32 nonspecific interactions.

33 Next, we picked a total of 65 fast probes and 65 median probes 34 across the exon regions of 21 different cancer-related genes. The 35 expectation was that after a 24 h hybridization protocol, the fast

and median probes would produce similar reads, but with a short 36 20 min hybridization protocol, the fast probes would exhibit significantly 37 greater reads than median probes (Fig. 6a). Our library preparation 38 protocol is summarized in Fig. 6b. All 130 probes are 39 hybridized to the adaptor-ligated DNA simultaneously. However, 40 the number of reads aligned to a particular probe is not directly proportional 41 to its hybridization yield, due to well-documented sequencing bias^{24,25}. For example, some adaptor-ligated amplicons exhibit 43 significant secondary structure and are less efficiently PCR-amplified 44 during normalization, or less efficiently sequenced due to 45 lower flow cell binding efficiency. For this reason, 15 fast and 15 46 median probes targeting four genes resulted in less than 100 \times 47 sequencing depth and were excluded from subsequent analysis 48 (Supplementary Section 5). We do not believe this affects the conclusions 49 from our genomic DNA enrichment study. 50

51 Our comparison of reads for the 20 min hybridization library and 52 the 24 h hybridization library indicates that the probes predicted to 53 be fast on average exhibited both a twofold increase in reads in the 54 20 min library, and a twofold increase in the ratio of reads at 55 20 min versus 24 h. This is slightly worse than our algorithm's predicted 56 threefold difference between median and fast probes, but 57 understandable given that our rate constant prediction algorithm 58 was trained on single-plex hybridization rather than on multiplex 59 hybridization. Our calibration experiments (Supplementary 59 Section 5) indicate that the correlation constant between single- 60 plex and multiplex k_{Hyb} values is approximately $r^2 = 0.6$. 61

62 Our results thus suggest that sparse hybrid-capture enrichment 63 panels would produce faster kinetics at a significantly lower cost. 64 Rather than fully tiling or overlap-tiling the genetic regions of interest, 65 it would be better to use a higher concentration of a few probes 66 with the fastest hybridization kinetics. Multiple probes are only 67 needed insofar as biological genomic DNA may be fragmented 68 and a different probe is needed to capture each fragment. With 69 the notable exception of cell-free DNA²⁶, most genomic DNA 70 from clinical samples is longer than 500 nucleotides. 70

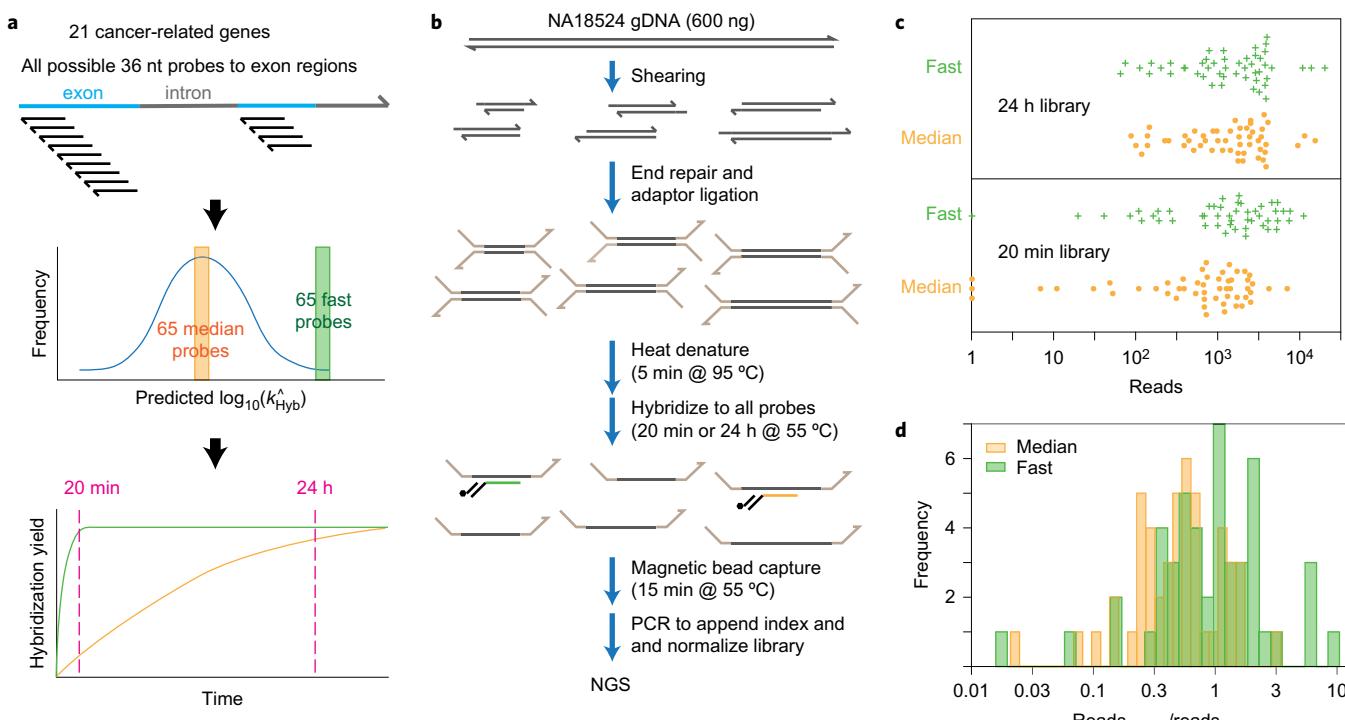


Figure 6 | Comparison of probes predicted to possess median vs fast hybridization kinetics for enrichment from human genomic DNA. **a**, Hybridization rate constants k_{Hyb} were predicted for all possible 36-mer hybridization probes for the exon regions of 21 cancer-related genes. The middle and lower panels express the idea behind probe selection and library design and do not accurately reflect kinetics distributions or trajectories of any particular gene or probe. See Supplementary Fig. 5 for the distribution of predicted k_{Hyb} for the AQP1 gene. **b**, Genomic DNA enrichment and library preparation workflow. All hybridization probes were present at 50 pM concentration. See Methods for the detailed protocol. **c**, Bee swarm plot of NGS reads aligned to each probe, excluding 15 fast and 15 median probes to four genes with low read depth (Supplementary Section 5). In the library in which probes were hybridized to the fragmented gDNA for 24 h (top), there is no significant difference in the read count distribution between the median and fast probes. In the 20 min hybridization library, the fast probes showed significantly higher reads than the median probes, indicating that the probes our algorithm predicted to be faster did in fact provide a higher degree of hybridization within 20 min. **d**, Ratio of aligned reads in the 20 min library to those in the 24 h library for each probe. A high ratio indicates fast hybridization kinetics, and the ratio can exceed 1 because libraries were normalized, so fast probes are more dominant and occupy more reads in the 20 min library.

1 The concentrations of the probes used for this study were intentionally selected to be 50 pM per probe so as to be similar to probe
2 concentrations in commercial enrichment kits. At 50 pM concentrations, up to 200,000 probes can be used and the total oligo concentration would still be at a reasonable 10 μM . At the significantly
4 (for example, 10 \times) higher individual probe concentrations that
5 become feasible with a sparse coverage of target genetic regions,
6 even the 20 min allotted here for hybridization could be further
7 reduced, greatly speeding up the enrichment workflow from the
8 current practice of 4–24 h.

11 Discussion

12 Here, we have combined a rational design of features and the WNV
13 framework with computational optimization of feature selection
14 and feature weights, resulting in a final model that is capable of
15 accurately predicting hybridization kinetics rate constants based
16 on sequence and temperature information. The WNV model is
17 highly scalable and easily incorporates new experimental data to
18 provide improved predictions, without requiring model retraining.
19 With every additional hybridization experiment and its accompanying
20 fitted k_{Hyb} value, the six-dimensional feature space becomes
21 denser, ensuring that on average a new hybridization experiment
22 will be closer to an existing labelled instance.
23 To seed the model with a reliable initial database of labelled
24 instances that is representative of the diversity of genomic DNA
25 sequences, we experimentally characterized the kinetics of 210
26 hybridization experiments across 100 biological target sequences

using fluorescence. The X-probe architecture allowed us to economically study kinetics for a reasonably large number of target sequences, but extra nucleotides of the universal arms may cause hybridization kinetics to differ slightly from that of a standard single-stranded probe. For example, there may be a systematic bias towards lower rate constants because of the reduced diffusion constants. Nonetheless, because all targets/probes use the same universal arm sequences, it is likely that the relative ordering of rate constants is preserved.

27 In this work we started with over 50 rationally designed features
28 that we eventually pruned down to 6 in the final model. The high
29 LOO validation accuracy of the WNV model indicates that these
30 features capture a significant, if not majority, portion of the complexity
31 of the hybridization process. Simultaneously, there remain
32 pairs of experiments in our database with similar feature values
33 but significantly different k_{Hyb} values. This implies the existence
34 of undiscovered features that would distinguish these pairs of experiments;
35 additional insight and creativity from the community in designing additional features would be welcomed.

36 The hybridization reactions experimentally characterized in the
37 work were all performed in 5 \times PBS buffer and all target and probe
38 sequences were 36 nt long. These experiment constraints
39 were designed to reduce the diversity of hybridization reactions, to
40 ease the training of the WNV model. We plan to expand our experimental
41 studies to vary these conditions, to allow the WNV model to
42 accurately account for buffer conditions and probe lengths. We
43 suspect that longer DNA target/probe systems will exhibit even
44

1 more variability in hybridization kinetics; conversely, shorter DNA
 2 binding (for example, 10 nt) may exhibit less variability in k_{Hyb} .
 3 Additionally, with genomic DNA targets, the long-range secondary
 4 structure and the fragmentation pattern of genomic DNA targets
 5 should also be considered. New features will probably be needed
 6 for such expanded models.

7 Multiplex hybrid-capture panels for enriching target regions
 8 from genomic DNA are commonly used in targeted sequencing
 9 for scientific and clinical studies. In the absence of reliable kinetics
 10 prediction software, researchers and companies have taken a brute-
 11 force probe design approach, using fully tiled or overlapping-tiled
 12 probes to cover genetic loci of interest. Although this approach
 13 ensures the presence of at least some fast-binding probes, it is
Q4 14 both expensive (in terms of synthesis and QC of thousands of
 15 probes) and results in slower workflows. Accurately predicting mul-
 16 tiplexed hybridization kinetics will enable precision design of sparse,
 17 high-performance probe panels for target enrichment.

18 **Data availability.** Sequences used for all experiments are provided
Q5 19 in the Supplementary Information. Raw fluorescence traces are
 20 plotted in the Supplementary Information and exact numerical
 21 data are available upon request. Calculated feature values are
 22 provided in the Supplementary Information.

23 **Software availability.** We have constructed a web-based software
 24 tool, available at <http://nablab.rice.edu/nabtools/kinetics>, that
 25 computes the predicted rate constant of a hybridization reaction
 26 given the sequence and temperature. The software typically
 27 completes the prediction of k_{Hyb} within 30 s. It is currently seeded
 28 with the 210 hybridization experiment results performed in this
 29 Article and will be updated with additional hybridization
 30 experiment results in the future.

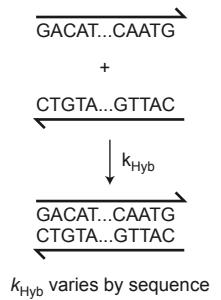
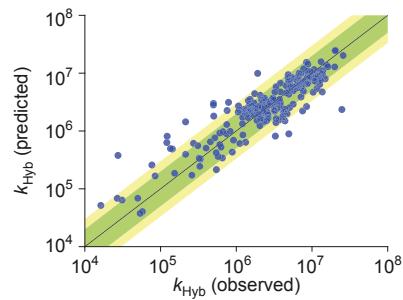
31 Received 31 October 2016; accepted 21 September 2017;
 32 published online XX XX 2017

33 **References**

34 1. Hamilton, A. J. & Baulcombe, D. C. A species of small antisense RNA in
 35 posttranscriptional gene silencing in plants. *Science* **286**, 950–952 (1999).
 36 2. Kornberg, A. & Baker, T. A. *DNA Replication* (Freeman, 1992).
 37 3. Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked
 38 by adenosines, indicates that thousands of human genes are microRNA targets.
Cell **120**, 15–20 (2005).
 39 4. Izkovic, S. & van Oudenaarden, A. Validating transcripts with probes and
 40 imaging technology. *Nat. Methods* **8**, S12–S19 (2011).
 41 5. Lockhart, D. J. *et al.* Expression monitoring by hybridization to high-density
 42 oligonucleotide arrays. *Nat. Biotechnol.* **14**, 1675–1680 (1996).
 43 6. Gnrke, A. *et al.* Solution hybrid selection with ultra-long oligonucleotides for
 44 massively parallel targeted sequencing. *Nat. Biotechnol.* **27**, 182–189 (2009).
 45 7. Khodakov, D., Wang, C. & Zhang, D. Y. Diagnostics based on nucleic acid
 46 sequence variant profiling: PCR, hybridization, and NGS approaches. *Adv. Drug
 47 Delivery Rev.* **105**, 3–19 (2016).
 48 8. Mathews, D. H., Sabina, J., Zuker, M. & Turner, D. H. Expanded sequence
 49 dependence of thermodynamic parameters improves prediction of RNA
 50 secondary structure. *J. Mol. Biol.* **288**, 911–940 (1999).
 51 9. SantaLucia, J. & Hicks, D. The thermodynamics of DNA structural motifs. *Ann.
 52 Rev. Biochem.* **33**, 415–440 (2004).
 53 10. Zuker, M. Mfold web server for nucleic acid folding and hybridization
 54 prediction. *Nucleic Acids Res.* **31**, 3406–3415 (2003).
 55 11. Zadeh, J. N. *et al.* NUPACK: analysis and design of nucleic acid systems.
J. Comput. Chem. **32**, 170–173 (2011).
 56 12. Morrison, L. E. & Stols, L. M. Sensitive fluorescence-based thermodynamic and
 57 kinetic measurements of DNA hybridization in solution. *Biochemistry* **32**,
 58 3095–3104 (1993).
 59 13. Reynaldo, L. P., Vologodskii, A. V., Neri, B. P. & Lyamichev, V. I. The kinetics of
 60 oligonucleotide replacements. *J. Mol. Biol.* **297**, 511–520 (2000).
 61 14. Zhang, D. Y. & Winfree, E. Control of DNA strand displacement kinetics using
 62 toehold exchange. *J. Am. Chem. Soc.* **131**, 17303–17314 (2009).
 63 15. Ouldridge, T. E., Šulc, P., Romano, F., Doye, J. P. K. & Louis, A. A. DNA
 64 hybridization kinetics: zippering, internal displacement and sequence
 65 dependence. *Nucleic Acids Res.* **41**, 8886–8895 (2013).
 66 16. Schreck, J. S. *et al.* DNA hairpins destabilize duplexes primarily by promoting
 67 melting rather than by inhibiting hybridization. *Nucleic Acids Res.* **43**,
 68 6181–6190 (2015).
 69 17. Cisse, I. I., Kim, H. & Ha, T. A rule of seven in Watson–Crick base-pairing of
 70 mismatched sequences. *Nat. Struct. Mol. Biol.* **19**, 623–627 (2012).
 71 18. Jungmann, R. *et al.* Single-molecule kinetics and super-resolution microscopy by
 72 fluorescence imaging of transient binding on DNA origami. *Nano Lett.* **10**,
 73 4756–4761 (2010).
 74 19. He, G., Li, J., Ci, H., Qi, C. & Guo, X. Direct measurement of single-molecule
 75 DNA hybridization dynamics with single-base resolution. *Angew. Chem. Int. Ed.*
 76 55, 9036–9040 (2016).
 77 20. Wang, J. S. & Zhang, D. Y. Simulation-guided DNA probe design for consistently
 78 ultraspecific hybridization. *Nat. Chem.* **7**, 545–553 (2015).
 79 21. Gao, Y., Wolf, L. K. & Georgiadis, R. M. Secondary structure effects on DNA
 80 hybridization kinetics: a solution versus surface comparison. *Nucleic Acids Res.*
 81 34, 3370–3377 (2006).
 82 22. van Dijk, E. L., Auger, H., Jaszczyszyn, Y. & Thermes, C. Ten years of next-
 83 generation sequencing technology. *Trends Genet.* **30**, 418–426 (2014).
 84 23. Koboldt, D. C., Steinberg, K. M., Larson, D. E., Wilson, R. K. & Mardis, E. R. The
 85 next-generation sequencing revolution and its impact on genomics. *Cell* **155**,
 86 27–38 (2013).
 87 24. Chilamakuri, C. S. *et al.* Performance comparison of four exome capture systems
 88 for deep sequencing. *BMC Genomics* **15**, 449 (2014).
 89 25. Clark, M. J. *et al.* Performance comparison of exome DNA sequencing
 90 technologies. *Nat. Biotechnol.* **29**, 908–914 (2011).
 91 26. Snyder, M. W., Kircher, M., Hill, A. J., Daza, R. M. & Shendure, J. Cell-free DNA
 92 comprises an *in vivo* nucleosome footprint that informs is tissues-of-origin. *Cell*
 93 **164**, 57–68 (2016).
 94 27. Denoeux, T. A k-nearest neighbor classification rule based on Dempster–Shafer
 95 theory. *IEEE Trans. Syst. Man Cybern.* **25**, 804–813 (1995).
 96 28. Wand, M. P. & Jones, M. C. *Kernel Smoothing* (CRC Press, 1994).
 97 29. **Acknowledgements**
 98 The authors thank S.X. Chen for assistance with NGS sequence alignment. This work was
 100 funded by National Institutes of Health grant R01HG008752 to D.Y.Z.
 101
 30. **Author contributions**
 102 J.X.Z., L.R.W. and D.Y.Z. conceived the project. J.X.Z. and A.W.Z. performed the
 103 experiments. N.D. and A.P. performed hybridization reaction model fitting and selection.
 104 J.X.Z., J.Z.F., B.Y. and R.P. performed feature construction. W.D. and D.Y.Z. performed
 105 WNV model construction and optimization. N.D., B.Y. and R.P. performed MLR model
 106 construction and optimization. D.Y.Z. wrote the manuscript with input from all authors.
 107
 31. **Additional information**
 108 Supplementary information is available in the [online version of the paper](#). Reprints and
 109 permissions information is available online at www.nature.com/reprints. Publisher's note:
 110 Springer Nature remains neutral with regard to jurisdictional claims in published maps and
 111 institutional affiliations. Correspondence and requests for materials should be addressed
 112 to D.Y.Z.
 113
 32. **Competing financial interests**
 114 There is a patent pending on the X-probes used in this work, and a patent pending on the
 115 WNV model of hybridization rate constant prediction.
 116

1 **nchem.2877 Table of Contents summary**

2 The rate constant of DNA hybridization varies over several orders of
3 magnitude and is affected by temperature and DNA sequence. A
4 machine-learning algorithm that is capable of accurately predicting
5 hybridization rate constants has now been developed. Tests with this
6 algorithm showed that over 90% of predictions were correct to
7 within a factor of three.



Journal: Nature Chemistry
Article ID: nchem.2877
Article title: Predicting DNA hybridization kinetics from sequence
Authors: Jinny X. Zhang *et al.*

AQ1	Author surnames have been highlighted - please check these carefully and indicate if any first names or surnames have been marked up incorrectly. Please note that this will affect indexing of your article, such as in PubMed.	
AQ2	Refs 20 and 21 were not cited in the text – we have reordered the citations and references in order of appearance in the text and these uncited references are now numbered 27 and 28. If you wish to retain them, please indicate where they should be mentioned in the text.	
AQ3	In equations (1) (2) etc., please clarify what # indicates. Should this be deleted throughout?	
AQ4	Please expand QC.	
AQ5	Can we be more specific here about where you mean in the Supplementary Information? Can we give a section number or title?	