
Reducing Inefficiencies in Taxi Systems

Chenguang Zhu1 and Balaji Prabhakar2

Abstract— Taxi systems are perfect examples of supply-
demand systems in which taxi vehicles and drivers constitute
the supply side, while passengers hailing taxis are the demand
side. However, various inefficiencies can be embedded within
such a large-scale system, e.g. an excessive number of taxi
vehicles, a shortage of taxi supplies after an event and long idle
times with no passengers in taxis. These systemic inefficiencies
are often overlooked in previous literature, which focuses on
taxi dispatching mechanisms to satisfy short-term demand.
In this paper, we address these inefficiencies and propose a
novel model for the trip assignment problem based on network
flow. Compared with existing methods, our model is much
more scalable. This model is capable of assigning hundreds of
thousands of trips to taxis over a long time interval, e.g. a shift
of 12 hours. Furthermore, the trip assignment given by this
model can effectively minimize the total number of required
taxis while reducing incurred idle time. Experiments show that
in our model, the number of required taxis to finish all observed
trips in New York City is only 72% of the size of the current
taxi fleet, while the average idle time incurred per taxi drops
by 32%.

I. INTRODUCTION
Taxi systems are important components of the urban trans-

portation system because they complement public transport
for their flexibility in routes, destinations and supply. A
typical taxi system comprises thousands of taxi vehicles and
hundreds of thousands of passengers each day. This presents
a perfect example of a supply-demand system with available
taxi cabs as the supply side and waiting passengers as the
demand side.

In this system, each taxi driver can be viewed as an
autonomous agent: the driver makes decisions to search for
passengers according to his knowledge about the temporal
and spatial distribution of demand. However, if we examine
the actions of taxi drivers from the driver’s perspective,
these actions are usually local and myopic. Without much
knowledge about the current supply-demand situation outside
his neighborhood, it is very easy for a driver to make a
suboptimal decision in the long run. For example, suppose
a New York City taxi driver decides to go to Grand Central
Station for his next potential passenger as the demand there
is usually high. The passenger he picks up is heading to the
Brooklyn District. The driver, unaware that a large wave of
visitors will be taking taxis from Times Square to nearby
hotels within the next 20 minutes, will take the trip and go
to Brooklyn, possibly spending a lot of time looking for the
next passenger there due to Brooklyn’s low density of taxi

1Chenguang Zhu is researcher in Microsoft AI+Research, One Microsoft
Way Redmond, WA 98052, USA zcg.cs60@gmail.com

2Balaji Prabhakar is Professor in Departments of Electrical Engineering
and Computer Science of Stanford University, 350 Serra Mall, Stanford,
CA, 94305, USA balaji@stanford.edu

rides. In fact, it would be better for another nearby taxi which
would soon change shift in Brooklyn to take this trip. We
therefore argue that the decisions made by individual drivers
may be locally optimal, but from a systemic perspective,
there is still plenty of room for improvement.

Collectively, suboptimal individual decisions lead to global
inefficiencies within the taxi systems, including an excess or
shortage of taxi service supplies and long idle time with
taxis having no passengers inside. For example, although up
to 60% of the daily traffic flow in certain areas in Hong Kong
are generated by taxis, many of them are empty trips [16].
Empty trips result in low system utilization and exacerbate
road congestion. Thus, reducing inefficiencies in taxi systems
is a pressing and essential task facing urban transportation
regulators and governments.

To solve these issues, previous studies have been focusing
on mechanisms to assign trips to taxis [21], [18], [19], [9].
Existing works modeled the taxi system as an Autonomous
Mobility on Demand (AMoD) system [11], [5]. In an AMoD
system, the goal is to design smarter trip assignment plans in
a real-time fashion based on recently emerging trip requests
and current locations of available taxis. A typical feature of
an AMoD system is its temporal and spatial locality. For
example, [11] built local queues at each potential drop-off
and pickup location to model taxi availability and passenger
arrivals. [5] framed the taxi system as a multi-agent system,
proposing a real-time model to re-schedule taxi service
before order acceptance confirmation to accomplish the most
recent trip requests. Although an AMoD system can usually
be immediately deployed and evaluated in real scenarios,
these locally optimal assignments do not necessarily lead to
globally optimal efficiency. By investigating this issue over
the complete time frame, we should be able to excavate re-
curring patterns in supply and demand as well as a systematic
way to balance them.

To achieve this goal, we need a bird’s-eye view of the
whole taxi system. Fortunately, thanks to the rising pop-
ularity of sensing technology, many cities have equipped
their taxis with GPS devices to record geo-location and trip
information, thereby enabling us to design a trip assignment
mechanism that boosts systemic efficiency. This mechanism
also allows the system to operate with fewer taxis and each
taxi achieves a higher utilization rate with less idle time
wasted on the road. Specifically, we want to reassign all
observed trips to taxis during a time period (e.g. a shift of
12 hours), following the exact start/end time and location
requirements. Our objectives are hereby two-fold:

1) Reassign trips to minimize the number of taxis to
accomplish all passengers’ requests;

2) Reassign trips to taxis to minimize total idle time when
using the minimum number of taxis.

The first objective is important for taxi commissions and
government because they are eager to obtain an appropriate
estimate of the required taxi fleet size for effective entry
regulation and congestion control, while the second objective
is directly correlated with the operational efficiency of taxi
systems and also the earnings for drivers. It is important to
note that we only minimize total idle time when the number
of taxis used is minimum. Otherwise, a trivial solution where
each trip is assigned to a unique taxi will have zero idle time.

To achieve the above objectives, we design a trip assign-
ment model based on network flow. This model captures
both temporal and spatial properties of taxi movement and
passenger trips. Compared with previous approaches, our
model is much more scalable, capable of assigning hundreds
of thousands of taxi trips daily in big metropolises. We
evaluate our model on New York City taxi trip datasets. One
of the findings is that our model can accomplish all observed
taxi trips in New York City with only 72% of the current
yellow taxi fleet. Furthermore, the average idle time per taxi
drops by 32%.

The rest of this paper is organized as follows. Section
II frames the trip assignment problem as a combinatorial
optimization problem and defines related notations. Section
III examines the previous literature. We develop our model
in Section IV and evaluate the model in Section V. Section
VI offers concluding remarks.

II. PRELIMINARIES

We denote the set of taxi trips to be assigned as T =
{a1, a2, ..., am}. Each trip ai is represented by a tuple: ai =
(tsi, tei, lsi, lei), where tsi and tei are the start/end time of
the trip, while lsi and lei are the start/end location of the
trip. Suppose N taxis will serve these trips. An assignment
of taxi trips is a mapping function F : T → [N]. Under such
a mapping function F , each taxi i is assigned a sequence of
taxi trips in time order: ai1 , ai2 , ..., aiki

. A valid mapping
function F should satisfy the following two conditions:

1) teij < tsij+1
,∀1 ≤ i ≤ N, 1 ≤ j < ki

2) dist(leij , lsij+1
) ≤ vmax · (tsij+1

− teij)

where dist(A,B) is the routing distance from location A to
B and vmax is the maximum driving speed. We set vmax to
25 miles per hour (40.23 km per hour) in the experiment.

The first condition regulates that two adjacent trips made
by the same taxi cannot overlap temporally, while the second
condition makes sure that it is feasible to reach the start
location of the next trip after finishing the current trip.

Our goals are two-fold. First, we want to minimize the
number of required taxis N to validly assign all trips.
Second, we aim to minimize the total idle time incurred:
Tidle =

∑N
i=1

∑ki−1
j=1 (tsij+1

− teij).

III. PREVIOUS LITERATURE

Previous literature focused on taxi dispatching strategy for
efficient trip assignment: [15] aimed to reduce waiting time
for passengers and boost trip success rate; [13] designed a

route-recommendation mechanism to maximize driver’s prof-
its; [12] assigned trips to guarantee fairness within a group
of competing drivers; [22] designed methods to optimize
passengers’ waiting time for taxis.

The goal of these models is to devise a more efficient
real-time scheduling system. However, a more systematic
approach of the trip assignment task requires optimization
over the complete time frame. Such approaches can help
determine an appropriate taxi fleet size to serve all passengers
and reduce inefficiencies in the taxi system such as the total
time taxis spend in idling status.

To this end, a network-based model was introduced in [17]
to determine system performance measures at equilibrium
such as vacant taxi movements and taxi utilization. The
authors also computed the minimum taxi fleet size to ensure
the existence of a stationary equilibrium state. In [2], the taxi
system was framed as a multi-agent system and a model was
proposed to enhance the utilization rate of taxi systems. [8]
modeled routing behaviors of vacant taxicabs to explore more
efficient passenger-finding strategies.

To the best of the authors’ knowledge, the work most
similar to ours comes from [20], in which a path cover
model was proposed to reassign trips to taxis. We hereby
present a brief introduction. Based on the notions defined in
the previous section, there are m taxi trips and each trip ai
is represented by a tuple (tsi, tei, lsi, lei). These trips are
then described by a graph G = (V,E), where each node in
V represents a trip, and an edge i → j exists if and only
if trip ai and trip aj can be finished sequentially by a taxi.
[20] proved that G is directed and acyclic. Furthermore, the
nodes corresponding to a taxi’s trips form a directed path in
G.

Subsequently, minimizing the number of required taxis
to finish all trips is equivalent to finding the minimum
number of non-intersecting paths to cover every node in
G. This problem can be solved by maximum matching by
constructing a bipartite graph of 2m nodes, with details in
[20].

Nevertheless, this approach has a major drawback: the
scalability. In the constructed graph, the number of nodes
|V | is linear with the number of trips m; the number of
edges |E| is quadratic with m. However, the number of
taxi trips in a city can be quite large. For example, in
New York City, taxis make more than 400,000 trips on an
average weekday, but a typical maximum matching algorithm
on bipartite graphs, e.g. HopCroft-Karp [7], has a time
complexity of O(

√
|V ||E|). Consequently, we cannot solve

the model within reasonable amount of time.
To tackle the model’s limited scalability, [20] worked

around the problem by assigning trips in short time intervals
of 10 minutes. This approach greatly reduces the significance
of the work. The reason is that trip assignment in the
previous time interval cannot be automatically merged with
the assignment in the next time interval, as many taxis are
still taking trips. Moreover, the model can never obtain a
real assignment of trips to each taxi over a day, nor can we
calculate the total amount of idle time under the assignment.

40.4

40.6

40.8

41.0

−74.2 −74.0 −73.8 −73.6

Fig. 1: Region partition of New York City.

In the next section, we will introduce a new model to solve
the scalability issue which enables us to deliver assignment
plans for hundreds of thousands of taxi trips within a minute.

IV. OUR MODEL

A. Discretization

The first step in our model is to discretize both trip time
and trip locations. Time over a day is sliced into 1-minute
bins. We then round down the start time and round up the
end time of each trip to the boundaries of time bins. For trip
locations, we partition a city into regions. The granularity of
the discretization should be determined based on a balance
between solution quality and computational efficiency. In the
experiments, we partition New York City into 36 regions
according to district boundaries and main roads (Fig. 1).
In Section V, we will discuss in detail the impact of these
discretization hyperparameters on the model.

After discretization, each trip is represented by (tsdi , tedi ,
lsdi , ledi). As multiple trips may share the same discretized
tuple representation, the whole dataset is described as {(tsd,
ted, lsd, led, count)}, where count is the number of trips
that start from region lsd in time bin tsd and end at region
led in time bin ted.

B. Network flow model

To depict the movement of taxis in spatial-temporal dimen-
sions, we build a network flow model, based on the concept
of Time Expanded Network [3]. The basic idea is that the
movement of a taxi is characterized by a unit flow in the
network, capturing both available and occupied statuses.

The flow network is denoted by G = (V,E). The nodes
and edges are defined as follows.

Nodes. Nodes in G correspond to discretized time and
regions: node pt,l ∈ V stands for discretized time t and
region l. A flow passing through pt,l indicates that a taxi is
in region l at time t.

Edges. Each directed edge (x, y) ∈ E carries an upper-
limit ux,y and lower-limit lx,y for flow value to represent the
allowable number of passing taxis. Additionally, a cost cx,y

is associated with the edge (x, y) to represent the incurred
idle time1 in minutes. In total, there are three types of edges:

1) To depict the action of taxis taking trips, edge
ptsd,lsd → pted,led corresponds to the data entry (tsd,
ted, lsd, led, count), with lx,y = ux,y = count and
cx,y = 0. In other words, exactly count units of flow
travel through this edge, with no idle time incurred.

2) Idle taxis can stay in the same region. We construct
edge pt,l → pt+1,l for each discrete time t and region
l, with ux,y =∞, lx,y = 0, cx,y = 1. It indicates that
a taxi staying in region l from t to t+1 incurs an idle
time of 1 minute.

3) Idle taxis can move from region l to another region
l′ 6= l. We construct edge pt,l → pt+tl→l′ ,l

′ for each
(t, l, l′), with ux,y = ∞, lx,y = 0, cx,y = tl→l′ . It
indicates that each taxi moving from region l to l′

incurs an idle time of tl→l′ minutes2.
Finally, to complete the construction, we add a source node

S and a sink node T . We add edges S → pt,l and pt,l → T
for all t, l where a trip starts/ends in region l at time t, with
ux,y = ∞, lx,y = 0, cx,y = 0. It follows that a unit flow
from S to T represents the movement and trip sequence of
one taxi. It is worth noting that we can associate idle time
to edges pertinent to S/T and add edges to corresponding
nodes to incorporate initial locations and times where taxis
would start to work.

An example network flow model is shown in Fig. 2. One
trip starts at 15:01 in region 1 and ends at 15:05 in region
2. Two trips start at 15:00 in region 2 and end at 15:05 in
region 1.

With the flow network, we aim to find the minimum
feasible flow plans to minimize the number of taxis required
to finish all observed trips.

Feasible flow. A feasible flow plan f : E → R+ assigns
fx,y ≥ 0 to each edge (x, y) ∈ E such that the following
two conditions are satisfied:

1) lx,y ≤ fx,y ≤ ux,y (capacity constraint)
2)

∑
x:(x,y)∈E fx,y =

∑
x:(y,x)∈E fy,x,∀x ∈ V, x 6= S, T

(conservation of flows)
The size of flow plan f is defined as: |f | =

∑
(S,i)∈E fS,i,

which is also equal to
∑

(i,T)∈E fi,T . In our network, a fea-
sible flow plan of size N corresponds to a valid assignment
of all trips to N taxis.

Minimum feasible flow (FF). To determine the minimum
feasible flow size, we convert the problem into a decision
problem. To judge whether a flow of size N exists for G,
we define GN as G plus an edge T → S with both cost and
lower-limit as 0. The upper-limit of this edge is N . Note that
GN has no source or sink. It is obvious that a flow of size
N exists for G if and only if a flow of size N exists for GN .

1The network flow model can work with any non-negative bounded edge
cost such as idle distance and vehicle emissions.

2One trick in reducing the number of edges is that pt,l → pt+tl→l′ ,l
′ is

constructed only when some trip starts at time t+ tl→l′ in region l′. The
reason is that a taxi can hold movement to region l′ until the last minute:
it starts the next trip as soon as it moves to region l′.

Fig. 2: An example network flow model for a two-region-six-minute taxi system. On each edge, the two numbers
separated by comma are the lower-limit and upper-limit of flows. Costs are shown in yellow boxes.

A push-relabel algorithm [6] can solve the problem for GN

in time O(|V |2|E|).
Furthermore, if a feasible flow of size N exists for G,

another feasible flow of size N + 1 exists as well. We thus
employ binary search to determine the minimum feasible
flow size, i.e. the minimum number of required taxis, N∗.
As N∗ cannot exceed the number of trips, the overall time
complexity is O(log(number of trips) · |V |2|E|).

Minimum cost minimum feasible flow (MCFF). After
determining the minimum number of required taxis N∗ to
finish all trips, we proceed to compute the minimum cost.
Here, the goal is to find a feasible flow plan of size N∗ such
that the total cost C is minimized:

C({fx,y}) =
∑

(x,y)∈E

cx,y · fx,y (1)

An existing algorithm [10] can solve the problem in poly-
nomial time O(|E|log|V |(|E| + |V |log|V |)). The resulting
cost is the minimum total idle time of these N∗ taxis under
optimal assignment.

A note on graph size. The time complexity of the above
flow algorithms is correlated with the network size. The
number of nodes |V | is the product of the number of regions
and the number of time bins, which is a constant. The number
of edges, |E|, is:
• Edges of type (i): min([number of trips], |V |2)
• Edges of type (ii): |V |
• Edges of type (iii): |V | × [number of regions]
• Edges from S or to T : 2|V |

Total number of edges:
O(min{[number of trips], |V |2}+|V |×[number of regions]})

(2)
As |V | is a constant, |E| is upper-bounded by a constant.

In practice, |E| is much less than that in the model in [20].
For example, for a 12-hour shift worth of data, our model
contains 51K nodes and 624K edges, while the path cover
model in [20], if implemented, would have 430K nodes and
23 billion edges.

After obtaining a feasible flow of size N∗, the trips can be
assigned to taxis by repetitively applying breadth first search
(BFS) to generate unit flows from node S to node T . Each
unit flow corresponds to the working path of one taxi. In the
end, we assign trips ai1 , ai2 , ..., aiki

to taxi i.

However, since we discretized the map into regions, it
may be infeasible for a taxi to go to the next trip in time.
For example, the drop-off location of trip aij and the pickup
location of trip aij+1

could be in the same partitioned region,
but the actual distance is so far that a taxi cannot move
between these two locations in required time—we have
assumed that all trips must be finished according to its time
schedule.

To solve this problem, we add feasibility checking into our
algorithm. We first set a speed limit of 25 mph for a taxi to
move between locations. If the next trip is infeasible to reach
from the current trip for a taxi, the next trip is removed from
the assignment. Consequently, each taxi will only execute a
feasible trip sequence. We then set those removed trips as
new input into the network flow model and assign more taxis
to finish these trips. The process is repeated until all trips
are assigned to taxis. The details of this iterative algorithm
are described in Algo. 1. This algorithm is guaranteed to
end, since in each round, at least the first trip assigned to
each taxi is accepted. In experiments, we observed that the
iterative algorithm ended within 6 rounds for all models.

V. EXPERIMENT
We evaluated the network flow model on New York City

taxi trip dataset [4]. This dataset contains information about
all trips made by yellow taxis in New York City in 2013.
Each trip is described by an entry including hashed driver’s
license number, hashed medallion number, pickup / drop-off
location and time, fares, tips and distances.

We first took taxi trips from a normal day in 2013, May
15, which was a Wednesday. As taxis work in 12-hour shifts
in New York City, we focused on trips starting from 4AM
to 4PM. In data-cleaning phase, we filtered out trips with
duration shorter than 1 minute or longer than 1 hour. We
ended up with 214,805 trips made by 12,366 taxis.

We built the network as mentioned in the previous section,
with 51,842 nodes and 624,067 edges. We ran Algo. 1 to ob-
tain feasible trip assignments. To estimate distance between
locations in feasibility check, we obtained the information
from data: the trip records contain distance driven for each
trip. Based on this information, we built a distance table for
location pairs in discretized grids of 0.003×0.003 in latitude
and longitude. It turns out that 99.8% of all distance queries

Algorithm 1: Iterative algorithm for trip assignment

Set all trips as unassigned.
Round← 0
while any unassigned trip exists do

Round← Round+ 1
For unassigned trips, construct network G = (V,E).
Run minimum feasible flow / minimum cost
feasible flow algorithm on G.
Use BFS to assign temporally ordered trips
ai1 , ai2 , ..., aiki

to each taxi i.
foreach i do

prev ← 1
Trip ai1 is assigned to taxi i.
for j from 2 to ki do

if aiprev and aij can be finished
sequentially then

Trip aij is assigned to taxi i.
prev ← j

end
end

end
end

●

●

● ● ● ●

●

●

● ● ● ● ●

0

50000

100000

150000

200000

0 1 2 3 4 5 6
Round

A
ss

ig
ne

d
tr

ip
s

●

●

FF
MCFF

(a) Number of assigned trips

●

●

●
● ● ●

●

●

● ● ● ● ●

0

2500

5000

7500

0 1 2 3 4 5 6
Round

Ta
xi

s

●

●

FF
MCFF

(b) Number of taxis

Fig. 3: Number of assigned trips and taxis in Algo. 1 in
each round, for FF and MCFF.

could be accomplished in this table. For the rest few requests,
we used Euclidean distance.

The experiments were run on a single machine with 2.3
GHz Intel Core i7 and a memory of 16 GB 1600 MHz DDR3.
The algorithm FF, which minimizes the number of required
taxis, ran for 28.334s, while the algorithm MCFF, which also
minimizes the total idle time, ran for 259.753s.

As shown in Fig. 3, FF ended within 5 iterative rounds
and MCFF ended within 6 rounds. About 90% of all trip
assignments were completed in the first round for both
models. This shows that the iterative algorithm is very
effective and efficient in practice.

Average statistics. As shown in Table I, the assignments
given by FF and MCFF only require 8,887 and 8,972 taxis
respectively to finish all observed trips (the numbers of
taxis are a little different because of the iterative assignment
mechanism in Algo. 1), about 28% fewer than the number
of taxis in reality. With fewer taxis, the efficiency is also
higher: the average idle time per taxi for the 12-hour shift
drops from 4.1 hours in real data to 3.4 hours for FF and
further down to 2.8 hours for MCFF, with a reduction of

TABLE I: Statistics about taxi assignments from real
data, minimum feasible flow model (FF) and minimum
cost feasible flow model (MCFF). The best statistics in
each category are in bold.

Statistics Real data FF MCFF
Number of taxis 12,366 8,887 8,972

Number of trips per taxi 17.4 24.2 23.9
Idle time per taxi (hours) 4.1 3.4 2.8

Earnings per taxi ($) 252.6 351.5 348.1
Profit per taxi ($) 124.4 219.0 216.1

17.1% and 31.7% respectively. Although the total effective
working time, i.e. the time taking passengers, is the same
for all three assignments, the results indicate that under more
efficient assignments, the system can waste less time in idling
status with fewer taxis.

This higher efficiency also brings more income for drivers:
the earnings per taxi in FF increases by 39.2%, from $252.6
up to $351.5; the earnings per taxi in MCFF increases by
37.8% to $348.1. By taking cost into consideration, we also
calculated the profit of each taxi. The cost of operating a
taxi comes from two main sources: gas consumption and
rent. The average gas price was $3.602 per gallon and the
taxi fuel economy was 29 miles per gallon in 2013 [1], while
the price of renting a taxi for a 12-hour shift was $120 in
2013 [14]. By considering these costs, both FF and MCFF
nearly increased the average profit per taxi by $100.

As we employed 1 minute as the length of time bin and
36 regions for partition of New York City in the experiment,
we now investigate the impact of these discretization hyper-
parameters on the performance of our model in terms of both
effectiveness and efficiency.

Time parameter. We experimented with time bin length
from 1 minute to 5 minutes. As more than half of the
New York City taxi trip records have trip start / end time
right at the minute boundary—probably due to the precision
of logging devices—we did not experiment with time bins
shorter than 1 minute. Fig. 4 shows the number of taxis
required to finish all trips and the running time for both FF
and MCFF for different time bin lengths. Fig. 4(a) indicates
that the number of required taxis of our models is minimal
when the time bin has a length of 1 or 2 minutes. When
the length of time bin further increases, the model requires
more taxis. The reason is that with coarser time partition,
trips close in time may be deemed infeasible. For example,
if the time bin has a length of 5 minutes, then two trips 1
minute apart might not be assigned in our model because
the rounded-up ending time of the first trip may be after the
rounded-down start time of the second trip.

On the other hand, the time complexity of the models is
related with the length of time bins because the number of
nodes in the flow network grows linearly with the number
of time bins. Fig. 4(b) indicates that both models run much
faster with longer time bins. We fitted curves and found
out that FF’s running time inversely correlates with the
length of time bin, while MCFF’s running time inverse-
squarely correlates with the length of time bin. Therefore,

●
●

●
●

●●

●●

●●

8000

9000

10000

11000

12000

1 2 3 4 5
Time bin (minutes)

N
um

be
r

of
 ta

xi
s

●

●

FF
MCFF

(a) Number of taxis

●

●

●

●

●

●

●

●

●
●

y = 260 x2

y = 30 x
0

100

200

300

1 2 3 4 5
Time bin (minutes)

S
ec

on
ds

●

●

FF
MCFF

(b) Running time

Fig. 4: (a) The number of taxis and (b) running time of
FF and MCFF models with different time bin length for
discretization. The number of partitioned regions is fixed
to be 36. The dotted line are the fitted curves: inverse
for FF and inverse-square for MCFF.

●
●●

●

●●
●
●

●●

8000

9000

10000

11000

12000

10 20 30 36
Number of regions

N
um

be
r

of
 ta

xi
s

●

●

FF
MCFF

(a) Number of taxis

●

●

●

●

●

●

●

●

●

● y=0.8x

y=8.0x−45.2

0

100

200

10 20 30 36
Number of regions

S
ec

on
ds

●

●

FF
MCFF

(b) Running time

Fig. 5: (a) The number of taxis and (b) running time of FF
and MCFF models with different number of partitioned
regions. The length of time bin is fixed to be 1 minute.
The dotted line are the fitted curves: linear for both FF
and MCFF.

it is important to seek a balance between computation time
and the quality of optimization.

Location parameter. We experimented with different
partitions of New York City: 36, 30, 25, 18 and 10 regions.
The result is presented in Fig. 5. Fig. 5(a) indicates that
our models can generate better trip assignment with finer
geographic granularity, because a finer partition allows more
accurate estimation of movement time between regions.
However, the models are not very sensitive with the number
of partitioned regions: with only 18 regions the number of
taxis is 9,493, a 6.9% increase from the case of 36 regions.

Similar to time parameters, the number of nodes in the
flow network grows linearly with the number of partitioned
regions, hence affecting the running time. Fig. 5(b) shows
that the running time is approximately linear with the number
of partitioned regions in location discretization.

VI. CONCLUSION

In this paper, we aim to reduce inefficiencies embedded
within taxi systems. We develop a novel model to assign
trips to taxis over a long time period, e.g. a shift of 12
hours. The model is based on network flows and it can
minimize the number of taxis required to finish all observed
trips while reducing the incurred idle time. Compared with
previous work, our model is much more scalable and can
generate detailed assignment plans for hundreds of thousands

of trips. Experiments on New York City taxi data validate
the effectiveness of our model: (i) only 72% of the current
yellow taxi fleet are required to finish all trips, (ii) the average
idle time per taxi drops by 32%. For future work, we plan to
combine our model with taxi dispatching strategies to achieve
more effective dispatching mechanisms.

REFERENCES

[1] M. Bloomberg and D. Yassky. 2014 taxicab fact book.
http://www.nyc.gov/html/tlc/downloads/pdf/2014_
taxicab_fact_book.pdf.

[2] S.-F. Cheng and T. D. Nguyen. Taxisim: A multiagent simulation
platform for evaluating taxi fleet operations. In Proceedings of the
2011 International Conferences on Web Intelligence and Intelligent
Agent Technology, pages 14–21.

[3] T. G. Crainic and G. Laporte. Planning models for freight transporta-
tion. In European journal of operational research, number 3, pages
409–438. Elsevier, 1997.

[4] B. Donovan and D. B. Work. New york city taxi trip data (2010-2013).
http://dx.doi.org/10.13012/J8PN93H8, 2014.

[5] A. Glaschenko, A. Ivaschenko, G. Rzevski, and P. Skobelev. Multi-
agent real time scheduling system for taxi companies. In AAMAS’09.

[6] A. Goldberg and R. Tarjan. A new approach to the maximum-flow
problem. In Journal of the ACM (JACM), number 4, pages 921–940.
ACM, 1988.

[7] J. Hopcroft and R. Karp. An nˆ5/2 algorithm for maximum matchings
in bipartite graphs. In SIAM Journal on computing, number 4, pages
225–231, 1973.

[8] X. Hu, S. Gao, Y.-C. Chiu, and D.-Y. Lin. Modeling routing behavior
for vacant taxicabs in urban traffic networks. In Transportation
Research Record: Journal of the Transportation Research Board,
number 2284, pages 81–88, 2012.

[9] S. Ma, Y. Zheng, and O. Wolfson. T-share: A large-scale dynamic
taxi ridesharing service. In Data Engineering (ICDE), 2013 IEEE
29th International Conference on, pages 410–421. IEEE, 2013.

[10] J. B. Orlin. A faster strongly polynomial minimum cost flow algorithm.
In Operations research, number 2, pages 338–350. INFORMS, 1993.

[11] M. Pavone. Autonomous mobility-on-demand systems for future urban
mobility. In Autonomes Fahren, pages 399–416. Springer, 2015.

[12] S. Qian, J. Cao, F. L. Mouë, I. Sahel, and M. Li. Scram: A
sharing considered route assignment mechanism for fair taxi route
recommendations. In KDD’15, pages 955–964.

[13] M. Qu, H. Zhu, J. Liu, G. Liu, and H. Xiong. A cost-effective
recommender system for taxi drivers. In KDD’14, pages 45–54.

[14] F. Salmon. New yorkers love uber. but is uber good for
new york? http://fusion.net/story/175479/
uber-new-york-taxis/.

[15] W. Shen and C. Lopes. Managing autonomous mobility on de-
mand systems for better passenger experience. In arXiv preprint
arXiv:1507.02563, 2015.

[16] H. Yang, Y. W. Lau, S. C. Wong, and H. K. Lo. A macroscopic taxi
model for passenger demand, taxi utilization and level of services. In
Transportation, number 3, pages 317–340. Springer, 2000.

[17] H. Yang and S. Wong. A network model of urban taxi services. In
Transportation Research Part B: Methodological, number 4, pages
235–246, 1998.

[18] J. Yuan, Y. Zheng, L. Zhang, X. Xie, and G. Sun. Where to find my
next passenger. In Proceedings of the 13th international conference
on Ubiquitous computing, pages 109–118. ACM, 2011.

[19] N. J. Yuan, Y. Zheng, L. Zhang, and X. Xie. T-finder: A recommender
system for finding passengers and vacant taxis. IEEE Transactions on
Knowledge and Data Engineering, 25(10):2390–2403, 2013.

[20] X. Zhan, X. Qian, and S. V. Ukkusuri. Measuring the efficiency of
urban taxi service system. In UrbComp’14. ACM, 2014.

[21] D. Zhang, L. Sun, B. Li, C. Chen, G. Pan, S. Li, and Z. Wu.
Understanding taxi service strategies from taxi gps traces. IEEE
Transactions on Intelligent Transportation Systems, 16(1):123–135,
2015.

[22] X. Zheng, X. Liang, and K. Xu. Where to wait for a taxi? In
Proceedings of the ACM SIGKDD International Workshop on Urban
Computing, pages 149–156. ACM, 2012.

