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Abstract

The encoder-decoder framework has achieved promising progress for many se-
quence generation tasks, including machine translation, text summarization, dialog
system, image captioning, efc. Such a framework adopts an one-pass forward pro-
cess while decoding and generating a sequence, but lacks the deliberation process:
A generated sequence is directly used as final output without further polishing.
However, deliberation is a common behavior in human’s daily life like reading
news and writing papers/articles/books. In this work, we introduce the deliberation
process into the encoder-decoder framework and propose deliberation networks for
sequence generation. A deliberation network has two levels of decoders, where the
first-pass decoder generates a raw sequence and the second-pass decoder polishes
and refines the raw sentence with deliberation. Since the second-pass deliberation
decoder has global information about what the sequence to be generated might
be, it has the potential to generate a better sequence by looking into future words
in the raw sentence. Experiments on neural machine translation and text summa-
rization demonstrate the effectiveness of the proposed deliberation networks. On
the WMT 2014 English-to-French translation task, our model establishes a new
state-of-the-art BLEU score of 41.5.

1 Introduction

The neural network based encoder-decoder framework has been widely adopted for sequence genera-
tion tasks, including neural machine translation [[1], text summarization [19]], image captioning [27],
etc. In such a framework, the encoder encodes the source input z with length m into a sequence of
vectors {h1, hg,- - , hy }. The decoder, which is typically an RNN, generates an output sequence
word by Wor(ﬂ based on the source-side vector representations and previously generated words. The
attention mechanism [[1, 135]], which dynamically attends to different parts of x while generating
each target-side word, is integrated into the encoder-decoder framework to improve the quality of
generating long sequences [[1].

Although the framework has achieved great success, one concern is that while generating one word,
one can only leverage the generated words but not the future words un-generated so far. That is,
when the decoder generates the ¢-th word v, only y; can be used, while the possible words y-., are
not explicitly considered. In contrast, in real-word human cognitive processes, global information,
including both the past and the future parts, is leveraged in an iterative polishing process. Here are
two examples: (1) Consider the situation that we are reading a sentence and meet an unknown word
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in the middle of the sentence. We do not stop here. Instead, we move forward until the end of the
sentence. Then we go back to the unknown word and try to understand it using its context, including
the words both preceding and after it. (2) To write a good document (or paragraph, article), we
usually first create a complete draft and then polish it based on global understanding of the whole
draft. When polishing a specific part, we take the whole picture of the draft into consideration to
evaluate how well the local element fits into the global environment rather than only looking back to
the preceding parts.

We call such a polishing process as deliberation. Motivated by such human cognitive behaviors, we
propose the deliberation networks, which leverage the global information with both looking back
and forward in sequence decoding through a deliberation process. Concretely speaking, to integrate
such a process into the sequence generation framework, we carefully design our architecture, which
consists of two decoders, a first-pass decoder D; and a second-pass/deliberation decoder D-, as
well as an encoder £. Given a source input x, the £ and D; jointly works like the standard encoder-
decoder model to generate a coarse sequence ¢ as a draft and the corresponding representations
§ = {81,382, -+, 51, } used to generate §j, where Tj is the length of §. Afterwards, the deliberation
decoder D5 takes z, ¢y and s as inputs and outputs the refined sequence y. When D, generates the
t-th word y, an additional attention model is used to assign an adaptive weight 3; to each ¢; and 3;
forany j € [Ty], and ) B3;[9;; §;] is fed into DQEI In this way, the global information of the target
sequence can be utilized to refine the generation process. We propose a Monte Carlo based algorithm
to overcome the difficulty brought by the discrete property of ¢ in optimizing the deliberation network.

To verify the effectiveness of our model, we work on two representative sequence generation tasks.

(1) Neural machine translation refers to using neural networks to translate sentences from a source
language to a target language [1} 133} 132, 34]]. A standard NMT model consists of an encoder (used
to encode source sentences) and a decoder (used to generate target sentences), and thus can be
improved by our proposed deliberation network. Experimental results show that based on a widely
used single-layer GRU model [1]], on the WMT’ 14 [29] English—French dataset, we can improve the
BLEU score [17], by 1.7 points compared to the model without deliberation. We also apply our model
on Chinese—English translations and improve BLEU by an averaged 1.26 points on four different
test sets. Furthermore, on the WMT’ 14 English—French translation task, by applying deliberation to
a deep LSTM model, we achieve a BLEU score 41.50, setting a new record for this task.

(2) Text summarization is a task that summarizes a long article into a short abstract. The encoder-
decoder framework can also be used for such a task and thus could be refined by deliberation networks.
Experimental results on Gigaword dataset [6] show that deliberation network can improve ROUGE-1,
ROUGE-2, and ROUGE-L by 3.45, 1.70 and 3.02 points.

1.1 Related Work

Although there exist many works to improve the attention based encoder-decoder framework for
sequence generation, such as changing the training loss [28, |18, [22] or the decoding objective [[14}[7]],
not much attention has been paid to the structure of the encoder-decoder framework. Our work
changes the structure of the framework by introducing the second-pass decoder into it.

The idea of deliberation/refinement is not well explored for sequence generation tasks, especially
for the encoder-decoder based approaches [3} 23| [1]] in neural machine translation. One related work
is post-editing [[16} 2]: a source sentence ¢ is first translated to f’, and then f” is refined by another
model. Different from our deliberation network, the two processes (i.e., generating and refining) in
post-editing are separated. As a comparison, what we build is a consistent model in which all the
components are coupled together and jointly optimized in an end-to-end way. As a result, deliberation
networks lead to better accuracies. Another related work is the review network [36]. The idea is to
review all the information encoded by the encoder to obtain thought vectors that are more compact
and abstractive. The thought vectors are then used in decoding. Different from our work, the review
steps are added on the encoder side, while the decoder side is unchanged and still adopts one-pass
decoding.

3In this work, let [v1;v2; -+ - ;vn] denote the long vector concatenated by the input vectors vy, - - -, v,,. With
a little bit confusion, [m] with a single integer input m denotes the set {1,2,--- ,m}.



The rest of our paper is organized as follows. Our proposed deliberation network is introduced in
Section 2} including the model structure and the optimization process. Applications to neural machine
translation and text summarization are introduced in Section [3|and Section ] respectively. Section 3]
concludes the paper and discusses possible future directions.

2 The Framework

In this section, we first introduce the overall architecture of deliberation networks, then the details of
individual components, and finally propose an end-to-end Monte Carlo based algorithm to train the
deliberation networks.

2.1 Structure of Deliberation Networks

As shown in Figure[] a deliberation network consists of an encoder £, a first-pass decoder D; and
a second-pass decoder D,. Deliberation happens at the second-pass decoder, which is also called
deliberation decoder alternatively. Briefly speaking, £ is used to encode the source sequence into a
sequence of vector representations. D; reads the encoder representations and generates a first-pass
target sequence as a draft, which is further provided as input to the deliberation decoder D, for the
second-pass decoding. In the rest of this section, for simplicity of description, we use RNN as the
basic building block for both the encoder and decoders’} All the W’s and v’s in this section with
different superscripts or subscripts are the parameters to be learned. Besides, all the bias terms are
omitted to increase readability.
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Figure 1: Framework of deliberation networks: Blue, yellow and green parts indicate encoder &£,
first-pass decoder D; and the second-pass decoder D, respectively. The £-to-D; attention model is
omitted for readability.

2.2 Encoder and First-pass Decoder

When an input sequence x is fed into the encoder &, it is encoded into 7, hidden states H =
{h1,ha,- -+, hr, } where T is the length of x. Specifically, h; = RNN(x;, h;_1), where x; acts as
the representation (e.g., word embedding vector) for the i-th word in = and hy is a zero vector.

The first-pass decoder D; will generate a series of hidden states §; Vj € [T}], and a first-pass
sequence §J; Vj € [Ty], where T} is the length of the generated sequence. Next we show how they
are generated in detail.

“The proposed deliberation networks are independent to the specific implementation of the recurrent units
and can be applied to simple RNN or its variants such as LSTM [L1] or GRU [3].



Similar to the conventional encoder-decoder model, an attention model is included in D;. At step 7,
the attention model in D; first generates a context ctx. defined as follows:
T, . N . T,
ctxe = Y5 aihi; i oc exp(vd tanh(Wg, by + W, 3 1))Vi € [To]; Y20 =1 (1)

att,§

Based on ctx, §; is calculated as §; = RNN([;_1; ctxc], §;_1). After obtaining $;, another affine
transformation is applied on the concatenated vector [éj; Ctxe; gj_l]. Finally, the results of the
transformation are fed into a softmax layer, and the §j; is sampled out from the obtained multinomial
distribution.

2.3 Second-Pass Decoder

Once the first-pass target sequence ¢ is generated by the first-pass decoder D, it is fed into the
second-pass decoder D, for further refinement. Based on the sequence § and the hidden states 3;
Vj € [Ty] provided by D1, D, eventually outputs the second-pass sequence y via the deliberation
process.

Specifically, at step ¢, D, takes the previous hidden state s;_; generated by itself, previously decoded
word y;_1, the source contextual information czx, and the first-pass contextual information czx, as
inputs. Two detailed points are: (1) The computation of ctx,, is similar to that of czx. shown in Eqn. (T)
with two differences: First, §,_1 is replaced by s;_1; second, the model parameters are different. (2)
To obtain ctx., D has an attention model (i.e., the A, in Figure|I)) that can map the words ¢;’s and
the hidden states §;’s into a context vector. Mathematically speaking, in the refinement process at
t-th time step, the first-pass contextual information vector ctx, is computed as:

T; PN A A . Ty
ctxe =21 81(35; 050 Bjocexp(vh tanh(Wet, o [85505] + Wi, yse-1)) Vi € [Tyl 52, B = 1.

As can be seen from the above computation, the deliberation process at time step ¢ in the second-pass
decoding uses the whole sequence generated by the first-pass decoder, including both the words
preceding and after ¢-th step in the first-pass sequence. That is, the first-pass contextual vector ctx,
aggregates the global information extracted from the first-pass sequence .

After receiving ctx., we calculate s; as s; = RNN([y;_1; ctxl; cixe|, $¢—1). Similar to sampling g in
D1, [st; ctxl; ctx.; y+—1] will be further transformed to generate ;.

2.4 Algorithm

Let Dxy = {(2,y(")}"_, denote the training corpus with n paired sequence Denote the
parameters of £, Dy and Ds as 0., 61 and 60, respectively. The training of sequence-to-sequence
learning is usually to maximize the data log likelihood (1/n) >~ log P(y;|x;). Under our setting,
this rule can be specialized to maximize (1/n) ", ,)epyy J (T, Y3 0c, 01, 02), where

T (2,93 6c,01,02) =log > P(yly', E(x;6.); 62) P(y/ | E (w3 6.); 61). )
y' €y
In Eqn. (@), YV is the collection of all possible target sequences and E(x; 6, ) indicates a function that

maps x to its corresponding hidden states given by the encoder. One can verify that the first-order
derivative of J (x,y; 0,01, 02) w.rt 0 is:

Syey PWlY's E(x;0:);02)Ve, P(y'|E(x;0c); 01)
Yoyey PWly', E(x;0.);02) P(y' | E(x;0.);01)
which is extremely hard to compute due to the large space of ). Similarly, the gradients w.r.t. €, and

5 are also computationally intractable. To overcome such difficulties, we propose a Monte Carlo
based method to optimize the lower bound of J (z, y; 0., 61, 02). Note by the concavity of J w.r.t

y’, one can verify that 7 (x, y; 0., 01, 02) > j(m, y; 0e, 01, 62), with the right-hand side acting as a
lower bound and defined as

T (@43 0e,01,05) = > P(y|E(w;0.);01) log P(yly’, E(w;0.); 02). 3)
y' ey

V01J($»y§ 96791a92) =

SLet 29 and ' denote i’th source input and target output in the training data. Let z; and y; denote the i-th
word in z and y.



Denote J (z,y;60c,01,02) as J. The gradients of J w.rtits parameters are:

Vo, J = Z (y'|E(x;0e);01) log P(yly', E(x;6.); 02) Ve, log P(y'|E(z;0e); 01);

y' ey Gy

Vo,J = Y P(y|E(x:0.);61) Vo, log P(yly’, E(w;6.); 62); )
y' ey G

Vo, J = Z (V| E(2;0.);01)Ge(x,y,y'; 0e, 01,02), where G, is defined as follows:
y' ey

Ge = Vg, log P(yly', E(z;0.);02) + log P(yly', E(x;0.);02)Ve,_ log P(y'|E(z;0.);61).

Let © = [01;602;0.] and G(z,y,y’; ©) = [G1; G2; G|, where G1, G5 and G, are defined in Eqn. @).
(For ease of reference, we assume that all the 6.’s and G.’s are flattened.) Obviously, if 3/ is sampled

from distribution P(y'|E(x;0.);61), G(z,y,y’; ©) is an unbiased estimator of the gradient of .J
w.r.t. all model parameters ©. Based on that we propose our algorithm in Algorithm T}

Algorithm 1: Algorithm to train the deliberation network

Input: Training data corpus D xy ; minibatch size m; optimizer Opt(- - - ) with gradients as input ;
while models not converged do
Randomly sample a mini-batch of m sequence pairs {z(), 4"} Vi € [m] from Dxy;
For any () where i € [m], sample /() according to distribution P(-|E(2(");6,);6,);
Perform parameter update: © <+ © + Opt(- > | Gz, y® 4D 0)).

Discussions (1) The choice of Opz(...) is quite flexible. One can choose different optimizers such
as Adadelta [37]], Adam [13]], or SGD for different tasks, depending on common practice in the
specific task. (2) The ) space is usually extremely large in sequence generation tasks. To obtain
better sampled 3/, we can use beam search instead of randomly sampling.

3 Application to Neural Machine Translation

We evaluate the deliberation networks with two different network structures: (1) the shallow model,
which is based on a widely-used single-layer GRU model named RNNSearch [1,[12]; (2) the deep
model, which is based on a deep LSTM model similar to GNMT [31]]. Both of the two kinds of
models are implemented in Theano [24].

3.1 Shallow Models
3.1.1 Settings

Datasets We work on two translation tasks, English-to-French translation (denoted as En—Fr) and
Chinese-to-English translation (denoted as Zh—En). For En—Fr, we employ the standard filtered
WMT’ 14 dataselE], which is widely used in NMT literature [1},[12]. There are 12M bilingual sentence
pairs in the dataset. We concatenate newstest2012 and newstest2013 together as the validation set and
use newstest2014 as the test set. For Zh—En, we choose 1.25M bilingual sentence pairs from LDC
dataset as training corpus, use NIST2003 as the validation set, and NIST2004, NIST2005, NIST2006,
NIST2008 as the test sets. Following the common practice [1} [12], we remove the sentences with
more than 50 words for both translation tasks. Furthermore, we limit the both the source words and
target words as 30k most-frequent ones. The out-of-vocabulary words are replaced by a special token
“UNK”.

Model We choose the most widely adopted NMT model RNNSearch [[1,112}[25]] as the basic structure
to construct the deliberation network. To be specific, all of £, Dy and D5 are GRU networks [1]] with
one hidden layer of 1000 neurons. The word embedding dimension is set as 620. For Zh—En, we
apply 0.5 dropout rate to the layer before softmax and no dropout is used in En—Fr translation.

Shttp://www-lium.univ-lemans.fr/“schwenk/cslm_joint_paper/data/bitexts.tgz



Optimization All the models are trained on a single NVIDIA K40 GPU. We first pre-train two standard
encoder-decoder based NMT models (i.e., RNNSearch) until convergence, which take about two
weeks for En—Fr and one week for Zh—En using Adadelta [37]]. For any deliberation network, (1)
the encoder is initialized by the encoder of the pre-trained RNNSearch model; (2) both the first-pass
and second-pass decoders are initialized by the decoder of the pre-trained RNNSearch model; (3)
the attention model used to compute the first-pass context vector is randomly initialized from a
uniform distribution on [—0.1,0.1]. Then we train the deliberation networks by Algorithm [T until
convergence, which takes roughly 5 days for both tasks. The minibatch size is fixed as 80 throughout
the optimization. Plain SGD is used as the optimizer in this process, with initial learning rate 0.2
and halving according to validation accuracy. To sample the intermediate translation output by the
first decoder, we use beam search with beam size 2, considering the tradeoff between accuracy and
efficiency.

Evaluation We use BLEU [17] as the evaluation metric for translation qualities. BLEU is the geometric
mean of n-gram precisions where n € {1,2,3,4}, weighted by sentence lengths. Following the
common practice in NMT, we use multi-bleu.pﬂ to calculate case-sensitive BLEU scores for En—Fr,
while evaluating the translation qualities of Zh—En by case-insensitive BLEU scores. The larger the
BLEU score is, the better the translation quality is. For the baselines and deliberation networks, we
use beam search with beam size 12 to generate sentences.

Baselines We compare our proposed algorithms with the following baselines: (i) The standard NMT
algorithm RNNSearch [ [12], denoted as My,g; (ii) The standard NMT model with two stacked
decoding layers, denoted as M ecx2; (3) The review network proposed in [36]. We try both 4 and 8
reviewers and find the 4-reviewer model is slightly better. The review network in our experiment is
therefore denoted as M eyiewerx4. We refer to our proposed algorithm as Mgejip.

3.1.2 Results

We compare our proposed algorithms with the following baselines: (i) The standard NMT algorithm,
denoted as Mpys; (ii) The standard NMT model with two stacked decoding layers, denoted as
Meex2; (3) The review network proposed in [36]. We try both 4 and 8 reviewers and find the
4-reviewer model is slightly better. The review network in our experiment is therefore denoted as
Meviewerx4. We refer to our proposed algorithm as M gep;p. Table [1] shows the results of En—Fr
translation. We have several observations:

(1) Our proposed algorithm performs the best among all candidates, which validates the effectiveness
of the deliberation process. (2) Our method M g, outperforms the baseline algorithm My,s.. This
shows that further polishing the raw output indeed leads to better sequences. (3) Applying an
additional decoding layer, i.e., Mgecx2, increases the translation quality, but it is still far behind
that of Mgepp. Clearly, the second decoder layer of Mgec x> can still only leverage the previously
generated words but not unseen and un-generated future words, while the second-pass decoder of
M gerip can leverage the richer information contained in all the words from the first-pass decoder. Such
a refinement process from the global view significantly improves the translation results. (4) M gerip
outperforms M eyiewerx4 by 0.91 point, which shows that reviewing the possible future contextual
information from the source side is not enough. The “future” information from the decoder side is
also very important, since it is directly related with the final output.

Table 1: BLEU scores of En—Fr translation

Algorithm Mbase Mdec X2 M reviewer X 4 Mdelib
BLEU 29.97 30.40 30.76 31.67

The translation results of Zh—En are summarized in Table 2] We have similar observations as those
for En—Fr translations: M g, outperforms all the baseline methods, particularly with an average
gain of 1.26 points over M.

Apart from the quantitative analysis, we list two examples in Table (3| to better understand how a
deliberation network works. Each example contains five sentences, which are the source sentence
in Chinese, the reference sentence in English as ground truth translation, the translation generated

https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl



Table 2: BLEU scores of Zh—En translation

Algorithm | NIST04 | NISTO5 | NISTO6 | NISTO08
Mbpase 34.96 34.57 32.74 26.21
Mgeiiv 36.90 35.57 33.90 27.13

by M, and the output translation by both the first-pass decoder and second-pass decoder (i.e., the
final translation by deliberation network M gejip)-

Table 3: Case studies of Zh—En translations. Note the “......” in the second example represents a common
sentence “the two sides will discuss how to improve the implementation of the cease-fire agreement”.

[Source] Aiji shuo, zhongdong heping xieyi yuqi jiang you yige xinde jiagou .

[Reference] Egypt says a new framework is expected to come into being for the Middle East

peace agreement .

[Base] egypt ’s middle east peace agreement is expected to have a new framework , he said .
[First-pass] egypt ’s middle east peace agreement is expected to have a new framework , egypt said .
[Second-pass] egypt says the middle east peace agreement is expected to have a new framework .

[Source] Nuowei dashiguan zhichu, "shuangfang jiang taolun ruhe gaijin luoshi tinghuo xieyi, zhe
yeshi san nian lai shuangfang shouci zai ruci gao de cengji shang jinxing mianduimian tanpan"
[Reference] The Norwegian embassy pointed out that , " Both sides will discuss how to improve the
implementation of the cease-fire agreement , which is the first time for both sides to have
face-to-face negotiations at such a high level . "

[Base] "...... , which is the first time for the two countries to conduct face-to-face talks on the basis
of a high level of three years , " it said .

[First-pass] " ...... , which is the first time for the two countries to conduct face-to-face talks on the
basis of a high level of three years , " the norwegian embassy said in a statement .

[Second-pass] "...... , which is the first time in three years for the two countries to conduct
Jface-to-face talks at such high level , " the norwegian embassy said .

In the first example, the translation from both base model and first-pass decoder contains the phrase
egypt’s middle east peace agreement, which is odd and inaccurate, given that an agreement cannot
belong to a single country as Egypt. As a comparison, the second-pass decoder refines such phrase into
a more natural and accurate one. i.e., egypt says the middle east peace agreement, by looking forward
to the future translation phrase “egypt said” output by the first-pass decoder. On the other hand, the
second-pass decoder outputs a sentence with correct tense, i.e., egypt says ... is .... However, the
two sentences output by My, and the first-pass decoder are inconsistent in tense, whose structures
are “... is ..., egypt said . This problem is well addressed by the deliberation network, since the
second-pass decoder can access the global information contained in the draft sequence generated by
the first-pass decoder, and therefore output a more consistent sentence.

In the second example, as shown in bold fonts, the phrase “conduct face-to-face talks on the basis
of a high level of three years” from both base model and first-pass decoder carries all necessary
information of its corresponding source segments, but apparently it is out-of-order and seems to be a
simple combination of words. The second-pass decoder refines such translation into a correct, and
more fluent one, by forwarding the sub phrase in three years to the position right after the first time.

At last we compare the decoding time of deliberation network with that of the RNNSearch. Based on
the Theano implementation, to translate 3003 English sentences to French, RNNSearch takes 964
seconds while the deliberation network takes 1924 seconds. Indeed, the deliberation network takes
roughly 2 times decoding time of RNNSearch, but can bring 1.7 points improvements in BLEU.

3.2 Deep Models

We work on a deep LSTM model to further evaluate deliberation networks through the WMT’ 14
En—Fr translation task. Compared to the shallow model, there are several different aspects: (1) We
use 34M sentence pairs from WMT’ 14 as training data, apply the BPE [21] techniques to split the
training sentences into sub-word units and restrict the source and target sentence lengths within 64
subwords. The encoder and decoder share a common vocabulary containing 36k subwords. (2) All of
&, D1 and D5 are 4-layer LSTMs with residual connections [9} [10]. The word embedding dimension



Table 4: Comparison between deliberation network and different deep NMT systems (En—Fr).

System Configurations BLEU
GNMT [31] Stacked LSTM (8-layer encoder + 8 layer decoder) + RL finetune | 39.92
FairSeq [4] Convolution (15-layer) encoder and (15-layer) decoder 40.51
Transformer [26] | Self-Attention + 6-layer encoder + 6-layer decoder 41.0
Stack LSTM (4-layer encoder and 4-layer decoder) 39.51
this work Stack 4-layer NMT + Dual Learning 40.53
Stack 4-layer NMT + Dual Learning + Deliberation Network 41.50

and hidden node dimension are 512 and 1024 respectively. The dropout rate is set as 0.1. (3) We train
the standard encoder-decoder based deep model for about 25 days until convergence. Furthermore,
we leverage our recently proposed dual learning techniques [8, 33] to improve the model, which
takes another 7 days. We initialize the deliberation network in the same way in Section[3.1.1} Then,
we train the deliberation network by Algorithm [I]for 10 days. When generating translations, we use
beam search with beam size 8.

The experimental results of applying deliberation network to the deep LSTM model are shown
in Table 4 On En—Fr translation task, the baseline of our implemented NMT system is 39.51.
With dual learning, we achieve a 40.53 BLEU score. After applying deliberation techniques, the
BLEU score can be further improved to 41.50, which as far as we know, is a new single-model
state-of-the-art result for this task. This not only illustrates the effectiveness of deliberation network
again, but also shows that even if a model is good enough, it can still benefit from the deliberation
process.

4 Application to Text Summarization

We further verify the effectiveness of deliberation networks on text summarization, which is another
real-world application that encoder-decoder framework succeeds to help [19].

4.1 Settings

Text summarization refers to using a short and abstractive sentence to summarize the major points of
a sentence or paragraph, which is typically much longer. The training, validation and test sets for the
task are extracted from Gigaword Corpus [6]]: For each selected article, the first sentence is used as
source-side input and the title used as target-side output. We process the data in the same way as that
proposed in [20} 30], and obtain training/validation/test sets with roughly 189k/18k/10k sentence
pairs respectively. There are roughly 42k unique words in the source input and 19k unique words in
the target output and we remain all of them as the vocabulary in the encoder-decoder models.

The model structure is the same as that used in Section except that both word embedding
dimension and hidden node size are reduced to 128. We use Adadelta algorithm with gradient clip
value 5.0 to optimize deliberation network. The mini-batch size is fixed as 32.

The evaluation measures are chosen as ROUGE-1, ROUGE-2 and ROUGE-L, which are all widely
adopted evaluation metric for text summarization [[15]. ROUGE-N (/N = 1, 2 in our setting) is an
N-gram recall between a candidate summary and a set of reference summaries. ROUGE-L is a similar
statistic like ROUGE-N but based on longest common subsequences. When generating the titles, we
use beam search with beam size 10. For the thoroughness of comparison, similar to NMT, we add
another two baselines apart from the basic encoder-decoder model: the stacked-decoder model with 2
layers (Mgecx2), as well as the review net with 4 reviewers (M eviewerx4)-

4.2 Results

The experimental results of text summarization are listed in Table E} Again, the deliberation network
achieves clear improvements over all the baselines. For example, in terms of ROUGE-2, it is 1.12 and
0.96 points better compared with stacked decoder model and review net respectively. Furthermore,
one may note that a significant difference between NMT and text summarization is that: In NMT, the
lengths of input and output sequence are very close; but in text summarization, the input is extremely



long while the output is very short. The better results brought by deliberation networks shows that
even if the output sentence is short, it is helpful to include the deliberation process which refines the
low-level draft in the first-pass decoder.

Table 5: ROUGE-{1, 2, L} scores of text summarization

Algorithm | ROUGE-1 | ROUGE-2 | ROUGE-L
Mbpase 27.45 10.51 26.07
Meexa 27.93 11.09 26.50
M eviewer x4 28.26 11.25 27.28
M gelib 30.90 12.21 29.09

5 Conclusions and Future Work

In this work, we have proposed deliberation networks for sequence generation tasks, in which the
first-pass decoder is used for generating a raw sequence, and the second-pass decoder is used to
polish the raw sequence. Experiments show that our method achieves much better results than several
baseline methods in both machine translation and text summarization, and achieves a new single
model state-of-the-art result on WMT’ 14 English to French translation.

There are multiple promising directions to explore in the future. First, we will study how to apply
the idea of deliberation to tasks beyond sequence generation, such as improving the image qualities
generated by GAN [5]]. Second, we will study how to refine/polish different levels of a neural network,
like the hidden states in an RNN, or feature maps in a CNN. Third, we are curious about whether
better sequences can be generated with more passes of decoders, i.e., refining a generated sequence
again and again. Fourth, we will study how to speed up the inference of deliberation networks and
reduce their inference time.
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