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industrial technology advances

Advances in deep learning approaches for image
tagging
jianlong fu and yong rui

The advent of mobile devices and media cloud services has led to the unprecedented growth of personal photo collections. One
of the fundamental problems in managing the increasing number of photos is automatic image tagging. Image tagging is the
task of assigning human-friendly tags to an image so that the semantic tags can better reflect the content of the image and
therefore can help users better access that image. The quality of image tagging depends on the quality of concept modeling which
builds a mapping from concepts to visual images. While significant progresses are made in the past decade on image tagging, the
previous approaches can only achieve limited success due to the limited concept representation ability from hand-crafted features
(e.g., Scale-Invariant Feature Transform, GIST, Histogram of Oriented Gradients, etc.). Further progresses are made, since the
efficient and effective deep learning algorithms have been developed. The purpose of this paper is to categorize and evaluate
different image tagging approaches based on deep learning techniques. We also discuss the relevant problems and applications
to image tagging, including data collection, evaluation metrics, and existing commercial systems. We conclude the advantages
of different image tagging paradigms and propose several promising research directions for future works.
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I . I NTRODUCT ION

Recent years have witnessed the emergence of mobile
devices (e.g., smart phones, digital cameras, etc.) and cloud
storage services, which has led to an unprecedented growth
in the number of personal media resources, such as pho-
tos and videos. For example, people take photos using their
smart devices every day and everywhere. It is reported that
Flickr1 has 1.7 million photos uploaded every day and Insta-
gram2 claims 40 million photos per day in 2015. Such a
great number of images demand effective image-accessing
techniques. As evidenced by the success of commercial
search engines (e.g., Google3, Bing4), one of the most effec-
tive ways for common users to access both web images
and personal photos is through text. Therefore, image tag-
ging has become an active research topic in the recent few
years, which aims to label an image with human-friendly
concepts5.
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5“concept” and “tag” are considered as interchangeable terms, and we

do not differentiate them in this paper.

In general, the task of effective image tagging typically
consists of two stages, which involve initial image tag-
ging and subsequent tag refinement. Before diving into the
details of various image tagging/tag refinement techniques,
we will first define some key terminologies used throughout
the paper.

– Image tagging attempts to label an image with one or
more human-friendly textual concepts to reflect the
visual content of the image [1, 2]. The resultant tags con-
stitute the tag list for this image. Note that image tagging
can be done manually by a human, or automatically by
an algorithm [3], or by combining the both [4]. How-
ever, initial tag lists (e.g., the middle tag list in Fig. 1) are
often imperfect so that a post process is usually needed
to refine the result.

– Image tag refinement aims to remove imprecise tags and
supplement incomplete tags, since the tags in a tag list
may be imprecise for that image, and some relevant tags
may be missing from the tag list. If we refer to Fig. 1, the
input to image tag refinement is an image with its initial
image tagging list, and the output is the refined tag list.
Note that the output tag list in the right is more refined
than the initial tag list in the middle.

While image tagging and tag refinement are the two
key technologies to help users access images, how to do
it accurately is not easy. Most previous image tagging/tag
refinement approaches depend on hand-crafted features,
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Fig. 1. Examples of image tagging and tag refinement results. A red tag with a “−” superscript indicates the imprecise tags, which should be removed from initial
image tagging results, and a green tag with a “+” superscript indicates the enriched tags by image tag refinement approaches. All the tags are ranked according to
relevance scores to the image.

e.g., Scale-Invariant Feature Transform (SIFT) [5], GIST
[6], Histogram of Oriented Gradients (HOG) [7], and so
on. Based on these low-level feature descriptors, visual
representation algorithms (e.g., bag-of-word features [8]
or spatial pyramid features [9]) have been proposed to
describe image content and associate the content with natu-
ral language-based keywords. However, these hand-crafted
feature descriptors are designed to capture low-level visual
patterns by pre-defined feature types (e.g., color, shape, or
texture). Although promising results have been achieved by
combining multi-type feature representations [10, 11], these
features are still inadequate to detect and describe high-level
semantic concepts (e.g., the “coral” and “rocks” in Fig. 1).

With the recent success in many research areas, deep
learning techniques have attracted great attention [12].
There are two main paradigms in deep learning research,
i.e., supervised learning and unsupervised learning. The
former paradigm can automatically learn hierarchical deep
networks from raw pixels for pattern analysis and image
classification. For example, convolutional neural networks
(CNNs) have achieved a winning top-5 test error rate of
15.3%, compared with the 26.2% achieved by the second-
best approach, which combines scores frommany classifiers
trained by a set of hand-crafted features [13]. Recently, by
using the promising deep residual nets, the top-5 image clas-
sification error has been reduced to 3.57% on ImageNet6
test set, which has achieved the superior performance even
than humans. Another breakthrough has been achieved by
the second paradigm (i.e., unsupervised learning), in which
algorithms can automatically learn the concept representa-
tions, such as cat faces and human bodies from unlabeled
data by unsupervised methodologies [14]. Besides, unsu-
pervised learning has been demonstrated its superior ability
on deep learningmodel pre-training, which can help super-
visedmethods in achieving a better local minimum and fast
convergence [13].

In this paper, we survey previous works on image tagging
along two major dimensions in the literature, i.e., model-
based and model-free approaches, according to whether
tag an image by tagging model training or instance-based

6ImageNet is an image database organized according to the noun hier-
archy from WordNet, in which each node of the hierarchy is depicted
by hundreds or even thousands of images. Details can be found in
http://www.image-net.org

tag neighbor voting. We mainly focus on the works, which
leverage the state-of-the-art deep learning technologies.
The aims of this paper are twofold. First, we summarize
related works from literature to investigate the research
development along the above two dimensions and compare
the advantages and limitations in theory. Second, we sum-
marize a comprehensive experimental protocol, including
widely-used experimental datasets for image tagging and
well-acknowledged evaluation measurements for showing
the superior image tagging results achieved by deep learning
techniques.

Note that although typical image classification networks
by deep learning techniques, which are trained on cor-
responding image classification datasets, can be directly
adopted to image tagging tasks, the results are far from the
requirements in real-world applications due to the limited
vocabularies [15, 16]. For example, CIFAR-10 and CIFAR-
100 datasets [13] provide 10 and 100 categories, which are
still difficult to describe the various image content from real
scenarios. Although significant progresses have been made
by introducing ImageNet dataset, some studies have shown
that the vocabularies from ImageNet are so professional
and fine-grained that are not very suitable for image tag-
ging tasks on user photos [17]. Therefore, one of the major
challenges for image tagging is to acquire sufficient and
high-quality training data for a large vocabulary, which is
often too expensive to obtain by human labors [18].With the
success of commercial image search engines, a large number
of works have been proposed to learn image tagging mod-
els from web images (e.g., user-contributed photos from
social network or noisyweb images fromcommercial search
engines) [10, 19–21]. In this paper, we will conduct detailed
introduction and summarization on these approaches. The
survey of image classification on carefully labeled data can
be found in [22].

The rest of this paper is organized as follows. Section II
describes brief introduction of deep learning techniques.
Section III introduces the methodology on deep learning-
based image tagging. Section IV provides comprehensive
datasets and performance metrics. Section V further intro-
duces the selected typical approaches and detailed evalu-
ation results. Finally, Section VI presents several practi-
cal commercial image tagging systems on both cloud and
client, followed by the conclusion and future challenges in
Section VII.
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I I . BR I EF OVERV IEW ON DEEP
LEARN ING TECHN IQUES

Most shallow-structured architectures in machine learning
have achieved promising results in existing research. These
architectures generally consist of a single layer of nonlinear
feature transformation. Examples of the shallow-structured
architectures include Gaussian Mixture Models (GMM)
[23], Hidden Markov Models (HMM) [24], Conditional
Random Fields (CRF) [25], Maximum Entropy Models
(MEM) [26], Support Vector Machine (SVM) [27], Logis-
tic Regression (LR) [28], Multi-layer Perceptron (MLP)
[29], and so on. Although shallow architectures have shown
effective performance in simple or well-constrained sce-
narios, their limited modeling and representation capa-
bilities have difficulties in dealing with the complicated
real-world applications, such as human speech recognition,
natural image, and scene understanding. Significant pro-
gresses have been made after efficient and effective deep
learning algorithms are developed.

A) Categorization on deep neural networks
Deep leaning techniques refer to a class of machine learning
techniques, where many layers of information processing
stages in hierarchial architectures are exploited for unsu-
pervised feature learning and for supervised pattern anal-
ysis/classification. The core procedure of deep learning is to
compute hierarchical features or representations from the
observed data, where the higher-level features or factors are
defined from lower-level data structure. Deep learning tech-
niques can be generally divided into three dimensions, i.e.,
generative deep architectures, discriminative deep architec-
tures and hybrid deep architectures [30]. Typical architec-
tures include Deep Belief Network (DBN) [31], Boltzmann
Machine (BM) [32], Restricted BoltzmannMachine (RBM)
[33], Deep Auto-Encoder (DAE) [34], CNN [13], and so on.
Among these architectures, CNNshave shown superior per-
formance on the learning of discriminative image feature
representation, and thus arewidely-used in image classifica-
tion and annotation tasks. In the following, we will specify
the network structure of a typical CNN.

B) Convolutional neural networks
A typical CNN often consists of several convolutional and
fully-connected layers. The exact number of layers gener-
ally depends on the requirement of network capacity and
memory cost for a specific classification task (e.g., eight
layers for AlexNet, and 22 layers for GoogleNet). In partic-
ular, let X = [x1, . . . , xN ] be the matrix of image training
data, where xi is the feature vector of the i th image. N is
the total number of images. Denote Y = [y1, . . . , yN ]T ∈
{0, 1}N×K , where yi ∈ {0, 1}K×1 is the category indicator
vector for xi . K is the number of categories. Suppose there
are M layers in total and W = {W(1), . . . , W(M)} are the
model parameters. In each layer, we absorb the bias term
into the weights and denote them as a whole. W(m) =

[w(m)
1 , . . . , w(m)

dm
]T ∈ Rdm×dm−1 , where w(m)

i ∈ Rdm−1 , dm−1 is
the dimension of the (m − 1)th feature map. Z(m)(X) =
[z(m)(xi ), . . . , z(m)(xN)]T ∈ RN×dm denotes the feature map
produced by the mth layer.

Given an image xi , convolutional layers first task the
image as input. The extracted deep representations are
denoted as W ∗ xi , where ∗ denotes a set of operations of
convolution, polling, and activation, and W denotes the
overall parameters for convolutional and pooling opera-
tions. The pooling layer in a CNN is designed to summarize
the outputs of neighboring groups of neurons in the same
kernel map, which can be conducted by mean-pooling or
max-pooling. Some earlier works adopt the neighborhood
summarization strategy by adjacently poolingwithout over-
laps. To make it more clear, a pooling layer can be consid-
ered as consisting of a grid of pooling units spaced s pixels
apart. Each pooling unit summarizes a neighborhood of size
r × r centered at the location in a CNN. If s = r , we can
obtain the non-overlapping polling. If s < r , we can obtain
overlapping pooling. Extensive studies have shown that the
overlapping pooling are difficult to overfit [13].

For the activation function, the standard way to activate
a neuron’s output is through tan or sigmoid function, which
are considered as saturating nonlinear functions. However,
for the training optimization with gradient descent, these
saturating nonlinear functions show much slower conver-
gence than the non-saturating nonlinear function, such as
max(0, x). The nonlinear function is referred to Rectified
Linear Units (ReLUs). It has been demonstrated that deep
CNNs with ReLUs can be trained several times faster than
their equivalents with tan unites, which is crucial for the
training of large models on large datasets.

Given the output from convolutional layers, we further
feed it into a series of fully-connected layers. The output of
the last fully-connected layer is considered as an input to
a softmax classifier, which can generate a distribution over
the final category labels, which is given by:

p(xi ) = f (W ∗ xi ), (1)

where f (·) represents fully-connected layers to map convo-
lutional features to a feature vector that could be matched
with the categories entries, as well as includes a softmax
layer to further transform the feature vector to probabilities.
The goal is to minimize the following objective function in
the form of a softmax regression with weight decay, which
is given by:

L(W) = − 1

N

⎡
⎣

N∑
i=1

K∑
j=1

1Yi j ( j) log p(Yi j = 1|xi ; W)

⎤
⎦

+ β

2
||W||F , (2)

where Yi j is the (i , j)th entry of Y. 1Yi j ( j) is the indicator
function such that 1Yi j ( j) = 1 if Yi j = 1, otherwise zero.
β is the coefficient of weight decay, which is designed to
reduce model complexity and thus to prohibit overfitting.
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Table 1. The comparison of different CNN architectures on model
size, classification error rate, and model depth.

Size Top-1/top-5
Model (M) error () # layers Model description

AlexNet 238 41.00/18.00 8 5 conv + 3 fc layers
VGG-16 540 28.07/9.33 16 13 conv + 3 fc layers
VGG-19 560 27.30/9.00 19 16 conv + 3 fc layers
GoogleNet 40 29.81/10.04 22 21 conv + 1 fc layers
ResNet-50 100 22.85/6.71 50 49 conv + 1 fc layers
ResNet-152 235 21.43/3.57 152 151 conv + 1 fc layers

“conv” and “fc” indicates convolutional and fully-connected layers,
respectively.

The probability p can be calculated by a softmax function,
which is shown as:

p(Yi j = 1|xi ; W) = exp(z(M−1)
j )

∑K
k=1 exp(z(M−1)

k )
. (3)

To optimize the above objective function, the derivatives to
w(M)

j in the output layer can be calculated as:

∂L(W)

∂w(M)
j

= − 1

N

N∑
i=1

z(M−1)(xi )
[
1Yi j ( j)

− p
(
Yi j = 1|z(M−1)(xi ); w

(M)
j

)]
+ βw(M)

j . (4)

Parameters in other layers can be calculated by the back
propagation algorithm (BP) [35]. Different CNN architec-
tures have different numbers of convolutional layers and
fully-connected layers. Detailed performance comparisons
for different CNN model architectures on ImageNet chal-
lenges are shown in Table 1.

I I I . METHODOLOGY FOR IMAGE
TAGG ING WITH CNNS

The extensive research on image tagging can be basi-
cally divided into model-based and model-free approaches.
The model-based approaches heavily rely on pre-trained

classifiers with machine learning algorithms [36–39], while
the model-free approaches propagate tags through the tag-
ging behavior of visual neighbors [40, 41]. The two streams
of approaches both assume that there should be a well-
labeled training image database (i.e., source domain) with
the same or at least a similar data distribution as testing
data (i.e., target domain), so that the labeled database can
ensure good generalization abilities for bothmodel training
and tag propagation. Besides, there are also emerging works
focusing on solving the problems when the training image
database are not available, which is called zero-shot learn-
ing. Since zero-shot learning-based approaches often adopt
model-basedmethodology for the training of image tagging
model, we categorize zero-shot learning into model-based
approaches in this paper. We will survey the two types of
paradigms in the following sections.

A) Model-free image tagging with deep
representation
The state-of-the-art model-free image tagging approaches
adopt the powerful CNN features as image representations,
which specifically replace traditional hand-crafted features
with features that are automatically learned with a CNN.
The CNN feature can be either extracted from pre-trained
deep neural networks (e.g., GoogleNet [42], VGG [43],
or ResNet [44]) on ImageNet, or fine-tuned on the tar-
get tag vocabularies from target domain. Specifically, the
feature vector in the last fully-connected layer, which is
activated by a rectified activation function (e.g., ReLU), usu-
ally constitutes the final compact representations (e.g., 4096
dimensions) for an image.

Based on the deep representation, most of works adopt
the idea of “collective intelligence,” which constitutes the
tagging hypotheses by neighbor voting from the train-
ing instances. The specific procedure generally refers to
tag propagation from visual-similar images. The instance
voting-based models are non-parametric and even do not
involve any training process. The complexity of this type
of approaches depends on the amount of training data
instances. A typical image tag refinement framework by
instance neighbor voting is shown in Fig. 2. For example,

Fig. 2. An example of model-free image tag refinement framework. For an input image on the left, we first find its semantic-related images in training set by
searching with its initial image tagging results. Second, we build a star-graph from the semantic-related images based on visual similarity on the right. Both the
semantic-related and visual-similar nearest neighbor images for the input image are marked by yellow rectangles in the left image list and the right star graph. The
final tagging list for the input image is generated from the voting of those nearest-neighbor images marked by yellow rectangles. [Best viewed in color].
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Li et al. [40, 45], Wang et al. [41] and Guillaumin et al. [46]
propose to accumulate the neighbor votes received from the
visual similar images of the input image for each tag. Later,
to estimate the relevance between a tag and an input image,
the approaches of content-based tag refinement [47] and tag
ranking [37] propose to use Gaussian function to measure
the similarity between the input image and training images,
which have already been annotated by the tag. This type of
approaches also has a very intuitive explanation that tags of
the input image can be determined by the soft voting from
its visual neighbors from training set. Image retagging [48]
and low-rank-based image tag refinement approaches [49],
though effective by imposing some reasonable constraints
(e.g., low rank, error sparsity, etc.), still rely on the idea of
the instance neighbor voting.

In summary, based on the strong representation ability of
CNN features, the model-free based algorithms can outper-
form those model-based approaches if the number of train-
ing instances is large enough. However, since the training
data are often collected from user-contributed image-tag
pairs (e.g., Flickr), the assumption ofmodel-free approaches
that the tags provided by users are reasonably accurate is
not justifiable. Previous research has reported that half of
the user-contributed tags from Flickr are noises to image
content [50]. Therefore, due to the limited size and heavy
noises of the training set in real applications, incomplete
and imprecise tags still hinder user from accessing to the
images after the tagging/tag refinement process by these
model-free approaches.

B) Model-based image tagging by deep neural
network
Since the model-free approaches can only achieve lim-
ited performance on the limited training instances in real

applications. To enhance the generalization ability of image
tagging models, the second paradigm of image tagging
approaches proposes to learn parameterized models from
training data.One of the representativeworks from the early
research of model-based concept representation is visual
synset [38], which shares similar motivation to the work of
view-dependent concept representations [10]. Visual synset
applies multi-class one-versus-all linear SVM [51], which
is learned from the automatically generated visual synsets
from a large collection of web images. Compared with
the visual synset, view-dependent approach [10] can dis-
criminate different views and represent them with proper
view-dependent representations. Specifically, model-based
components for generic views are designed to enhance gen-
eralization ability, whilemodel-free components for specific
views act as complements since they are too sparse and
diverse. Besides, view-dependent approach [10] is easily
paralleled as the model-based and model-free components
are learned per concept, with no dependency on each other.
The view-dependent approach is more scalable, which can
add new concept representations into the existing vocabu-
lary rather than re-training the visual models on the whole
vocabulary again compared to the methods using discrimi-
nativemodels, such as SVM.Moreover, the view-dependent
approach collects larger vocabularies for image taggingwith
nearly 30% increases compared to visual synset.

To further relieve the problem of limited training
instances, some pioneer works propose to leverage the inte-
gration of transfer learning schemes and deep learning
techniques. Transfer deep learning targets at the transfer of
knowledge from a source domain to a target domain using
deep learning algorithms. A typical model-based image
tagging framework by transfer deep learning is shown in
Fig. 3. In [52], transfer learning problems are divided into
two categories. One class tries to improve the classification

Fig. 3. An example of model-based image tagging framework. (a) The training set contains the labeled source images and the unlabeled target images. (b) The
network of the transfer deep learning with ontology priors. It is first trained on both ImageNet (the source domain) and personal photos (the target domain) by
pre-training and fine-tuning for discovering shared middle-level feature abstractions across domains. Once the shared feature abstractions are learned, the top layer
with ontology priors is further trained. In the testing stage, the resultant parameters W and B can be transferred to the target domain to obtain the middle-level
feature representations (a bottom-up transfer) and high-level confidence scores (a top-down transfer). (c) An illustration of the ontology collecting scheme. (d) The
input, in the testing stage, is highly flexible which can either be a single photo or a photo collection. (e) The tagging result.
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performance of categories that have deficit training exam-
ples by discovering other similar categories and transferring
knowledge among them [53]. The second class of works
aims to solve the different data distribution problems, so
as to effectively transfer the knowledge learned from the
source domain to the target [17, 52].

However, although promising performance has been
achieved from the earlier model-based approaches, the data
noise problems existed in training instances are not con-
sidered for further improvement. To simultaneously learn
better generalization model and noise-robust model, there
are two schemes to adapt deep learning algorithms to noisy
data. One type of approaches proposes to conduct prepro-
cessing procedure to remove the noisy data before training.
Other works propose to enable the deep learning network
itself to identify the authenticity of labels and thus a robust
model can be learned. The preprocessing methods can be
implemented either by the conventional outlier detection,
or by the pre-training strategy in deep learning frameworks.
First, the specificmethods in outlier detection include Prin-
ciple Component Analysis (PCA), Robust PCA [54], Robust
Kernel PCA [55], probabilistic modeling [56] and one-class
SVM [57], and so on. These methods regard the outliers
as those “few and different” samples, which usually locates
far away from the sample centers in some learned embed-
ding subspaces. Specifically, the samples which have a large
discrepancy with other samples in the same category is
considered to be noises. However, the challenge of these
methods is to distinguish “hard samples” from the truly
noisy samples. Those “hard samples” are correct image sam-
ples under a category, yet with large visual variances with
the majority. Second, recovering the clean training sam-
ples by a layer-wise auto-encoder or denoising auto-encoder
[58] in pre-training and then initializing a deep network by
the pre-trained model parameters is an effective method to
remove global noises, which has been used and extensively
evaluated in face parsing [59]. However, these methods are
mainly designed for the cases where noises are contained
from parts of images (e.g., background noises), while web
images (e.g., from Flickr) are often completely mislabeled.

To train a robust deep learning model on noisy train-
ing data, Larsen et al. propose one of the pioneer works
which adds noise modeling into the neural networks [60].
However, they make a symmetric label noise assumption,
which is often not true in real applications. Mnih et al. pro-
pose to label aerial images from noisy data, where only a
binary classification is considered [61]. One of the promis-
ing works is proposed by Sukhbaatar et al. who introduce
an extra noise layer as a part of training process in multi-
class image classification [62]. They first train a base model
on noisy training data for several iterations, then activate
the extra noise layer to absorb the noise from the learned
base model. Recently, a similar work to [62] has been pro-
posed to handle the noise problems [21]. This work starts
from embedding the feature map of the last deep layer into
a new affinity representation. Second, by adopting the “few
and different” assumption about the noises, this work min-
imizes the discrepancy between the affinity representation

and its low-rank approximation. Third, this discrepancy
is further transformed into the objective function to give
those “few and different” noisy samples low-level authori-
ties in training. Extensive experiments have shown superior
performance than previous research.

Unlike above model-based learning, which learns con-
cept representations for image tagging by cleaning image
samples from noisy training instances, zero-shot learning
takes one step further, which aims to learn tagging model
from seen categories and tag an image from unseen cate-
gories [63–68]. Attributes sharing and word embedding are
the twomain streams in zero-shot learning approaches.One
of the typical approaches is from [69], where the authors
consider pre-fixed unseen tags with the number of U and
learn a multi-label model to annotate the 2U possible com-
binations between them. The limitation of this approach
derives from the small number of unseen tags. Fast0Tag is
recently proposed to enrich the family of zero-shot learning
by zero-shot multi-label classification [70]. They directly
model the labels and propose to assign or rankmany unseen
tags for unseen images. To achieve better performance, deep
learning features which are extracted from CNNmodel are
indispensable in image modeling.

I V . DATASETS AND PERFORMANCE
METR ICS

A few benchmark datasets have recently been proposed to
fairly compare different image tagging methods. We review
the following representative datasets, because: (1) they are
collected from real-world data sources; (2) they have large-
scale image-tag pairs, which are open to research commu-
nity; and (3) they have been widely-used in research areas.
MIRFlickr-25K and NUS-WIDE-270K datasets are two
representative image tagging datasets, which are widely-
used in many research papers, and MIT-Adobe-FiveK and
MSCOCO are two emerging but challenging datasets for
image tagging evaluation. Also, we introduce ImageNet
dataset, since it has been widely-used to pre-train deep
learning models for subsequent image tagging. Detailed
statistics for different datasets are shown in Table 2.

– MIT-Adobe-FiveK dataset is collected from 5000 pho-
tographs taken with SLR cameras by a set of different
photographers [71]. These photographs cover a broad
range of scenes, subjects, and lighting conditions. The

Table 2. The statistics of the number of tags and images for different
datasets for image tagging.

Datasets # tags # Image

MIT-Adobe-FiveK [71] 6 5 k
MIRFlickr-25K [72] 1386 25 k
NUS-WIDE-270K [50] 5018 270 k
MSCOCO [73] 80 120 k
ImageNet [22] 5247 3.2 million
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specific semantic annotation includes six general cate-
gories, such as indoor/outdoor and main subjects (e.g.,
people, nature, man-made objects, etc.)

– MIRFlickr-25K dataset is collected by the Leiden Uni-
versity [72], which contains 25 000 images with 1386
unique tags, where 14 tags of them are manually anno-
tated as ground truth.

– NUS-WIDE-270K dataset is a larger open benchmark
dataset, which is collected by National University of Sin-
gapore in 2009 [50]. The dataset contains 269 648 images
with 5018 unique tags, where 81 tags of them are man-
ually annotated as ground truth. Besides, the dataset
provides low-level visual features for each image (e.g.,
color, texture, and clustered visual words).

– MSCOCO dataset is an emerging dataset with object
labels, segmentation information and image captions
[73]. In image tagging tasks, only images and object tags
are used, with 82 783 image samples for training and
40 504 image samples for testing. The number of tags
with ground truth is 80, and the average number of tags
is 2.95 per image sample.

– ImageNet dataset uses the hierarchical structure of
WordNet7, which covers 12 subtrees with 5247 synsets
and 3.2 million images in total [22]. A subset from Ima-
geNet forms the training/testing data for ImageNet chal-
lenge, which focuses on 1 K categories with an average of
500 to 1000 clean and full resolution images.

To evaluate the performance of different image tag-
ging/tag refinement approaches, several evaluation mea-
surements have been proposed in research community,
including F -score,Average Precision (AP), andNormalized
Discounted Cumulative Gain (NDCG).

F-score: The F-score is calculated by the harmonic mean
of precision and recall, which is given by:

F = 2 × P × R

P + R
, (5)

where P and R indicate precision and recall, respectively.
Average precision: The AP for each tag is calculated by

counting the number of relevant images from the retrieved
image list, which is given by:

AP (t) = 1

N

N∑
i=1

ni

i
δ(xi , t), (6)

where N is the total number of images associated with tag
t, ni is the number of relevant images from the top i ranked
images. δ(xi , t) = 1 if the image xi is relevant to tag t, and
otherwise zero. The mean value over all testing tags calcu-
lated by averaging AP (t) is called Mean Average Precision
(MAP).

Normalized discounted cumulative gain: The NDCG
measures multi-level relevance and assumes the relevant
tags aremore useful if appearing higher in a ranked list. This

7https://wordnet.princeton.edu

metric at the position l in the ranked list is defined by:

N DCG@l = Zl

l∑
i=1

2r i − 1

log (1 + i)
, (7)

where 2r i is the relevance level of the i th tag and Zl is a nor-
malization constant so that N DCG@l = 1 for the perfect
ranking.

V . SELECTED APPROACHES AND
DETA I LED EVALUAT ION

In this section, we select typical approaches from both
model-free and model-based paradigms to evaluate the
image tagging performance, and analyze the advantages
of each paradigm. Our criteria to select the compared
approaches are: (1) widely-used in research community and
(2) strong performance under the same experiment settings.

A) Model-free image tagging
We first select three typical model-free image tagging mod-
els for comparison, which include:

– KNN [74]: K-Nearest-Neighbor based approaches gen-
erate a tag list by calculating the relevance of a tag to a
given image. The procedure is conducted by first search-
ing the top-K nearest neighbor images which have been
annotated by the tag, and further ranking a tag list by tag
frequency.

– TagVoting [40]: Compared with KNN, Tag Voting
based approaches leverage user-side information, and
constrain each user has at most one image in the neigh-
bor set. Besides, this approach considers tag prior fre-
quency to limit the occurrence of frequent tags.

– TagProp [46]: Tag Propagation based approaches
employ neighbor voting with distance metric learning
scheme into image tagging.

Table 3 shows that the tagging performance of different
model-free image tagging approaches, by using either tradi-
tional hand-crafted features with bag-of-word (BoW) rep-
resentations [8] or deep learning features. We can observe
from the table that deep learning based representation can
achieve consistently better performance than hand-crafted
features for the three typical model-free approaches, which

Table 3. Image tagging performance (measured by MAP)
on MIRFlickr-25K and NUS-WIDE-270K for different

comparison approaches.

Approaches MIRFlickr NUS-WIDE

BoW+KNN [74] 0.34 0.19
BoW+TagVoting [40] 0.33 0.18
BoW+TagProp [46] 0.34 0.19
CNN+KNN [74] 0.63 0.39
CNN+TagVoting [40] 0.64 0.40
CNN+TagProp [46] 0.65 0.42
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demonstrates the powerful representation ability of deep
learning techniques to image tagging. For different model-
free tagging models, we can observe that KNN [74] and
TagVoting [40] can achieve comparable performance. Tag-
Prop [46] can achieve better results, due to the proposed
distance metric learning scheme. Note that the deep fea-
tures used here are extracted from the pre-trained VGG-19
network [43] on ImageNet. Specifically fine-tuned fea-
tures for this image tagging application can achieve further
improvement.

B) Model-based image tagging
We select the following typical model-based image tagging
approaches for comparison:

– CNN: Convolutional Neural Network adopts the state-
of-the-art network architecture with several convolu-
tional layers and fully-connected layers [13].

– RPCA+CNN: Robust Principle Component Analysis +
CNN first removes samples with large reconstruction
errors by RPCA [54], and conducts CNN training on the
cleaned samples.

– CAE+CNN: Convolutional Auto-Encoder + CNN pro-
poses to reduce the noise effect in CNN training by the
layer-wise pre-training and fine-tuning strategy [59].

– NA+CNN: Noise Adaption layer + CNN proposes to
add an additional bottom-up noise-adaption layer into
the traditional CNN architecture for noise removal [62].

Table 4. Tagging performance in terms of both mean average
precision (MAP) and Normalized Discounted Cumulative Gain

(NDCG) for the 1000 testing photos from NUS-WIDE-270K dataset.

CNN CAE+ RPCA+ NA+ NR+
[13] CNN [59] CNN [54] CNN [62] CNN [21]

MAP 0.28 0.32 0.33 0.47 0.53
NDCG@1 0.08 0.11 0.23 0.24 0.32
NDCG@3 0.18 0.25 0.32 0.33 0.41
NDCG@5 0.26 0.34 0.39 0.41 0.46

– NR+CNN:NoiseRobust layer + CNN designs an objec-
tive function to assign those “few and different” noisy
samples with low-level authorities in training, and thus
the noise effect can be reduced [21].

Each model is trained and evaluated on NUS-WIDE-270K
[50], since the dataset contains the largest vocabulary size
among different image tagging datasets.

Since the annotated tags for each image is limited (only
81 tags have ground truth), a randomly-selected 1000 pho-
tos from NUS-WIDE-270K [50] are used as the test set for
extensive evaluation. Each method produces top five cate-
gories with the highest prediction scores as a tagging list.
25 human-labelers are employed to evaluate each tag with
three levels: 2–Highly Relevant; 1–Relevant; 0–Non Rele-
vant. We adopt both the mean average precision (MAP)
and the Normalized Discounted Cumulative Gain (NDCG)
as the metric to evaluate the tagging performance. Table 4
shows the tagging performance.We can observe that simple
image classification architecture CNN [13] cannot achieve
good performance, since there are usually noises in image
tagging datasets. For different noise-robust CNN archi-
tectures, CAE+CNN [59] proposes to reduce the noise
effect by auto-encoder, which can achieve a slightly better
result than simple CNN. Compared with CAE+CNN [59],
RPCA+CNN [54], and NA+CNN [62] can achieve signifi-
cant improvement with a large margin in terms of NDCG.
NR+CNN [21] achieves the best performance due to the
effective noise robust layer proposed in their paper. Exem-
plary tagging results of NR+CNN [21] are shown in Fig. 4.
We can also observe the vocabulary difference between
image classification and image tagging, where the under-
lined tags in Fig. 4 are even missing from ImageNet cate-
gories, yet important to reflect the diverse visual content in
image tagging.

V I . APPL ICAT IONS

Extensive research on both academic and industrial fields
have focused on image tagging as well as its related appli-
cations, such as photo search, and photo storytelling.

(a) (b)

(c) (d)

Fig. 4. Image tagging results by a typical model-based approach [21]. Note that the underlined tags are missing from ImageNet categories, which shows the
vocabulary difference between image classification and image tagging.
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Although most of the images are generated and stored on
clients (e.g., mobile phones, tablet, etc.), existing works
mainly rely on cloud-based solutions, which usually con-
sist of image data transmitting from client to cloud, image
semantic tagging and online image search on cloud. Typical
commercial products include PhotoTime8, Google Photos9
and Microsoft OneDrive10, which enable effective photo
indexing and search not only by time and location, but also
by face grouping and object/scene understanding, and thus
photos can be found by entering human-friendly tags (e.g.,
“beach,” “sunset”) in the search box. However, the cloud-
based solution requires sending each photo to a remote
server on the cloud, which hardly guarantees instant photo
indexing and search on the phone, due to network latency.
With the increasing computing capacity on mobile clients,
designing effective client-based photo search systems on
the phone becomes a fundamental challenge for better user
experience. Further improvement has been observed from
the recently-released photo management system on iOS 10,
which can provide efficient photo grouping by face, tag,
time and location on the phone. Once photos have been
tagged and indexed on the phone, the system further sup-
ports semantic photo search by typing a single word from a
predefined vocabulary. In the following, we will survey sev-
eral existing commercial products which are built on image
tagging techniques.

A) PhotoTime
PhotoTime gives the first attempt to provide the features
of sorting and organizing personal photos by image tag-
ging techniques. The app is only available for iOS users
now, with the total app size of 33MB. With the help of
cutting-edge deep neural networks, PhotoTime can auto-
matically tag and categorize photos and conduct face group-
ing, hence users can effortlessly search photos by the
provided features. Besides, PhotoTime can organize pho-
tos not only on the phone, but also those from social
media platforms (e.g., iCloud, Facebook, Instagram, Twit-
ter, Dropbox, Flickr, and Google+), without additional stor-
age space needed. The versions released after June 2016
have made Amazon Cloud embedded for more flexible
storage.

PhotoTime sends photo thumbnails, which are much
smaller than the original photos, to cloud servers for image
tagging, and keep the amount of data transmission mini-
mal. When the tagging procedure is finished, PhotoTime
sends back the auto-generated tags instead of photos or
thumbnails. The specific tagging speed depends on net-
work latency, with the highest efficiency of 500 photos
per minute. Users can add personal tags in the detailed
photo view, and all the new tags can become searchable
tags.

8https://phototime.com
9https://photos.google.com
10https://onedrive.live.com

B) Google Photos
Google Photos is a photo sharing and storage service devel-
oped by Google. Mobile apps for Android and iOS allow
users to upload and access pictures on mobile. There are
also desktop tools for Windows and MacOS. Google Pho-
tos grows very fast, with 200 million active users in the first
month after its release, and it also allows users to back up
an unlimited number of photos and videos. Google Pho-
tos organizes photo library using smart groups based on
time and location.When users upload photos, Google Pho-
tos can automatically analyze them and add them to specific
categories for quick access. Hence, users are able to conduct
keyword-based search to find a photo. The keyword could
be object, time point, or location.

Google Photos makes use of a CNN architecture, which
is similar to the architecture proposed by Geoffrey Hinton
and used in the ImageNet Large Scale Visual Recognition
Competition. In contrast to the 1000 visual classes used in
the competition, Google uses more visual classes based on
the popular labels fromusers. Google Photos alsomakes use
of free base entities, which are the basis for knowledge graph
in Google search. Besides, users can browse into any image
albums and display it on screen as slideshow. In addition,
the images could be remixed to create videos for sharing on
social media. Users are also allowed to label persons with
their names, which can be used for searching by name in
the future.

C) Microsoft OneDrive
OneDrive provides a file-hosting service developed by
Microsoft, which is a part of Microsoft suite of online ser-
vices. OneDrive allows users to store files as well as other
personal data like Windows settings or BitLocker recov-
ery keys in the cloud. When mobile users from Android,
iOS, and Windows Phone take a photo by their phones,
the photo will be automatically uploaded to OneDrive.
OneDrive organizes photo libraries based on date and sev-
eral tags, like “mountain,” “outside,” “hand,” etc. It can also
automatically recognizes objects in a photo and creates tags
for them by the state-of-the-art deep neural networks with
over 6K tag categories, so users are able to search photos
with the tags provided. Furthermore, users can also remove
or edit the tags for a photo.

D) Photo app on iOS 10
The photo app embedded on iOS 10 provides a client-based
way to organize photos. Photos are categorized by date and
location, and two new album views are provided, which
includes “People” and “Places.” Each album contains pho-
tos and videos organized by faces or location information.
Apple now uses deep neural networks to recognize faces,
and then organizes these photos intomini albums inside the
“People” album.Users can add names to them, which allows
users to organize all the photos by person. The “Places”
album records a map of user photos, which helps users to
browse exactly where they recorded a video or snapped a
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picture on their trips. The photo app embedded on iOS 10
allows users to search for photos using keyword-based nat-
ural language which can be people, objects, locations, and
other characteristics. However, the system usually suffers
from low recall due to the limited vocabulary of queries
that can be searched. Therefore, designing a systemwith the
capability of instantly finding arbitrary photos of what users
want is still worthy to explore in the future.

V I I . CONCLUS IONS AND
PERSPECT IVES

In this paper, we presented a survey of various methods of
image tagging using deep learning. We have summarized
the research into two paradigms, i.e., model-free image tag-
ging models with deep representation and model-based
image tagging models by deep neural network. Although
significant progresses have been made in the recent years,
there are still emerging topics that deserve further investi-
gation. We summarize the future challenges as follows.

Combination of model-based/model-free approaches: as
observed bymany existing approaches, on the one hand, the
model-free approacheswhich are generally based onnearest
neighbor voting, can achieve superior performance if train-
ing samples are in large size with good diversity, but suffer
from high computation costs in both training and testing.
On the other hand, model-based approaches are generally
efficient with adequate modeling capability on few train-
ing samples. Designing a framework that can combine the
advantages of two types of models is a possible direction. In
such a manner, the model-based components can ensure a
good generalization ability when we cannot find the sim-
ilar enough or duplicate visual neighbors in training set,
while the model-free components complement the loss of
the discriminative power of the model-based components.

Multi-label image tagging: most existing work focus on
single-label image tagging by using deep neural networks,
where each image is assumed to be associated with one
image tag. Since the diversity of image content and the
complexity of user search intentions, single tag is not ade-
quate to reflect the multiple semantics conveyed from an
image. Therefore, multi-label image tagging is an impor-
tant research topic for managing the great number of user
photos. The main challenges derive from the huge human
efforts to obtain fully-annotated image sets and the diffi-
culties to model and predict multiple semantics from deep
neural networks. Although initial efforts have been made
[75], great efforts are still necessary to design networks
by leveraging dense image understanding and represen-
tation technologies, such as object detection and image
segmentation.

Visual attention-based image tagging: a large part of
image tagging approaches leverage large textual corpus for
expanding the tagging list for higher recall. For exam-
ple,“bridge” and “water,” “photo frame,” and “wall” are likely
to appear in the same image. Therefore, if “photo frame”
has been detected and tagged for an image, and then “wall”

will have higher probability to be tagged according to the
prior knowledge. Although the tag of “wall” can increase the
recall of a tagging system, it is notmuch important for users.
Because “wall” is not likely to be an attention area, compared
with the foreground “photo frame.” How to automatically
learn user attention to an image, and tag those objects that
can be searched is indispensable for an intelligent image
tagging system. Learning from the recent-proposed image
captioning and visual question answering datasets [73] can
be good choices, because there are explicit user intentions
existed in this type of datasets.

Fine-grained image tagging: although existing tagging
system can provide users with good experience for photo
browsing and search to some extend. It is not sufficient
for common users to find very fine-grained and person-
alized photos. For example, tagging different bird species
[76, 77], flower types [78, 79], car models [80, 81], or even
human sentiment [82] have attracted extensive attention.
This task is very challenging as some fine-grained categories
(e.g., eared grebe, and horned grebe) can only be recognized
by domain experts. Different from general image tagging,
fine-grained image tagging should be capable of localizing
and representing the verymarginal visual differences within
subordinate categories [83, 84]. Besides, tagging an image
with “girl” or “woman” is not very existing, compared with
tagging themwithmore personalized tags (e.g., “daughter”)
based on the contextual information from a user album and
user-provided meta-data.

Photo storytelling: beyond image tagging, automatic
generation of natural language description for individual
images (a.k.a. image captioning) has attracted extensive
research attention [85–88]. Some works even take one step
further to investigate the generation of a paragraph to
describe a photo stream for the purpose of storytelling
[89–91]. This task is even more challenging than individ-
ual image description due to the difficulty in modeling the
large visual variance in an ordered photo collection and in
preserving the long-term language coherence amongmulti-
ple sentences. Although challenging, storytelling can better
benefit user experience to recall their memory, which is
worthy to discover in the future.
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