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ABSTRACT

The digitization of data has resulted in making datasets available to millions of
users in the form of relational databases and spreadsheet tables. However, a ma-
jority of these users come from diverse backgrounds and lack the programming
expertise to query and analyze such tables. We present a system that allows for
querying data tables using natural language questions, where the system translates
the question into an executable SQL query. We use a deep sequence to sequence
model in wich the decoder uses a simple type system of SQL expressions to struc-
ture the output prediction. Based on the type, the decoder either copies an output
token from the input question using an attention-based copying mechanism or gen-
erates it from a fixed vocabulary. We also introduce a value-based loss function
that transforms a distribution over locations to copy from into a distribution over
the set of input tokens to improve training of our model. We evaluate our model
on the recently released WikiSQL dataset and show that our model trained us-
ing only supervised learning significantly outperforms the current state-of-the-art
Seq2SQL model that uses reinforcement learning.

1 INTRODUCTION

The IT revolution of the past few decades has resulted in a large-scale digitization of data, making
it accessible to millions of users in the form of databases and spreadsheet tables. Despite advances
in designing new high-level programming languages and user interfaces, querying and analyzing
such tables usually still requires users to write small programs in languages such as SQL or Excel,
which is unfortunately beyond the programming expertise of a majority of end-users (Gualtieri,
2009). Thus, building effective semantic parsers that can translate natural language questions into
executable programs has been a long-standing goal to improve end-user data accessibility (Poon,
2013; Zettlemoyer & Collins, 2005; Pasupat & Liang, 2015; Li et al., 2005; Gulwani & Marron,
2014).

Recent work has shown that recurrent neural networks with attention and copying mecha-
nisms (Dong & Lapata, 2016; Neelakantan et al., 2016; Jia & Liang, 2016) can be used effectively
to build successful semantic parsers. Notably, Zhong et al. (2017) recently introduced the state-of-
the-art Seq2SQL model for question to SQL translation in the supervised setting, where programs
are explicitly provided with their corresponding questions. The Seq2SQL model shows that using
separate decoders for different parts of a query (i.e., aggregation operation, target column, and where
predicates) increases prediction accuracy, and reinforcement learning further improves the model by
allowing it to learn semantically equivalent queries beyond supervision.

In this paper, we present a new encoder-decoder model as an extension of the attentional seq2seq
model for natural language to SQL program translation and a training approach that is capable of
learning the model in an effective and stable manner. Figure 1 shows an example table-question pair
and how our system generates the answer by executing the synthesized SQL program.

First, we present a simple type system to control the decoding mode at each decoding step (cf.
Sect. 2). Based on the SQL grammar, a decoder cell is specialized to either select a token from the
SQL built-in vocabulary, generate a pointer over the table header and the input question to copy a
table column, or generate a pointer to copy a constant from the user’s question. The type system
allows us to have a fine-grain control over the decoding process while retaining the simplicity of the
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Figure 1: Answering a table question by synthesizing a query and executing it on the provided table.

Figure 2: Model overview for the example in Figure 1. The model encodes table columns as well as
the user question with a bidirectional LSTM and then decodes the hidden state with a typed LSTM,
where the decoding action for each cell is statically determined.

sequence structure, as opposed to designing multiple decoders for different language components or
adding extra controllers for expansion of production rules (Krishnamurthy et al., 2017).

Second, we constructed an objective function that allows us to effectively train our model to copy
correct values (cf. Sect. 3). Training copying decoders can be challenging when the value to be
copied appears in multiple places in the input (i.e. both in the question and the table headers). Our
solution to the problem is to use a new value-based loss function that transfers the distribution over
the pointer locations in the input into a distribution over the set of tokens observed in the input, by
summing up the probabilities of the same vocabulary value appearing at different input indices. Our
results show that our training strategy performs better than alternatives (e.g., direct supervision on
pointers). Our approach is very robust and consistently converges to high-accuracy models starting
from random initializations.

We have evaluated our approach on the recently released WikiSQL dataset (Zhong et al., 2017), a
corpus consisting of over 80,000 natural language question and pairs. Our results in Sect. 4 show
that our model can significantly outperform the current state-of-the-art Seq2SQL model (Zhong
et al., 2017), without requiring a reinforcement learning refinement phase (59.5% vs 48.3% for
exact syntactic match and 65.1% vs 59.4% for execution accuracy). Also, with a series of ablation
experiments, we analyze the influence of different components of our model on the overall results.

2 MODEL

We generate SQL queries from questions using an RNN-based encoder-decoder model with attention
and copying mechanisms (Vinyals et al., 2015; Gu et al., 2016; Zhong et al., 2017). However, we
use the known structure of SQL to statically determine the “type” of output of a decoding step while
generating the SQL query. For example, we know from the grammar that the third token (after
the aggregation function) of the query is always a column name specifying the aggregated column.
Thus, when decoding, as shown in Figure 2, we statically determine the type of the token to generate
based on its decoding time stamp, and then use a specialized decoder to generate the output: if we
have to produce a column name or a constant, we enforce the use of a copying mechanism, otherwise
we project the hidden state to a built-in vocabulary to obtain a built-in SQL operator. This means
that we only need to maintain a small built-in decoder vocabulary (sized 17) for all operators.
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2.1 ENCODER

Our encoder is a bidirectional recurrent neural network (RNN) using Long Short-Term Memory
(LSTM) cells. As input tokens, we use the concatenation of the table header (i.e., the column
names) of the queried table and the user query, i.e., X = [x

(1)
c , . . . , x

(C)
c , x

(1)
q , . . . , x

(Q)
q ]. This

concatenation allows the model to learn how to compute a joint representation for both columns and
the input query. We use |X | to represent the input sequence length (equal to C +Q).

Token Embedding To handle the large number of different tokens in the input query, we combine
a pre-trained character n-gram embedding and a pre-trained global word embedding. For a token
x , we compute its embedding embe(x ) as the concatenation of its word embedding and the average
embeddings of all n-gram features contained in x, in the same way as Zhong et al. (2017). Formally,
if Wword is a pre-trained word model, x [i, j] is the character sequence from i to j in x , Wn-gram is a
pre-trained n-gram for the n-gram feature set V , andNx is the number of n-gram features contained
in the word, then

embe(x ) =
(
Wword(x ),

1

Nx

∑
1≤i<j≤|x |
x [i,j]∈V

Wn-gram(x[i, j])
)
.

We use the pre-trained n-gram model by Hashimoto et al. (2017) and the GloVe embedding (Pen-
nington et al., 2014) for words; both are set untrainable to avoid over-fitting.

Bidirectional RNN We feed embedded tokens into a bidirectional RNN composed of LSTM cells
Ce,fw , Ce,bw , computing

(o
(k+1)
e,fw , h

(k+1)
e,fw ) = Ce,fw (h(k)

e,fw , embe(x
(k))) (o

(k)
e,bw , h

(k)
e,bw ) = Ce,bw (h

(k+1)
e,bw , embe(x

(k))),

and will use the sequence Oe = [o
(1)
e , . . . , o

(|X |)
e ] for o(k)

e = (o
(k)
e,fw , o

(k)
e,bw ) as the learned repre-

sentation of token x (k) for the attention and copying mechanisms of our decoder. We initialize the
forward encoder with hidden states h(0)

e,fw = 0 and initialize the backward encoder with h
(|X |)
e,bw , the

last hidden state of encoder h(|X |)
e,fw .

2.2 TYPED DECODER

Output Grammar Our model uses types abstracted from the grammar of the target language to
improve the decoding performance. Concretely, we know that the subset of SQL necessary to answer
WikiSQL Questions can be represented using the following grammar, in which t refers to the name
of the table being queried, c refers to a column name in the table, and v refers to any open world
string or number that may be used in the query:

Q → s c From t Where p
s → Select | Max | Min | Count | Sum | Avg
p → c op v | p And p

op → = | > | ≥ | < | ≤

A consequence of this observation is that we can, based on the tokens generated so far, determine
the “type” of the next token to generate. For example, after generating the two tokens “Select
Id“, we know that the following token must be one of the column names from the queried table.
We found it sufficient to distinguish three different cases by types:

τV The output is a token from the terminals V = {Select,From,Where,Id,Max,Min,
Count,Sum,Avg,And,=, >,≥, <,≤,<END>,<GO>} of our grammar.

τC The output has to be a column name, which will be copied from either the table header or
the question section of X . Note that the column required for the correct query may not be
mentioned explicitly in the question.
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τQ The output is a constant that would be copied from the question section of I .

Since the SQL grammar can be written in regular expression form as “Select s c From t Where
(c op v)∗”, the output types can be described as τVτVτCτVτCτV(τCτVτQ)∗. We can then use the
type of the output token we want to generate to specialize the decoder.

Decoder RNN We use a standard RNN, based on an LSTM cell with attention over Oe to gen-
erate the target program O . Notably, we initialize the decoder from both the final hidden states
h
(0)
e,bw , h

(|X |)
e,fw and the hidden states h

(C)
e,fw , h

(C)
e,bw generated at index C, the index of the end of the

table header in X . This state forwarding strategy allows the decoder to directly access the encoding
of column names to improve decoding accuracy. Using i

(k)
d , o(k)

d and h
(k)
d to denote the input (resp.

output, hidden state) of the LSTM cell at decoding step k, we define three different output layers for
our three output types:

τV We define u(k,`) = vT tanh(Whh
(k)
d +Woo

(`)
e ) using learnable parameters Wh, Wo, bV

and use it compute an attention mask α(k) = softmax([u(k,1) . . . u(k,I)]). The chosen
output token o

(k)
d is then computed as o(k)

d = argmax(WV(Oeα
(k)) + bV), where WV , bV

are trainable variables for τV decoding, and Oeα
(k) is the attention vector.

Then, the input to the next decoder cell is i (k+1)
d = (embd(o

(k)
d ),Oeα

(k)), the concatena-
tion of the token embedding and the attention vector, where the embedding function embd
is a trainable embedding for built-in SQL operators.

τC , τQ We use the same approach to compute the attention mask α(k). However, instead of
projecting Oeα

(k) to obtain the output, the model generates o
(k)
d by copying a token

v from the input sequence X . The index l of the token to copy is calculated by l =
argmax([α(k,1) . . . α(k,|X |)]), the one with the highest attention value, and the decoder
output o(k)

d is set to x l. For the τQ decoder, only the question part of X is considered.

The input i (k+1)
d to the next decoder cell reuses the embedding of the copied token, and

is computed as the concatenation i
(k+1)
d = (embe(o

(k)
d ),Oeα

(k)) of the token embedding
and the attention vector.

As all different decoder types consume and produce similar values, they could easily be exchanged
or extended if more types need to be supported. The advantage of this construction is that only a
very small output vocabulary of SQL operators needs to be considered, whereas all other values are
obtained through copying.

3 TRAINING

The model is trained from question-SQL program pairs (X ,Y ), where Y = [y(1), . . . , y(|Y |)] is
a sequence representing the ground truth program for question X . Different typed decoder cells in
our model are trained with different loss functions.

τV loss: This is the standard RNN case, i.e. the loss for an output token is the cross-entropy of the
one-hot encoding of the target token and the distribution over the decoder vocabulary V:

lossV(k) = − onehot(y(k)) · log(softmax(WV(α
(k)
V Oe) + bV)).

τC , τQ loss: In this case, our objective is to copy a correct token from the input into the output. As
the original input-output pair does not explicitly contain any pointers, we first need to find an index
λk ∈ [1, . . . , |X |] such that y(k) = x (λk). In practice, there are often multiple such indices, i.e., the
target token appears several times in the input query (e.g., both as a column name supplied from the
table information and as part of the user question). We define two loss functions for this case and
evaluate both.

• Pointer-based loss: We pick the smallest λk with y(k) = x (λk) and compute the loss as cross
entropy between this index and the chosen index, i.e.,

losspntr
C (k) = − onehot(λk) · log(softmax(α

(k)
C ))
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• Value-based loss: While losspntr
C trains the network to generate the correct output sequence, it

restricts the model to only point to the first occurrence in the input sequence. In contrast, we
can allow the decoder to choose any one of the input tokens with the correct value. For that, we
define a value-based loss functions that transforms the computed distribution over locations into
a distribution over the set of tokens in the input. We considered to strategies for this:

– Max Transfer: This strategy calculates the probability of copying a token v in the input as the
maximum probability of pointers that point to token v:

φ
(k)
max(v) = max

1≤l≤|X |
{α(k,`) | x (l) = v}

– Sum Transfer: This strategy calculates the probability of copying a token v in the input vocab-
ulary as the sum of probabilities of pointers that point to token v:

φ
(k)
sum(v) =

∑
1≤l≤|X |

{α(k,`) | x (l) = v}

For both strategies, we calculate the loss function by:

lossval
C (k) = − onehot(y(t)) · log([φ(k)(v) | v ∈ Set(X )]).

When training with the sum-transfer loss function, we adapt the outputs of the τQ and
τC decoder cells to be the tokens with the highest transferred probabilities, computed by
argmaxv∈X (φ

(k)
sum(v)), so that decoding results are consistent with the training goal.

The overall loss for a target output sequence O can then be computed as the sum of the appropriate
loss functions for each individual output token o(k).

4 EVALUATION

We evaluate our model on WikiSQL dataset (Zhong et al., 2017) by comparing it with prior work
and our model with different sub-components to analyze their contributions.

4.1 EXPERIMENT SETUP

We use the sequence version of the WikiSQL dataset with the default train/dev/test split. Besides
question-query pairs, we also use the tables in the dataset to preprocess the dataset.

Preprocessing We first preprocess the dataset by running both tables and question-query pairs
through Stanford Stanza (Manning et al., 2014) using the script included with the WikiSQL dataset,
which normalizes punctuation and cases of the dataset. We further normalize each question based
on its corresponding table: for table entries and columns occurring in questions or queries, we
normalize their format to be consistent with the table. This process aims to eliminate inconsistencies
caused by different whitespace, e.g. for a column named “country (endonym)” in the table, we
normalize its occurrences as “country ( endonym )” in the question to “country (endonym)” so
that they are consistent with the entity in table. Note that we restrict our normalization to only
whitespace, comma (‘,’), period (‘.’) and word permutations to avoid over-processing. We do not
edit tokens: e.g., a phrase “office depot” occurring in a question or a query will not be normalized
into “the office depot” even if the latter occurs as a table entry. Similarly, “california district 10th”
won’t be normalized to “california 10th”, and “citv” won’t be normalized to “city”. We also treat
each occurrence of a column name or a table entry in questions as a single word for embedding and
copying (instead of copying multiple times for multi-word names/constants).

Dataset After preprocessing, we filter the training set by removing pairs whose ground truth so-
lution contains constants not mentioned in the question, as our model requires the constants to be
copied from the question. We train and tune our model only on the filtered training and filtered dev
set, but we report our evaluation on the full dev and test sets. We obtain 59,845 (originally 61,297)
training pairs, 8,928 (originally 9,145) dev pairs and 17,283 test pairs (the test set is not filtered).
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Column Annotation We annotate table entry mentions in the question with their corresponding
column name iff the table entry mentioned uniquely belongs to one column of the table. The purpose
of this annotation is to bridge special column entries and their column information that cannot be
learned elsewhere. For example, if an entity “rocco mediate” in the question only appears in the
“player” column in the table, we annotate the question by concatenating the column name in front of
the entity (resulting in “player rocco mediate”). This process resembles the entity linking technique
used by Krishnamurthy et al. (2017), but in a conservative and deterministic way.

Model Setup We use the pre-trained n-gram embedding by Hashimoto et al. (2017) (100 dimen-
sions) and the GloVe word embedding (100 dimension) by Pennington et al. (2014); each token is
embedded into a 200 dimensional vector. Both the encoder and decoder are 3-layer bidirectional
LSTM RNNs with hidden states sized 100. The model is trained with question-query pairs with a
batch size of 200 for 100 epochs. During training, we clip gradients at 10 and add gradient noise
with η = 0.3, γ = 0.55 to stabilize training (Neelakantan et al., 2015). The model is implemented
in Tensorflow and trained using the Adagrad optimizer (Duchi et al., 2011).

4.2 OVERALL RESULT

Table 1 shows the results of our model with the best performance on the dev set, compared against
the augmented pointer model and Seq2SQL model (with RL), both by Zhong et al. (2017). We
report both the accuracy computed with exact syntax match (Accsyn) and the accuracy based on
query execution result (Accex). Since syntactically different queries can be equivalent on the table
(e.g., queries with different predicate orders compared to the ground truth), the execution accuracy
in all cases is higher than the corresponding syntax accuracy.

Our best model achieves 61.0% on the filtered dev set, and it is trained with our value-based loss
with sum-transfer strategy. Our model’s syntax accuracy (Test Accsyn) on the test set for problems
whose ground truth contains [0, 1, 2, 3, 4] predicates is [54.2%, 65.0%, 50.9%, 37.6%, 23.6%],
which indicates that our model retains the ability to correctly generate long queries.

Model Filtered Dev Accsyn Dev Accsyn Dev Accex Test Accsyn Test Accex

Pointer Model - 44.1% 53.8% 43.3% 53.3%
Seq2SQL - 49.5% 60.8% 48.3% 59.4%

Our Model 61.0% 59.6% 65.2% 59.5% 65.1%

Table 1: Dev and test accuracy of the model, where Accsyn refers to syntax accuracy and Accex refers
to execution accuracy.

4.3 ABLATION TESTS

While the overall results show that our model significantly improves over prior work, we now ana-
lyze different sub-components of our model individually to better understand their contribution to the
overall performance. We ran four sets of abalation tests on our model, running each model 5 times.
All model variances are based on the model described in Sect. 4.1 with same hyper-parameters, and
the model accuracy on the (filtered) development set during training is plotted in Fig. 3.

• Type-based decoding: We compare our model with and without type-driven specialization of the
decoder cell in Fig. 3a. For the untyped model, we directly concatenate all SQL operators in the
front of table header and set all decoder cells to copy mode. The result shows that while types
do not significantly improve model performance (with an average improvement 1.4%), they allow
the model to stabilize within fewer epochs. Additionally, we also observed that typed decoders
increase the training speed per epoch by approximately ∼23%.

• Loss function: We compare the three training objectives and corresponding decoding strategies
described in Sect. 3 in Fig. 3b. The results show that the sum-transfer strategy significantly
improves training stability and model accuracy compared to other strategies typically used in
pointer models. Notably, while the value-based loss with max-transfer strategy outperforms the
pointer-based loss in its best runs (with an accuracy of 56.4%), its performance differs greatly
between runs and is very sensitive to the chosen initialization. The results also show that overly
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(a) Typed and untyped decoder. (b) Different loss functions.

(c) With and without column annotation. (d) Different encoder embedding.

Figure 3: Ablation test results showing the syntax accuracy (on the filtered dev set) for each setting.
For each setting, transparent lines show actual accuries for all 5 runs, and the none-transparent line
highlights its average accuracy.

constraining the model by only allowing the model to only choose columns from the header and
not from their mentions in questions (as in the pointer loss) can have negative impact on the model
performance.

• Column Annotation: We study the effect of performing column annotation during preprocessing
in Fig. 3c. We observe that the model accuracy drops by 7.5% if trained and tested on ques-
tions without column annotation. The result suggests that deterministically linking entities with
their column can benefit the model and incorporating entity linking provides an important perfor-
mance boost. On the other hand, the results indicate that typed decoding and the value-based loss
function alone already reach ∼52.5% accuracy on unannotated questions, beating the Seq2SQL
baseline.

• Embedding Method: Finally, we study different input token embeddings in Fig. 3d: untrainable
n-gram + GloVe embedding (untrainable in the plot), trainable embedding with n-gram + GloVe
initialization (fixed-init) and trainable embedding with random initialization (random-init). Our
results show that incorporating prior knowledge through untrainable embeddings can effectively
prevent over-fitting.

4.4 ERROR ANALYSIS & LIMITATIONS

To better understand the source of erroneous results, we classify errors made by our model by the
part of a query (aggregation function, select column, or predicates) that was incorrectly predicted.
Among the 6,024 incorrectly predicted cases, 32.0% cases use a wrong aggregation function, 47.1%
cases copied the wrong column name, and 51.1% cases contain mistakes in predicates (27.6% cases
made multiple mistakes). Notably, most cases with wrong predicates are due to selecting a wrong
column to compare to. Such cases are typically caused by the correct column name is not mentioned
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in the question (e.g., the questions contains ‘best’, but the respective column is called ‘rank’) or
because multiple columns with similar names exist (e.g., ‘team 1’, ‘team 2’). These errors suggest
that the model lacks understanding of the knowledge presented in the table, and that embedding
the table content together with the question (Krishnamurthy et al., 2017; Yih et al., 2015) could
potentially improve the model.

That our model does not support multiple pointer headers and no external vocabulary for decoding
constant results in 13.1% wrong predictions (e.g., our model cannot generate ‘intisar field’ from
‘field of intisar’ in the question or generate ‘score 4–4’ from the question ‘which team wins by 4–
4?’), which suggests that extending the model with multiple constant pointers per slot or introducing
an extra decoding layer for constant rewriting could potentially improve the model.

Finally, we do not directly train our model to learn syntactically different but semantically equivalent
program. 62.2% among all wrong queries yield a run-time error or return None during execution.
This suggests that training our model with an reinforcement loop to explicitly punish ill-formed
queries and reward semantically equivalent ones (Zhong et al., 2017) could further improve results.

5 RELATED WORK

Semantic Parsing Nearest to our work, mapping natural language to logic forms has been ex-
tensively studied in natural language processing research (Zettlemoyer & Collins, 2012; Artzi &
Zettlemoyer, 2011; Berant et al., 2013; Wang et al., 2015; Iyer et al., 2017; Iyyer et al., 2017). Dong
& Lapata (2016); Alvarez-Melis & Jaakkola (2016); Krishnamurthy et al. (2017); Yin & Neubig
(2017); Rabinovich et al. (2017) are closely related neural semantic parsers adopting tree-based
decoding that also utilize grammar production rules as decoding constraints. However, our model
foregoes the complexity of generating a full parse tree and never produces non-terminal nodes, and
instead retains the simplicity of a sequence decoder. This makes it substantially easier to implement
and train, as the sequence model requires no explicit controller for production rule selection. To our
knowledge, our model is also the first to use target token type information to specialize the decoder
to a mode in which it copies from a type-compatible, restricted set of input tokens.

Pointer Networks Pointer and copy networks enhance RNNs with the ability to reuse input to-
kens, and they have been successfully used in interactive conversation (Gu et al., 2016), geometric
problems (Vinyals et al., 2015) and program generation (Zhong et al., 2017). Our model differs
from previous approaches in that we use types to explicitly restrict locations in the input to point to;
furthermore, we developed a new training objective to handle pointer aliases.

Program Induction / Synthesis Program induction (Reed & De Freitas, 2015; Neelakantan et al.,
2016; Graves et al., 2014; Yin et al., 2015) aims to induce latent programs for question answering; on
the other hand, program synthesis models (Zhong et al., 2017; Parisotto et al., 2016) aim to generate
explicit programs and execute the program to obtain answer. Our model follows the line of neural
program synthesis models and trains directly with question program pairs.

Orthogonal Approaches Entity linking (Calixto et al., 2017; Yih et al., 2015; Krishnamurthy
et al., 2017) is a technique used to link knowledge between the encoding sequence and knowledge
base (e.g., table, document) in semantic parsing that is orthogonal to the neural encoder decoder
model. This technique can potentially be used to address our limitation in our deterministic column
annotation process. Besides, reinforcement learning (Zhong et al., 2017) allows the model to freely
learn semantically equivalent solutions to user questions, and can be combined with our model to
further improve its accuracy.

6 CONCLUSION

We presented a new sequence to sequence based neural architecture to translate natural language
questions over tables into executable SQL queries. Our approach uses a simple type system to
guide the decoder to either copy a token from the input using a pointer-based copying mechanism
or generate a token from a finite vocabulary. We presented a sum-transfer value based loss function
that transforms a distribution over pointer locations into a distribution over token values in the input
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to efficiently train the architecture. Our evaluation on the WikiSQL dataset showed that our model
significantly outperforms the current state-of-the-art Seq2SQL model.
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A APPENDIX

A.1 EXAMPLES OF GENERATED QUERIES

We show a few examples that our model correctly and wrongly predicted collected from the evalua-
tion result from the test dataset.

Correct example (1)
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• Table: 1-1014206-2 [#, shipyard, laid down, launched, commissioned, fleet, status]

• Question: “List the # for ships commissioned on september 30, 1967”

• Solution: Select # From 1-1014206-2 Where commissioned = september 30, 1967

• Prediction: Select # From 1-1014206-2 Where commissioned = september 30, 1967

Correct example (2)

• Table: 2-17829169-2 [rank, gold, silver, bronze, total]

• Question: “what is the most possible bronze medals when rank is more than 11 and there are
fewer than 0 gold medals ?”

• Solution: Max bronze From 2-17829169-2 Where rank > 11 And gold < 0

• Prediction: Max bronze From 2-17829169-2 Where rank > 11 And gold < 0

Correct example (3)

• Table: 2-18421908-1 [year, competition, venue, position, event]

• Question: “what is the position for event discus in year 2013?”

• Solution: Select position From 2-18421908-1 Where event = discus And year = 2013

• Prediction: Select position From 2-18421908-1 Where year = 2013 And event = discus

(Remarks: the colum name ‘event’ before ‘event discus’ is annotated to the question during column
annotation since ‘discus’ uniquely appear in the event column.)

Example with wrong target column

• Table: 1-11206916-1 [team, stadium, capacity, highest, lowest, average]

• Question: “what was the lowest highest attendance for the dumbarton team ?”

• Solution: Min highest From 1-11206916-1 Where team = dumbarton

• Prediction: Min lowest From 1-11206916-1 Where team = dumbarton

(Remarks: The model fails recognize the target should be highest instead of ‘lowest’ that is used to
specify the aggregation function Min.)

Example with wrong aggregation function

• Table: 2-18569335-2 [rank, heat, name, nationality, time]

• Question: “how many heat did runners from nationality guinea-bissau run , with rank higher
than 33 ?”

• Solution: Sum heat From 2-18569335-2 Where nationality = guinea-bissau And rank < 33

• Prediction: Count heat From 2-18569335-2 Where nationality = guinea-bissau And rank >
33

(Remarks: The model fails to recognize that the ‘heat’ column stores aggregated value which should
be count using Sum. Besides, the model does not recognize ‘higher rank’ indicates smaller numerical
value.)

Example with wrong predicate (1)

• Table: 2-18661293-4 [rank, nation, gold, silver, bronze, total]

• Question: “what ’s the gold medal count for total nation with a bronze count more than 0 and
a total less than 54 ?”

• Solution: Max gold From 2-18661293-4 Where bronze > 0 And nation = total And total < 54

• Prediction: Sum gold From 2-18661293-4 Where bronze < 0 And total < 54
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(Remarks: The model fails to learn the existence of the ‘total’ row in the table and miss the choice
for nation.)

Example with wrong predicate (2)

• Table: 2-1223181-1 [year, entrant, chassis, engine, points]
• Question: “what is the most points for a vehicle with a lola thl1, chassis later than year 1986?”

• Solution: Max points From 2-1223181-1 Where chassis = lola thl1 And year > 1986
• Prediction: Max points From 2-1223181-1 Where year = lola thl1 And chassis = lola thl1
And year > 1986

(Remarks: The model fails by predicting a wrong column and constant combination.)
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