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1 Introduction

Traditional encryption schemes, both symmetric and asymmetric, were not designed to re-
spect any algebraic structure of the plaintext and ciphertext spaces, i.e. no computations can
be performed on the ciphertext in a way that would pass through the encryption to the un-
derlying plaintext without using the secret key, and such a property would in many contexts
be considered a vulnerability. Nevertheless, this property has powerful applications, e.g. in
outsourced (cloud) computation scenarios the cloud provider could use this to guarantee cus-
tomer data privacy in the presence of both internal (malicious employee) and external (outside
attacker) threats. An encryption scheme that allows computations to be done directly on the
encrypted data is said to be a homomorphic encryption scheme.

Some schemes, such as ElGamal (resp. e.g. Paillier), are multiplicatively homomorphic
(resp. additively homomorphic), i.e. one algebraic operation can pass through the encryption
to the underlying plaintext data. The restriction to one single operation is very strong, and
instead a much more powerful fully homomorphic encryption scheme that respects both addi-
tions and multiplications would be needed for many interesting applications, as it would allow
arbitrary Boolean or arithmetic circuits to be evaluated. The first such encryption scheme was
invented by Craig Gentry in 2009 [22], and since then researchers have introduced a number of
new and more efficient fully homomorphic encryption schemes [11], 10} [7, 9] 211 29, [, 24} [15].

Despite the promising theoretical power of homomorphic encryption, the practical side
remained underdeveloped for a long time. Recently new implementations, new data encoding
techniques, and new applications have started to improve the situation, but much remains to
be done. In 2015 the first version of the Simple Encrypted Arithmetic Library (SEAL) was
released, with the specific goal of providing a well-engineered and documented homomorphic
encryption library, with no external dependencies, that would be easy to use both by experts
and by non-experts with little or no cryptographic background.

This documents describes the core features of SEAL v2.3.0, and attempts to provide a
practical high-level guide to using homomorphic encryption for a wide audience. For a more
hands-on experience we recommend the reader to go over the code examples that come with
the library, and to read through the detailed comments accompanying the examples. This is
particularly important for users of previous versions of SEAL.

The library is available through http://sealcrypto.org, and is licensed under the MSR,
License Agreement. For the license, see LICENSE. txt distributed with the code. This document
refers to the update SEAL v2.3.0-4, which contains some critical updates and minor API
changes over the first release of SEAL v2.3.0.


http://sealcrypto.org

1.1 Roadmap

In we give an overview of changes moving from SEAL v2.2 to SEAL v2.3.0, which
are expanded upon in the other sections of this document. In we define notation
and parameters that are used throughout this document. In we give the description
of the Fan-Vercauteren homomorphic encryption scheme (FV) — as originally specified in [21]
— and in we describe how SEAL v2.3.0 differs from this original description. In
we introduce the new notion of ciphertext noise and we discuss the expected noise
growth behavior of SEAL ciphertexts as homomorphic evaluations are performed. In
we discuss the available ways of encoding data into SEAL v2.3.0 plaintexts. In we
discuss the selection of parameters for performance, and describe the automatic parameter
selection module. In we discuss the security properties of SEAL v2.3.0.

2 Overview of Changes in SEAL v2.3.0

2.1 Small Modulus

SEAL v2.3.0 implements the “FullRNS” variant of the Fan-Vercauteren (FV) scheme, de-
scribed in [4]. In this scheme, expensive multi-precision polynomial coefficient arithmetic op-
erations over coefficient modulus are replaced with multiple fast and compact single-precision
operations. Consequently, coefficient modulus is composed as a product of several small mod-
uli. The SmallModulus class is created to store such small moduli.

2.2 Composite Coefficient Modulus

The concept of coefficient modulus ¢ in SEAL v2.3.0 is same as before. However, the modulus
construction and data type are changed in the new version. The coefficient modulus is con-
structed from the product of multiple small moduli, i.e., ¢ = q1 X g2 X ... qx. Consequently, the
coefficient modulus is defined using a vector of SmallModulus objects, which must be distinct
prime numbers, and at most 60 bits in size. For the performance reasons, the number k of
primes should be as small as possible. The overall coefficient modulus bit length is the sum of
all small moduli bit lengths, and it is this number (along with the polynomial modulus and
standard deviation of the noise distribution) that determines the security level—just like be-
fore. It is important to note that each SmallModulus must be NTT-enabled, i.e. be congruent
to 1 modulo 2x degree of polynomial modulus.

2.3 Encryption Parameters

In SEAL v2.3.0 EncryptionParameters is a lightweight object that carries a set of SEAL
encryption parameters and a SHA3 hash of them (hash block). The hash is used in new
method of input validation inside the library, namely, each method starts with checking the
hash of its input arguments at the beginning to ensure compatibility and correctness.

There are three parameters that the user must set: polynomial modulus (poly_modulus),
coefficient modulus (coeff_modulus), and plaintext modulus (plain_modulus). As in pre-
vious versions of SEAL, we provide default values for the coefficient modulus for differ-
ent values of the polynomial modulus, and these are now accessed through new functions
coeff_modulus128 (for 128 bits of security) and coeff_modulus192 (for 192 bits of secu-
rity). The security levels are based on the estimates in [13].



The standard deviation of the noise distribution (noise_standard_deviation) is by de-
fault set to 3.19, which is also what the default parameter security estimates assume is used,
but as before the user can change this to any value of their choice. The noise_max_deviation

parameter is no longer exposed in the public API, and is instead automatically set to 6x
noise_standard_deviation.

The decomposition bit count (decomposition_bit_count) is no longer an encryption
parameter. Instead, the user can generate evaluation keys with any decomposition bit count
they want using KeyGenerator. This makes it easy to use different evaluation keys at different
parts of a computation.

2.4 SEAL Context

SEALContext is a new class which is added to the library for three main purposes. First, it
validates a given set of encryption parameters, checking that they are valid for use in SEAL.
Parameter validation in SEAL v2.3.0 is not accessible from public APT as it was in the previous
version of the library, and is instead automatically performed once an instance of SEALContext
is generated. Second, in the process of validating the parameters, it computes attributes—or
qualifiers—of the parameters, and stores them for future use by other classes. The qualifiers
are set automatically by the SEALContext, and the only way to change them is by changing
the given EncryptionParameters accordingly. Third, all pre-computations needed by SEAL
are automatically performed when the SEALContext is created, and are stored by it for use
by other classes.

2.5 Plaintexts and Ciphertexts

The Plaintext and Ciphertext classes have been fundamentally changed. First, they can now
allocate their memory from any memory pool through the MemoryPoolHandle class, helping
with thread-contention in multi-threaded applications that need to create several plaintexts
or ciphertexts. In addition to previously familiar size parameters, they also have a capacity
property, describing the actual size of the memory allocation. The capacity can be set with
Plaintext::reserve and Ciphertext::reserve methods, allowing efficient resizings at a
later point. Both Plaintext and Ciphertext also support aliased memory allocation, i.e.
they can be made to point to any memory location. This can be important for memory
locality in some applications.

The Ciphertext class stores a hash block of the encryption parameters that it was created
with. Thus, the intention is that the hash being correct ensures the validity of the Ciphertext
for use with the encryption parameters. For this guarantee to work, the user cannot directly
modify the data of the Ciphertext, unless of course the Ciphertext is aliased, in which case
the user explicitly takes responsibility for managing their memory correctly.

In SEAL v2.3.0 the plaintext modulus is also represented by a SmallModulus object. Unlike
previous versions of SEAL that allowed arbitrary precision plaintext moduli, SEAL v2.3.0
restricts this parameter to be any integer up to 60 bits.

2.6 Key Generation

There are several changes to key generation. First, constructing a KeyGenerator automatically
generates the public and secret key pair. Next, KeyGenerator can be used to construct several
sets of evaluation keys with different decomposition bit counts; note that the decomposition



bit count is no longer one of the encryption parameters. Third, similar to evaluation keys,
KeyGenerator is used to create Galois keys with the KeyGenerator: :generate_galois_keys
method, which are used for slot permutations (Evaluator: :apply_galois) and slot rotations
(Evaluator: :rotate_rows, Evaluator: :rotate_columns). In SEAL v2.3.0 the decomposi-
tion bit count can be at most 60.

2.7 PolyCRTBuilder

The PolyCRTBuilder class has been slightly changed in SEAL v2.3.0. It supports a 2 x (n/2)
matrix view of batching slots. The matrix is always expressed in flattened form as a length n
vector, where the first n/2 elements represent the first row of the matrix, and the next n/2
the second row. Batching and unbatching (PolyCRTBuilder: : compose and PolyCRTBuilder
: :decompose) methods convert a plaintext matrix into a plaintext polynomial, and back.
Another set of overloads operates on a plaintext polynomial in-place, where the plaintext
polynomial coefficients represent the matrix entries. The slot permutations mentioned earlier
operate on the matrix entries.

2.8 Ewvaluator

Despite of all the fundamental changes in SEAL v2.3.0 in low level arithmetic operations,
Evaluator class API remains almost the same as before, except for some small changes in
method signatures, and a few new methods. All the methods in this class are defined as void
methods now, i.e. they do not return any values and instead modify the arguments in-place.
Moreover, Evaluator: :relinearize API has been changed so that it gets evaluation keys
as an input argument, and always relinearizes down to size 2. Evaluator: :apply_galois,
Evaluator: :rotate_rows, and Evaluator::rotate_columns methods are new, and take
Galois keys as an input argument. The two rotation operations manipulate the rows of the
batched matrix entries.

2.9 Memory Pools

Memory management in SEAL has for a long time utilized a memory pool for improving the
allocation efficiency, and in SEAL v2.3.0 the memory pool internals have been substantially
improved. Several features of the MemoryPoolHandle class have been improved in SEAL v2.3.0,
and some new concepts are added. First, the user can create thread-unsafe memory pools
with better performance. This feature should be used only when the applications perform
in single-threaded state. By default, MemoryPoolHandle allocates thread-safe memory pools.
Users can also output the amount of memory allocated by the memory pool. In particular,
the MemoryPoolHandle: :alloc_byte_count method returns the number of allocated bytes
which can be used for memory management and application profiling. We will not discuss
memory pools further in this document, as they are very specialized feature, but are critical
to understand when developing multi-threaded applications. For more information, we refer
the reader to the examples coming with the code.

3 Notation

We use |-], [], and |-] to denote rounding down, up, and to the nearest integer, respectively.
When these operations are applied to a polynomial, we mean performing the corresponding



opearation to each coefficient separately. The norm || - || denotes the infinity norm and ||-||

can

denotes the canonical norm [16], 23]. We denote the reduction of an integer modulo ¢ by [-];.
This operation can also be applied to polynomials, in which case it is applied to every integer
coefficient separately. The reductions are always done into the symmetric interval [—t/2,t/2).
log, denotes the base-a logarithm, and log always denotes the base-2 logarithm. below
lists commonly used parameters, and in some cases their corresponding names in SEAL v2.3.0.

Parameter |Description Name in SEAL (if applicable)
q Modulus in the ciphertext space (coefficient modulus) of the |coeff_modulus
form ¢1 X ... X qr, where ¢; are prime
t Modulus in the plaintext space (plaintext modulus) plain_modulus
n A power of 2
z" 4+ 1 |The polynomial modulus which specifies the ring R poly_modulus
R The ring Z[z]/(z™ + 1)
R, The ring Z,[z]/(z™ + 1), i.e. same as the ring R but with
coefficients reduced modulo a
w A base into which ciphertext elements are decomposed during
relinearization
logw decomposition_bit_count
L There are £ + 1 = |log,, q] + 1 elements in each component of
each evaluation key
0 Expansion factor in the ring R (6 < n)
A Quotient on division of ¢ by ¢, or |g/t]
r¢+(¢) |Remainder on division of q by ¢, i.e. ¢ = At + r+(q),
where 0 < r(q) < ¢
X Error distribution (a truncated discrete Gaussian distribution)
o Standard deviation of x noise_standard_deviation
B Bound on the distribution y noise_max_deviation

Table 1: Notation used throughout this document.

When referring to implementations of encryptor, decryptor, key generator, encryption pa-
rameters, coefficient modulus, plaintext modulus, plaintext, ciphertext, etc., we mean SEAL ob-

jects Encryptor, Decryptor, KeyGenerator, EncryptionParameters, coeff_modulus, plain_modulus

, Plaintext, Ciphertext, etc. We use unsigned integers, polynomials, and polynomial arrays
to refer to the SEAL objects BigUInt, BigPoly, and BigPolyArray.

! Coefficient modulus in SEAL v2.3.0 is a product of instances of SmallModulus




4 The FV Scheme

In this section we give the definition of the FV scheme as presented in [21].

4.1 Plaintext Space and Encodings

In FV the plaintext space is Ry = Z[z]/(z™ + 1), that is, polynomials of degree less than n
with coefficients modulo ¢t. We will also use the ring structure in Ry, so that e.g. a product of
two plaintext polynomials becomes the product of the polynomials with " being converted to
a —1. The homomorphic addition and multiplication operations on ciphertexts (that will be
described later) will carry through the encryption to addition and multiplications operations
in Ry;.

If one wishes to encrypt (for example) an integer or a rational number, it needs to be
first encoded into a plaintext polynomial in R;, and can be encrypted only after that. In
order to be able to compute additions and multiplications on e.g. integers in encrypted form,
the encoding must be such that addition and multiplication of encoded polynomials in R,
carry over correctly to the integers when the result is decoded. SEAL provides a few different
encoders for the user’s convenience. These are discussed in more detail in and
demonstrated in the SEALExamples project that comes with the code.

4.2 Ciphertext Space

Ciphertexts in F'V are arrays of polynomials in R,. These arrays contain at least two poly-
nomials, but grow in size in homomorphic multiplication operations unless relinearization
is performed. Homomorphic additions are performed by computing a component-wise sum of
these arrays; homomorphic multiplications are slightly more complicated and will be described
below.

4.3 Description of Textbook-FV

Let A be the security parameter. Let w be a base, and let £+1 = |log,, ¢|+1 denote the number
of terms in the decomposition into base w of an integer in base g. We will also decompose
polynomials in R, into base-w components coefficient-wise, resulting in £+ 1 polynomials. By

al S we denote that a is sampled uniformly from the finite set S.
The scheme FV contains the algorithms SecretKeyGen, PublicKeyGen, EvaluationKeyGen,
Encrypt, Decrypt, Add, and Multiply. These algorithms are described below.

e SecretKeyGen(\): Sample s & Rs and output sk = s.
e PublicKeyGen(sk): Set s = sk, sample a & R,, and e < x. Output pk = ([—(as + €)]q,a).
e EvaluationKeyGen(sk,w): for i € {0,...,¢}, sample a; & R,, e; < x. Output
evk = ([—(ais +e)+ wisg]q, ai) .
e Encrypt(pk,m): For m € Ry, let pk = (po, p1). Sample u & Rs, and eq, eg < x. Compute

ct = ([Am + pou + e1lq, [P1u + e2]q) -



e Decrypt(sk,ct): Set s = sk, ¢g = ct[0], and ¢; = ct[1]. Output

H;[CO +cls]th .

e Add(ctg, cty): Output (cto[0] + ct1[0], cto[l] + cty[1]).
e Multiply(cto, cty): Compute

co = Hécto[O}ctl[O]-Hq ;

o = H; (cto[0]ct1[1] +ct0[1]0t1[0])H ;

cy = Hf]ctomctl[l]uq .

Express c¢o in base w as ¢y = Zf:o cg)wi. Set

ch=co+ Z evk|i] [O]cgi) ,

and output (), c}).

5 How SEAL Differs from Textbook-FV

In practice, some operations in SEAL are done slightly differently, or in slightly more gener-
ality, than in textbook-FV. In this section we discuss these differences in detail.

5.1 Plaintexts and Ciphertexts

Plaintext elements in SEAL v2.3.0 are polynomials in Ry, just as in textbook-FV. Ciphertexts
in SEAL v2.3.0 are tuples of polynomials in R, of length at least 2. This is a difference to
textbook-FV, where the ciphertexts are always in R, x R,.

Older versions of SEAL used instances of the BigPoly class to represent plaintext polyno-
mials, and BigPolyArray to represent ciphertext elements, but SEAL v2.3.0 uses dedicated
Plaintext and Ciphertext classes for this purpose, which among other things have more
flexible memory management features compared to BigPoly and BigPolyArray. This is im-
portant because the size of the ciphertext objects can make unnecessary reallocations (memory
moves) quickly a performance bottleneck.



5.2 Decryption

A SEAL v2.3.0 ciphertext ct = (cp, ..., cx) is decrypted by computing

[t - [+l

This generalization of decryption (compare to is handled automatically. The
decryption function determines the size of the input ciphertext, and generates the appropriate
powers of the secret key which are required to decrypt it. Note that because we consider well-
formed ciphertexts of arbitrary length valid, we automatically lose the compactness property
of homomorphic encryption. Roughly speaking, compactness states that the decryption circuit
should not depend on ciphertexts, or on the function being evaluated. For more details, see [2].

5.3 Multiplication

Consider the Multiply function as described in The first step that outputs the
intermediate ciphertext (co,c1,c2) defines a function Evaluator: :multiply, and causes the
ciphertext to grow in size. The second step defines a function that we call relinearization, im-
plemented as Evaluator: :relinearize, which takes a ciphertext of size 3 and an evaluation
key, and produces a ciphertext of size 2, encrypting the same underlying plaintext. Note that
the ciphertext (co, ¢1, c2) can already be decrypted to give the product of the underlying plain-
texts (see , so that in fact the relinearization step is not necessary for correctness
of homomorphic multiplication.

It is possible to repeatedly use a generalized version of the first step of Multiply to produce
even larger ciphertexts if the user has a reason to further avoid relinearization. In particular,
let cty = (co,c1,...,¢5) and cty = (do, dy,...,dx) be two SEAL v2.3.0 ciphertexts of sizes
j+1 and k+1, respectively. Let the ciphertext output by Multiply(cty, cte), which is of size
Jj+k+1, be denoted ctmuiy = (Co, C1, ..., Cjtx). The polynomials Cyp, € R4 are computed as

(=)l

In SEAL v2.3.0 we define the function Multiply to mean this generalization of the first
step of multiplication. It is implemented as Evaluator: :multiply.

Cm =

5.4 Relinearization

The goal of relinearization is to decrease the size of the ciphertext back to (at least) 2 after
it has been increased by multiplications as was described in In other words,
given a size k + 1 ciphertext (co,...,ci) that can be decrypted as was shown in
relinearization is supposed to produce a ciphertext (¢, ...,c_;) of size k, or — when applied
repeatedly — of any size at least 2, that can be decrypted using a smaller degree decryption
function to yield the same result. This conversion will require a so-called evaluation key (or
keys) to be given to the evaluator, as we will explain below.

In FV, suppose we have a size 3 ciphertext (cop,c1,c2) that we want to convert into a
size 2 ciphertext (cf, ¢}) that decrypts to the same result. Suppose we are also given a pair

evk = ([—(as+¢€) + s?]4,a), where a & R;, and e < x. Now set ¢ = ¢y + evk[0]cg, ) =



c1+evk([1]cg, and define the output to be the pair (¢f, ¢} ). Interpreting this as a size 2 ciphertext
and decrypting it yields

ch+cis=co+ (—(as+e)+ 52)02 +¢15+ aces = cg + 15 + c28% — ecy .

This is almost what is needed, i.e. ¢y + c15 + cas? (see , except for the additive
extra term ecs. Unfortunately, since ce has coefficients up to size g, this extra term will make
the decryption process fail.

Instead we use the classical solution of writing cp in terms of some smaller base w (see
e.g. [I1, @, [7, 21]) as co = Zf:o cg)wi. Instead of having just one evaluation key (pair) as
above, suppose we have £ + 1 such pairs constructed as in Then one can show
that instead setting ¢f, and ¢} as in successfully replaces the large additive term
that appeared in the naive approach above with a term of size linear in w.

This same idea can be generalized to relinearizing a ciphertext of any size k41 to size k > 2,
as long as a generalized set of evaluation keys is generated in the EvaluationKeyGen(sk, w)
function. Namely, suppose we have a set of evaluation keys evky (corresponding to s2), evks
(corresponding to s3) and so on up to evkj (corresponding to s¥), each generated as in

Section 4.3| Then relinearization converts (co,c1,...,cx) into (cj, ¢}, ..., ¢,_), where
J4
ch=co+ Y evilil[0]c]”
i=0
g .
d=ci+ > evigfil[lley”
i=0

andc;-:cj for2<j<k-1.

Note that in order to generate evaluation keys, one needs to access the secret key, and
so in particular the evaluating party would not be able to do this. The owner of the secret
key must generate an appropriate number of evaluation keys and pass these to the evaluating
party in advance of the relinearization computation. This means that the evaluating party
should inform the key generating party beforehand whether or not they intend to relinearize,
and if so, by how many steps. Note that if they choose to relinearize after every multiplication
only one evaluation key, evks, is needed.

In SEAL v2.3.0 we define the function Relinearize to mean this generalization of the
second step of multiplication as was described in[Section 4.3 It is implemented as Evaluator: :
relinearize. Suppose a ciphertext ct has size K > 2, and evk = {evky, evks,...,evkg_1}
is a set of evaluation keys generated with KeyGenerator: :generate_evaluation_keys in
SEAL v2.3.0, then relinearize(ct,evk) returns a ciphertext of size 2 encrypting the same
message as ct.

5.5 Addition

We also need to generalize addition to be able to operate on ciphertexts of any size. Suppose
we have two SEAL v2.3.0 ciphertexts ct1 = (co,...,¢j) and cty = (dy,...ds), encrypting
plaintext polynomials m; and ms, respectively. Suppose WLOG j < k. Then

ctadd = ([co + dolgs - -, [¢j + djlg, djrs - - - s dy)
encrypts [my + ma];. Subtraction works exactly analogously.
In SEAL v2.3.0 we define the functions Add to mean this generalization of addition. It
is implemented as Evaluator::add. We also provide a function Sub for subtraction, which
works in an analogous way, and is implemented as Evaluator: : sub.



5.6 Galois Automorphisms

SEAL v2.3.0 allows the user to apply Galois automorphisms of the cyclotomic extension
Q — Q[z]/(z™ 4+ 1), where 2™ + 1 is the polynomial modulus, to the plaintext polynomials
in encrypted form. We will not discuss the details of what this means here, and instead refer
the user to any introductory text on algebraic number theory. Simply put, the extension is
generated by any primitive m = 2n-th root of unity. If  is such a primitive root, then the
other primitive roots are ¢3,¢%,...,¢™ L. The Galois automorphisms correspond to changing
the primitive root as ¢ — ¢2*71, and in the cyclotomic extension ring corresponds to sending a
polynomial f(z) — f(2?*~1). Restricting to Z[z]/(z"+1) and reducing coefficients modulo the
plaintext modulus ¢ yields a corresponding operation apply_galois(ct,gal_elt,gal_keys)
in the plaintext space. Here gal_elt is the Galois element that determines the Galois auto-
morphism; this is the odd exponent 2k — 1 above. gal_keys denotes Galois keys—a special
type of key required by the Galois automorphism operation. Galois keys for a specific Ga-
lois element can be generated with the KeyGenerator: :generate_galois_keys function, and
apply_galois is implemented as Evaluator: :apply_galois. There is a special overload of
KeyGenerator: :generate_galois_keys that generates Galois keys for logarithmically many
(in n) Galois automorphisms that can be used for apply_galois with and gal_elt.

The Galois automorphisms form a group (under composition), which is isomorphic to
Zpja X L. The first factor is generated by gal_elt = 3, and the second factor is generated
by gal_elt = m — 1. This is important, because in the batching view (see where
¢ € Zj, the plaintext can be viewed as a 2 x (n/2) matrix whose rows and columns can be
cyclically rotated by applying the corresponding Galois automorphisms. These operations are
implemented as Evaluator: :rotate_rows and Evaluator: :rotate_columns.

5.7 Other Operations

In SEAL v2.3.0 we provide a function Negate to perform homomorphic negation. This is
implemented in the library as Evaluator: :negate.

We also provide the functions AddPlain(ct,maqq) and MultiplyPlain(ct, mpyyy) that,
given a ciphertext ct encrypting a plaintext polynomial m, and unencrypted plaintext poly-
nomials Maqd, Mmuls, Output encryptions of m—+maqq and m - mmui, respectively. When one of
the operands in either addition or multiplication does not need to be protected, these opera-
tions can be used to hugely improve performance over first encrypting the plaintext and then
performing the normal homomorphic addition or multiplication. The ‘plain’ operations are
implemented in SEAL v2.3.0 as Evaluator: :add_plain and Evaluator::multiply_plain.
Analogously to AddPlain we have implemented a plaintext subtraction function Evaluator
::sub_plain.

In many situations it is necessary to multiply together several ciphertexts homomorphi-
cally. The naive sequential way of doing this has very poor noise growth properties. Instead,
the user should use a low-depth arithmetic circuit. For homomorphic addition of several values
the exact method for doing so is less important. SEAL v2.3.0 defines functions MultiplyMany
and AddMany, which either multiply together or add together several ciphertexts in an opti-
mal way. These are implemented as Evaluator: :multiply_many and Evaluator: :add_many.
Evaluator: :multiply_many relinearizes after every multiplication it performs, which means
that the user needs to provide it an appropriate set of evaluation keys as input.

SEAL v2.3.0 has a faster algorithm for computing the Square of a ciphertext. The dif-
ference is only in computational complexity, and the noise growth behavior is the same as



in calling Evaluator: :multiply with a repeated input parameter. Square is implemented as
Evaluator: :square.

Exponentiating a ciphertext to a non-zero power should be done using a similar low-depth
arithmetic circuit that MultiplyMany uses. We denote this function by Exponentiate, and
implement it as Evaluator:exponentiate. The implementations of both MultiplyMany and
Exponentiate relinearize the ciphertext down to size 2 after every multiplication. It is the
responsibility of the user to create enough evaluation keys beforehand to ensure that these
operations can be done.

With parameter sets that support the Number Theoretic Transform (NTT) (see
and , Evaluator: :multiply_plain works by first applying the Number Theoretic
Transform (NTT) to both the input ciphertext, and the input plaintext, then performing a
dyadic product of the transformed polynomials, and finally transforming the resulting cipher-
text back. In cases where the same input plaintext or ciphertext needs to be used repeatedly
for several different plain multiplications, it does not make sense to repeat the transform
every single time. Instead, SEAL v2.3.0 allows plaintexts and the ciphertexts to be NTT
transformed at any time using the functions Evaluator::transform_to_ntt. Ciphertexts
also can be transformed back from NTT using Evaluator: :transform_from_ntt. There is
no reasonable scenario that one wants to convert back a plaintext from NTT, therefore this
Evaluator: :transform_from_ntt function for plaintexts has been removed from the library
in SEAL v2.3.0. Given a ciphertext and plaintext, both in NTT transformed form, the user
can call Evaluator: :multiply_plain_ntt to perform a very fast plain multiplication oper-
ation. The result will still be in NTT transformed form, and can be transformed back with
Evaluator::transform_from_ntt.

5.8 Composite Coefficient Modulus

The coefficient modulus in SEAL v2.3.0 is composed of several distinct prime values. In par-
ticular, all the homomorphic operations over the polynomial coefficients ring is implemented
based on residue number system (RNS) arithmetic. We adopt several optimization techniques
in low level arithmetic implementation which improve the performance significantly, as pro-
posed in [4]. Here we describe this idea briefly at a high level.

Since the core operations of the F'V scheme are performed in the polynomial ring R, for a
modulus g, there is no restriction in choosing ¢ to be a product of several distinct prime moduli
1,92, - - -, qk. The Chinese Remainder Theorem (CRT) implies a ring isomorphism R, =
Ry x ... x Ry, , which means that ring operations can just as well be performed in the factors
R, separately. Unfortunately, homomorphic multiplication and decryption require more than
simply ring operations, most importantly division and rounding. The main contribution of [4]
is to show how these operations can nevertheless be performed.

In SEAL v2.3.0, the coefficient modulus is implemented as a vector of SmallModulus
elements with arbitrary bit-length up to 60-bit. The product of these small moduli constructs
the encryption coefficient modulus. We describe the restrictions on these moduli further in
Section §

SEAL v2.3.0 implements a combination of the classical relinearization operation and the
FullRNS relinearization described in [4]. As a result, the decomposition bit count can be at
most 60. This also applies to Galois automorphisms (Galois keys).



5.9 Key Distribution

In we already explained how key generation in SEAL v2.3.0 differs from textbook-
FV. There is another subtle difference, that is also worth pointing out. In textbook-FV the
secret key is a polynomial sampled uniformly from Ro, i.e. it is a polynomial with coefficients
in {0,1}. In SEAL v2.3.0 we instead sample the key uniformly from Rg, i.e. we use coefficients
in {—1,0,1}.

6 Noise

In this section we present a heuristic noise growth analysis for SEAL v2.3.0. Although in
textbook-FV all ciphertexts have size 2, we allow ciphertexts of any size greater than or equal
to 2, and present general results accordingly. SEAL v2.3.0 implements the method of [4] which
has slightly different noise growth properties than textbook-FV, but these differences are small
and in practice have no effect for the parameters used in SEAL v2.3.0. Thus, we only analyze
textbook-FV with the arbitrary size ciphertext extension as mentioned above.

Definition 1 (Invariant noise). Let ct = (cg,c1,...,¢;) be a ciphertext encrypting the
message m € Ry. Its invariant noise v is the polynomial with the smallest infinity norm such

that
t t
fct(s):7<co+cls+-~-+ck5k> =m+v+ate RRQ,
q q

for some polynomial a with integer coefficients.

Intuitively, invariant noise captures the notion that the noise v being rounded incorrectly
is what causes decryption failures in the FV scheme. We see this in the following Lemma,
which bounds the coefficients of v.

Lemma 1. The function Decrypt, as presented in[Section 5.9, correctly decrypts a cipherteat
ct encrypting a message m, as long as the invariant noise v satisfies ||v]| < 1/2.

Proof. Let ct = (cg,¢1,--.,¢k). Using the formula for decryption, we have for some polyno-
mial A with integer coefficients:
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Then by definition of invariant noise,
m' = [lm+v+at]],=m+ |v].

Hence decryption is successful as long as v is removed by the rounding, i.e. if ||[v|| < 1/2. O



It is often in practice more convenient to talk about how much noise we have left until
decryption will fail. We call this the (invariant) noise budget.

Definition 2 (Noise budget). Let v be the invariant noise of a ciphertext ct encrypting
the message m € R;. Then the noise budget of ct is —logy(2||v]]).

Lemma 2. The function Decrypt, as presented in[Section 5.3, correctly decrypts a ciphertext
ct encrypting a message m, as long as the noise budget of ct is positive. O

In SEAL v2.3.0 the user can output the noise budget in a particular ciphertext using the
function Decryptor: :invariant_noise_budget. Note that this will require having access to
the secret key. Users without access to the secret key can instead use the noise simulator (see

Section 8.7)) to estimate the noise.

6.1 Heuristic Estimates for Noise Growth

Homomorphic operations increase the invariant noise in complicated ways. The reader can find
strict upper bounds for the noise growth in the [Appendix] along with proofs, but these bounds
result in poor practical estimates. Instead, in earlier versions of SEAL we estimated noise
growth using much simpler average-case heuristic estimates. However, average-case estimates
are rarely useful, since typically correctness needs to be guaranteed with high probability.
This is why in SEAL v2.3.0 we have switched to using heuristic upper-bound estimates, that
hold with very high probability. Similar estimates have previously been presented in [16], but
using yet another definition of noise.

The heuristic upper bounds can be obtained by modifying the proofs of the strict upper
bounds in The key idea is to use the canonical norm ||-]|*" instead of the usual
infinity norm || - ||, which has the nice property that for any polynomials a, b,

lall < llal™* <Tlally ,  [labl*™™ < {laf|**™ {|p[|**" -

Since the usual (infinity) norm is always bounded from above by the canonical norm, it
suffices for correctness to ensure that the canonical norm never reaches 1/2. For more details
on exactly how the canonical norm works, we refer the reader to [16, 23].

Lemma 3 (Initial noise heuristic). Let ct be a fresh encryption of a message m € Ry. Let
Ny, be an upper bound on the number of non-zero terms in the polynomial m. The noise v in
ct satisfies

HUHC(ln S rt(q)
q

t
|m|| Ny + = min{B, 6o} <4\/§n + \/ﬁ) :
q
with very high probability.
Lemma 4 (Addition heuristic). Let ct; and cte be two ciphertexts encrypting mi, ma €
R;, and having noises vy, ve, respectively. Then the moise vq,qq in their sum ctquqq satisfies

[vadall “" < flor]]“™ + [Jva]| ™.

Lemma 5 (Multiplication heuristic). Let ct be a ciphertext of size j1 + 1 encrypting my
with noise v1, and let cta be a ciphertext of size jo + 1 encrypting mo with noise va. Let Ny,



and Np,, be upper bounds on the number of non-zero terms in the polynomials my and ma,
respectively. Then the noise vy in the product ct.gu satisfies the following bound:

(" 12n)j1+1 -1 can
(V 12n)j2+1 -1 can
o1 ) ™l
" /7371 ( /712n)j1+j2+1 1
q Vv12n —1 7

(V]| " < (2||m1HNm1 +tV3n

+ <2||m2HNm2 +tvV3n

+ 3 [[or | oo +

with very high probability.

Lemma 6 (Relinearization heuristic). Let ct be a ciphertext of size M + 1 encrypting
m, and having noise v. Let ctpy, of size N + 1 be the ciphertext encrypting m, obtained by
the relinearization of ct, where 2 < N +1 < M + 1. Then, the noise Ve i1 Ctpeyn can be
bounded as ;

[[oretinl|“" < vl + 6\/§min{3, 6o} (M — N)n(l+ Dw,

with very high probability.

In SEAL v2.3.0 relinearization always relinearizes a ciphertext down to size N +1 = 2, so
N =1 always.

Remark 1. Tt is worth mentioning that while the heuristics for initial noise and relinearization
look in fact worse than the strict upper bounds (see Appendix), the estimate for multiplication
is much tighter in the heuristic, and will quickly yield much better upper bound estimates
than the strict formula.

Lemma 7 (Plain multiplication heuristic). Let ct = (zo,...,z;) be a ciphertext encrypt-
ing my with notse v, and let may be a plaintext polynomial. Let Ny,, be an upper bound on the
number of non-zero terms in the polynomial mo. Let cty,y, denote the ciphertext obtained by
plain multiplication of ct with ma. Then the noise Vpmuir i ctymuy can be bounded as

[Opmael] " < Nons [[ma]| [[o] <" -

Lemma 8 (Plain addition heuristic). Let ct = (o, ..., ;) be a ciphertext encrypting my
with noise v, and let my be a plaintext polynomial. Let ctp,qq denote the ciphertext obtained
by plain addition of ct with ma. Then the noise vVpaqq M ctpgaq can be bounded as

r(q)

vaaddHam < ”v||can+ Nm2||m2|| :

6.2 Summary of noise growth

In SEAL v2.3.0, we use slightly simplified versions of the heuristic estimates presented in [Sec]
as it is easy to see that certain terms are insignificant for any reasonable set of
parameters. For a ciphertext ct, with invariant noise v, we denote by v(ct) an upper bound
on |[v||**". For operations that take only one input ciphertext ct, we denote v = v(ct). For
operations that take several inputs cty,...,ctg, we denote v, = v(cty). For each operation



we describe a bound for the noise in the output in terms of v, or v1, ..., vk, and the encryption
parameters (recall [Table 1J).

Some operations, such as AddPlain and MultiplyPlain, take a plaintext polynomial m &
R; as input. In these cases the bound v for the output depends also on the qualities of the
plaintext polynomial, in particular the infinity norm [|m||, and an upper bound N, on the
number of non-zero coefficients in the polynomial m.

The noise growth estimates implemented in SEAL v2.3.0 are summarized in

Operation Input description Noise bound of output
Encrypt Plaintext m ”‘T(‘D ||| N + % min{B, 60}
Negate Ciphertext ct v
Add/Sub Ciphertexts ct; and cto v+ s

AddPlain/SubPlain| Ciphertext ct and plaintext m v+ 7AtT(Q)NmHmH
MultiplyPlain Ciphertext ct and plaintext m Np|m|lv
Multiply Ciphertexts ct; and cts of sizes tv3n [(12n)j1/21/2 + (12n)j2/2y1
j1+1and ja+1 —|—(12n)(j1+j2)/2]
Square Ciphertext ct of size j Same as Multiply(ct,ct)

Relinearize |Ciphertext ct of size K and target| v + % min{B, 60 }(K — L)n(¢ + 1)w
size L, such that 2 < L < K

AddMany Ciphertexts cty,...,ctk Do Vi
MultiplyMany Ciphertexts cti,...,ctg Apply Multiply in a tree-like manner,
and Relinearize down to size 2 after

every multiplication

Exponentiate Ciphertext ct and exponent k£ | Apply MultiplyMany to k copies of ct

Table 2: Noise estimates for homomorphic operations in SEAL.

We also take this opportunity to point out a few important facts about noise growth that
the user should keep in mind.

1. Every ciphertext, even if it is freshly encrypted, contains a non-zero amount of noise.

2. Addition and subtraction have a very small impact on noise.

3. Relinearization increases the noise only by an additive factor. Compare this with multipli-
cation, which increases the noise also by a multiplicative factor. This means, for example,
that after a few multiplications have been performed, depending on the decomposition bit
count (recall , the additive factor from relinearization can completely drown into
the noise in the input.

4. The decomposition bit count has a significant effect on both performance (recall
and noise growth in relinearization. Tuning down the decomposition bit count has a posi-
tive impact on noise growth in relinearization, and a negative impact on the computational



cost of relinearization. However, when the entire computation is considered, it is not ob-
vious at all what an optimal decomposition bit count should be, and at which points in
the computation relinearization should be performed. Optimizing these choices is a diffi-
cult task and an interesting research problem. We have included several examples in the
code to illustrate the situation, and we recommend the user to experiment to get a good
understanding of how relinearization behaves.

7 Encoding

One of the most important aspects in making homomorphic encryption practical and useful
is in using an appropriate encoder for the task at hand. Recall from that plaintext
elements in the FV scheme are polynomials in R;, and homomorphic operations on ciphertexts
are reflected in the plaintext side as corresponding (multiplication and addition) operations
in the ring R;. In typical applications of homomorphic encryption the user would instead
want to perform computations on integers (or real numbers), and encoders are responsible for
converting these integer (or real number) inputs to elements of R; in an appropriate way.

It is easy to see that encoding is a highly non-trivial task. The rings Z and R; are very
different (most obviously the set of integers is infinite, whereas R; is finite), and they are
certainly not isomorphic. However, typically one does not need the power to encrypt any
integer, so we can just as well settle for some finite reasonably large subset of Z and try
to find appropriate injective maps from that particular subset into R;. Since no non-trivial
subset of Z is closed under additions and multiplications, we have to settle for something that
does not respect an arbitrary number of homomorphic operations. It is then the responsibility
of the evaluating party to be aware of the type of encoding that is used, and perform only
operations such that the underlying plaintexts throughout the computation remain in the
image of the encoding map.

7.1 Scalar Encoder

Perhaps the simplest possible encoder is what we could call the scalar encoder. Given an
integer a, simply encode it as the constant polynomial a € R;. Obviously we can only encode
integers modulo ¢ in this manner. Decoding amounts to reading the constant coefficient of the
polynomial and interpreting that as an integer. The problem is that as soon as the underlying
plaintext polynomial (constant) wraps around ¢ at any point during the computation, we are
no longer doing integer arithmetic, but rather modulo ¢ arithmetic, and decoding might yield
an unexpected result. This means that ¢ must be chosen to be possibly very large, which
creates problems with the noise growth. Recall from that the noise growth in most of
the operations, and particularly in multiplication, depends strongly on ¢, so increasing ¢ even
a little bit could possibly significantly reduce the noise budget.

One possible way around this is to encrypt the integer twice, using two or more relatively
prime plaintext moduli {¢;}. Then if the computation is done separately to each of the encryp-
tions, in the end after decryption the result can be combined using the Chinese Remainder
Theorem to yield an answer modulo [[#;. As long as this product is larger than the largest
underlying integer appearing during the computation, the result will be correct as an integer.

In most practical applications the scalar encoder is not a good choice, as it is extremely
wasteful in the sense that the entire huge plaintext polynomial is used to encode and encrypt
only one small integer. The scalar encoder is not implemented in SEAL v2.3.0 due to its
inefficiency, but it can be constructed as a special case of some of the other encoders by



choosing their parameters in a certain way. These other encoders attempt to make better use
of the plaintext polynomials by either packing more data into one polynomial, or spreading
the data around inside the polynomial to obtain encodings with smaller coefficients.

7.2 Integer Encoder

In SEAL v2.3.0 the integer encoder is used to encode integers in a much more efficient manner
than what the scalar encoder (Section could do. The integer encoder is really a family of
encoders, one for each integer base B > 2. We start by explaining how the integer encoder
works with B = 2, and then comment on the general case, which is an obvious extension.

When B = 2, the idea of the integer encoder is to encode an integer —(2"—1) <a <2"—1
as follows. First, form the (up to n-bit) binary expansion of |a|, say a,—1...aja9. Then the
binary encoding of a is

1

IntegerEncode(a, B = 2) = sign(a) - (an—12"" ' + ...+ a12 + ao) .

Remark 2. In SEAL we only have an unsigned big integer data type (BigUInt), so we represent
each coefficient of the polynomial as an unsigned integer modulo ¢. For example, the —1
coefficients of the polynomial will be stored as the unsigned integers t — 1.

Decoding (IntegerDecode) amounts to evaluating the plaintext polynomial at z = 2. It is
clear that in good conditions (see below) the integer encoder respects integer operations:

IntegerDecode [IntegerEncode(a, B = 2) + IntegerEncode(b,B =2)] =a+b,

IntegerDecode [IntegerEncode(a) - IntegerEncode(b, B = 2)] = ab.

When the integer encoder with B = 2 is used, the norms of the plaintext polynomials are
guaranteed to be bounded by 1 only when no homomorphic operations have been performed.
When two such encodings are added together, the coefficients sum up and can therefore get
bigger. In multiplication this is even more noticeable due to the appearance of cross terms.
In multiplications the polynomial length also grows, but often in practice this is not an issue
due to the large number of coefficients available in the plaintext polynomials. Things will go
wrong as soon as any modular reduction — either modulo the polynomial modulus z” + 1,
or modulo the plaintext modulus ¢ — occurs in the underlying plaintexts at any point during
the computation. If this happens, decoding will yield an incorrect result, but there will be no
other indication that something has gone wrong. It is therefore crucial that the evaluating
party understands the limitations of the integer encoder, and makes sure that the plaintext
underlying the result ciphertext will still be possible to decode correctly.

When B is set to some integer larger than 2, instead of a binary expansion (as was done
in the example above) a base-B expansion is used, where the coefficients are chosen from
the symmetric set [—(B —1)/2,...,(B —1)/2]. There is a unique such representation with
at most n coefficients for each integer in [—(B™ —1)/2,(B™ — 1)/2]. Decoding is obviously
performed by evaluating a plaintext polynomial at * = B. Note that with B = 3 the integer
encoder provides encodings with equally small norm as with B = 2, but with a more compact
representation, as it does not waste space in repeating the sign for each non-zero coefficient.
Larger B provide even more compact representations, but at the cost of increased coefficients.
In most common applications taking B = 2 or 3 is a good choice, and there is little difference
between these two.



The integer encoder is significantly better than the scalar encoder, as the coefficients in the
beginning are much smaller than in plaintexts encoded with the scalar encoder, leaving more
room for homomorphic operations before problems with reduction modulo ¢ are encountered.
From a slightly different point of view, the binary encoder allows a smaller ¢ to be used,
resulting in smaller noise growth in homomorphic operations.

The integer encoder is available in SEAL through the class IntegerEncoder. Its construc-
tor will require both the plain_modulus and the base B as parameters. If no base is given,
the default value B = 2 is used.

7.3 Fractional Encoder

There are several ways for encoding rational numbers. The simplest and often most efficient
way is to simply scale all rational numbers to integers, encode them using the integer encoder
described above, and modify any computations to instead work with such scaled integers.
After decryption and decoding the result needs to be scaled down by an appropriate amount.
While efficient, in some cases this technique can be annoying, as it will require one to always
keep track of how each plaintext has been scaled. Here we describe what we call the fractional
encoder. Just like the integer encoder above), the fractional encoder is a family
of encoders, parametrized by an integer base B > 2 [18]. The function of this base is exactly
the same as in the integer encoder, so since the generalization is obvious, we will only explain
how the fractional encoder works when B = 2.

The easiest way to explain how the fractional encoder (with B = 2) works is through a
simple example. Consider the rational number 5.8125. It has a finite binary expansion

5875 =22 420 4971 4 272 4 94,

First we take the integer part and encode it as usual with the integer encoder, obtaining the
polynomial IntegerEncode(5, B = 2) = x? + 1. Then we take the fractional part 27! 4272 +
274 add n (as in to each exponent, and convert it into a polynomial by changing the
base 2 into the variable z, resulting in 2”1 4+ 2”2 4+ 2"~%. Next we flip the signs of each of
the terms, in this case obtaining —z" ' — 2”2 — 2”4, For rational numbers r in the interval
[0,1) with finite binary expansion we denote this encoding by FracEncode(r, B = 2). For any
rational number r with finite binary expansion we set

FracEncode(r, B = 2) = sign(r)-[IntegerEncode(||r||, B = 2) + FracEncode({|r|} , B = 2)] ,
where {-} denotes the fractional part. For example,
FracEncode(5.8125,B = 2) = —z" ! — 2" 2 — 2" 4 2% 1.

Decoding works by essentially reversing the steps described above. First, separate the high-
degree part of the plaintext polynomial that describes the fractional part. Next invert the
signs of those terms and shift their exponents by —n. Finally evaluate the entire expression
at x = 2. We denote this operation FracDecode(-, B = 2).

It is not hard to see why this works. As a very simple example, imagine computing 1/2 -2,
where FracEncode(1/2, B = 2) = —2"~! and FracEncode(2, B = 2) = x. Then in the ring R,
we have

FracEncode(1/2, B = 2) - FracEncode(2,B =2) = —z" =1,



which is exactly what we would expect, as FracDecode(1, B = 2) = 1. For a more complicated
example, consider computing 5.8125 - 2.25. We already computed FracEncode(5.8125, B = 2)
above, and FracEncode(2.25, B = 2) = —2" 2 + 2. Then

FracEncode(5.8125, B = 2) - FracEncode(2.25, B = 2)

=(—z" -2 gt 2?2 4 1) (—2v % 4 2)
_ x2n73 + l,2n74 + x2nf6 ) P xnfl _ xan _ xn73 + $3 T
—_ _:L‘n—l _ xn—2 _ 21‘71—3 _ xn—4 _ :L,n—G +l‘3 +tr4+2.

Finally,
FracDecode(—z" !t — g™ 2 —2¢" 3 — "4 — g0 1 23 1 242 B=2)

=[P +r+24+2 a2+ 200 27 4278 _, =13.078125.

There are several important aspects of the fractional encoder that require further clari-
fication. First of all, above we described only how FracEncode(:, B = 2) works for rational
numbers that have finite binary expansion, but many rational numbers do not, in which case
we need to truncate the expansion of the fractional part to some precision, say n¢ bits (equiv-
alently, high-degree coefficients of the plaintext polynomial). Next, the decoding process needs
to somehow know which coefficients of the plaintext polynomial should be interpreted as be-
longing to the fractional part and which to the integer part. For this purpose we fix a number
n; to denote the number of coefficients reserved for the integer part, and all of the remaining
n—n,; coefficients will be interpreted as belonging to the fractional part. Note that n;+n; < n,
and that ny only matters in the encoding process, whereas n; is needed both in encoding (can
only encode integer parts up to n; bits) and in decoding.

Decoding can fail for two reasons. First, if any of the coefficients of the underlying plaintext
polynomials wrap around the plaintext modulus ¢ the result after decoding is likely to be
incorrect, just as in the normal integer encoder (recall . Second, homomorphic
multiplication will cause the fractional parts of the underlying plaintext polynomials to expand
down towards the integer part, and the integer part to expand up towards the fractional part.
If these different parts get mixed up, decoding will fail. Typically the user will want to choose
ny to be as small as possible, as many rational numbers will have dense infinite expansions,
filling up most of the leading ny coefficients. When such polynomials are multiplied, cross
terms cause the coefficients to quickly increase in size, resulting in them getting reduced
modulo ¢ unless ¢ is chosen to be very large.

When B is set to some integer larger than 2, instead of a binary expansion (as was done
in the example above) a base-B expansion is used, where the coefficients are chosen from the
symmetric set [—(B —1)/2,...,(B — 1)/2]. Again, in this case decoding amounts to evaluating
polynomials x = B.

The fractional encoder is available in SEAL through the class FractionalEncoder. Its
constructor will require the plain_modulus, the base B, and positive integers ny and n; with
ny 4+ n; < n as parameters. If no base is given, the default value B = 2 is used.

7.4 CRT Batching

The last encoder that we describe is very different from the previous ones, and extremely
powerful. It allows the user to pack n integers modulo t into one plaintext polynomial, and



to operate on those integers in a SIMD (Single Instruction, Multiple Data) manner. This
technique is often called batching in homomorphic encryption literature. For more details and
applications we refer the reader to [8) [33].

Batching only works when the plaintext modulus ¢ is chosen to be a prime number and
congruent to 1 (mod 2n), which we assume to be the caseﬂ In this case the multiplicative
group of integers modulo ¢ contains a subgroup of size 2n, which means that there is an integer
¢ € Z4 such that ¢?* =1 (mod t), and (™ # 1 (mod t) for all 0 < m < 2n. Such an element
¢ is called a primitive 2n-th root of unity modulo t. Having a primitive 2n-th root of unity in
Zy is important because then the polynomial modulus z™ + 1 factors modulo ¢ as

2"+ 1= (- )(e—¢)... (=) (modt),

and according to the Chinese Remainder Theorem (CRT) the ring R; factors as

1 /1 B = =TT 212
Ry = (z"+1) Hn—l( — (2itl) - 1;[ J;_€2z+1) :,11) <2 H HZt

=0

All of the isomorphisms above are isomorphisms of rings, which means that they respect
both the multiplicative and additive structures on both sides, and allows one to perform n
coefficient-wise additions (resp. multiplications) in integers modulo ¢ (right-hand side) at the
cost of one single addition (resp. multiplication) in R; (left-hand side). It is easy to describe
explicitly what the isomorphisms are. For simplicity, denote o; = ¢?**!1. In one direction the
isomorphism is given by

Decompose : Ry — = H Zy — [m(ag), m(a1),...,m(an—1)] .

The inverse is slightly tricker to describe, so we omit it here for the sake of simplicity. We
define Compose to be the inverse of Decompose. These isomorphisms are computed using a
negacylic variant of the Number Theoretic Transform (NTT).

In SEAL v2.3.0 the n-dimensional Z;-vector that Compose and Decompose convert to and
from a plaintext polynomial can be thought of as a 2 x (n/2) matrix, as we already briefly
described in The benefit is that in this case the apply_galois operation has
specializations rotate_rows and rotate_columns, which rotate the matrix rows and columns
(swap) cyclically a given number of steps in either direction. If Galois keys corresponding
to a particular rotation have been generated and are used, the computational cost of the
rotation is essentially the same as that of relinearization. If instead logarithmically many (in
n) Galois keys were generated (recall , then rotating k steps in either direction
is min{HammingWeight(k), HammingWeight(n/2 — k)} times more expensive. Note that in this
case rotating the rows power-of-2 number of steps in either direction is essentially as expensive
as a single relinearization.

When used correctly, batching can provide an enormous performance improvement over
the other encoders. When using batching for computations on encrypted integers rather than
on integers modulo ¢, one needs to ensure that the values in the slots never wrap around
t during the computation. Note that this is exactly the same limitation the scalar encoder
has (recall , and could be solved by choosing ¢ to be large enough, which will
unfortunately cause large noise growth.

6 Note that this means t > 2n, which can in some cases turn out to be an annoying limitation.



SEAL v2.3.0 provides Compose and Decompose functionality in the PolyCRTBuilder class.
The constructor of PolyCRTBuilder takes an instance of SEALContext as argument, and will
throw an exception unless the parameters are appropriate, as was described in the beginning
of this section. The rotations are implemented as Evaluator: :rotate_rows and Evaluator
::rotate_columns, and are similarly only available when the parameters support batching.

8 Encryption Parameters

Everything in SEAL v2.3.0 starts with the construction of an instance of a container that
holds the encryption parameters (EncryptionParameters). These parameters are:

e poly_modulus: a polynomial z” + 1; n a power of 2;

e coeff_modulus: an integer modulus ¢ which is constructed as a product of multiple distinct
primes;

e plain_modulus: an integer modulus ¢;

e noise_standard_deviation: a standard deviation o;

e random_generator: a source of randomness.

In most cases the user only needs to set the poly_modulus, coeff_modulus, and plain_modulus
parameters. Both random_generator and noise_standard_deviation have good default
values and are in most cases not necessary to set explicitly (see .

The choice of encryption parameters significantly affects the performance, capabilities,
and security of the encryption scheme. Some choices of parameters may be insecure, give
poor performance, yield ciphertexts that will not work with any homomorphic operations, or
a combination of all of these. In this section we will describe the different parameters and
their impact. We will discuss security briefly in [Section 9] In [Section 8.7 we will discuss the
automatic parameter selection tools in SEAL v2.3.0, which can help the user in determining
optimal encryption parameters for certain use-cases.

8.1 Setting Parameters

Once an EncryptionParameters object has been created, the parameters need to be set.
This can be done using functions such as EncryptionParameters::set_coeff_modulus.
Once all of the critical parameters have been set, the user needs to create an instance of
the SEALContext class, which automatically evaluates the validity and properties of the pa-
rameters, and performs a series of pre-computations on them. The properties of the parameters
are stored in an instance of the EncryptionParameterQualifiers struct, which we describe

below in

8.2 Hash Block

When any of the encryption parameters (except random_generator) is changed, SEAL v2.3.0
computes and updates an internally stored SHA-3 hash (hash block) of the parameters. The
hash is automatically stored by every ciphertext, and all key material created under the given
parameters, and is used for fast input validity and compatibility checking. The user cannot
normally modify the hash block by hand, or mutate the ciphertext/key data directly. How-
ever, it is possible to compile SEAL so that both hash block and the ciphertext/key data can
be mutated freely, which can be important in certain advanced use-cases (see seal/util/de-
fines.h).



8.3 Default Values

If the user does not specify o (noise_standard_deviation), it will be set by the constructor
of EncryptionParameters to the default value of 3.19 ~ 8/v/27. If no randomness source
(random_generator) is given, SEAL will automatically use std: :random_device.

The user will have to select n by setting the polynomial modulus (EncryptionParameters
: :set_poly_modulus) to a polynomial of the form 2™+ 1, where n is a power of 2. For certain
realistic choices of n, SEAL v2.3.0 contains pre-determined values for ¢ (coeff_modulus) for
128-bit and 192-bit security levels, according to the testimates in [13]. These default values
are presented in and can be accessed through the functions coeff_modulus_128 and
coeff_modulus_192. The estimates assume o to be the default value, and omit issues such
as the memory cost of the attacks. In we will discuss the security properties of
SEAL v2.3.0 in a bit more detail.

n Bit-length of default ¢
128-bit security[192—bit security
1024 29 20
2048 56 39
4096 110 7
8192 219 153
16384 441 300
32768 885 600

Table 3: Default pairs (n,q) for 128-bit and 192-bit security levels.

8.4 Polynomial Modulus

The polynomial modulus (poly_modulus) must be a polynomial of the form z" + 1, where n is
a power of 2. This is both for security (see and performance reasons. Using a larger
n allows for a larger ¢ to be used without decreasing the security level, which in turn increases
the noise ceiling and thus allows for larger ¢ to be used, which is often important for integer
encodings to work (recall . Increasing n will significantly decrease performance, but
on the other hand it will allow for more elements of Z; to be batched into one plaintext when
using PolyCRTBuilder.

8.5 Coefficient Modulus and Plaintext Modulus

Suppose the polynomial modulus is held fixed. Then the choice of the coefficient modulus ¢
affects two things: the noise budget in a freshly encrypted ciphertexlﬂ and the security leve]ﬁ
In principle we can take ¢ to be any integer, as long as it is not too large to cause
security problems. In SEAL v2.3.0, coefficient modulus ¢ is composed of a product of multiple
small primes ¢; X ... X q;. We adopt a generic algorithm for computing modular arithmetic
modulo these small primes. Therefore, taking these small primes to be of special form does
not provide any performance improvement. The user is free to choose a set of arbitrary primes
regarding their requirements as long as they are at most 60-bit long and ¢; = 1 (mod 2n) for
i€{1,2,...,k}. We use David Harvey’s algorithm for NTT as described in [26].

" Bigger q means larger initial noise budget (good).
8 Bigger ¢ means lower security (bad).



In some cases the user might want to use a particular n, but the default coefficient modulus
for that n is unnecessarily large. In these cases it might be beneficial from the point of view
of performance to simply use a smaller custom g. Note that this is always safe: with all other
parameters held fixed, decreasing ¢ only increases the security level. This is very easy in
SEAL v2.3.0, as the user can access more than enough hard-coded primes g; of various bit-
length and of appropriate form through the functions small_mods_60bit, small_mods_50bit,
small_mods_40bit, and small_mods_30bit.

The plaintext modulus ¢ in SEAL v2.3.0 is defined as a SmallModulus for performance
reasons, and can therefore be any positive integer at least 2 and at most 60 bits in length.
Note that when using batching (recall t needs to be a prime such that ¢t = 1
(mod 2n).

8.6 Encryption Parameter Qualifiers

After the encryption parameters are set, the instance of EncryptionParameters is given as in-
put to the constructor of SEALContext to be evaluated for validity. In case the parameters are
valid for homomorphic encryption, the instance of SEALContext is subsequently given to the
constructors of tools such as Encryptor and Decryptor. Various properties of the parameters
are stored in the SEALContext instance in a structure called EncryptionParameterQualifiers.
After the SEALContext is generated, the user can call SEALContext: :qualifiers to return
a copy of the qualifiers. Note that the only way to change the qualifiers is to change the
encryption parameters themselves to support the particular features, and constructing a new
SEALContext. In SEAL v2.3.0, EncryptionParameterQualifiers contains 5 qualifiers, which

are described in [Table 41

l Qualifier [ [ Description
parameters_set true if the encryption parameters are valid for SEAL v2.3.0, otherwise false.
enable_fft true if n in polynomial modulus ™ 4 1 is a power of 2, otherwise false.
enable_ntt true if all NTT can be used for polynomial multiplication (see [26], 28]) with respect
to all the factors ¢; of g, otherwise false. See Section for details.
enable_batching true if batching (PolyCRTBuilder) can be used, otherwise false. See Section

for details.

enable_fast_plain_lift||true if all the small moduli {q1, ¢2,..., s} which construct the coefficient modulus
are smaller than plaintext modulus ¢, otherwise false. If this is true, then
Evaluator: :multiply_plain becomes significantly faster.

Table 4: Encryption Parameter Qualifiers.

By far the most important of the qualifiers is parameters_set. In fact, if this is true, then
enable_fft and enable_ntt must also be true. The qualifiers are mostly used internally to
check whether the given parameters are compatible with specific operations and optimizations.

8.7 Automatic Parameter Selection

To assist the user in choosing parameters for a specific computation, SEAL v2.3.0 provides
an automatic parameter selection module. It consists of two parts: a Simulator component
that simulates noise growth in homomorphic operations using the estimates of and a
Chooser component, which estimates the growth of the coefficients in the underlying plaintext
polynomials, and uses Simulator to simulate noise growth. Chooser also provides tools for



computing an optimized parameter set once it knows what kind of computation the user
wishes to perform.

Simulator Simulator consists of two components. A Simulation is a model of the invariant
noise ||v|| (recall[Section 6)) in a ciphertext. SimulationEvaluator is a tool that performs all of
the usual homomorphic operations on simulations rather than on ciphertexts, producing new
simulations with noise value set to a heuristic upper bound estimate according to
Simulator is implemented in SEAL v2.3.0 by the Simulation and SimulationEvaluator
classes.

Chooser Chooser consists of three components. A ChooserPoly models a plaintext polyno-
mial, which can be thought of as being either encrypted or unencrypted. In particular, it keeps
track of two quantities: the largest coefficient in the plaintext (coefficient bound), and the num-
ber of non-zero coefficients in the plaintext (length bound). It also stores the operation history
of the plaintext, which can involve encryption, and any number of homomorphic operations
with an arbitrary number of other ChooserPoly objects as inputs. ChooserPoly also provides
a tool for estimating the noise that would result when the operations stored in its operation
history are performed, which it does using Simulator, and a tool for testing whether a given
set of encryption parameters can support the computations in its history. ChooserEvalua-
tor is a tool that performs all of the usual homomorphic operations on ChooserPoly objects
rather than on ciphertexts, producing new ChooserPoly objects with coefficient bound and
length bound estimates based on the operation in question, and on the inputs. Furthermore,
ChooserEvaluator contains a tool for finding an optimized parameter set, which we will dis-
cuss below. ChooserEncoder creates a ChooserPoly that models an unencrypted plaintext
(empty operation history), encoded using the integer encoder (recall[Section 7.2|). ChooserEn-
cryptor converts ChooserPoly objects with empty operation history (modeling unencrypted
plaintexts) into ones with operation history consisting only of encryption. These tools are all
implemented in SEAL v2.3.0 by the ChooserPoly, ChooserEvaluator, ChooserEncoder, and
ChooserEncryptor classes.

Parameter Selection One of the most important tools in Chooser is the SelectParame-
ters functionality. It takes as input a vector of ChooserPoly objects, a set ParameterOp-
tions of pairs (n,q), a value for o, and attempts to find an optimal pair (nept, gopt) from
ParameterOptions, together with an optimal value #,p, such that that the parameters are
just large enough to support the computations specified by all of the given ChooserPoly ob-
jects. It returns true if appropriate parameters were found, and populates a given instance
of EncryptionParameters with (2™ 4 1, gopt, topt). SelectParameters is implemented in
SEAL v2.3.0 by the function ChooserEvaluator: :select_parameters.

Recall from that SEAL v2.3.0 has an easy-to-access (and easy-to-modify)
default set of pairs (n,q), and a default value for o. The basic version of the function
ChooserEvaluator: :select_parameters uses these, but another overload lets custom values
to be used instead. When calling ChooserEvaluator: :select_parameters, both overloads
require the user to give a noise gap ¢ (in bits). The parameters are selected so that after the
computations—with very high probability—there is at least g bits of noise budget left. To
only ensure correctness, one can set the noise gap to 0.

The way the ChooserEvaluator: :select_parameters function works is as follows. First
it looks at the ChooserPoly input(s) it is given, and selects a t just large enough to be sure



that all the computations can be done without reduction modulo ¢ taking place in the plaintext
polynomial&ﬂ Next, it loops through each (n,q) pair available in the order they were given,
and runs the ChooserPoly: :test_parameters function every time until a set of parameters
is found that gives enough room for the noise.

If eventually a good parameter set is found, ChooserEvaluator: :select_parameters
populates an instance of EncryptionParameters given to it, and returns true. Otherwise it
returns false. An example demonstrating the automatic parameter selection tool is included
with the library.

9 Security of FV

9.1 RLWE

The security of the FV encryption scheme is based on the apparent hardness of the famous
Ring Learning with Errors (RLWE) problem [30]. We give a definition of the decision-RLWE
problem appropriate to the rings that we use.

Definition 3 (Decision-RLWE). Let n be a power of 2. Let R = Zlz]|/(z" 4+ 1), and
R, = Zg[z]/(2™ 4+ 1) for some integer q. Let s be a random element in Ry, and let x be
the distribution on R, obtained by choosing each coefficient of the polynomial from a discrete
Gaussian distribution over Z. Denote by As, the distribution obtained by choosing a < Ry
uniformly at random, choosing e < x, and outputting (a,[a - s + €]q). Decision-RLWE s the
problem of distinguishing between the distribution As, and the uniform distribution on Rg.

It is possible to prove that for certain parameters the decision-RLWE problem is as hard as
solving certain famous lattice problems in the worst case. However, in practice the parameters
that are used are not necessarily in the range where the reduction holds, and the reduction
might be very difficult to perform in any case.

Remark 3. While it is possible to prove security results for certain choices of the polynomial
modulus other than z™ + 1 for n a power of 2 (see [30, 19]), these proofs require the error
terms e to be sampled from the distribution y in a way very different from how SEAL does
it. This, and performance reasons, is why we only allow polynomial moduli of the form 2™ + 1
for n a power of 2.

In practice an attacker will not have unlimited access to the oracle generating samples in
the decision-RLWE problem, but the number of samples available will be limited to d. We call
this the d-sample decision-RLWE problem. It is possible to prove that solving the d-sample
decision-RLWE problem is equally hard as solving the (d —1)-sample decision-RLWE problem
with the secret s instead sampled from the error distribution y [31]. Furthermore, it is possible
to argue [25] 21| that the security level remains roughly the same even if s is sampled from
almost any narrow distribution with enough entropy, such as the uniform distribution on Ro
or Rs, as in SEAL v2.3.0 (recall [Section 5.9)).

It is easy to give an informal argument for the security of the FV scheme, assuming the
hardness of decision-RLWE. Namely, the FV public key is indistinguishable from uniform
based on the hardness of 2-sample decision-RLWE (or rather the hardness of the 1-sample
small secret variant described above). Subsequently, an FV encryption is indistinguishable

9 This makes sense in the context of the integer encoders. Currently automatic parameter selection is only
designed to work with these integer encoders.



from uniform based on the 3-sample decision-RLWE (or rather the hardness of the 2-sample
small secret variant described above), and the assumed uniformity of the public key. We refer
the reader to [31] and [21I] for further details and discussion.

9.2 Choosing Parameters for Security

Each RLWE sample (as + e,a) € R2 can be used to extract n Learning with Errors (LWE)
samples [32, 27]. To the best of our knowledge, the most powerful attacks against d-sample
RLWE all work by instead attacking the nd-sample LWE problem, and when estimating the
security of a particular set of RLWE parameters it makes sense to instead focus on estimating
the security of the induced set of LWE parameters. We are only aware of relatively small
improvements to attacks of this type that utilize the ring structure in the RLWE samples.

At the time of writing this, determining the concrete hardness of parametrizations of
(R)LWE is an active area of research (see e.g. [I7, 12, [I]) and the first draft of standardized
(R)LWE parameter sets was proposed in [I3]. The security estimates for the default param-
eters in reflect best understanding at the time of writing [13], and should not be
interpreted as definite security guarantees. We strongly recommend the user to consult ex-
perts in the security of (R)LWE when choosing parameters for SEAL, and in particular when
using customized parameters.

9.3 Circular Security

Recall from that in textbook-FV we require an evaluation key, which is essentially
a masking of the secret key raised to the power 2 (or, more generally, to some higher power).
Unfortunately, it is not possible to argue the uniformity of the evaluation key based on the
decision-RLWE assumption. Instead, one can think of it as an encryption of (some power of)
the secret key under the secret key itself, and to argue security one needs to make the extra
assumption that the encryption scheme is secure even when the adversary has access to all of
the evaluation keys which may exist. In [21] this assumption is referred to as a form of weak
circular security.

In SEAL v2.3.0 we do not perform relinearization by default, and therefore do not require
the generation of evaluation keys, so it is possible to avoid having to use this extra assumption.
However, in many cases using relinearization has massive performance benefits, and — as far
as we are aware — there exist no known practical attacks that would exploit the evaluation
keys.

9.4 Function Privacy

The privacy goal of SEAL is to allow the evaluation of arithmetic circuits on encrypted inputs,
without revealing the input wire values to the evaluator. In particular, no attempt is made to
keep any information hidden from the owner of the secret key. Even in a semi-honest security
model this causes challenges for designing protocols (see e.g. [14]), since the evaluator might
input some private information of its own to the circuit, which needs to be protected from the
owner of the secret key. For example, a semi-honest party can find information about a circuit
that was evaluated on encrypted data simply by looking at the resulting ciphertexts, or — even
better — at resulting ciphertext/plaintext pairs. For example, if no relinearization is used, the
highest power that was computed can be read from the size of the output ciphertext. A
much bigger issue is that noise growth in homomorphic operations depends on the underlying



plaintexts (recall : the owner of the secret key can compute the noise in the output
ciphertext, and deduce information about the circuit, including the inputs of the evaluator.

It is possible to solve these problems and obtain function privacy [2] in a number of ways.
One way already described by Gentry in [22] is to flood the noise by first relinearizing the
ciphertext size down to 2, and then adding an encryption of 0 with noise super-polynomially
larger than the old noise. An alternative approach, replacing flooding with a soak-spin-repeat
strategy, is given by Ducas and Stehlé in [20]. This technique uses Gentry’s bootstrapping
process to repeatedly re-encrypt the ciphertext. Unfortunately this is slow, and requires the
encryption parameters to be large enough to support bootstrapping (which is not currently
implemented in SEAL). Finally, there are scheme specific function privacy techniques that
can in some cases be much more efficient than the two generic method mentioned above. One
such method for the GSW cryptosystem [24] is described in [6].

Due to its superior performance, we recommend using the noise flooding technique when
necessary. In practice, a “smudging lemma” (see e.g. [3]) can be used together with the heuristic
noise growth estimates implemented in SEAL v2.3.0 to precisely bound the amount of noise
that needs to be flooded to obtain a given statistical security level. For a concrete example,
we refer the reader to [14].
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Appendix

Initial Noise
Lemma 9. Let ct = (co,c1) be a fresh encryption of a message m € Ry. The noise v in ct
satisfies

loll <

tB
H$MmWFq@n+U.

Proof. Let ct = (cg, 1) be an encryption of m under the public key pk = (pg, p1) = ([—(as +
e)lq, @). Then, for some polynomials ko, k1, k,

t t
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To bound ||v||, we use the fact that the error polynomials sampled from y have coefficients
bounded by B, and that ||s|| = ||Ju|| = 1. Then

r4(q) tB
vl < —=lm| + ?(271 +1).
a
Addition
Lemma 10. Let ct; = (co,c1,...,¢;) and cty = (do, d1, . .., dy) be two ciphertexts encrypting

mi, Mo € Ry, and having noises vy, vo, respectively. Then the noise vqqq in their sum ctyqq s
Vadd = V1 + V2, and satisfies [[vgadl < [[v1] + [[va]|-

Proof. By definition of homomorphic addition, ct,qq encrypts [mi + mal;. Let [my + ma]; =
m1 + mg + at for some integer coefficient polynomial a. Suppose WLOG that max (7, k) = j,
so that

Ctadd = (co +do, ..., ¢k + di, Cry1, - - - Cj) -
By definition of noise in ct; and cte, we have

t t
&Ctl(s) =m1 + v +ait, 6Ct2(8) =mo + v2 + ast,



for some polynomials a1, as with integer coefficients. Therefore

t t t

&Ctadd(s) = gctl(s) + 501:2(5)
=mq + vy + ait +mg + vo + ast
= [m1 + malt + (m1 + mg — [mq + maly) + v1 + v2 + (a1 + a2)t
= [my +ma)t +v1 +va+ (a1 + az —a)t,

so the noise is vaqd = v1 + v2, and [[vadall = [lvr + v2ll < [Jur ]l + [Jv2|- O
Multiplication
Lemma 11. Let ct; = (xo,...,2;,) be a ciphertext of size j1+1 encrypting mi with noise vy,

and let cty = (Yo, - -.,Yj,) be a ciphertext of size jo+ 1 encrypting ma with noise va. Let Ny,
and Ny,, be upper bounds on the number of non-zero terms in the polynomials my and ma,
respectively. Then the noise vy in the product ctp satisfies the following bound:

nt nittl—1
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nt ni2tl -1
| el + -
nditiz+l _ 1)

t
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Proof. By definition of homomorphic multiplication the ciphertext ctmus = (co, ... ¢j44,) 18
such that for 0 < ¢ < j; + jo, for some polynomials ¢; with coefficients in (—%, %], and for
some polynomials A; with integer coefficients,

=[] [ (2 ) 2o

Also, by definition cty,y encrypts [mimel¢, and that [mime]; = mime + at for some polyno-
mial a with integer coefficients.

|

(Z xk?ﬂ) + €6 + Aiq.

k4l=i

By definition of noise in ct; and cte, we have for some polynomials a1, as with integer
coeflicients,

t t
&Ctl(s) =m1 + v +ait, 6Ct2(8) =mo + v2 + ast.



We then compute
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= ~ P s

+ ¢ ¢ J1+7j2 4 J1+7j2 ‘
= gctl(s) . gctg(s) + a Z €8 + <Z Ai81> t
=0

=0

¢ Ji+j2 ' J1+J2 '
= (m1 + v1 + a1t)(mag + vo + ast) + . > s+ ( > Aﬁ’) t
1=0

i=0
Jjitj2
= [mimal; + miva + mavy + viva + viast + veart + 5 E €;8"
i=0

Ji+J2 )
+ <m1a2 + moaq + ajast + Z Ajs' — a) t,
i=0

where in the last step we used mymg = [mims]; — at. Thus, we find that the noise in ctpy
is given by

Ji+j2
Umult = M1v2 + mav1 + v1vg + (viag + vear )t + — Z €s'.
i=0
To be able to bound the new noise, we first note that

+ Jitj2 . + piitia+l _ 1

s S < = ———m8— . 1

22w () 2

=0
Next, we write a;t = Lct;(s) —m; — v;, and note that
q
t npiitl 1
ait]| < > Th-1 T ([l + [[vill - (2)



Finally, using and we can bound the noise growth in multiplication:

+ Jj1+j2 .
lvmute || = ' myvz + mavy + v1ve + (viag + voay )t + 6 Z €;s"
i=0
Jji+j2 '
< |lmave|| + ||mavi]| + [Jvrve|| + ||(viag + vaar)t|| + - Z €s"
i=0

< Nog, [[ma[[[[va]| 4 Noms [[ma|[[[o1]] 4 n[|vr[[[|vz]

t 1
ool (5 T+ ] + el

t nirtl 1 t [niititl _q
+ nllvz|| (2 a1 T [[ma | + HU1’> + 2 <n—1>

nt nittt—1
= W+l + - T e

nt n?2tt—1
|l + 5 T

n
t [niitit+l 1
3 — .
#anlunllea] + - ()

Relinearization

Lemma 12. Let ct be a ciphertert of size M + 1 encrypting m, and having noise v. Let
Ctrelin Of size N + 1 be the ciphertext encrypting m, obtained by the relinearization of ct,
where 2 < N +1 < M + 1. Then, the noise Vel N Ctreyn 1S given by

" M-N-1 ¢
— § : (2)
Urelin = U — 6 e(ij),ichj )
j=0 =0

and can be bounded as

t
[vretinl| < vl + g(M — N)nB(l+ 1)w.
Proof. Relinearization of a ciphertext from size M + 1 to size N + 1, where 2 < N 4+ 1 <
M + 1 consists of M — N ‘one-step’ relinearizations. In each step, the ‘current’ ciphertext
(co,c1,...,cx) is transformed to an intermediate ciphertext ct’ = (cf, ¢}, ...,¢,_,) using the
appropriate evaluation key

evkp = [([—(ak,is + e;m') + wisk]q, ak,i) 1 =0,... ,6] .

In the following step, ct’ becomes the ‘current ciphertext’, and so on until the intermediate
ciphertext produced is of size N + 1, at which point it is output as ctyelin.

The input ciphertext is ct = (co,c1,...,car), and after the first one-step relinearization,
the intermediate ciphertext is ct’ = (¢f, ¢}, ..., c,_;), where

14

l
h=co+ Y evkylil[0)cy), =ci+ > evkylil[llc};
1=0 =0



and c; =¢; for 2 < j < M — 1. So, for some polynomials a; with integer coefficients, where

0<i</l+1,
E / _E / / / M-1
ct'(s) (o +cis+...+chys™h)
q q
t
p Co+ZerM [0 <01+Zeka )s—{—...—l—cM_lsM_l
=0

;
(-
(>

l
Zeka cM—i—sZeka ) +2(Co+018+---+cM_15M—1)

7

|

I
. o
~ |l MN
[en)

. . . t
eM,icg\Z/[) + Zaich&) + M Zw%%}) + 6 (co ‘e84 ..+ cM_lsM_l)
i=0 i=0

t t
p GMZCM-FZCM]C ) +53MCM—|—§(co—l—cls—i—...—i—cM_lsM_l)

1=

M-1

¢
_*ZeMzCM (co+eis+...+cpu-1s + ens™) +tzaz’6§\?

¢
t . .
=m-+v— 6 E eMJ-cg\Z) + (CL[+1 + E am&f}) t
i=0

1=0

(4)

. .. t Y4 . . . .
Hence, the noise grows by an additive factor —4 > i—o€M,iCy; in a one-step relinearization.
Iterating this process, we find the noise after relinearization:

MN1€

'Urehn—v_* § § EM— JTCM -

Bounding ||vyelin|| is easy:

+ M-N-1 ¢
loetn]] = |[v — = S enjich;
E R,
f MoN-1 ¢ '
<lol+- 3 3 lenrsach)
1 2 =0

t
< ||l + 5(M — N)nB({+ 1)w

Plain Multiplication

Lemma 13. Let ct = (zo,...,x;) be a ciphertext encrypting mi with noise v, and let ma
be a plaintext polynomial. Let Ny, be an upper bound on the number of non-zero terms in
the polynomial mao. Let ctppmyy denote the ciphertext obtained by plain multiplication of ct
with ma. Then the noise in the plain product ctpmuir 18 Vpmuit = Ma2v, and we have the bound

[vpmuiell < Noms[[mz|[[v]] -



Proof. By definition the ciphertext ctpmus = (mao, ..., mox;). Hence for some polynomials
a, a’ with integer coefficients,

t )
6Ctpmu1t(3) = 6 (mga?() +mox1S+ -+ mngsj)
t .

= ma—ct(s)
q

= mga(my + v + at)
= mimsg -+ mov + moat

= [mima] + mov + (moa — a')t,

where in the last line we used [myms]; = mimg + a’t. Hence the noise is Vpmult = Mov and
can be bounded as
[vpmult|| < Niny [[ma|[|v]] -

Plain Addition

Lemma 14. Let ct = (zo,...,x;) be a ciphertext encrypting m, with noise v, and let mo

be a plaintext polynomial. Let ctyqqq denote the ciphertext obtained by plain addition of ct

with ma. Then the noise in ctpedd S Vpadd = U — @mg, and we have the bound

r¢(q)
vpaaall < llvll + |

m2|| .

Proof. By definition of plain addition we have ctpaqqa = (o + Ama, z1,...,2;). Hence for
some polynomials a, ' with integer coefficients,

t t ;
6Ctpadd(5) = 6 (l’o + Amo + 18+ - + {E]'Sj)

At t :
Z?m2+6($0+$18+"'+1}jsj)

At t
= —mgy + —ct(s)
q q

— T
:m1+v+q7t(q)m2+at
q

rt(q)
q

=mq+mgo+v— ma + at

rt(q)

= [m1 +mals +v— —Zmo+ (a—ad)t,
q

where in the last line we used [mj + ma]y = m; + mgy + at. Hence the noise is

B Tt(Q)
VUpadd = UV — ma
and this can be bounded as (@
Ti\q
[vpadall < [[v]l + . [[ma]| .



Negation

Lemma 15. Let ct be a ciphertext encrypting m with noise v and ctpey be its negation. The

NOISE Vpeg 1M Clpeg 15 gIVEN bY Vpey = —v and we have
[Vnegll = (vl -
Proof. If ct = (co, 1, . . ., ;) then its negation ctpeg = (—co, —c1,...,—cx) = —(co, €1, ..., Ck).
So
t t
actneg(s) = —act(s)
= —(m+ v+ at)

Hence the noise vpeg in ctyeg is —v and ||[vpeg|| = |- 0

Subtraction

Suppose cty and cty are two ciphertexts encrypting m; and me and we want to compute a
ciphertext ctgy, encrypting m; — mga. We could firstly negate cta to obtain a ciphertext ctf,
that encrypts —mg and then perform an addition of ct; and ct}. By viewing the subtraction
operation in this way we can see that the noise growth in subtraction is at most that for
addition, since the noise does not change in norm in negation.

Lemma 16. Let cty and cto be two ciphertexts encrypting mq, meo respectively with noises
v1,v9 respectively. The noise vgyp in the result ctgy is bounded as ||vsupll < [Jv1]| + ||v2]|-

Plain subtraction

By the same argument as for subtraction, the noise growth in plain subtraction is at most
that for plain addition.

Lemma 17. Let ct be a ciphertext encrypting mi1 with noise v, and let mo be a plaintext
polynomial. Let ctyg, denote the ciphertext obtained by plain subtraction of mo from ct.
Then the noise vpsyp M Clpgyy is bounded as

[opsunll < llvll + mal|.

Tt(q) ||
q
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