
Predicting DNA hybridization kinetics from
sequence
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Hybridization is a key molecular process in biology and biotechnology, but to date there is no predictive model for
accurately determining hybridization rate constants based on sequence information. Here, we report a weighted neighbour
voting (WNV) prediction algorithm, in which the hybridization rate constant of an unknown sequence is predicted based
on similarity reactions with known rate constants. To construct this algorithm we first performed 210 fluorescence kinetics
experiments to observe the hybridization kinetics of 100 different DNA target and probe pairs (36 nt sub-sequences of
the CYCS and VEGF genes) at temperatures ranging from 28 to 55 °C. Automated feature selection and weighting
optimization resulted in a final six-feature WNV model, which can predict hybridization rate constants of new sequences
to within a factor of 3 with ∼91% accuracy, based on leave-one-out cross-validation. Accurate prediction of hybridization
kinetics allows the design of efficient probe sequences for genomics research.

1Hybridization of complementary DNA and RNA sequences
2 is a fundamental molecular mechanism that underlies
3 both biological processes1–3 and nucleic acid analytic bio-
4 technologies4–7. The thermodynamics of hybridization have
5 been well studied, and algorithms based on the nearest-neigh-
6 bour model of base stacking8,9 predict minimum free-energy
7 structures and melting temperatures10,11 with reasonably good
8 accuracy. In contrast, the kinetics of hybridization remain
9 poorly understood, and no models or algorithms have been
10 reported that accurately predict hybridization rate constants
11 from sequence and reaction conditions (temperature and sal-
12 inity). This knowledge deficiency has adversely impacted the
13 research community by requiring either trial-and-error optimiz-
14 ation of DNA primer and probe sequences for new genetic
15 regions of interest, or brute-force use of thousands of DNA
16 probes for target enrichment.
17 Predictive modelling of hybridization kinetics faces two main
18 challenges. First, the kinetics of very few DNA sequences have
19 been characterized directly, either in bulk solution12–16 or at the
20 single-molecule level17–19. The primary reason for the lack of data
21 is the cost of fluorophore-functionalized DNA oligonucleotides,
22 which at roughly $200 per sequence becomes prohibitive for the
23 hundreds of experiments needed to establish sequence generality.
24 Second, the hybridization of complementary sequences can follow
25 many different pathways15, rendering simple reaction models
26 inaccurate for a large fraction of DNA sequences.
27 To create a sufficiently representative and sequence-general data
28 set for developing a predictive model of hybridization kinetics, we
29 experimentally characterized the kinetics of 210 individual hybrid-
30 ization reactions on 100 different pairs of complementary
31 sequences. We were able to do this economically through the use
32 of the X-probe architecture, in which universal fluorophore- and
33 quencher-functionalized oligonucleotides are recycled across
34 many different experiments.
35 From our experimental data we made three unexpected find-
36 ings: (1) most hybridization reactions do not asymptotically
37 reach more than 90% yield; (2) initial hybridization kinetics is

38generally uncorrelated with asymptotic yield; and (3) secondary
39structure in the middle of a DNA target sequence tends to more
40adversely affect hybridization kinetics. Additionally, we observed
41that structure-free DNA target/probe sequences generally tended
42to have faster hybridization kinetics, consistent with literature
43and our expectations, but even structure-free sequences exhibited
44more than one order of magnitude of variation in hybridization
45rate constants.
46Based on our experimental data, we also constructed a new
47type of algorithm to predict DNA hybridization rate constants
48based on the target/probe sequence, called ‘weighted neighbour
49voting’ (WNV). In WNV, each hybridization reaction is mapped
50to a set of bioinformatic feature values and can be considered a
51point in the high-dimensional feature space. Two hybridization
52reactions that are close in feature space are expected to exhibit
53similar kinetics. The rate constant of an unknown hybridization
54reaction is predicted based on the weighted average of observed
55rate constants of experimentally tested reactions, with weights
56dropping exponentially for reactions that are farther away in
57feature space. Under leave-one-out (LOO) cross-validation, our
58final WNV model predicts rate constants to within a factor of 2
59for 80% of reactions, and within a factor of 3 for 91%. Next-
60generation sequencing (NGS) studies show a significant corre-
61lation (R2 ≈ 0.6) between the rate constants of DNA hybridization
62in single-plex versus multiplex, suggesting that the current work is
63a good starting point for the rational design and selection of
64DNA probes for highly multiplexed applications, such as target
65enrichment from genomic DNA6.

66Experimental results
67To systematically but economically characterize the hybridization Q2
68kinetics of many different sequences we used the X-Probe architec-
69ture20, which makes use of universal fluorophore and quencher-
70labelled oligonucleotides (Fig. 1a). A universal fluorophore-labelled
71oligonucleotide was pre-hybridized to the probe and a universal
72quencher-labelled oligonucleotide was pre-hybridized to the
73target. When the target and probe solutions were mixed, the
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1 solution fluorescence was initially high because the fluorophore was
2 delocalized from the quencher, but dropped over time as the hybrid-
3 ization reaction proceeded. The solution fluorescence at any given
4 time can thus be linearly mapped to the instantaneous hybridization
5 reaction yield.
6 We selected, as targets, 100 sub-sequences of the CYCS and
7 VEGF genes, each target sub-sequence being 36 nucleotides (nt)
8 long. Of the 50 targets for each gene, 25 were selected randomly
9 with uniform position distribution across the gene and the other
10 25 were selected systematically so that the effects of secondary
11 structure position could be examined (Fig. 1b,c).
12 Figure 1d shows triplicate kinetics traces for one hybridization
13 reaction. A total of 210 hybridization experiments were character-
14 ized (100 reactions at 37 °C, 96 at 55 °C, 7 at 28 °C and 7 at 46 °C).
15 There was very low experimental error in our fluorescence exper-
16 iments; all triplicate data points agreed with each other to within
17 2%. To obtain maximally reliable experimental data for rate con-
18 stant inference, we performed multiple experiments until determin-
19 ing a set of target and probe concentrations such that each
20 hybridization reaction undergoes between two and ten half-lives
21 within the 80–180 min observation time.
22 In all experiments, the concentration of the target was at least
23 double that of the probe, to minimize the effects of slight pipetting
24 variability. To ensure that the observed kinetics are primarily due to
25 target/probe sequence rather than synthesis impurities, we exper-
26 imentally observed kinetics for the hybridization of three sets of
27 targets and probes, each as three separate syntheses from two differ-
28 ent vendors (Integrated DNA Technologies and Sigma). The
29 inferred hybridization rate constants for different syntheses

30showed minor variations, and were all consistent to within a
31factor of 2 (Supplementary Section 1).

32Hybridization rate constant (kHyb) fitting
33A simple two-state T + P→ TP reaction model fails to reasonably
34fit the observed fluorescence kinetics. Notably, over 40% of the
35reactions asymptote to a final reaction yield of less than 85%,
36based on the positive control fluorescence where the target
37and probe are thermally annealed (Supplementary Section 1).
38We were surprised by the extent and reproducibility of the incom-
39plete DNA hybridization yield, which may be due to misaligned
40hybridization or other nonspecific interactions between target
41and probe.
42We considered three reaction models of hybridization to explain
43the kinetics data (Fig. 2a). Model H1 assumes that a fraction of the
44probes P are incapable of proper hybridization with target T or the
45accompanying fluorescence quenching. Model H2 assumes that all
46probe P is correctly synthesized, but that some fraction of the
47T + P reaction undergoes an alternative pathway with rate constant
48k1 to result in a state TPbad with high fluorescence. This frustrated
49state, TPbad, may represent states in which T and P are co-localized
50by misaligned base pairs. Model H3 is a combination of models H1
51and H2, wherein there exists both a fraction of bad P as well as the
52alternative pathway involving TPbad.
53For each of our 210 fluorescence kinetics experiments we per-
54formed fitting using each of the three models (Fig. 2b), finding par-
55ameters that minimize the sum-of-square relative error RE, where
56RE = ((Data – Simulation)/Data). The RE values of each hybridiz-
57ation experiment are summarized as a single root-mean-square
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Figure 1 | Experimental characterization of hybridization kinetics. a, Fluorescent probes with universal functionalized oligonucleotides. Blue regions are
universal sequences and green regions are variable regions corresponding to the target or probe sequence. Fluorescence is initially high and decreases as the
hybridization reaction proceeds because the fluorophore (purple star) becomes localized to the quencher (black dot). b, A total of 100 different sub-
sequences of the CYCS and VEGF genes were selected to be the target sequences. In this study, all target and probe sequences are 36 nt long (excluding
universal regions). Then, 25 targets for each gene were chosen randomly with uniform distribution across the entire intron and exon region and another 25
targets were selected as close overlapping frames to systematically test the position effects of secondary structures. Red markers denote the sub-sequences
of the genes selected as targets. c, Examples of secondary structures encountered in target sequences. Shown are predicted minimum free energy (mfe)
structures predicted for the target sequences at 37 °C. Supplementary Table 1 presents the sequences of the 100 targets. d, Example kinetics traces
(triplicate) of a hybridization reaction. All reactions proceeded in 5× PBS buffer. Supplementary Section 1 provides reproducibility studies and Supplementary
Section 2 fluorescence traces for all 210 experiments.
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1 relative error (RMSRE) value, defined as

RMSRE =

�������������
1
α

∑
t

RE t( )2
√

# (1)

Q3 2 where α is the total number of time points t during which fluor-
3 escence was measured for the reaction. Figure 2c shows the distri-
4 bution of RMSRE values. Model H3 yields the best overall fit to
5 the experimental data. Consequently, H3-fitted parameters (kHyb

6 and the bad fraction) were used for all subsequent work. See
7 Supplementary Section 2 for best-fit traces using each
8 reaction model.

9 Summary of observed hybridization kinetics. The best-fit values of
10 the hybridization rate constant kHyb at 37 and 55 °C are summarized
11 in Fig. 3a. The observed kHyb ranged from 3.2 log at 37 °C and
12 2.3 log at 55 °C, significantly exceeding our expectations.
13 Hybridization kinetics are generally faster at 55 °C than at 37 °C
14 (by a factor of 3 on average), and there is a reasonably strong
15 correlation between hybridization rate constants for the same
16 target/probe pair at different temperatures.
17 The asymptotic yield of the fast initial hybridization reaction
18 with rate constant kHyb can be quantitated as (1 − bad fraction).
19 The bad fraction varies between 0.02 and 0.41 (Fig. 3b), and only
20 appears to be marginally smaller on average at 55 °C than at
21 37 °C. Surprisingly, there are many cases (30 of 96) where the bad
22 fraction is larger at 55 °C than at 37 °C. Because aliquots of the
23 same DNA oligonucleotide molecules were used for both sets of
24 experiments, it is not clear why such inversions are so common.
25 There does not appear to be significant correlation between kHyb

26 values and the bad fraction (Fig. 3c).

27We next examined the systematically designed DNA target/probe
28sequence pairs for trends in kHyb (Fig. 3d). The systematic sequences
29included 13 sets of three DNA target/probe pairs, each frame-shifted
30a small number of bases so that predicted secondary structure lies in
31the 5′, middle or 3′ regions of the target (Fig. 1c). We observed two
32interesting trends. First, the observed kHyb values can vary greatly
33within a cluster: for example, targets 1–3 shows about 30-fold differ-
34ence in hybridization rate constant, despite all three having similar
35standard free energies of folding. This indicates that the relative pos-
36ition of secondary structures within a DNA sequence can have a
37large impact on kinetics. Second, targets with the secondary struc-
38ture in the middle of the sequence (circles in Fig. 3d) tended to
39be slower to hybridize than targets with the structure at one end:
40in 8 of the 13 clusters, the target with central secondary structure
41was the slowest in each respective cluster.
42Literature reports21 and our own prior experience suggested that
43unstructured DNA sequences would hybridize more rapidly and
44with higher yield than structured ones. To see whether our exper-
45imental data are consistent with this observation, we plotted kHyb

46and the bad fraction for only the hybridization reactions in which
47both the target and the probe have an ensemble (partition function)
48standard free energy ΔG° of >−3 kcal mol–1, as predicted by
49Nupack11 for hybridization temperature and buffer conditions
50(Fig. 3e,f ). The observed kHyb values for these structure-free
51sequences are indeed faster than ‘typical’ sequences, with all kHyb

52>1 × 106 M−1 s−1. Nonetheless, there is still significant variability
53in kHyb, ranging over more than 1 log. The asymptotic yield of the
54hybridization reactions is only slightly better for structure-free
55sequences than for other sequences.

56Predictive model construction
57WNV model. Our WNV model predicts the value of kHyb for new
58hybridization reactions based on the similarity of the reaction to
59hybridization reactions with known rate constants (labelled
60instances). Each labelled instance makes a weighted vote of
61log10(kHyb), with instances that are more similar to the new
62reaction being weighted more heavily. The 210 hybridization
63reactions across 100 different target/probe pairs act as our initial
64database of labelled instances.
65For each hybridization reaction, a number of features fi are calcu-
66lated based on the sequences of the target and probe and the hybrid-
67ization reaction temperature and buffer (Fig. 4b). A total of more
68than 50 different features were tested, of which 35 showed signifi-
69cant individual correlation with kHyb (Supplementary Section 4).
70The disparity between two different hybridization reactions j and
71m is quantitated as distance dj,m , the Euclidean distance between
72the two hybridization reactions in feature space:

dj,m =
��������������������∑
i

fi j
( )

− fi m( )( )2√
# (2)

73where fi( j ) is the value of weighted feature i for reaction j. Higher
74weights result in a wider feature dimension, which can potentially
75contribute more to the feature space distance (Fig. 4d).
76From the database of hybridization experiments m with known
77kHyb(m) values, our WNV model makes the following prediction
78for kHyb( j ) of an unknown hybridization reaction j:

log10 k̂Hyb j
( )( )

=
1
Zj

∑
m

2−dj,m log10 kHyb m( )
( )

# (3)

79where Zj =
∑

m 2−dj,m is the ‘partition function’ of the distances
80involving reaction j (Fig. 4e). Figure 4f shows the relationship
81between feature space distance between a pair of hybridization
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Figure 2 | Hybridization model and rate constant parameterization.
a, Three different reaction models considered for fitting rate constant kHyb to
fluorescence kinetics data. Based on the root-mean-square relative error
(RMSRE) of each of the models in fitting the observed experimental data,
model H3 was selected. Model 3 has four fitting parameters for each
reaction: kHyb, bad fraction (1 – ([Pgood]/[P])), k1 and k2. b, Relative error
(RE) for three reaction models for a given hybridization reaction. RE is
plotted as a function of time for each model using best-fit parameters for
each. c, Summary of fit quality for the three models across all 210
fluorescence kinetics experiments. Each point corresponds to the RMSRE of
all time points for a particular fluorescence experiment. Upper and lower
bars are 95th and 5th percentile values, and the box shows 75th, 50th and
25th percentile values. Based on this result, we chose to proceed with model
H3 for all subsequent studies.
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1 reactions (using our final feature list and weights) and their differ-
2 ence in observed kHyb values.
3 The WNV model can be extended to any number of features. In
4 general, the potential improvements in kHyb prediction accuracy
5 must be balanced against increased model complexity from having
6 a large number of features. Additionally, the higher-dimensional
7 feature space that accompanies an increased number of features
8 makes the weight optimization significantly more difficult, due to
9 the increased number of local fitness maxima. Through a series of
10 computational optimization steps, we determined the optimal
11 number of features to be 6: nGp, Pap, Temp, wPat, GavgMSR1
12 and Gb (see Supplementary Section 3 for the optimization
13 methodology).

14 Model performance. To quantitate the overall performance of a
15 particular WNV model (defined by its set of features and
16 corresponding feature weights w(i)), we constructed the following
17 ‘Badness’ metric:

Badness = 3 × 1 − F2acc( ) + 3 × 1 − F3acc( ) + 4 × RMSE# (4)

18 where F2acc is the fraction of all predicted reactions j in which the
19 predicted k̂Hyb(j) and the experimental kHyb( j ) agree to within a

20factor of 2, F3acc is the fraction that agrees to within a factor of 3,
21and

RMSE =

���������������������������������������������
1
N

∑
j

log10 kHyb j
( )( )

− log10 k̂Hyb j
( )( )( )2√

# (5)

22is the root-mean-square error of the logarithm of the hybridization
23rate constant (where N = 210 is the number of experiments).
24We chose to use this badness metric rather than RMSE only (that
25is, a least-squares fit) because we felt that it is more relevant for
26many applications involving the design of DNA oligonucleotide
27probes and primers. Rather than marginally improving the predic-
28tions of outlier sequences that are off by more than an order of mag-
29nitude, our badness metric instead emphasizes improving the
30fraction of predictions that are correct to within a factor of 3, or
31better yet within a factor of 2. Simultaneously, to allow efficient
32computational optimization of feature weights, the badness
33metric to be minimized cannot be locally flat, so RMSE is
34included as a component of badness. Use of different badness
35metrics will result in optimized feature weights that exhibit a
36different tradeoff between the magnitude and frequency of large
37prediction errors.
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between 60 and 100% yield. Yield was determined based on positive control experiments where target and probe were thermally annealed (Supplementary
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fit bad fractions for the 96 targets at 37 and 55 °C are plotted. c, There appears to be no correlation between kHyb and asymptotic yield. Blue and red dots
show experiments at 37 °C and at 55 °C, respectively. d, Systematically designed target/probe sequences included 13 clusters, each comprising three targets.
Within each cluster, the target sequences were shifted such that predicted secondary structure is present (1) near the 5′ end (plus symbols), (2) near the
middle (circles), or (3) near the 3′ end of the target (triangles). In 8 of 13 clusters, the target with structure in the middle was slowest. e, Because secondary
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values range over more than one order of magnitude. f, Minimal-structure targets exhibit significant variability of bad fraction, ranging between 0 and 25%.
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1 One commonly held belief in the field is that the predicted sec-
2 ondary structure in the DNA target and probe sequences is highly
3 inversely correlated with hybridization rate constants. We found
4 this to be partially true: when the WNV model is constrained to
5 the selection of only a single feature, the nGp feature (denoting
6 the predicted ΔG° of the probe oligonucleotide based on Nupack
7 at the hybridization temperature/buffer) emerged as the single
8 best predictor of kHyb (Fig. 5a). Prediction using only nGp was accu-
9 rate to within a factor of 2 for 61% of reactions and within a factor
10 of 3 for 79% of reactions. However, prediction accuracy can be
11 significantly improved by includingmore features in theWNVmodel.
12 Figure 5b,c shows the prediction accuracy of the best three-
13 feature WNV model and the final six-feature WNV model. The
14 six-feature WNV model is significantly better at prediction than
15 the one-feature and three-feature models, with 80% accuracy
16 within a factor of 2 and 91% accuracy within a factor of 3. The
17 six features used were nGp, Pap, Temp, wPat, GavgMSR1 and Gb,
18 with respective feature weights of 7.96, 15.12, 10.55, 4.44, 10.90
19 and 18.69 (Supplementary Section 4). Although nGp was the best
20 single feature when considered in isolation, in the six-feature

21model its weight is the second smallest. This observation potentially
22suggests that the other features collectively hold information that
23overlaps with nGp.
24To help the research community predict hybridization rate con-
25stants for DNA oligo probes and primers, we have constructed a
26web-based software tool, available at http://nablab.rice.edu/nab-
27tools/kinetics. The software typically completes predicting kHyb

28within 30 s. It is currently seeded with the 210 hybridization exper-
29iment results performed in this Article and will be updated with
30additional hybridization experiment results in the future.

31Enrichment from human genomic DNA
32The human genome is over 3 billion nucleotides long, but the
33coding regions that form the exome collectively only span 1% of
34the genome. Within the 20,000 genes of the exome, typically there
35are only between 10 and 400 that are relevant to any particular
36disease. NGS22,23 is the preferred way to perform highly multiplexed
37analysis of many different DNA sequences within a sample. In NGS,
38anywhere between 1 million and 1 billion molecules are randomly
39sampled and the identities of the first 150–300 nt of each molecule
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as the reaction conditions (temperature, salinity). Shown is an example calculation for feature Gb, the weighted average ΔG° of the hybridized complex.
c, Relationship between the experimental hybridization rate constants kHyb (in log10) versus Gb values for the 210 hybridization experiments. There is
moderate correlation between kHyb and Gb, indicating that Gb may be an effective feature for rate constant prediction. d, Feature renormalization. Raw values
of the Gb and nGp features (left) are linearly transformed based on a set of feature weights w(i): the 75th percentile value of a feature i is renormalized to
+(w(i)/2) and the 25th percentile value is renormalized to −(w(i)/2). e, The distance between renormalized feature values of an unknown reaction (red dot)
and of all reactions with known kHyb values (blue dots) are computed. Prediction weight drops exponentially with distance. f, Relationship between feature
space distance d and the absolute value of difference in experimental rate constants (log10) for two hybridization reactions. Pairs of reactions with small d
generally have similar rate constants; the converse statement is not true because two very different reactions may coincidentally have similar rate constants.
The black line shows the mean and the red region shows ±1 standard deviation on the mean.
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1 are reported (subject to a sequencing error rate of between 0.1 and
2 1%); each reported sequence is known as a read. To observe poten-
3 tial variability in the DNA sequence at particular genomic regions, it
4 is desirable to sample multiple molecules (high read depth). Solid-
5 phase enrichment using highly multiplexed hybridization by syn-
6 thetic DNA oligonucleotide probes6 is often used for these targeted
7 sequencing applications.
8 Current commercial multiplex hybrid-capture panels generally
9 use a very large number of synthetic probe oligonucleotides to
10 fully tile or overlap-tile the genomic regions of interest (for
11 example, 200,000 probes for whole-exome enrichment). Due to
12 the large number of oligo species involved, the concentration of
13 each species is thus necessarily quite low (tens of picomolar), result-
14 ing in hybrid-capture protocols that typically last at least 4 h and
15 more frequently more than 16 h. Because of the varying hybridiz-
16 ation kinetics of different probes (Fig. 3d), it is likely that many
17 probes do not contribute significantly to hybridization yield and
18 in fact slow down the hybrid-capture process by forcing lower
19 concentrations of the fast-hybridizing probes.
20 To experimentally test this possibility, we first applied our
21 hybridization rate constant prediction algorithm to all possible 36
22 nt probes to exon regions of 21 genes. Because the exon regions
23 are typically 3,000 nt long, this corresponds to roughly 3,000 poss-
24 ible probes per gene. Predicted rate constants typically range over
25 about two orders of magnitude (Supplementary Fig. 5), with the
26 fast (≥95th percentile) probes typically being a factor of 3 faster
27 than median probes (∼50th percentile). NGS hybrid-capture enrich-
28 ment typically uses probes longer than 36 nt (for example, Agilent
29 SureSelect uses 120 nt probes), but there is probably a similar if
30 not greater range of hybridization rate constants for longer
31 probes due to the greater possibility of secondary structure and
32 nonspecific interactions.
33 Next, we picked a total of 65 fast probes and 65 median probes
34 across the exon regions of 21 different cancer-related genes. The
35 expectation was that after a 24 h hybridization protocol, the fast

36and median probes would produce similar reads, but with a short
3720 min hybridization protocol, the fast probes would exhibit signifi-
38cantly greater reads than median probes (Fig. 6a). Our library prep-
39aration protocol is summarized in Fig. 6b. All 130 probes are
40hybridized to the adaptor-ligated DNA simultaneously. However,
41the number of reads aligned to a particular probe is not directly pro-
42portional to its hybridization yield, due to well-documented sequen-
43cing bias24,25. For example, some adaptor-ligated amplicons exhibit
44significant secondary structure and are less efficiently PCR-ampli-
45fied during normalization, or less efficiently sequenced due to
46lower flow cell binding efficiency. For this reason, 15 fast and 15
47median probes targeting four genes resulted in less than 100×
48sequencing depth and were excluded from subsequent analysis
49(Supplementary Section 5). We do not believe this affects the con-
50clusions from our genomic DNA enrichment study.
51Our comparison of reads for the 20 min hybridization library and
52the 24 h hybridization library indicates that the probes predicted to
53be fast on average exhibited both a twofold increase in reads in the
5420 min library, and a twofold increase in the ratio of reads at
5520 min versus 24 h. This is slightly worse than our algorithm’s pre-
56dicted threefold difference between median and fast probes, but
57understandable given that our rate constant prediction algorithm
58was trained on single-plex hybridization rather than on multiplex
59hybridization. Our calibration experiments (Supplementary
60Section 5) indicate that the correlation constant between single-
61plex and multiplex kHyb values is approximately r2 = 0.6.
62Our results thus suggest that sparse hybrid-capture enrichment
63panels would produce faster kinetics at a significantly lower cost.
64Rather than fully tiling or overlap-tiling the genetic regions of inter-
65est, it would be better to use a higher concentration of a few probes
66with the fastest hybridization kinetics. Multiple probes are only
67needed insofar as biological genomic DNA may be fragmented
68and a different probe is needed to capture each fragment. With
69the notable exception of cell-free DNA26, most genomic DNA
70from clinical samples is longer than 500 nucleotides.
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Figure 5 | Prediction accuracy of the WNV model using different numbers of features. a, Prediction using a single feature, nGp, denoting the ensemble
(partition function) standard free energy of the probe, as predicted by Nupack11 under the reaction conditions of interest. Top: Distribution of prediction error
for kHyb (in log10). Bottom: Predicted vs observed kHyb values. Each blue dot plots the predicted log10(k̂Hyb) value versus the experimentally observed
log10(kHyb) value for a single hybridization experiment. Each prediction was performed using a standard leave-one-out (LOO) approach: each kHyb prediction
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Section 3 for more details). b, Prediction using a three-feature WNV model, including nGp, Pap and temperature. c, Prediction using the final six-
feature model.
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1 The concentrations of the probes used for this study were inten-
2 tionally selected to be 50 pM per probe so as to be similar to probe
3 concentrations in commercial enrichment kits. At 50 pM concen-
4 trations, up to 200,000 probes can be used and the total oligo con-
5 centration would still be at a reasonable 10 µM. At the significantly
6 (for example, 10×) higher individual probe concentrations that
7 become feasible with a sparse coverage of target genetic regions,
8 even the 20 min allotted here for hybridization could be further
9 reduced, greatly speeding up the enrichment workflow from the
10 current practice of 4–24 h.

11 Discussion
12 Here, we have combined a rational design of features and the WNV
13 framework with computational optimization of feature selection
14 and feature weights, resulting in a final model that is capable of
15 accurately predicting hybridization kinetics rate constants based
16 on sequence and temperature information. The WNV model is
17 highly scalable and easily incorporates new experimental data to
18 provide improved predictions, without requiring model retraining.
19 With every additional hybridization experiment and its accompany-
20 ing fitted kHyb value, the six-dimensional feature space becomes
21 denser, ensuring that on average a new hybridization experiment
22 will be closer to an existing labelled instance.
23 To seed the model with a reliable initial database of labelled
24 instances that is representative of the diversity of genomic DNA
25 sequences, we experimentally characterized the kinetics of 210
26 hybridization experiments across 100 biological target sequences

27using fluorescence. The X-probe architecture allowed us to econ-
28omically study kinetics for a reasonably large number of target
29sequences, but extra nucleotides of the universal arms may cause
30hybridization kinetics to differ slightly from that of a standard
31single-stranded probe. For example, there may be a systematic
32bias towards lower rate constants because of the reduced diffusion
33constants. Nonetheless, because all targets/probes use the same uni-
34versal arm sequences, it is likely that the relative ordering of rate
35constants is preserved.
36In this work we started with over 50 rationally designed features
37that we eventually pruned down to 6 in the final model. The high
38LOO validation accuracy of the WNV model indicates that these
39features capture a significant, if not majority, portion of the com-
40plexity of the hybridization process. Simultaneously, there remain
41pairs of experiments in our database with similar feature values
42but significantly different kHyb values. This implies the existence
43of undiscovered features that would distinguish these pairs of exper-
44iments; additional insight and creativity from the community in
45designing additional features would be welcomed.
46The hybridization reactions experimentally characterized in the
47work were all performed in 5× PBS buffer and all target and
48probe sequences were 36 nt long. These experiment constraints
49were designed to reduce the diversity of hybridization reactions, to
50ease the training of the WNV model. We plan to expand our exper-
51imental studies to vary these conditions, to allow theWNVmodel to
52accurately account for buffer conditions and probe lengths. We
53suspect that longer DNA target/probe systems will exhibit even
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1 more variability in hybridization kinetics; conversely, shorter DNA
2 binding (for example, 10 nt) may exhibit less variability in kHyb.
3 Additionally, with genomic DNA targets, the long-range secondary
4 structure and the fragmentation pattern of genomic DNA targets
5 should also be considered. New features will probably be needed
6 for such expanded models.
7 Multiplex hybrid-capture panels for enriching target regions
8 from genomic DNA are commonly used in targeted sequencing
9 for scientific and clinical studies. In the absence of reliable kinetics
10 prediction software, researchers and companies have taken a brute-
11 force probe design approach, using fully tiled or overlapping-tiled
12 probes to cover genetic loci of interest. Although this approach
13 ensures the presence of at least some fast-binding probes, it is
14 both expensive (in terms of synthesis and QCQ4 of thousands of
15 probes) and results in slower workflows. Accurately predicting mul-
16 tiplexed hybridization kinetics will enable precision design of sparse,
17 high-performance probe panels for target enrichment.

18 Data availability. Sequences used for all experiments are provided
19 in the Supplementary Information.Q5 Raw fluorescence traces are
20 plotted in the Supplementary Information and exact numerical
21 data are available upon request. Calculated feature values are
22 provided in the Supplementary Information.

23 Software availability. We have constructed a web-based software
24 tool, available at http://nablab.rice.edu/nabtools/kinetics, that
25 computes the predicted rate constant of a hybridization reaction
26 given the sequence and temperature. The software typically
27 completes the prediction of kHyb within 30 s. It is currently seeded
28 with the 210 hybridization experiment results performed in this
29 Article and will be updated with additional hybridization
30 experiment results in the future.

31 Received 31 October 2016; accepted 21 September 2017;
32 published online XX XX 2017
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1 nchem.2877 Table of Contents summary
2 The rate constant of DNA hybridization varies over several orders of
3 magnitude and is affected by temperature and DNA sequence. A
4 machine-learning algorithm that is capable of accurately predicting
5 hybridization rate constants has now been developed. Tests with this
6 algorithm showed that over 90% of predictions were correct to
7 within a factor of three.
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