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Abstract

The e-logic (which is called ¢E-logic in this paper) of Kuyper and Terwijn is a variant of first
order logic with the same syntax, in which the models are equipped with probability measures
and in which the Vx quantifier is interpreted as “there exists a set A of measure > 1 — € such
that for each x € A, ....” Previously, Kuyper and Terwijn proved that the general satisfiability
and validity problems for this logic are, i) for rational € € (0, 1), respectively Y1 complete and
II1-hard, and ii) for € = 0, respectively decidable and Y9-complete. The adjective “general”
here means “uniformly over all languages.”

We extend these results in the scenario of finite models. In particular, we show that the prob-
lems of satisfiability by and validity over finite models in eE-logic are, i) for rational € € (0, 1),
respectively ¥9- and II9-complete, and ii) for € = 0, respectively decidable and I19-complete. Al-
though partial results toward the countable case are also achieved, the computability of eE-logic
over countable models still remains largely unsolved. In addition, most of the results, of this
paper and of Kuyper and Terwijn, do not apply to individual languages with a finite number of
unary predicates. Reducing this requirement continues to be a major point of research.

On the positive side, we derive the decidability of the corresponding problems for monadic
relational languages — equality- and function-free languages with finitely many unary and zero
other predicates. This result holds for all three of the unrestricted, the countable, and the finite
model cases.

Applications in computational learning theory (CLT), weighted graphs, and artificial neural
networks (ANN) are discussed in the context of these decidability and undecidability results.

1 Introduction

In the new age of “big data,” machine learning and statistical inference have been increasingly
applied in the technology sector, and more resources than ever before are poured into advancing
our understanding of these techniques. One approach to this end is to reconcile the inductive
nature of machine learning with the deductive discipline of logic. Previous attempts include one by
computer scientist Leslie Valiant , the creator of the PAC (Probably Approximately Correct) model
of computational learning theory (CLT). In Robust Logics [26], he tried to combine the PAC model
with a fragment of first order logic (FOL) in the context of finite models. The logician H. Jerome
Keisler in [7] also investigated a variant of FOL with probabilistic quantifiers of the form (Px > r)
meaning “holds for x in a set of measure at least r.”

Most recently, Terwijn and Kuyper [22] invented a probability logic with a fixed error parameter,
called e-logic (or, in this paper, eE-logic), that is inspired by features of both Valiant and Keisler’s
work. This eE-logic uses the same syntax as FOL and differ only in that 1) the models are given
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probability measures, and 2) the V quantifier has the interpretation of “holds for z in a set of measure
at least 1 —e.” In particular, the 3 quantifier keeps the same, non-probabilistic interpretation as in
first order logic.

Such an unusual, asymmetric definition was motivated by the key property of eE-logic to be
learnable through examples, in a sense related to Valiant’s PAC-learning model [ITI, Thm. 2.3.3]:
roughly, for any desired error bound e and an example oracle that emits elements of the universe
M according to a distribution D, we can learn in time polynomial in % whether (M, D) =, ¢
or (M,D) . —¢. Thus, eE-logic has an inductive property, in addition to promises of deductive
properties that would seem to carry over from classical first order logic.

However, it turns out that deductive reasoning in eE-logic is computationally much harder than
first order logic in the general case. In fact its complexity does not even reside in the arithmetic
hierarchy, but rather the analytic one. As a result, there is no algorithm to decide (uniformly over all
first order languages) whether a given sentence is valid or satisfiable. The following table summarizes
the current knowledge on the satisfiability and validity[] problems of eE-logic (defined below in (2.1.6)
and (ZI15)). Each tuple (ni,na,...) represents that the corresponding result requires the language
to have at least n; unary predicates, at least ny binary predicates, and so on. In particular, the
value of w means an infinite number of the corresponding type of predicate is necessary. The empty
tuple () means that any language suffices. Finally (x) denotes that the set of eE-valid sentences
coincides with the set of valid sentences in first order logic, so any language that admits a decision
algorithm in FOL will do so in eE-logic as well. As general FOL validity is X{-complete, this means
that general eE-validity is also X¢-complete.

cc(0,1)NQ =0
eB-satisfiability | ¥1-complete (w, 6,2) [10, thm 7.6] decidable () [10, thm 6.7]
eE-validity i-hard (w, 3,2) [12, thm 4.2] ¥9-complete (x) [23, prop 3.2]

Table 1: Current knowledge on general eE-satisfiability and eE-validity [10, Table 1]

It is still open, however, whether a smaller fragment of eE-logic — for example, languages with
a finite number of unary predicates, or languages with a single binary predicate — admits an easier
complexity.

Notice that the results are not symmetrical as in the case of first order logic, where ¢ is valid
iff —¢ is not satisfiable. Indeed, eE-logic is paraconsistent [11, Prop. 2.2.1], because it’s possible for
(M, D) . Vz¢(z) and (M, D) = Jz—¢(x) to hold at the same time (for example if the set of x
satisfying —¢ has measure 0 but is not empty).

In this paper, we answer the counterpart questions for eE-satisfiability by and validity over finite
models and in some cases, countable models (see (223 for definitions). As noted above, we cannot
in general answer the satisfiability question by just answering the validity question, nor vice versa.

In first order logic, Trachtenbrot’s theorem [I5] asserts that, perhaps counterintuitively, assessing
the validity of a theorem over only finite models is II9-hard. Therefore we do not even have a
deductive calculus for this task.

We show that other than the case of € = 0, Trachtenbrot’s theorem holds also for eE-logic. More
precisely, we will establish the following characterizations.

Here, the tuple notation (n1, ne,...) denotes language requirements, as in the last table, but (x)
means that the set of eE-valid sentences over finite models coincides with the corresponding set over
finite models with regard to FOL.

Like in the unrestricted case, it is still open whether the conditions on signature can be signifi-
cantly weakened.

1This notion of validity is over all probability models. It is called normal eE-validity in this paper. See definition
EI3) and [10, remark before thm 2.6]
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€(0,)NQ c=0
finite eE-satisfiability | %9-complete (w,3) ([B3.4.9) decidable () BI13)
finite eE-validity I9-complete (w,1) B59) I19-complete (x) B.5.9)

Table 2: Summary of results in this paper: the finite model case

Hence, other than the case of finite OE-satisfiability, the eE-satisfiability and eE-validity problems
in the finite model scenario are as hard as the corresponding problems in ordinary first order logic
[15, p. 166]. Therefore, no general deduction mechanism exists for theorems over finite models.

In contrast, for ¢ € [0,1) rational, we show that these problems are decidable over monadic
relational languages, which are languages with only unary predicates and no function symbols or
equality. This mirrors the characterizations for the corresponding FOL fragments.

Despite these successes, the countable case remains largely unsolved. While models of eE-logic
have a downward Lowenheim-Skolem theorem transforming them into equivalent continuum-sized
models [I3, Thm. 4.6], this theorem does not hold when “continuum-sized” is replaced with “count-
able.” So unlike FOL, the set of sentences eE-valid over all countable models does not coincide a
priori with the set of those over all models.

In the format of the previous tables, we summarize the current knowledge on countable eE-validity
and satisfiability in table (B]).

cc(0,)NQ c=0
countable eE-satisfiability unknown decidable () (BI13)
countable eE-validity Y hard (w,1) @5I0) X9-complete (x) (B.5.4)

Table 3: Summary of results in this paper: the countable case

The outline of the paper is thus: After introducing some notations and prerequisites, we review
the basic definitions of eE-logic, e-model, the validity and satisfiability problems, and other related
notions in section ([2)). We then define in section (Z2]) the dual logic, eF-logic, in whose terms we
phrase many of our results. Briefly, in eF-logic, the syntax is once again identical to that of FOL,
but the quantifier 3z is interpreted to mean “there exists a set A of measure > € such that for each
x € A, ....” Having laid out the analogue concepts over finite models, we dive straight into examples
and applications in section (24]), hoping to motivate our main theorems and future research.

There, we employ eE-logic and eF-logic to

e model the approzimation concept existence assumption of PAC learning;

e develop rudimental theories of graphs with weighted vertices and graphs with weighted edges;
and

e compute the linear threshold update rule in artificial neural networks.

With these examples in mind, we begin our deductions. In section ([B.1), we prove the decidability
of 0E-satisfiability over both finite models and countable models. In section (8:2)), we show that the
satisfiability and validity of sentences in any monadic relational language both reduce to linear
programming, and thus are decidable whenever ¢ € Q. During the development of the reduction, we
introduce trees as semantic tools. These ideas are extended in section ([B3]) to define the semantics
of g-sentences, which generalize both €E- and eF-logics by allowing all forms of quantifiers. This new
form of sentences allows us to rigorously state the inter-reduction results of Kuyper and Terwijn
between different rational € parameters. Equipped aptly with powerful machinery, in section (3.4)
we tackle the ¥9-completeness of the eE-satisfiability problem over finite models. The hardness
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proof involves a painstaking encoding of the halting set in a suitable language. The definability
proof utilizes a perturbation lemma that simplifies satisfiability to that by models with rationally-
valued distributions. Last but not least, we show in section ([B.5]) that 0E-validity coincides with FOL
validity when both are restricted to finite or countable models. (Of course, in the countable case, the
“countably FOL valid” sentences are just the unrestricted valid sentences by Lowenheim-Skolem).
With Kuyper’s inter-reduction theorem, we deduce that eE-validity for finite models is I1-complete
and that for countable models is ¥.9-hard for any strong enough language. Finally, we wrap up and
mention possible future directions of research in section ({@).

1.1 Notation and Prerequisites

Sets of the form {1,2,...,n} will be abbreviated [n].

1.1.1 Logic

Script upper case letters M and N are used to denote first order models. Their underlying universes
are written M and N. All first order languages are assumed to have an at most countable signature.

Z denotes a finite sequence of variables or parameters. |Z] denotes the length of this sequence.
o(Z,7y) will always represent a formula with free variables z1,...,2, and y1, ..., ym, possibly with
other bound variables. In the context of a first order model M,

(b(f?g?m = ¢($1,.. 5 Tns Y1y - - Yms Py - "7pn)7

represents a formula with free variables &,y and parameters p; € M. VZ is the shorthand for the
quantifier block V1Vzs - - - V,,. Similarly, 3% is the shorthand for the quantifier block 3z13zs - - - 3z,
If ¢ is a (formal or informal) sentence, then ||@|| € {0,1} denotes its truth value.
In formulas, we adopt the convention that A is parsed before V when written without parentheses.
For example,
A(z,y) NB(y,z) VR(z) Nz =z

is parsed as
(A(z,y) AN B(y,2)) V(R(z) ANz = 2).

Formulas of the form
PLANP2 A Ny — 1

are parsed as
(D1 A2 Ao A gy) = 1.

In addition, we will use square brackets [] in place of parentheses () when doing so improves the
readability.

A subset A C N is called X{ or X{-definable if A is the range of a recursive function. A subset
A C N is called X{-hard if for every ©¢ set A’ there is a computable many-one reduction from A’
to A. A subset C' C N is called X{-complete if C is both %{-definable and %¢-hard.

Dually, a subset B C N is called II9 or I1{-definable (resp. I19-hard and resp. I19-complete) if its
complement N — B is X9 (resp. X{-hard and resp. X{-complete).

Please refer to Soare [21] for unexplained concepts in computability.

1.1.2 Measure Theory

Let X be a set. P(X) denotes the power set of X. By a measure ;1 on X, we mean a set function
w: A — [0,00] that is defined and countably additive on some o-algebra A C PB(X). The triple
(X, A, p) is called a measure space. Similarly, by a finitely additive measure p on X, we mean a set
function p : A — [0, 00] defined on some Boolean algebra A C PB(X), and u is finitely additive on
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A. In both cases, the o-algebra or Boolean algebra .4 on which p is defined is denoted dom p. We
say that p is everywhere defined if dom p = PB(X). We say that a measure p on X is extended by
w' if dom g/ O dom pu. The p-measure of a set of elements satisfying some condition ¢ is denoted

(- o).
When we say “A has measure at least 1/2,” we implicitly assume A is first of all measurable, and
then that it has measure at least 1/2.

Primarily we will be discussing probability measures, i.e. measures p on X with pu(X) = 1. We
use upper case script letters starting from D, &, etc to name them. In the contexts of probability
measures, we will also use the probability notation Prep[é(x)] interchangeably with D(x : ¢(z)).

Please refer to Bogachev [4] for unexplained concepts in measure theory.

1.1.3 Linear Programming

A linear program is a triple L = (Z, E, f) where

e 7 is a set of |Z] = k variables,

e Fis aset of |E| =n (weak) linear inequalities
k
el Zcé:cj >d',
j=1
and

e f is a linear function, called the object function,
x
F@) = g5z,
j=1

In general, if assignment & = @ satisfies all inequalities e;, then we write
Cz>d.
Here C'is the matrix {c}}; ; with row vectors ¢ = (ci,...,ct), and d=(d*,...,d").
Because each equality > p;jz; = r can be written as two weak inequalities, we can allow E to

contain equations as well.
To mazimize L is to find

Likewise, to minimize L is to find
min(L) := min_f(Z).
Ccz>d

L is said to be feasible if {# : CZ > d} is nonempty. In other words, L is feasible iff max(L) > —oo
iff min(L) < oo.

In this paper, we are mainly concerned with the feasibility problem of linear programs. As such,
we conveniently identify each program L with its set of inequalities F.

In the arithmetic model of computation, the arithmetic operations of addition, multiplication,
subtraction, division, and comparison are assumed to take unit time. It is known that maximizing,
minimizing, and finding the feasibility of a linear program is polynomial time in the arithmetic model
[17]. Because all such arithmetic operations on rational numbers are decidable,

Proposition 1.1.1. The feasibility problem of linear programs with rational coefficients is decidable.

We will also briefly cross path with strict linear programs. These are linear programs L = (Z, E, f)
where E consists of strict inequalities or equalities but with no weak inequalities.
Please refer to Schrijver [19] for unexplained concepts with regard to linear programming.
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2 Probability Logics

Here we formalize the ideas touched in the introduction. First, we revisit the definitions of eE-logic,
eE-model, and related ideas as defined by Terwijn and Kuyper. Then, we introduce eF-logic, the
dual logic of eE-logic. Finally, an abundance of examples and applications are provided to clarify
these ideas.

2.1 E-logic
Let
e L be a first order language, possibly containing equality, of a countable signature;
e cc[0,1];
e M be a first-order model with universe M;
e D be a probability measure on M defined on some o-algebra dom D C B(M).

Definition 2.1.1 (eE-truth). 4 Let ¢(Z;p) = é(x1,...,2n;P1,...,Dn) Tepresent a formula with
variables Z and parameters p; € M. We define the notion of e¢E-truth, denoted (M, D) . ¢,
inductively as follows:

1. For every atomic formula ¢(Z;p):
(M, D) e ¢(%;D) <= M = o(T;p).
That is, for all tuples (a1, as,...,a,) € M, ¢(a;p) holds.

2. We treat the logical connectives A and V classically. For example, for &, ¥/, 2’ distinct sequences
of variables,

(M, D) e ¢(Z, 25 9) AN(, 2 D)
iff for all @ € MI¥ b e M9 ¢e MIA,

(M, D) e (@, & 5) A (b, & )
3. The existential quantifier is treated classically:
(M, D) |=c 326(Z, 4 P)
iff there exists @ € M?! such that
(M, D) k= ¢(a, 7; p)-
4. The universal quantifier is interpreted probabilistically:
(M. D) e Yad(a, 7:7) <= Pr[(M,D) e ola 55] = 1 — .

Note that the universal quantifier in this definition binds a single variable z; in general it’s not
true that
(M, D) e Vid(Z,5:p) <= Dr_ [(M,D) e 6(@ gip)] = 1 —e

5. The case of negation is split in subcases as below:

2adapted from [10]
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(a) For ¢ atomic, (M, D) . —¢(T;p) < (M, D) [~ ¢(Z; D).
(b) — distributes classically over A and V, e.g.

(MvD) |:6 j((b(fu E;ﬁ) /\¢(37= E»ﬁ)) — (MvD) |:6 ﬁ¢(fv E;ﬁ) 4 ﬂﬂ(yj Z?ﬁ)'

(C) (MvD) |:6 jﬁ¢(f;ﬁ) — (MvD) |:6 (b(f»ﬁ)
(d) (Ma D) ':e ﬁ3$¢($v§;l7) — (Ma D) ':E VI—‘Qb(xvyﬂ;ﬁ)'
(e) (MvD) 'ZE ﬁVCL‘¢(CL‘,g;ﬁ) — (MvD) ):6 3$ﬁ¢(xvg;ﬁ)'

6. The implication symbol — reduces to boolean combinations classically:
(M, D) |=c 6(&, Z:9) = ¥(¥, Z:9) <= (M, D) e ~6(&, Z,0) V ¥(Y, 75 D).
7. The equivalence symbol <+ reduces to the conjunction of two implications:
(M, D) e &(&, Z:9) < ¥(¥,7:D)
iff
(M, D) = [¢(Z, 255) — ¥ (i, D)) A [W(F, 25 5) — ¢(¥, 2 )]

This logic system is called eE-logic. When referring to the set of all such logics for € € [0,1] or
when € is a fixed parameter implicit in the context, we simply use the term E-logic.

To make sure that the V quantifier makes sense, we need to impose measurability conditions on
definable sets. In this paper, classical models refer to the models used in ordinary first-order logic.
They are distinct from the concept defined here:

Definition 2.1.2. Let £ be a first order language of a countable signature, possibly containing
equality, and let € € [0,1]. Then an e¢E-model for the language £ consists of a classical first-order
L-model M together with a probability measure D over M such that:

1. For all formulas ¢ = ¢(z1,...,z,) and all ay,...,a,—1 € M, the set
{an € M : (M,D) . ¢(a1,...,a,)}
is D-measurable.

2. All relations of arity n are D™-measurable (including equality, if it is in £), and all functions
of arity n are measurable as functions from (M™, D"™) to (M, D). In particular, constants are
D-measurable.

A probability model is a pair (M, D) that is an eE-model for every € € [0, 1].
Definition 2.1.3. Two eE-models (M, D) and (N, £) are e-elementarily equivalent, denoted by
(M, D) = NV, €),

iff for every formula ¢,

(M, D) e ¢ <= (N,E) = ¢.
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Definition 2.1.4. Two formulas ¢ and 1 are e-equivalent, denoted by
o=t
iff for every eE-model (M, D),
M, D) e ¢ <= (M, D) = ¢
¢ and v are called (semantically) equivalent, written
P=1,
if ¢ = ¢ for all € € [0,1].

Definition 2.1.5. Let ¢ be a first order sentence. We say that ¢ is eE-valid if for all eE-models
(M, D), (M, D) e ¢. ¢ is normally eE-valid iff for all probability models (M, D), (M, D) E. ¢.

Similarly we define

Definition 2.1.6. A sentence ¢ is said to be ¢E-satisfiable if there exists an eE-model (M, D)
such that (M, D) = ¢.

To distinguish between these concepts and the analogue concepts over finite and countable eE-
models, we also prefix these terms with unrestricted or postfix them with in the unrestricted case. For
example, eE-valid means the same thing as unrestricted e E-valid, or as eF-valid in the unrestricted
case.

Likewise, to make the distinction clear from the corresponding notions in FOL, we say

Definition 2.1.7. A formula ¢ is classically valid if every first order model satisfies ¢.
A formula ¢ is classically satisfiable if some first order model satisfies ¢.

We could define normally e E-satisfiability in analogy to normally eE-validity, but this concept
would be equivalent to eE-satisfiability [I0, Thm 2.6, Prop. 2.7].
Finally, we record the following proposition which will often be implicitly applied.

Proposition 2.1.8 (Terwijn [22]). Every formula ¢ is semantically equivalent to a formula ¢’ in
prenex normal form.

2.2 The Dual Logic, F-logic

Definition 2.2.1. Let £ be a countable first order language, possibly containing equality. Let
® = ®(x1,...,2y,) be a first order formula in the language £, and let € € [0,1]. If (M, D) is an
eE-model, then we define eF-truth, written (M, D) k. ®, by

(M,D)F. & <— (M,D) [ —9.
We call the logic under F. eF-logic.
Suppose for quantifiers Vq, Va,...,V, € {V,3} and a quantifier free formula 1),
O(¢;p) := Vix1Vaxs - - Vuxpn(21, T2, - - -, Tn, U3 D)-
Then if vV denotes the dual quantifier of v; (interchange 3 with V),
=® (7, p) = Viz1Vhae - Vi xp (21,72, .., T, T P)-

For example, if v; is V for odd ¢ and 3 for even i, and n is odd, then (M, D) £ =P iff
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for all x4,
there exists a set of xo with measure strictly greater than e such that,

for all z3,

for all z,,,
Y(x1, X2, ..., x,) holds.

With this remark, it’s easy to see that eF-logic is the dual logic of eE-logic, in that the quantifier
V is interpreted classically, while the quantifier 3 is interpreted as “with measure strictly greater
than e.”

More formally and in parallel with the inductive definition given for E-logic, we can write

1. For every atomic formula ¢(Z; p):

(M, D) e ¢(&;0) <= M E ¢(Z;p).
That is, for all tuples (a1, as,...,a,) € M, ¢(a;p) holds.

2. We treat the logical connectives A and V classically. For example, for &, ¥/, Z’ distinct sequences
of variables,

(M, D) b ¢(Z, Z;9) ANp(7, Z; D)
iff for all @ € MI¥ b e M9 ¢e MIA,

—

(M, D) te ¢(a@, ¢ p) A(b, ¢ p)
3. The universal quantifier is treated classically:
(M, D) ke VZH(Z, §; )

iff for all @ € M7
(M, D) ke o(a, y;p)-

4. The existential quantifier is interpreted probabilistically:

(M, D) b Fzp(z,7;p) = aIil;D[(M,D) Fe ¢(a, 7 p)] > e.

Note that the existential quantifier in this definition binds a single variable x; in general it’s
not true that

(M, D)k 359(Z,5,p) <= _Pr_[(M,D) e ¢(a,5;p)] > e

a~DIZ|

5. The case of negation is split in subcases as below:
(a) For ¢ atomic, (M, D) b, —=¢(Z;p) < (M, D)t/ ¢(Z;D).
(b) — distributes classically over A and V, e.g.
(M, D) ke =(o(Z, Z,p) AN (Y, 7 D)) = (M, D) ke =(Z, Z:p) V —(¥, 7 p).-

(C) (MaD) e _‘_‘(b(f;m — (MaD) Fe (b(fvﬁ)
(d) M, D) ke =3x¢(z,4;p) <= (M, D) ke Voo(x, §; p).
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(€) (M, D) ke Vag(z,5:p) <= (M, D) ke Iz—¢(x, ;).
6. The implication symbol — reduces to boolean combinations classically:
(M, D) be &(Z,2,9) = (¥, %9) < (M, D) ke =(Z, Z9) V (¥, 2 D).
7. The equivalence symbol <+ reduces to the conjunction of two implications:
(M, D) e ¢(Z, 7 9) < ¢(1, 7 D)
iff
(M, D) ke [8(Z, 2:9) = ©(F, 2 9)] A [(F, 25 5) — 87, 7 D))
We can similarly define e F-models for F-logic by replacing condition [l of definition ([2Z.I.2)) with
e For all formulas ¢ = ¢(z1,...,2,) and all ay,...,a,—1 € M, the set
{an € M : (M,D) ¢ p(as,...,an)}
is D-measurable.
However, note that
{an € M: (M,D) Fc d(ar,...,an)} =M —{a, € M: (M,D) Ec ~d(a1,...,a,)}

and thus, (M, D) is an eE-model iff it’s also an eF-model. Henceforward we will uniformly adopt

the term e-model for this use case.
Similarly, it should be clear from definitions (2.I.3) and 2I4) that (M, D) =, (N, &) iff

M, D) ke ¢ = (N,&) ke g,
and ¢ =, ¢ iff for every e-model (M, D),
M, D) ke ¢ <= (M,D) k.

eF-validity and eF-satisfiability (along with their synonyms) are defined similar to definitions
EI3) and (ZI6). Due to duality, we have that

Proposition 2.2.2. ¢ is eF-valid iff ¢ is e E-satisfiable. In general, ¢ is e X-O) iff —¢ is not e Y-O),
where (X, Y) is a permutation of {E, F}, and (O, (') is a permutation of {valid, satisfiable}.

Table () states the dual version of table ().

e€(0,1)NQ e=0
eF-validity II{-complete (w, 6,2) [10, thm 7.6] decidable () [10, thm 6.7]
eF-satisfiability Yi-hard (w,3,2) [12, thm 4.2] I19-complete (x) [23 prop 3.2

Table 4: Summary of current knowledge on general eF-satisfiability and eF-validity

10



GREG YANG 2.3. FINITE AND COUNTABLE CONCEPTS

2.3 Finite and Countable Concepts

Definition 2.3.1. An e-model (M, D) is finite iff |[M| is finite. Similarly, an e-model (M, D) is
countable iff | M| < V.

Kuyper and Terwijin ahve shown well-formed model-theoretic properties exist for E-logic (and
by duality, F-logic). For example, a downward Lowenheim-Skolem theorem always allows one to
work on a model of continuum size [I3] Thm. 4.6], and a variant of ultrapower construction works
for a weakened definition of e-models [I3, Sec. 8]. But they are futile in the finite setting for the
same reason that their classical counterparts do not work in classical finite model theory.

Despite this difficulty, finite and countable e-models are still very conducive to analysis because
from them we automatically get (finite and countable) probability models.

Lemma 2.3.2. Let (M, D) be an e-model. If D' extends D, then (M,D’) = (M, D).

Proof. By induction on formula complexity, we show (M,D’) . ¢ <= (M, D) . ¢. All cases
other than V are trivial, as they don’t involve measures.

For ¢(Z; p) = Vyy(y, ¥; p), we have

(M,D) ':E d)(f,ﬁ)
<= D(aeM:(M,D) = ¥(a,Zp) >1—¢
= D'(ae M: (M,D) = ¢(a,T;p)) >1—¢
= (M, D) e ¢(7;p)

where the middle equivalence derives from the fact that D’ agrees with D on dom D. O

Lemma 2.3.3 (Tarski [3]). Every finitely additive measure D on a set X can be extended to a
finitely additive measure D' so that dom D’ = PB(X).

The above two lemmas allow us to “complete” e-models in the following sense:

Proposition 2.3.4. Let (M, D) be any finite or countable e-model. D can be extended to a measure
D’ with dom D’ =P(M). Therefore, (M, D’) is a probability model and by (2.3.2),

(M, D) = (M, D).

Proof. The case of finite e-models (M, D) follows directly from the lemma since D is countably
additive iff D is finitely additive.

For the case of countable models (M, D), notice that D cannot be atomless, or else M would
have to be uncountable. Suppose a9 C M is an atom. If M — ag is not null, then the restriction of
D on M — ag by the same reasoning must not be atomless, and so there is an atom a; C M — ay.
By induction, M can be expressed as the disjoint union of at most countable number of atoms and
a null set. Hence it suffices to show that (by assuming M is an atom itself) D extends to P(M)
when D is a 0-1 measure.

Suppose not. Then every measure defined on all of (M) is inconsistent with D. In particular,
the measure I, concentrating measure 1 on an element x € M cannot be a extension of D, and that
can happen only if there is T, € D with measure 0 but contains . Thus there is a countable set
{T, : * € M} satisfying D(T,) = 0 and T}, > x. But by countable subadditivity 0 = > D(T}) >
D(M) =1, which is a contradiction. O

Because every finite or countable e-model (M, D) can be taken to have D everywhere defined on
PB(M), we treat D as a point function on M. It then makes sense to speak of D(a) for a € M and
in particular, elements of measure zero, or null elements.

Finally, we define the main objects of study in this paper.

11
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Definition 2.3.5. For X = F or E:
A sentence ¢ is said to be finitely eX-valid and is called a finite e X-validity (resp. countably
eX-valid and countable e X-validity) if ¢ is eX-satisfied by all finite (resp. countable) e-models.
Likewise, a sentence ¢ is said to be finitely eX-satisfiable and is called a finite e X-satisfiable
(resp. countably eX-satisfiable and countable e X-satisfiable) if ¢ is eX-satisfied by some finite
(resp. countable) e-models.

In addition, to distinguish between these concepts and the similar concepts in FOL, we say that
a formula ¢ is finitely classically valid if ¢ is satisfied by all finite first order models; a formula ¢ is
finitely classically satisfiable if ¢ is satisfied by some finite first order model.

Note that by the Lowenheim-Skolem theorem, what would be the concept of “countably classically
valid” coincides with unrestricted validity in first order logic. This is not true for eE- or eF-logic
unconditionally. Terwijn and Kuyper provide a counterexample in [13, exmp 4.5].

2.4 Examples and Applications

Here the goal is two-fold: 1) we clarify concepts developed in the previous sections through examples,
and 2) we also note possible applications of €E- and eF-logic, in part to motivate the main theorems.
For the second point, we feel it is illuminating to mention results in later sections. Readers are
encouraged to check that these anachronism are correctly applied after perusing their respective
expositions.

We first exhibit some examples that highlight the difference in semantics between classical first
order logic and our €E- and eF-logics.

Ezample 2.4.1. Let ¢ := JxVy[z = y] where = is true equality. Classically, a model M = ¢ iff M is
a singleton. This also holds in eF-logic for all € < 1. In eE-logic, (M, D) =, ¢ iff there is a singleton
subset {a} C M such that D({a}) > 1 —e.

Ezample 2.4.2. Let ¢ := VaIy[x = y] where = is true equality. Classically, ¢ holds in every nonempty
model. This is true also for eE-logic. But (M, D) k. ¢ iff every element of M has D-measure greater
than e. In particular, when ¢ = %, M must have less than n elements; when € = 0, M is at most
countable.

Ezample 2.4.3. Let ¢ := JaVy[z # y] where = is true equality. ¢ is a contradiction in classical first
order logic and in eF-logic, but (M, D) |=, ¢ iff there is a singleton subset {a} C M with D-measure
less than e.

Ezample 2.4.4. Let ¢ := VxIylx # y] where = is true equality. Classically and in eE-logic, M = ¢
iff IM| > 2. In eF-logic, (M, D) k. ¢ iff every singleton subset of M has D-measure at most 1 — e.

Ezample 2.4.5. Let ¢(z) be a formula with a single free variable. In first order logic,

Y(z), Yylr =y — P(y)], Jylr =y A(y)]

are equivalent formulas.
In eE-logic, for any parameter a € M,

(M, D) e ¢(a) <= (M, D) e yly = a A (y)]

but (M, D) = Vyly = a — ¢¥(y)] whenever {b: b # a} C M has inner D-measure at least 1 — e.
Likewise, in eF-logic, for any parameter a € M,

(M, D) Fepa) <= (M, D) FeVyly = a = ¢(y)]

but (M, D) /. Jyly = a A(y)] whenever {a} C M has D-measure < e.

12
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In first order logic, a common way to assess whether a theorem 1 follows from a set of axioms T
is to pass the sentence 7 := —(T — 1) to some resolution algorithm R. T implies ¢ iff R resolves 7
to a contradiction.

But the obvious analogue for eE-logic cannot work: (M, D) |=. ¢ — ¢ is not equivalent to

M, D) |z ¢ = (M, D) |=c ¢

because of the paraconsistency of eE-logic. However, from definition ZI1]), (M, D) . ¢ — ¢ iff

(MvD) ):e ﬁ¢\/¢

which is equivalent to

(M, D) e ¢ = (M, D) |z .
Rephrasing using eF-logic then,
Proposition 2.4.6 (deduction theorem). (M, D) =, ¢ — o iff

(M, D) e ¢ = (M,D) e ¥
By dudlity, (M, D) Fc ¢ — o iff

(M, D) Ee ¢ = (M, D) ¢

Thus, axioms T, interpreted inside eF-logic, (metalogically) imply theorem v, interpreted inside
eE-logic, iff
T —

is an eE-validity.

By results (8.42) and .5.0) of Kuyper and Terwijn that we record in later sections, we can
even interpret each quantifier in T (resp. in ¢) in aF-logics (resp. aE-logics) for different as, in this
sense:

Let T be in prenex normal form Vizy - - V,2,6(Z). For every v; = 3, we
translate V;x; as “there exists a set A; with measure > «; such that for each
x; € A;, ...;7 The quantifier V is interpreted as usual. Each «; can be any
arbitrary rational number in [0, 1], independent of what other «;s are.
Similarly, let ¢ be in prenex normal form V121 - - - V@, @' (Z). For every V; =V,
we translate V;x; as “there exists a set B; with measure > 1 — f3; such that for
each z; € B;, ....” The quantifier 3 is interpreted as usual. Each §; can be any
arbitrary rational number in [0, 1], independent of what other ;s are.

The implication T = ¢ (resp. ¥ == T) under these translations can be
expressed as some sentence in eE-logic (resp. eF-logic).

As a corollary, if T is a conjunction of sentences {A; }2':1 and v is a disjunction of sentences
{T;}F_,, then for any finite {a;};_,, {Bi}F_; of rational numbers in [0, 1], there is some sentence ®
such that the following are equivalent:

e for all finite (M, D), if (M, D) simultaneously «;F-satisfies each A;, then

(M, D) =5, T; for some i € [k].

e & is finitely eE-valid.
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Though such a form of deduction theorem may not seem useful at first, it nevertheless allows the
expression of statements regarding many types of mathematical objects, including concept classes
in CLT, graphs with weighted vertices, graphs with weighted edges, and artificial neural networks.

In what follows, we give examples of such expressions and their meanings in both eE-logic and
eF-logic. For ease of reading, we will write >¥€ for V in the context of eE-logic and >3 for 3 in the

context of eF-logic. As noted, in a single sentence, the ¢ parameter may vary, so it is meaningful to
write >E|0x EI/ y>EI z. Each boolean symbol whose meaning has not been defined is a shorthand for the
>1/2 €

usual composition of symbols =, A, V.
These examples will hopefully give a rough picture of the implications of our decidability and
undecidability results.

Ezample 2.4.7 (PAC learning). Define the following:
e an example space is a probability space (X, D) with probability distribution D;

e a concept class C is a collection {U C X} of subsets of X, identified with their indicator
functions;

e for U € C, an example oracle EX(X,D,U) is a device that randomly returns a pair (x €
X,U(z)) for every invocation. The pair is sampled according to D.

In the basic PAC learning model [25], we are given X, C, and an example oracle EX that emits
elements of X according to an unknown distribution D and unknown concept U € C. We wish to
efficiently find a concept close enough to U, in the following sense:

We have a probabilistic algorithm that, for all error parameters e and 4, for all distribu-
tions D on X, in time polynomial in % and %, returns U’ € C with

P (U () £ V)] < e

more than 1 — ¢ of the time. Such a U’ is called an approzimation concept.

Typically, X is taken to be B, = {0, 1}* for some s, and C is a subclass of the boolean functions
on B,.
It is important to note that this learning model assumes

for the given EX, some approximation concept U’ exists in C. (p)

In particular, this happens if EX labels elements according to some concept in C. But in practice
this may not always be the case B. I eE-logic with a language having monadic predicate Py, ..., P
and ¢, we can express this assumption.

In what follows, for a general vector w, w; will represent the ith value of w; M is a first order
model over universe B, and

PM(v) = v, ™ (v) = the label generated by EX;
D is a probability measure everywhere defined over M.

1. (Point class). The point concept class over B, is the collection

{{v} : v € B,}.

3hence the research into agnostic learning; see [5] for an overview
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In other words, each concept labels exactly one point of By as 1 and the rest as 0. Assumption
(@) holds for the point class iff

S

(M, D) 3 Y ylely) & \(P() & Piw)]

i=1
(Of course it is much more convenient to use equality, but we refrain in order to take advantage

of the decidability of monadic relational languages)

2. (Parity class). For each v € B, let
Oy(z) :==v-w mod 2

where (=) - (=) mod 2 is the dot product in the vector space (Z2)®.

The parity concept class over By is the collection

{Oy : v € B, }.

Then assumption (gg) holds for the parity class iff

S

(M, D) e Fe_¥ yley) < @(Pi(x) A Py).

- i=1

3. (Conjunction class). The conjunction concept C,, represented by a vector w € {—1,0,1}%
labels v € B, as 1 iff for each i € [s] such that w; # 0, v; = (w; + 1)/2. The conjunction
concept class is the collection of Cy, over all w € {—1,0,1}*.

Assumption () holds for the conjunction class iff

(M, D) 3Ty Y (c(z) & AI(PA2) A Pi(y) = Pi(2) A (~Pi(a) A Pi(z) = ﬁ(z))])

i=1
Here we code each conjunction concept C,, using 2 bitstrings z and y: if z; =y, = 1, w; = 1;
if x; = y; =0, w; = —1; otherwise w; = 0.
4. (1-Decision lists). Let Z be a triple («a, 8,b) where o, 8 € B, and b € {0,1}. A 1-decision list
DLy represented by Z is the decision procedure that, on input v € By, runs as follows

if v1 = a3 then output 51
else if v9 = ay then output S5,

else if v = a, then output F;
else output b
end if.

Let

Yi(z,y,w) = [Pi(z) © Pr(w)] A [Pa(z) © Pao(w)] A -+
A [Pi—1(x) ® Pi—1(w)] A [Pi(z) <> Pi(w)]
— [c(w) < Pi(y)].

; represents a computation of DL, , ;) (for any b) on input w that proceeds to the ith if
statement before returning.

15
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Let

d(z,y, z,w) = [P1(z) ® Pr(w)] A [Pa(z) ® Pa(w)] A---
A [Ps—1(z) & Po—y(w)] A [Ps(z) @ Ps(w)]
= [c(w) & P1(2)]

¢ represents a computation of DL, , .,) on input w that proceeds to the else statement.

Then assumption () holds for the 1-decision lists iff

(M,D) ):6 3$3y32>1v7€w (¢(x7yu 2 ’U}) A /\ ¢i(x7y7 ’U))) .

B =1

VC dimension is an important quantity of concept classes studied in CLT. We will not define it
here (consult [6]) but wish to mention to the computational learning theorists that, as these examples
illustrate, when a concept class C over B, has VC dimension f(s), assumption (] can be expressed
over (M, D) by a formula with O(f(s)) number of quantifiers (exercise!).

On the other hand, in eF-logic, we can express certain interesting conditions on the probability
space (M, D).

1. “more than half the time, the label is 17:

(M,D)+ xe(x).

1
2 >1/2
2. “the probability that the ith bit is 1 is strictly between € and 1 — €”:

UNIFORMT%,ﬂ = (M,D) k. Va:iy[Pi(:zr) @ Pi(y)].

As a straightforward generalization, the quantifier-free part of the expression can be swapped
out for a more complicated boolean combination.

3. “most bits are irrelevant to the concept — the label only depends on 2 fixed bits”:

ATTEFFy := (M, D) - \/ VaVy[(Pi(2) < Piy)) A (Pi(2) < Pi(y)) = (c(@) & c(y))]-

i<j
This is the setting for attribute efficient learning [9].

As noted before, each € in these examples can vary over the rationals at will. Imagine we want to
find if UNTFORMg, and UNIFORMf52 along with ATTEFF2 would imply (@) for some concept class C.
We may do so by querying for the eE-validity of a two-part sentence

T— ¢

derived from applying note (V).

By the decidability of monadic relational languages (2.8 and BZTT]) established later, these
kinds of questions are all decidable, as long as all statements use only unary predicates.

It is also possible to add a BIT relation to eE- and eF-logics along the lines of the corresponding
relation in classical finite model theory [I5]. One can then express concept classes over all size
parameter s with one single sentence. However, the complexity of deduction then becomes unknown.
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Ezample 2.4.8 (graphs with weighted vertices). Let £ be a language with a single binary relation
E(-,-), standing for the edge relation between two vertices. As in first order logic, any e-model of
this language is automatically a directed graph with at most one edge between every pair of vertices
(including loops). Moreover, in such e-models, to each vertex of the graph structure is assigned
a weight in [0, 1] such that the total sum of all vertex weights is 1; however, the edges are not
weighted. Such graphs with weighted vertices can be used to model, among many things, cities with
populations and in general the PageRank algorithm.

Because in €F-logic, V is interpreted classically, we can express quite a few properties of graphs:

1. loopless:
Ve-E(z, ).

2. undirected:
VavylE(z,y) < E(y,z)].

3. complete:
Vavy[E(z,y) A E(y, z)].

4. bipartite with a fixed partition (if £ has a unary predicate A):
VaVyl[(A(z) < A(y)) = ~E(z,y) A ~E(y, z)].
Similarly, k-coloring can be expressed as well.

5. in a simple graph, “every 1-neighborhood collectively has weight more than €” (if £ has equal-
ity):
V:v;y[y =V E(z,y))].

6. “every directed triangle has collective measure more than €” (if £ has equality):

VavyVz[E(z,y) A E(y,z) NE(z,2) & Jw(w =z Vw=yVw=2z).

7. “every element has a unique successor of positive measure” (when £ has equality):

Va:;[l)y[E(x,y) AVz(E(x,z) = z =y)].

8. “there exists a set of ‘initial’ vertices A collectively with weight more than e such that every
v € A is connected to every vertex in the entire graph”:

JavyE(z,y).

On the other hand, in eE-logic, we can express the likes of the following.

1. “there is a clique of size k”:

32 /\ E({Ei,xj)/\E(LL'j,JJi)

1<i<j<k

In general, for any fixed graph G, we can express the existence of a subgraph isomorphic to G.
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2. “there is a subgraph isomorphic to G that carries weight > 1 — €”:

k
3% |150¢(Z) A Ziey \/ Y=,
=1

where 1SO¢ is a formula expressing Z is isomorphic to G.

3. in a simple graph, “there is a single vertex v that is connected to at least 1 — e (by weight) of
other vertices”:
Jv V xE(z,v).

>1—e¢

In eE-logic, we can also make weakened version of universal statements from the eF-examples by
replacing V with >1V V= >V1 The transformed sentences will then quantify over all elements of positive

measure, rather than all elements. For instance, the sentences given for the loopless, undirected,
complete, and bipartite properties all carry over to apply to the subgraph consisting of all nonnull
vertices.

This weakened quantifier suffices in most cases. In fact, later on, our proof of the undecidability
of finite eE-satisfiability ([8.4.4]) depends heavily on this competency of >V1

In some cases, when € > 0, the quantifier >3 can also be replaced (per note (V)) with >V without

affecting the intended semantics very much. For instance, the property “every 1l-neighborhood
collectively has weight more than €” differs very little from “every 1-neighborhood collectively has
weight at least €’ in most imaginable applications.

Ezample 2.4.9 (graphs with weighted edges). Instead of assigning a measure to vertices, often we
want to assign numbers to edges of a graph, for example in a MAX-FLOW or a path-finding problem.

Let £ be a language with binary relations I(-,-), C(-,-), and D(-,-). Here I(z,y) represents that
the codomain of edge z equals the domain of edge y; D(z,y) (resp. C(z,y)) represent that edges
and y have the same domain (resp. codomain). Thus, any graph with weighted edges {e; };cps such
that the total weight equals 1 is automatically a probability model in L.

Conversely, suppose (M, D) has an everywhere defined measure D and classically satisfies the
axioms of

e “C'and D are equivalence relations”:

VaC(x,x)
vavyC(z,y) < Cly, ) (EQR)
VavyVzC(z,y) A C(y, z) = C(z,x)

along with the analogues for D.
e “incidence relation respects domain and codomain”:

Vavy(C(x,y) — Vz[I(z, 2) « I(y, 2)])

IDC
Vey(D(a.y) = Vel (2.2) © 1(z9). 1)

e “domain and codomain respect incidence relation”:
Vaiy(l(z,y) = VEIC(z @) & 1(z,y)) -

VaVy(I(z,y) — V2'[D(2',y) < I(x,2")])
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e “domain and codomain are unique”:

VaVyVz[I(z,y) A I(z, z) = D(y, 2)] (IDC)
VaVyVz[I(y, z) AN I(z,z) = C(y, 2)] '
Let Vp and Vi be respectively the equivalence classes modulo DM and CM. For every element
a, denote its equivalence class in Vp by [a]p and that in Vo by [a]¢. By axiom (DCI), [a]p € Vb
can be identified with [b]c € Vo, [alp ~ [b]c, if IM(b,a). Thus we can form the vertex set
V = (VpUVe)/ ~. Axiom ([[DC) implies that the relation I induces a relation I} on Vo x M.
By factoring through the identification ~, the relation Ié/‘ can be treated as a relation on V x M
with the property that, for every element a of M, I¥([a]p,a). But axiom ([DC]) says that this I}
is in fact a function M — V. We therefore retrieve the domain function dom : M — V,a — [a] p.
By the same reasoning, we also derive the codomain function cod : M — V,a — [a]¢. These data
then uniquely determine a graph with edges M and vertices V.
As €F-logic interprets V classically, it can convey the axioms along with many of the usual
properties of graphs.

1. loopless:
VoI (x,x).

2. “no more than one edge per pair of vertices” (if £ has equality):

VaVy[D(z,y) A C(z,y) = x = y.

3. bidirectional: “each edge x has a corresponding edge with positive weight that goes in the
opposite direction”:
ngoy[l(:t, 2) N (z,x)].

On the other hand, we cannot express undirectedness without changing the axioms. The
reader is encouraged to work out the axioms for a simple graph with weighted edges.

4. complete: “for any two edges x and y, there is an edge with positive weight that connects x
to y”:
VxVy;l)z[I(x, 2) N (z,9)].

5. “every directed triangle has collective weight > €’ (if £ has equality):

VavyVz[I(z,y) AN (y,z) N(z,z) — iw(w =rzVw=yVw=z).

For any fixed k, we can also make the analogous statement for k-cycles.

6. “every length k path from x to y has weight > €” (if £ has equality):

k—1 k
PATHMINY (2, y) := V& (/\ I(zi,zi41) = 3y <\/ y= :vz>> .

i=1 =1

For any fixed graph G of size k, the constructions in this and the last items generalize to make
statements of the form “any subgraph isomorphic to G has total weight > €.”

As with example (Z4.9), in eE-logic, for any fixed graph G, we can express the existence of a
subgraph isomorphic to G. We can also assert that some such subgraph has weight > 1 — €. These
properties may be desirable when working with MAX-FLOW problems.

19



2.4. EXAMPLES AND APPLICATIONS GREG YANG

Finally, we can also transform statements in eF-logic into weaker statements in eE-logic by
replacing V with ¥ and 3 with V. With emphasis, we note that all axioms (EQR]), (DCI), (DA,

and ([IDC) of gralz;hs with weighted edges are universal sentences. Therefore, as long as the presence
of zero-weight edges present no difficulty, we can also investigate implications

T =

with ¢ interpreted in eF-logic.

Ezample 2.4.10 (artificial neural networks). Artificial neural network (ANN) is a very popular bi-
ologically inspired technique in machine learning that is often used in pattern recognition [16][1§].
Each ANN is a directed graph in which each edge e has weight to(e). Its nodes are called neurons
and its edges are called connections. If neuron n connects to neuron ¢ via connection e, we say 7
feeds into ¢ via e (written n 5¢ ), 1 is the presynaptic neuron of e, and ¢ is the postsynaptic neuron
of e. Each neuron is either activated or not. Its state at time ¢+ 1 depends on the activation states at
time t of the neurons that feed into it. The exact update rule may vary in different neural networks,
but usually it is implemented as a linear threshold function:

Each neuron 7 has a threshold value T such that 7 is activated at time ¢t + 1 iff

Z m(e) . H “C activated at time t” ” > T
¢S

Like in the previous example, ANNs can be represented by finite e-models (M, D) with dom D =
PB(M) of the language £ with binary relations I, D, and C. The measure D(a) of each element a of
M correspond to the weight to(a) in the ANN. If the threshold ¥ is fixed across all neurons, then
the linear threshold update rule can be expressed in eF-logic.

We introduce new predicates ACTV,(z) that represents whether the presynaptic neuron of edge
x is activated at time ¢. It satisfies the following relations for each ¢.

1. “Suppose z and y have the same presynaptic neuron. Then ACTV,(x) holds iff ACTV,(y) holds”:

VaVy(D(z,y) — [ACTVi(x) <> ACTV(y)]).

2. the linear threshold update rule:

Va(ACTVi41(z) < >EITy[I(y, x) A ACTV(y)]).

In a typical usage of ANN, there are two sets of distinguished neurons J and O called input
neurons and output neurons. At the beginning, each neuron of J is activated or deactivated according
to an input bitstring, for example derived from a digital image. All other neurons are not activated.
After some time t, the activation states of the neurons of © are returned as a bitstring. Continuing
our example, we might desire the output of 1 from every output neuron iff the image is of a butterfly.

Imagine we are interested in whether some property ® of ANN implies some property ¥. If we
can phrase ® as a sentence to be interpreted under eF-logic and ¥ as a sentence to be interpreted
under eE-logic, then we can answer this question by querying for the eE-validity of

OPAAN— U,

where A is the conjunction of the axioms of the graph from example (2:4.9) and the axioms of ACTV,
from this example.
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Unlike the example of PAC learning, we cannot say with certainty whether any or all of the
theories of finite graphs with weighted vertices, finite graphs with weighted edges, or finite artificial
neural networks are decidable. The main theorems of this paper will establish that the naive method
is out of the picture: there is no general deduction mechanism for eE- or eF-logics when restricted
to finite e-models. In particular, this result holds even when restricted to first order languages with
a finite number of binary relations and an infinite number of unary predicates. But that is not
enough to determine the exact computability of the above theories, each of which uses only a finite
number of unary predicates. (Even for ANN, in almost all use cases, only a finite number of ACTV,
predicates are considered). Weakening the language requirement remains a major research area in
eE- and eF-logics.

Related to the issue of decidability is expressability. We note in passing that despite these exam-
ples, €E- and eF-logics still have nontrivial limitations in expression power. These limitations derive
in many cases from the limitations of first order logic itself. A detailed discussion of impossibility
results in expressability is outside the scope of this paper, but we mention that quite a few tech-
niques for first order logic, like locality, carry over to our probability logics. The interested reader
is advised to consult [15].

3 Validities and Satisfiabilities

3.1 Finite and Countable OE-Satisfiabilities

In contrast to first order logic, where Trachtenbrot’s theorem implies that an effective calculus for
deducing true theorems over finite models cannot exist, we show here that finite and countable OF-
validities are decidable. Moreover, the results of this subsection apply to any first order language.
Consequently, finite and countable OE-satisfiability are also decidable regardless of language.

(Recall that Z is a shorthand for a sequence of variables x1, 3, . .., z, for some n > 0, and VZ is
a shorthand for Vo1 Vzs - - - Va,,).

Lemma 3.1.1 (validity conversion). Let V; € {V,3} represent quantifiers, and
¢ = V121Vax2 -+ Vpanth(&)

where ¥ is a quantifier free formula. Suppose I = {i1,ia,...,ix} C {1,...,n} is an enumeration of
all indices © such that V; = V. Define

¢*(y) = V(Eilv.’lfiz o Vxlkw(ga xiwgu xizuga s 7@7 xikag)u

where each ij denote a block y,y, ...,y of y repeated some number of times, depending on the location
of §. In other words, in ¢*, all x; with j & I has been substituted with the free variable y.
Let
¢’ = VYo" (y).

Then ¢ is finitely OF-valid iff ¢’ is finitely classically valid. ¢ is countably OF-valid iff ¢' is
classically valid.

Proof. Let’s consider the finite validity claim of the theorem. The countable validity portion is
almost exactly the same.

(¢ finitely OF-valid = ¢’ finitely classically valid) Let Vi be a classical model of size k, with
universe {1,2,...,k}. Define measures &; ; on it such that & ,(i) =1 and & x(j) = 0, Vj # i. If
(Vk,&i k) Fo ¢, then all the x;,j & I (i.e. all those with an existential quantifier) must be interpreted
as 7 since ¢ has measure 1. Hence (Vi, & k) Fo ¢ implies Vi, = ¢*(i).

Since ¢ is finitely OF-valid, for any fixed k, (Vi, & k) Fo ¢ and thus Vi = ¢*(i) hold for all
1 < i < k. Therefore,

Ve EVYYo'(y) = Vi = ¢
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Now vary k, and we conclude that ¢’ is classically finitely valid.

Note that the above reasoning did not use finiteness in an essential way. In fact, slightly modifying
the argument shows that ¢ 0F-valid for all 0-models of size k implies ¢’ classically valid for all first
order models of size k.

(¢’ finitely classically valid = ¢ finitely 0F-valid) Let (M, D) be a 0-model with the universe
M ={1,...,k}. By proposition ([Z34]), we can take D to be defined on all subsets of M. Since ¢’ is
satisfied by all classical models, M E ¢/ = M = Vy¢*(y). Because M is finite (this is the only
place where the finiteness is used; substitute countability for the countable case), there must be an
element a € M with positive measure. Then M = ¢*(a), meaning that all the 3 bindings (with
the interpretation under . of measure strictly positive) in ¢ are realized by a. Thus (M, D) k¢ ¢.
Since (M, D) is an arbitrary finite 0-model, ¢ is finitely 0F-valid.

O

Lemma 3.1.2. Let
O(y)) = VIp(Z, 1)
be a universal formula, where v is quantifier free.
The following are equivalent:

1. ¢ is finitely classically valid.

2. ¢ is classically valid.

Proof. Certainly, @) = (). It suffices to show (1) = (@).

Because for any first order model M, M = ¢(§) < M E Vyo(y), we assume that ¢ is a
sentence Y2y (). Let n = |Z|.

Suppose ¢ is satisfied by all finite (classical) models but there is an infinite model M E —¢.
Then there is a tuple @ € M"™ such that M = —)(d@). We form a finite model M’ containing {a;}? ,
such that M’ = —4)(&@), which would yield a contradiction.

Let Iy := {a;}, U{c™ : cis a constant symbol that appears in ¢}. Given F}, set

Fip1:= {fM(€) : € € F;, f is a function symbol that appears in ¢}

Then we define the universe of our model to be
k
= U F,u {T}
i=0

where k is maximal number of times any function symbol appears in 1, and r is an arbitrary new
element. Fy is obviously finite, and given Fj is finite, |Fy11]| < |F;| - |length(¢)| is finite. Thus each
F; is finite and so M’ is finite.

The relations in M’ will be the relations of M restricted to M’. For each function symbol f in
the language, define

r otherwise

() = {fM(g) if £ € F; for some i < k

if f appears in 1, and otherwise arbitrary. Finally, for each constant symbol ¢, the interpretation is

M ifMeH
C =
T otherwise

It’s easy to check that if ¢ is a term that appears in ¢, then M = M , and if R is an n-ary

relation that appears in ¢ then RM ({) = RM (5) for any £ € M'™. Thus by induction M’ as
constructed satisfies /(@) as desired. O
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But universal classical validities reduce to propositional tautologies: for each prime formula 7
with n arguments, and each n-tuple & of variables in the language, form a propositional variable
Pr,z. Then a universal formula Vi) (y, 2) with ¢ quantifier-free is valid iff )P*P, the propositional
formula where all instances of prime formulas 7(Z) are replaced by the propositional variable p. z, is
a propositional tautology. Since propositional validity is decidable, this combined with [B.1.2]) yields

Theorem 3.1.3. For any first order language, the set of finitely OF-valid formulas coincides with
the set of countably OF-valid formulas. They are both decidable. Therefore, the set of finitely OF-
satisfiable sentences coincides with the set of countably OE-satisfiable sentences, and they are both
decidable.

3.2 Monadic Relational Language
Let £ be a first order language
e with no equality,
e with no function symbols,
e with no relation of arity at least 2, and
e with at most a finite number of unary predicates P, P, ..., Ps.

We call £ a monadic relational language. In this subsection, we show that for any such language,
unrestricted, countable, and finite eE-satisfiabilites and eF-satisfiabilities are all decidable, ergo the
computability of eE-validities as well.

The essence of the proofs in this section resides in the fact that each e-model in such a language
“has only a finite amount of information”: They are partitioned by the monadic predicates into a
finite number of indistinguishable parts, and the measures of these parts uniquely determine the
models up to e-elementary equivalence. This observation allows us to reduce these satisfiability
problems to linear programming.

Lemma 3.2.1. Let L be monadic relational with unary predicates Py, Ps, ..., Ps. Suppose (M, D)
is an e-model in L. Then there is a finite probability model (N, E) such that (M, D) =. (N, E).
Furthermore, we can take the universe to be some subset N C B([s])) and require that

for every a,b € N, if PN (a) holds when and only when PN (b) holds, then a = b.
Proof. For each U C [s], define the subset
My :={a€ M :Vi € [s], PM(a) < 1€U}.

{Muy}ucs partitions (M, D) into at most 2° disjoint parts. It should be immediate that for any
formula ¢(z), any U C [s], and a,b € My,

(M, D) e ¢(a) <= (M, D) = ¢(b). (A)
Now we define (N, ). Let
N :={U: My # 0}
and let £ be defined on points U by
E(U) =D(My).

Then » ;o n E(U) =1, s0 € is a probability measure.
Finally, define the interpretations PlN on N by

PNU): <= 1leU.

Since all subsets of N are £-measurable, (N, &) is a probability model.
For e-elementary equivalence, we show the stronger claim that:
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For any quantifier-free formula ¢(Z, §) with j = |Z] and k = |g], every U € N*, and every
sequence of quantifiers vq,...,V; € {3,V},

(N, 5) ):6 Vixy--- le‘j(b(f, (j)
iff for all (and, by (A), for any) @ € My := My, x My, x --- x My,,
(M, D) e Vazy -+ Vjz;0(Z, @),
We proceed by induction on the number j of quantifiers. The case of j = 0 is immediate by our
construction. . .
Suppose that our claim is proved for j = j* > 0. The case of Y(U) := JyVizy -+ Vyxj¢p(Z,y,U)
does not involve measures and is obvious. For ¢(U) := Vyviz; - - -Vixyd(Z,y, 0), (N, E) = v(0)
iff
W ={V:(N,E) e Vizy - Vjzy (& V,0)}, EW)>1—e
By induction hypothesis,

W ={V:Vae My, ¥be My, (M,D) |z Viz1 - Vjxyd(Z,a,b)}.

Therefore, for all be Mg,

-

U MV = {a : (M,D) ':E Vixy - vj’xj’gb(fva’ab)}

Vew
and thus
PLI(M, D) fee Vi -+ iy 6(7,,D)
= Prlac U My
P yvew
= ) DMy)
Vew
= Y &WV)
VeW
= E(W)
> 1—ce
implying

—

(M,D) ':E Vyv1171 te vj’-rj’d)(fa Y, U)

The converse direction follows by reversing this line of reasoning and applying (Al).
The claim starting from “Furthermore” follows by our construction. O

We introduce the concept of eE- and eF-trees to help us analyze satisfiability of sentences.

Definition 3.2.2. Let M be a set. A tree in M with height n is defined as a tree T' with n levels
(from 1 to n) with the following properties

1. all nodes are subsets of M.

2. if node V is at level k < n, then V has a child V=% for each z € V, and these are all of V'’s
children.

3. if node V is at level n, then V has no children; V is called a leaf node of T.
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The unique root of T' is denoted rootT. A bran of a tree in M with height n is defined as a
sequence ((a;, V;))™_; of pairs, where for each 4,

1. V; € M is a node of T at level 1,
2. a; € V;, and
3. Vigr = V7% if i < n.
We will also write (a; € V;)?_; for a bran, which should not cause any confusion.

Definition 3.2.3. Let Q = (V1,Va,...,V,) be a sequence of quantifiers from {3,V}. Let (M, D)
be an e-model. An eE-tree in (M, D) with levels @ is defined as a tree in M with height n such
that:

1. if v = 3, then all nodes at level k are nonempty subsets of M; level k is called a 3-level.

2. if Vi =V, then all nodes at level k& are D-measurable subsets of M with D-measure at least
1 —¢; level k is called a V-level.

Let ® := Vyzy -+ - V2, ¢(Z) where ¢ is quantifier-free. An eE-tree in (M, D) for ® is defined
as an eE-tree in (M, D) with levels (Vq,...,V,,) with the additional property that

(S) for every bran (a; € V;)I |,

M = ¢(a).
When @ (or Q) and (M, D) are clear from the context, we will simply use the term ¢E-tree.
Ezample 3.2.4. If Q = (3,V,3), M = [4], and D is the uniform distribution, then

{1}

J

{1,2,3}

P I

{2} {3} {4}

is an 1E-tree in (M, D) with levels Q.

If ® = JaVy3z[z + y = z] (where = + y = z should be treated as a relation over (z,y, z)), then
the above tree is also an %E—tree in (M, D) for ®.

Note that nodes across a level need not be distinct. For example, if ® = VaTJy[z # y], then

{1,2,3}

P RN

{2} {1,3} {2}

would be a valid 1E-tree in (M, D) for ®.

Similarly, we define

Definition 3.2.5. Let Q = (V1,Va,...,V,) be a sequence of quantifiers from {3,V}. Let (M, D)
be an e-model. An eF-tree in (M, D) with levels @ is defined as a tree in M with height n such
that:
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1. if Vi = 3, then all nodes at level k are D-measurable subsets of M with D-measure greater
than €; level k is called a 3-level.

2. if Vi, =V, then all nodes at level k are M; level k is called a V-level.

Let ® := Vyz - - V2, $(Z) where ¢ is quantifier-free. An eF-tree in (M, D) for ® is defined
as an eF-tree in (M, D) with levels (V1,...,V,) with the additional property that

(S) for every bran (a; € V;)™ |,
M = ¢(a).

When @ and (M, D) are clear from the context, we will simply use the term eF-tree.

Ezample 3.2.6. With the same setting as above of @ = (3,V,3), M = [4], and D the uniform
distribution,

{1}

l

{1,2,3}
{2} {3} {4}

is not a $F-tree in (M, D) with levels Q because the root {1} has measure ; < 3 and the second

level node is not all of M. However, the following is a $+F-tree with levels in (3,V):

{1,2,3}

l

[4] [4] [4]

If & = Va3y[x # y], then

{1,2,3,4}
{3,4} {1,2}

{3,4} {1,2}

is a %F—tree for @, but not a %F-tree. As an exercise, the reader should verify that there is no
%F—tree for ® in our choice of (M, D). Note once again that, as this example illustates, nodes across
the same level in an eF-tree need not be distinct.

It should be apparent from the definitions and examples that

Proposition 3.2.7. For any first order language L, let ® be an L-sentence and (M, D) be an e-
model of L. Then (M, D) =, @ iff there exists an eE-tree in (M, D) for ®. Similarly, (M, D) . ®
iff there exists an eF-tree in (M, D) for .

Therefore, ® is (unrestricted/finitely/countably) e E-satisfiable iff there exists an e E-tree in some
(unrestricted/finite/countable) (M, D) for ®. This statement holds also when F substitutes E.
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Now we are ready to tackle the decidability of monadic relational languages.

Theorem 3.2.8. Let £ be a monadic relational first order language and € € [0,1] be a rational
number. Then eE-satisfiability in L is decidable for the unrestricted, the countable, and the finite
cases.

Proof. By lemma ([B21]), all three eE-satisfiability follow from the finite case, so we will prove the
latter. In particular, it suffices to consider only satisfaction by probability models (M, D) with
universe M C B([s]), with D everywhere defined, and with the property that

Va,b € M, Vi € [s], PM(a) <= PM(b)] = a=0b.

Call such models simple models.
Let @ be a sentence in £, without loss of generality in prenex normal form

d:=vVvix-- an'n(b(f)

where ¢(Z) is quantifier-free and each V; is a quantifier.

By proposition [B.27), @ is eE-satisfiable by simple models iff there is an eE-tree in some simple
(M, D) for ®. But all such trees are trees in some subset of B([s]) with height n, which are finite
in number. Thus, we only need to devise an algorithm that, for any M C 9B([s]) and any tree T in
M with height n, tests whether there exists simple model (./\/l D) with universe M such that T is
an eE-tree in (M,D) for ® — and it suffices to verify definition [B23). But M is the universe of
some such simple model (M, D) iff M is so with the interpretations

YU € M, PM(U) «— leU.

Thus, assuming this structure of M, we can check conditions (1) and of definition (B2.3) imme-
diately, in finite time.

Finally, for any surviving 7" and M with universe M, we find whether there exists a probability
measure D everywhere defined such that T satisfies condition (). (M, D) fulfills this condition iff
for every node V C M at a V-level in T,

Z D(a)>1—ce. (ov)

acV

This is equivalent, then, to the feasibility of the linear program LP with variables p, for every a € M
and inequalities

1. ®y) with u, replacing D(a),
2. pg > 0, for each a € M, and
3. ZaEM Ha = 1.

Evidently, because ¢ is rational, all coefficients in LP are rational. By proposition (LIIl), LP is
solvable in finite time.
Thus condition (2] can be verified effectively.
O

The corresponding result for eF-logic will proceed similarly, except that the linear program will
involve strict inequalities. The following result of Carver is needed to prove the next lemma.

Proposition 3.2.9 (Carver [19]). Let A be a matriz and let b be a column vector. There exists a
vector x with Ax < b iff y = 0 is the only solution for

y>0, yA=0, yb<0.
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Lemma 3.2.10. Let A and B be matrices and let b and c be column vectors. If all entries in
A, B,b, c are rational, then there is an algorithm that decides the feasibility of the system

Ax <b, Bx=c.

Proof. Solve Bz = ¢ for x (for example by Gaussian elimination). If there is no solution z, then
the system is not feasible. If there is exactly one solution x, we check whether x satisfies Axz < b
and return the result. Finally, if the solution set forms an affine plane of dimension d, then there
exist d indices 41, ...,iq such that each coordinate zj is a linear combination of xz;,,...,z;, and
1. Substituting these equations into Az < b yields a new (strict) linear program A’z’ < b’ with
rational coefficients where ' = (x4, , %4y, . .., 24, ). Evidently the feasibility of the original system is
equivalent to the feasibility of A’z’ < b, which can be solved via Carver’s theorem and proposition

(CII). O

Now we are ready to characterize the monadic relational fragment of eF-logic. The method of
proof follows roughly the same path as for theorem ([B.2.8).

Theorem 3.2.11. Let £ be a monadic relational first order language and € € [0,1) be a rational
number. Then eF-satisfiability in L is decidable for the unrestricted, the countable, and the finite
cases.

Proof. Let ® be a sentence in prenex normal form.

Again, by lemma @B21]), it suffices to consider only the finite case and only satisfaction by
probability models (M, D) with universe M C B([s]), with D everywhere defined, and with the
property that

Va,b € M, VI € [s], PM(a) <= PM((b)] = a=0b.

Call such models simple models.

Just as in the proof of theorem (BZR), it’s enough to check in finite time, for each M C B([s])
and each tree T in M, whether there is a simple (M, D) with universe M such that T is an eF-tree
in (M, D) for ®. If (M, D) is some such model, then T is an eF-tree in (M’,D’) for ®, where

e M’ is the set of nonnull elements of M,
e D’ is the restriction of D to M’, and
e T’ is derived from T by restricting every node V. C M of T to M’.

Therefore we may consider only D that is everywhere positive.
Again, we can assume M to have interpretations

PMU) < 1eU

for each U € M and | € [s]. So conditions (Z) and of definition (B:ZH]) can be easily verified.

Finally, for any surviving 7" and M with universe M, we find whether there exists a probability
measure D everywhere defined such that T satisfies condition (). Thus T is an eF-tree in (M, D)
iff for every node V' C M at an J-level in T,

Z D(a) > e. (ov)

acV

The existence of such D is equivalent to the feasibility of the strict linear program LP with variables
1 for every a € M and inequalities

1. (om) with u, replacing D(a),
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2. ug > 0, for each a € M, and

3. ZaGM Ha = L.
By lemma (B:2.10), this is decidable.

By duality, we can phrase theorems B22.8) and B2ZTII) thus

Corollary 3.2.12. Let L be any monadic relational first order language and € € (0,1) be a rational
number. Then for X = E or F, (unrestricted/countable/finite) e X-satisifiability and validity are both
decidable.

3.3 qg-Sentence, g-Trees, and g-Satisfiability

Here we generalize the various concepts of €E and €F like trees and satisfiability. These generaliza-
tions will allow us to express computability reduction results in the next section.

Definition 3.3.1. For any first order language £, a g-sentence in L is defined as a string of the
form
Viz1 - VnZn ()

where ¢ is a quantifier-free £L-formula in n variables, and for each 4,
Vi € QSET := {3,V} U{Q7 }ccqnio.) U {97 }econpo.1)-

Quantifiers of the form 7 are called weak g-quantifiers. Quantifiers of the form 9?2 are called
strong g-quantifiers.

If g-sentence ® has no strong g-quantifiers and no V, then ® is called a qE-sentence. In the
same way, if ® has no weak g-quantifiers and no 3, then ® is called a qF-sentence.

Definition 3.3.2. Let ® := V21 - - - V,2,$(Z) be a first order logic sentence, with v; € {3,V} and
¢ quantifier-free. The eE-coercion of ® is defined as the g-sentence

eE-coerce(®) := Vizy -+ Vi, 2,0(T)

where

, 3 ifv, =4
vi = > :
T—e if Vi= V.

Likewise, the eF-coercion of ® is defined as the g-sentence
eF-coerce(®) := Viz1 - V) 2,¢(F)

where

, A ifv, =V
V., =
! 0z ifv, =43

For an arbitrary first order sentence ®, its eE-coercion is the coercion of the equivalent prenex
normal form. Similarly for eF-coercion.

Clearly, both coercion functions are computable. In addition, every g-sentence in the image of
eE-coerce is a qE-sentence, and every g-sentence in the image of eF-coerce is a qF-sentence.

Definition 3.3.3. Let Q = (V1,Va,...,V,) be a sequence of quantifiers from QSET. Let M be a
first order model and D be a probability measure on its universe M. An g-tree in (M, D) with
levels @ is defined as a tree in M with height n such that:
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1. if v = 3, then all nodes at level k are nonempty subsets of M; level k is called a 3-level.
2. if Vi, =V, then all nodes at level k are M; level k is called a V-level.

3. if v, = QZF, then all nodes at level k are subsets of M with D-measure at least ¢; level k is
called a Q7 -level.

4. if Vi = 7, then all nodes at level k are subsets of M with D-measure greater than e; level k
is called a Q2 -level.

Let @ := V271 -+ Vax,d(Z) be a g-sentence. A g-tree in (M, D) for & is defined as a g-tree
in (M, D) with levels (V1,..., V,) with the additional property that

(S) for every bran (a; € Vi)I 4,
M E 6(@).
When ® and (M, D) are clear from the context, we will simply use the term g-tree.

Ezample 3.3.4. Let M = [4] and D be the uniform distribution. The following g-tree in (M, D)

{1}

J

{1,2,3}

P I

{2} {3} {4}

is a g-tree with levels Q for Q@ = (3,95,,97), (Q7.,3,3), and (Q7,97,,,Q7), but not for Q =
(3,¥,3) or (Q7,,,95,,Q7,). Thus T can be an eE-tree with levels @ but not necessarily be a g-tree
with levels @, as V is interpreted differently.

It is also a g-tree for ® if ® = JxQ7,,y3z[xr +y = 2| but not if & = JVy3Iz[z +y = 2].

The following g-tree in (M, D)

{1,2,3,4}

{3,4} {1,2}

is a g-tree with levels @ for @ = (¥, 3) and (Q7,Q;,,) but not for @ = (3,V) or (V,9Q;,).

It is also a q-tree for @ if ® = Vady[z # y] or Q7 Q5 y[x # y] but not if & = VaVylz # y] or
ngaz/zly[x # yl.

Clearly, g-trees are generalizations of both eE-trees and eF-trees: An eE-tree in (M, D) for ® is
exactly a g-tree in (M, D) for eE-coerce(®). Likewise for eF-trees.

Definition 3.3.5. A pair (M, D) of first order model M and probability measure D on M is said
to g-satisfy a g-sentence @ := Vqx1 -+ V,,2,0(F), written

(M, D) £ @,
if there exists a q-tree in (M, D) for ®.
A g-sentence ® is said to be g-satisfiable if some (M, D) g-satisfies P.
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Again, g-satisfiability is just a generalization of eE- and eF-satisfibiliy: for a first order sentence
v,
(M,D) = ¥ <= (M, D) = eE-coerce(¥).

The obvious analogue holds for eF-satisfiability as well.

Definition 3.3.6. Let Q = (V1,...,V,) and Q' = (V],..., V). Let (M, D) be a pair of first order
model and probability measure. Suppose T and T" are g-trees in (M, D) respectively with levels @
and @'. The wedge product T'A T’ is defined as the g-tree with levels (Vy,...,Vp,V),...,V..)
(thus of height n + m) constructed as follows:

For every leaf node V in T and every element a € V, set a copy of T’ as the subtree
under a.

The expression Ty ATs A --- AT}, is parsed as
(T ANTR) A=) NTy).

Ezxample 3.3.7. Let T be
{1,2,3}

{2,3} {3} {1,4}

and T” be the singleton tree {1}. Then T'A T" is the g-tree

{1,2,3}

l

{2,3} {3} {1,4}

P N R AN

{1} {1} {1} {1} {1}

Proposition 3.3.8. Let ® := Vixy -+ Vpznd(Z) and ' := Viys - - V) ymd' () be g-sentences. Let
(M, D) be a pair of first order model and probability measure. Suppose T and T’ are g-trees in
(M, D) respectively for ® and ®'. Then T AT’ is a g-tree in (M, D) for the g-sentence

Vixy - v715[:71v/1y1 U v:nym[(b(f) A (b/(?j)]

Proof. We verify definition (8:3.3). Conditions (), @), @), and ) follow easily from the respective
conditions on T and T".
Each bran of T AT’ is a concatenation

<CL1 le, ey CLnGVn, b1 EWl, ey meWm>
of a bran (a; € V;)*_, of T and a bran (b; € W;)™, of T'. Thus
(M, D) (@) A ' (B)
by T and T"’s property So condition holds for T AT’ as well. O

This proposition immediately yields

Proposition 3.3.9. Let ® and @' be as above. A pair (M, D) simultaneously g-satisfies ® and P’
f
(M7'D) ):q Vizy - 'vnxnvllyl U v;nym[(b(f) A ¢I(g)]
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3.4 Finite cE-satisfiability

In this subsection we will show that eE-satisfiability is %9-complete for rational e strictly between
0 and 1. The main reason that we would like to work with rational € is the following set of tools
provided by Kuyper and Terwijn:

Lemma 3.4.1 (Kuyper-Terwijn inter-reduction [13][10]). Let
e L be a countable first-order language not containing function symbols or equality,
o L be the language obtained by adding an infinite number of unary predicates to L, and
® ¢, €1 be rational such that

1. 0<e <e1 <1, or
2. 0<e1<¢ <1

Then there is a computable f mapping L-sentences to L'-sentences such that ¢ is eg E-satisfiable

iff (@) is elE—satisgable.
More generally 4, this reduction works “per quantifier”: For any € € (0,1) N Q, there exists
a computable function F. mapping qE-sentences in L to L'-sentences such that the following are

equivalent:

1. there exists a pair (M, D) such that

(M, D) £ .

2. Fe(®) is eE-satisfiable.

Even though the theorem only applies to full satisfiability, the proof works exactly the same
for finite (and countable) satisfiability, because the only model construction in the proof is the
duplication of a given satisfying model a finite number of times, which preserves finiteness (and
countability). Thus

Lemma 3.4.2. Let L and L' be defined as above. For any e € (0,1) N Q, there exists a computable
function F. mapping qE-sentences in L to L'-sentences such that the following are equivalent:

1. there exists a pair (M, D) with M finite such that

(M, D) E9 0.
2. Fe(®D) is finitely e E-satisfiable.

In particular, we are interested in the following case

Lemma 3.4.3. Let £ and L' be defined as above and fix rational € € (0,1). There is a computable
function f. such that, for any finite set of rationals J C QN [0,1] and L-sentences {V4}acs, the
following are equivalent:

1. there exists a pair (M, D) such that, for each o € J, (M, D) is a finite a-model and

(M, D) o U,

2. f{¥atacs) is finitely e E-satisfiable.

4see [I3, remark 2.14].
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Proof. We have
(M, D) =a ¥y <= (M, D) =% €E-coerce(¥,,).

By repeated applications of proposition ([3.3.9), (M, D) simultaneously g-satisfies all eE-coerce(¥,)
iff (M, D) 4T for some g-sentence I'. Now apply lemma ([B.4.2]). O

Therefore, we could compute the simultaneous E-satisfiability over different error parameters
a € [0,1] by using only one fixed € € (0,1). This property of € € (0,1) turns out to be powerful
enough to allow the encoding of the halting set by sentences in eE-logic. It also distinguishes the
case of € € (0,1) from the case of € = 0, for which lemma (BZ3) is not applicable: whereas the
E-satisfiability of the latter is decidable by theorem (B.I3]), that of the former, as will be shown
next, is X¢-complete.

We now commence the first half of the completeness proof.

Theorem 3.4.4. Let L be any countable first-order language with an infinite number of unary
predicates and at least three binary predicates. Finite e E-satisfiability for L-sentences is ¥.9-hard for
rational 1 > € > 0.

Proof. The main idea of the proof, as remarked above, is that we want to reduce the halting problem
to finite eE-satisfiability. Specifically we will show that there is a reduction from the set of Turing
machines that halt on empty input (which is X9-complete) to the set of finite eE-satisfiables. The
proof is loosely based on the proof of Trachtenbrot’s theorem in Libkin [I5, p. 166] and the proof
of Y1-hardness of eE-satisfaction in Kuyper [10, Thm. 7.6]. Since by theorem ([B.43) there is a
reduction between finite egE- and €1 E-satisfiability in £ for any rational €g, €1 € (0,1), it suffices to
establish the case of € = %

Suppose that M = (Q, V, 4, g0, Qu, Q) is a single-tape Turing machine, where
e () is the set of states,
e V is the tape alphabet,

® o is the initial state,

Q. and @, are respectively the sets of accepting and rejecting states, and

§:Q xV = QxV x{L,R} is the transition function.

Since we are only interested in Turing machines with empty input, V can be assumed WLOG to
be {0,1} with 0 representing the blank symbol.

In what follows, we break into three sections the proof for encoding the halting of M as a finite
%E-satisﬁability problem. Section 1 describes the first order language used. Section 2 constructs the
sentence ¥ which is finitely %E—satisﬁability iff M halts. Finally section 3 proves that ¥ indeed has
such a property.

Part 1 (The vocabulary). We define vocabulary
o = {min, max, N(-),=, <, R(-,-), T(-,-), H(:, "), (Sq('))QEQ}'

(The constants min, max in ¢ can be replaced by unary predicates, so the theorem as stated will
still stand.)
The intuition behind this vocabulary, which will be formalized by the axioms below, is as follows:

e Elements satisfying N will be “roughly” a set of positive measure, linearly ordered (by <)
elements that will be our measure of time and space, such that min and max are the minimal
and the maximal elements of this chain — “Roughly”, because using eE-logic, we cannot
specify that elements of measure 0 do not satisfy N (in fact, we cannot say anything about
elements of measure 0). A nontrivial part of this proof is used to maneuver around these
“phantom elements”.
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e = is a binary relation mimicking equality. We avoid using true equality so that we can use the
computable reductions of theorem (B43)).

T(p,t), where p,t € N, represents that at time ¢, there is a 1 at position p on the tape.

H(p,t), where p,t € N, represents that at time ¢, the head of the machine is at position p.

Sq(t), where t € N, represents that at time ¢, the state of the machine is g.

e R is an auxiliary relation that is used to force certain measures to be equal. Its purpose will
become more clear over the course of the proof.

Part 2 (The encoding sentence). In this section we define the sentence ¥ that encodes whether M
will halt. ¥ will be of the form

U= f({Ta}taes)
where
e I- (0113
e [ is the reduction function f. from lemma [B43) for J and e = %, and
e T, is a sentence for each « € J.

Thus ¥ is finitely epE-satisfiable iff each T, is finitely aE-satisfiable.
For a formula ¢ in prenex normal form, we recursively define ¢™ (called ¢ relativized to N):

1. if ¢ is quantifier-free, then ¢~ = ¢
2. if ¢(§) = Vap(z,7), then ¢(§)" = Va(N(z) = ¢ (z,5)")
3. if (¢) = Jwip(x, §), then ¢(§)N = Jz(N(z) Ap(z, V).

(To). To will consist of the conjunction of the following sentences (because Vz here should be
interpreted as “for almost all x”, or, as we only deal with finite models here, as “for all x with
positive measure,” we will write Y for the sake of clarity):

1. All axioms of equality:

(a) = is an equivalence relation:

Yx(x:x)
VaVylr =y =y =)
YnyYz(x#y/\y#z%x#z)

(b) the indiscernability of identicals: for each atomic formula m,

w(al,...,an)/\/\aiibi—>ﬂ'(b1,...,bn)

i=1
2. < is a linear order on all elements of N with nonzero measure:
(YaYylr=yvae<yvy<a)?

(YaYylo =y = (@ <y ey <)

(YnyYz(x <yAy<z—ax<2)V
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3. min and max are respectively minimal and maximal in <:
N (min) A N (max)

(Yx(ac = min V min < 2))V

(Yx(:z: = max V 2 < max))V

4. Initially, M is in state qg, the head is in the first position, and the tape has all zeros:

S, (min)

Vp(p = min » H(p, min))
(¥ p=T (p, min))"

5. For any time ¢, M is in a unique state:

N

iV Sdt A N ~(Se() A Sy (0)

q€eQ q,9'€Q

6. A set of sentences encoding the transition function 6.

First we define a binary relation . The expression ¢’ > t is a shorthand for the conjunction
of

e “t’ is greater than ¢”
t<t

e “for all s, s is less than ¢’ iff s is at most ¢”

Ys(s<t’<—>(s<t\/s$t))

e “for all s, s is greater than ¢t iff s is at least ¢”
Vst <s ¢ (t' <sVvit =5s)).
Thus ¢’ > ¢ says that “¢’ is a successor or t.”
For any formula ¢(t, ¥), let ¢(t+ 1, Z) be defined as the shorthand for the following relativized
implication

Yt =t = ot @),

Hence ¢(t 4 1, ) states that “¢ holds for the successor of t”:
Similarly, let ¢(¢t — 1, Z) be defined as the shorthand for

Yt (=t — ot @)]".
The expression ¢(t — 1, %) asserts that “¢ holds for the predecessor of ¢.”
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These shorthands are well-defined when applied to multiple variables. For example, ¢(p—1,t+
1) is the shorthand for

Vo' (o= = o', t+ 1)
= P p > VO -t o, )Y
= W'Y A=t — o )Y
where in the middle — means “expands into.”

Now we turn to the task of encoding the transition function.

Suppose the transition function has rule §(¢g, w) = (¢’,w’,S) for some ¢ € Q;w,w’ € V; S €
{L,R}. For each ¢ and w, we define the sentence

pas = Y PYH(COND(p, 1) — TRANS(p, )]
where COND and TRANS are constructed as follows.

(a) COND(p,t) checks that “the machine M at time ¢ has state ¢, has its head pointing at
cell p, and the character under the head is w”: explicitly, COND(p, t) is the conjunction
of the following:

i. “The state of M is ¢ at time ¢”

Sq(t)
ii. “The head of M is above cell p”

H(p,t)

iii. “The character at cell p is w” (exactly one of the following sentences belongs to the
conjunction, depending on which condition is satisfied)

T(p,t) fw=1
-T(p,t) fw=0
(b) TRANS(p,t) asserts that “M at time ¢ + 1 has state ¢’ and has moved S from cell p;

the cell at p now contains the symbol w’”: explicitly, TRANS(p, ) is the conjunction of

the following (in every set of alternatives, exactly one of the sentences belongs to the
conjunction, depending on which condition is satisfied):

i. “The state of M is ¢’ at time ¢ + 17
Sy (t+1)

ii. “At time ¢t + 1: If S = R, the head of M is at cell p+ 1. If S = L and p = min, the
head of M is at cell min. Otherwise, the head of M is at cell p — 1.”

H(p+1,t+1) ifS=R
(p=min - H(p,t+ 1)) A(~p=min - H(p+ 1,t+1) if S=L

iii. “At time ¢ + 1, cell p contains symbol w’”

Tp,t+1) ifw =1
-T(p,t+1) ifw =0
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iv. “All cells other than those involved in (6(b)ii) are unaffected”.
Yplp = pA-p - p— (TR, 1) & T(p,t+1)] if S=R
Yp o =pA-p =P > (TR & T t+1)] i S=1L

7. We assert that at time max, M arrives at an accepting or rejecting state:

\/  Sy(max)

4€EQ.UQr

8. For reasons that will become clear later, for all x, y of positive measure, we need to let R(z,y)
hold only when y is not in NV:

+<C

zYy(R(z,y) = ~N(y))

This finishes the description of the sentence Ty.
(T: and Ts). T1 and Ts are respectively the sentences Vz(r = min) and Vz(r # min).

f1 (T 1 ) and fs (T %) are simultaneously 1E-satisfiable iff the measure of min is at least 3 and the

measure of all other elements is at least %. Thus T 1 and T 3 force the measure of min to be exactly
1

(T 1 ). T 1 is the following conjunction of sentences (because the Yz here should be interpreted
as “for a set of z with measure at least %”, we write >V; for the sake of clarity):
>1/2

1. the set of elements in N takes up measure exactly %:

V zN(x) AN V z-N(z)

>1/2 >1/2

2. we want each element of N to have measure equal to the total measure of all greater elements.
This is where the padding relation R is used.

First, for ¢(x) a formula of a single free variable x, we define the following shorthand

Vo€ N(g@) = ¥ a(N(x) A b))

>1/2
The RHS says “for a set X of measure at least 1/2, X C N and every element of X satisfies
¢.” If we assume that () is 3E-satisfied, then "Vre N(é(x))" is equivalent to “all elements
in N of positive measure must satisfy ¢.”
Secondly, for formula 1 (y, Z), we define the following shorthand
Prle(y, D) =1/27 =LY yd(y, DALY, vy, D))

>1/2 >1/2

The conjuncts on the right respectively assert that “the probability of y satisfying ¢(y, )
is at least 1/2” and “the probability of ¢’ not satisfying ¢ (y', %) is at least 1/2.” Hence
"Pr,[¢(y, Z)] = 1/27 says that “the probability of y satisfying ¢ (y, &) is exactly 1/2.

Finally, we define the actual sentences in the conjunction of T 1
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(Recall that A has precedence over V for parsing)
"Vre N(z =max V"Pr[R(z,y) VN(y) Az <y]=1/27)"
Yy

"Vre N(z =max V "Pr[R(z,y) Vo =y]=1/27)"
y

If clause [8) of Ty is OE-satisfied (“If R(z,y) holds then y has measure 0 or is not in N”),
then the disjuncts R(z,y) and N(y) Az < y are disjoint. Therefore, the above two sentences
together express “for all x in N that’s not max and not null, the measure of the strict final
segment of z is the same as the probability of z itself; they are both (3 —Pr,[R(z,y)]).” Forcing
the equality of these two measures is the purpose of the predicate R(-,-), which has otherwise
no uses.

This concludes the construction of the reducing sentence V.

Part 3 (The reduction). Now we show that M halts if and only if ¥ has a finite E-satisfying model.
(M halts — U satisfiable). Suppose M halts in time m. We define the finite satisfying
model (W, D) thus:

o Let the universe W be the set {1,2,...,2m}.

o Let =" be true equality =.

o Let NV be {1,2,...,m}

o Let a <" b for a,b € W be defined to agree with the natural ordering on W.

o Letm_inwzlandwwzm.

o Define the measure D(i) = D(i +m) = 27! for i € [1,m — 1], and define D(m) = D(2m) =
27,

o Define RW(i,5) iff i > j—m >1

o Define H" (i, j) iff < m and M'’s head is at position i at time j.

o Define T"(i, 5) iff j < m and the tape’s symbol at position i at time j is 1.

o Define S}V (i) iff M is in state ¢ at time i.

Since all elements of W have positive measure, all V quantifiers in T are interpreted classically.
Therefore one can easily check that (W, D) OE-satisfies T.
As min = 1 has measure %, T% and T% are satisfied.

N obviously has measure 1/2, so the first clause of T 1 is satisfied.
Finally, consider clauses (@) in T 1.

For a fixed i < m, the measure of {j : RV (i,j)} is 3% _, 27%"1 =271 —27"~1 and the measure
of j € NW such that i < j is 3,4, 27F~1 +27™ = 27"~ Thus, for this fixed i,
1
Pr[R(i,j) vV N() Ni<j] = 5.
j~D 2

Letting i vary, we can conclude that “for all z in NJV, either z is max"V or the probability of y
such that R(z,y) vV N(y) Az <y holds is exactly 1/2.” In other words, the following clause in T

"Vare N(z =maxV Pr[R(z,y) VN(@y) Az <y]=1/2")"
0 Y
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holds in (W, D).
Similarly, as D(i) = 27! for any i < m,

Pr[R(i,j)Vi=j] =
PrirG ) visil= 3,

so the following clause in T 1
’_>V03: € N(z =max V "Pr[R(z,y) Ve =y]=1/27)"
Y

is 1E-satisfied by (W, D).
Therefore (W, D) 3E-satisfies all of T 1, as desired.
(M halts <= VU satisfiable). Let (W, D) be a finite 3-model. By proposition ([2.3.4), we can

assume D is defined on all subsets of W and is a probability model. Suppose (W, D) = 1 . We

wish to show that the Turing machine M halts. Our strategy will be to show that min"” and max"V

have positive measures, and every element between them has positive measure. Then checking the
sentences T encoding M becomes straightforward, as V is interpreted classically on this linear chain.

Let N}V be the subset of elements of NV of positive measure. By the axioms of equality of
To, the restriction =}¥ of ="V to N}V is an equivalence relation and satisfies the indiscernability
of identicals. Therefore W = W/=}V as first order models, and for all €, (W, D) is e-elementarily
equivalent to the probability model (W/=}", D), where D’ is defined by assigning each equivalence
class [a] (as a point of W/=}V) the D-measure of [a] as a set. We are thus justified in assuming that
= is true equality on NJV henceforth.

By T1 and Ts we know that D(min") = 1, so min" € N}V. By clause () of T1 we know that
D(NW) = %

Any V quantifier relativized to N can be interpreted classically on NJV. Thus, by clauses (2)
of Ty, <"V defines a linear order on N}V, and, by clauses (@) of Ty, min" is the unique minimal
element. However, it is not immediate whether max"” has positive measure and thus is the unique
maximal element of NJV.

But by clause @) of Ty, we have W, D) o VaVy(R(z,y) — —N(y)). Then, for a fixed z of
positive measure, the set of y where R (z,y) holds intersects NV with measure 0. Thus, by clauses
@) of Ty, if a € N}V is not max"V, then the equations

1
PriR(ay)l+ PriN@)na<yl=5  and
.. 1
Prlf(a. )]+ Prlo=y] =g
hold. For such an a,
Pr [N(y) Aa <y] = Pr [a=y] =D(a). (*)

y~D y~D

Lemma 3.4.5. max"’ € N&N

Proof. Let 2"V denote the immediate successor of min" in NJV; it exists since 1/4 = D(min") <
D(N") =1/2 and min" is minimal in the finite set NJV. Suppose 2"¥ # max”V, and

7:=D2") and ¢:= P%[N(y) A2V <yl
g~
Then we have
r+€= Pr[N(y) Amin” <y = D(min”) = 1, and

y~D
T=¢, by @)
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Hence D(2V) =7 =¢=1.
In general, if the (n — 1)-fold successor n*V of min" has probability 2=~ for each n < m, then
the (m — 1)-fold successor m"Y of min"V exists, and a) is either max", or b) satisfy the following

equations
Pr[N(y) Am —1" <yl = Pr[N(y) Am"Y <y] +Dm") and
yeD yeD
D(m™) = PrIN(y) Am™ <y by @),
y

which, along with

1/2—2"™+ Pr[N(y) Am—1" <y
yeD

m—1
= D(wmin) + > D)+ PrIN(y) Am=1" <y

— Pr[N@y)=1/2,

yeD

imply Pryep[N(y) Am — 1" < y] =27™ and thus D(m"V) =271

Now assume for the sake of contradiction that D(max"V) = 0. Then m»Y = max" for no finite
m. This would mean that the m-fold successor of min"V exists for all finite m. But NJV is finite, so
this cannot be true. Therefore max”Y must have positive measure, as desired. [ |

We have thus shown that NJ is a linear chain ordered by <", with minimal element min"
and maximal element max"V. This structure allows us to interpret the sentences in Ty encoding the
Turing machine M classically.

Indeed, we can construct the computation history of M as follows:

At time ¢,

— the tape has a 1 at position p iff T'(p,t) holds,
— the head of M is above cell p iff H(p,t) holds, and
— the state of M is g iff S,4(¢) holds.

Now, aided by the verbal translation provided in the description of Ty, we can verify that

o Initially, M is in state go, the head is in the first position, and the tape has all Os (clauses (4]
of To)

o At any time, M is in one state and one state only (clause (&) of Ty).

o The tape and M’s head position and state are updated correctly according to ¢ (clauses (6]
of Ty). In particular, all cells not specified by the update rule have the same symbol after the

update (clauses (6(b)iv)).

o At time max"’, M is in either an accepting or rejecting state (clause () of Ty).

Hence, the %E—satisfaction of ¥ implies M halts.

Finally, to complete our proof that finite eE-satisfiability is X{-complete, we prove

Theorem 3.4.6. For both X = E and X = F, finite eX-satisfiability is X9-definable for rational
e € (0,1) and any first order language.
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Before the proof, we will need the following perturbation results, which allow us to “shake up”
the probability measures of each e-model into a nicer form.

Lemma 3.4.7. Suppose (M,dom D, D) is a measure space such that M is finite and D is defined
on all subsets of M. Then for any § > 0, there exists a measure D' defined on all subsets of M such
that

all values of D' are rational,

D(S) = D'(S) whenever D(S) is rational and positive,

maxgcy |D(S) — D'(S)| < 9§, and

D(S) >0 for all S C M

Proof. WLOG let M = {1,2,...,m}. Then D is uniquely determined by its values on i € M. Let
p = (pi)7, represent this vector. Thus D(S) = vg-p where vg is the vector whose value at position
iis 1 if i € S and 0 otherwise.

Let (Sj)le be an enumeration of all S C M such that D(S) is rational and positive. We can

k

then form the matrix R with row vectors vg; and the column vector q = (D(S};))}_;. Immediately,

we have
Rp =q.

Since all entries of R and q are rational, by Gaussian elimination, we can reduce the associated
matrix R|q to row echelon form R’|q’ with all rational entries. It’s then clear that we can perturb
each value of p by less than §/|M| to get p’ such that 1) each entry of p’ is positive and rational,
and 2) R'p’ = ¢’ and thus Rp’ = q and all positive rational values of D are unaffected. Extending
the point measure p’ linearly to a measure over all subsets of M gives the desired result. O

Lemma 3.4.8. Let € € (0,1) be rational. If (M, D) is a finite e-model, then for some measure D’
with dom D’ = P(M) such that D'(x) is rational and positive for allx € M, (M, D’) is e-elementarily
equivalent to (M, D).

Proof. By proposition (234]) we may assume that D is defined on all subsets of M. Using lemma

B47) with

5= %min L=, min [D(S) - (1=l | >0.
D(S)¢Q

there is a measure D’ defined on all subsets of M such that D’ has all rational and positive values,

D’ differs from D only on sets of irrational D-measure, and this difference is uniformly bounded by

. In particular, D(S) > 1 —¢ <= D'(S) > 1 —¢, so (by an easy induction argument) (M, D) is

e-elementary equivalent to (M, D’). Therefore (M,D’) =, ¢. O

For the following proof, we do not actually need D’(z) to be positive, but this lemma provides
an alternative justification for the assumption in the proof of (B2ZTII).

Proof of thm (3.4.6]). Let (t*)i>1 be an effective enumeration of all finite sequences of w (for example
by Godel’s 8 function). For each finite sequence t* let |t*| denote the length of the sequence, let t%

denote the jth element of t’, for 1 < j < [t’], and let ||t|| denote the sum of its elements Z‘]t;‘l th.
Let o be the vocabulary used in ¢. To test whether a sentence ¢ is eE-satisfiable by a finite model,
we inspect t’ in sequence for i = 1,2, .. .. For each t’ we form all classical models with signature o on
t?| elements {1,2,...,[t|}. There are only a finite number of them since ¢ is finite. We turn these
classical models into e-models by imbuing them with the measure D defined by D(j) = t}/||t*|. We

can then mechanically check whether any of them satisfy ¢.
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If (M, D) =, ¢ for some finite e-model (M, D), then WLOG we can assume M = {1,2,...,m}
for some m, D to be defined on all subsets of M (by proposition (2.3.4))), and D to have all rational
values (by lemma (34.8])). Thus there exists an integer r such that for each 1 <i <m, D(i) = r;/r
and r; is an integer. Our algorithm described above will then terminate before k + 1 outer loops,
where t* = (r;)™ .

This shows that the eE-satisfiability problem for rational e is ¥¢-definable. The eF-satisfiability
case is resolved identically. O

Combined with theorem ([B.4.4), this result shows

Corollary 3.4.9. Let L be a countable first order language with an infinite number of unary relations
and at least three binary relations. For any rational € € (0,1), finite e B-satisfiability is X\ -complete.
Equivalently, finite e F-validity is 119-complete.

3.5 Finite and Countable e¢E-validity

Like the unrestricted case, the set of finitely (resp. countably) OE-valid sentences also coincides with
the set of finitely (resp. countably) classically valid sentences. With Kuyper’s inter-reduction result
for eE-validities and the X{-definability derived from the last section, we can characterize eE-validity
over finite models precisely as I19-complete whenever € € Q.

Theorem 3.5.1. For any countable first order language, the set of finitely 0E-valid sentences is
exactly the set of finitely classically valid sentences. The set of countably OE-valid sentences is
exactly the set of classically valid sentences.

Proof. Obviously every finitely classically valid sentence is a finitely 0E-valid sentence.

Now suppose ¢ is finitely OE-valid. Then for any n, (M, D) k= ¢ for all classical models M
of size n and D the uniform distribution. But in such 0-models, V has the same interpretation as
classically. Hence all finite classical models satisfy ¢, as desired.

The proof works the same for countable validities, except that for countably infinite models, we

1

instead ascribe the exponential distribution D(n) = 5. O

Immediately,

Corollary 3.5.2. Let L be any first order language and S be a set of sentences in L. The following
are equivalent:

o The set of finitely (resp. unrestricted) classically valid sentences in S is decidable.
o The set of finitely (resp. countably) OE-valid sentences in S is decidable.

In any first order language with at least one binary relation, the set of finitely classically valid
sentences is I19-complete [I5, p. 166]. Therefore,

Corollary 3.5.3. In any first order language with at least one binary relation, the problem of
determining whether a sentence is finitely 0E-valid is T19-complete.

Likewise, as classical validity in any language with at least one binary relation is ¥9-complete
[24], we have in the countable case

Corollary 3.5.4. In any first order language with at least one binary relation, the problem of
determining whether a sentence is countably 0E-valid is X3 -complete.

There exist computable reductions for eE-validity just like in the case of eE-satisfiability (see

proposition (B41])):
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Proposition 3.5.5 (Kuyper inter-reduction [12]). Let
e L be a countable first-order language not containing function symbols or equality, and
e L' be the language obtained by adding an infinite number of unary predicates to L.

Then, for all rational 0 < €y < €1 < 1, the set of normally eoE-valid L-sentences many-one reduces
via a computable function to the set of normally €1 E-valid L-sentences.

More generally E, this reduction works “per quantifier”: For any € € (0,1) N Q, there exists
a computable function F. mapping qF-sentences in L to L'-sentences such that the following are
equivalent:

1. there exists a pair (M, D) such that
(M, D) =9 0.

2. Fe(®D) is eF-satisfiable.

Again, the proof for this theorem and the construction of the reduction function given in [12]
carry over almost identically when we restrict our attention from “normally eE-valid” (validity over
all probability models) to “finitely eE-valid” (validity over all finite probability models — which is
equivalent to the validity over all finite models by ([234)): the method of proof is the duplication
of a given model a finite number of times, and this procedure preserves finiteness of e-models. This
observation remains true in considering countable e-models.

Therefore, we have, by duality, the following two eF-analogues of (B:42) and (343)).

Lemma 3.5.6. Let £ and L' be defined as above. For any e € (0,1) N Q, there exists a computable
function F. mapping qF-sentences in L to L'-sentences such that the following are equivalent:

1. there exists a pair (M, D) with M finite such that
(M, D) =9 0.

2. Fe(®) is finitely eF-satisfiable.

Lemma 3.5.7. Let L and L' be defined as above and fix rational € € (0,1). There is a computable
function fe such that, for any finite set of rationals J C QN [0,1] and L-sentences {U4}acy, the
following are equivalent:

1. there exists a pair (M, D) such that, for each o € J, (M, D) is a finite a-model and

(M,D) ko .
2. fe({%altacs) is finitely eF-satisfiable.

These two lemmas were used in the example section to express sentences over different error
parameters.

In B55), letting ¢g = 0, we obtain a computable reduction from finite 0E-validity to finite
eE-validity for any € € (0,1). By corollary (3.5.3)), we get

Corollary 3.5.8. For any language with an infinite number of unary predicates and at least one
binary predicate, finite e E-validity is 119-hard for rational € € (0,1).

5see [12} remark below thm 3.3].
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By theorem (3.4.6)) for the case of X = F, finite eF-satisfiability is %9-definable for any language.
By duality, finite eE-validity is I1-definable. Hence, in combination with the above corollary, this
implies

Theorem 3.5.9. For any language with an infinite number of unary predicates and at least one
binary predicate, finite e E-validity is 119-complete for rational € € (0, 1).

Along the same lines, for the countable case, we have

Corollary 3.5.10. For any language with an infinite number of unary predicates and at least one
binary predicate, countable ¢ E-validity is ¥9-hard for rational € € (0,1).

Finally, we mention a theorem of Terwijn.

Proposition 3.5.11 (Terwijn [23]). Let ¢ be a sentence. ¢ is finitely classically valid iff ¢ is
countably e E-valid for every e > 0.

4 Future Work

4.1 The Countable Case

As displayed by table ([B]), we still do not know much about eE-logic over countable e-models. Most
egregiously we have no idea of the computability of its satisfiability problem. Looking over the entries
of tables (), @), and (B]), the pattern seems to favor the possibility of countable eE-satisfiabilty
being I19-hard or even complete. Obviously our proof for the finite case would not carry over, but
it is conceivable that replacing the halting set with a I19-complete set would work out naturally.
Alternatively, we could look at the dual problem of reducing the halting set to countable eF-validity.

4.2 Reducing Language Requirement

In our results, the requirements of an infinite number of unary predicates and at least three binary
predicates are likely not optimal. In classical first order logic, these requirements can be collapsed
to the single requirement of one binary predicate through graph theoretic or set theoretic encodings.
However, in €E- and eF- logic, these methods do not seem to play well with the additional structure
of a probability space. In any case, for our theorems to be more relevant to applications, the
number of unary predicates must be brought down to a finite number, whether strengthening our
undecidability or breaking into decidability.

4.3 qg-Logic and Trees

We developed g-sentences and other g-concepts only to arrive at results for eE- and eF-logic, but
they can as well be studied on their own. In particular, an obvious definition of g-logic would make
it a stronger version of Keisler’s probability logic which only allows the quantifiers QZ and Q2.
Keisler’s work [7] can then be applied in most aspects to such a g-logic.

Similarly, one could investigate the algebraic structure of eE-, €F-, and g-trees, whose properties
we have not fully exploited. It should not be hard to see that, for a fixed e-model (M, D) and a fixed
(q-)sentence @, there is a natural partial order and a join operation on trees (M, D) for ® of each
class. Instinctively one could ask, under what circumstance does a meet operation exists? Deeper
research into the semilattice structure of these trees could reveal information on the computability
of eE and eF fragments not discussed here.
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4.4 Irrational €

There are several insufficiencies in current techniques with regard to deducing facts about irrational
€s:

(i) Terwijn and Kuyper’s proofs of the inter-reduction theorems fundamentally require the ratio
€o0/€1 to be rational. So while this would imply we have inter-reductions between, say % and

ﬁ, we cannot say much about the relative difficulties of % and LQ Surpassing the obstacles
to generalize to irrational € would necessitate brand new methods, which could also eliminate
the infinite unary predicate restriction.

(ii) Our proof of the X{-hardness of finite eE-satisfiability depends crucially on the ability of %E—
logic to force the measures of two sets to be equal. Without a reduction from %E— to eE-validity,
we cannot conclude that eE-validity is X¢-hard.

(iii) In order for a linear program to be solved in finite time, all arithmetic operations over the field
generated by its coefficients must be total computable. This holds for the rational and general
number fields, but not for the field of computable reals, for which the comparison function is
not total. Thus our proof of decidabilities in monadic relational languages do not carry over
to the general case.

Fortunately, as our example section illustrate, in many cases only the relative magnitude of €
matters. This observation also boosts the likelihood that our computability results hold for general
€ as well.

4.5 Classical Model Theory Techniques

Given the applications in section (24]) and the initial motivation of ¢E-logic, we see that it has an
intimate connection with computational learning theory. At the intersection of CLT and classical
model theory is the concept of VC dimension [6][14][1][2], which we mentioned briefly. It could be
possible to reconcile the results of these two disciplines in eE- and eF-logics, to the benefit of all
involved.

As our examples also hinted, many techniques in finite model theory could be converted to
versions for our probability logics. One could also experiment with adding new means of expressions
like the BIT relation, a canonical ordering, counting operators, etc. An analogue of descriptive
complexity could be developed; given the abundance of probabilistic quantifiers in classes like BPP,
PP, PCP, and so on, it is indeed plausible that one could equate one of these complexity classes with
a description class in eE-logic.

A version of Ehrenfeucht-Fraissé games [15], another common tool in finite model theory, for
eE-logic could also have connections to the malicious advisary learning model [8][20].

4.6 Computational Complexity

In addition to developing descriptive complexity, one could also explore typicaﬁ -case complexity in
eE-logic.
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