
SECURITY OF HOMOMORPHIC

ENCRYPTION

Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey Gorbunov,

Jeffrey Hoffstein, Kristin Lauter, Satya Lokam, Dustin Moody, Travis Morrison,

Amit Sahai, Vinod Vaikuntanathan

We met as a group during the Homomorphic Encryption Standardization Workshop on July 13-

14, 2017, hosted at Microsoft Research in Redmond. Researchers from around the world

represented a number of different communities: government, industry, and academia. There are

at least 6 research groups around the world who have made libraries for general-purpose

homomorphic encryption available ([SEAL], [HElib], [Palisade], [cuHE], [NFLLib], [HEAAN]) for

applications and general-purpose use, and demos were shown of all 6 libraries. All 6 of these

general-purpose libraries for homomorphic encryption were based on RLWE-based systems

(Ring Learning With Errors), and all libraries implemented one of two encryption schemes (BGV

or B/FV) and also displayed common choices for the underlying ring, error distribution, and

parameter selection.

Homomorphic Encryption is a breakthrough new technology which can enable private cloud

storage and computation solutions. Demos shown at the workshop included a SEAL demo of

CryptoNets, which performs efficient computation of image processing tasks such as hand-

writing recognition on encrypted data using neural nets. Many other applications are described

in detail in the white paper by the Applications group. In order for Homomorphic Encryption to

be adopted in medical, health, and financial sectors to protect data and patient and consumer

privacy, it will have to be standardized, most likely by multiple standardization bodies and

government agencies. An important part of standardization is broad agreement on security

levels for varying parameter sets. Although extensive research and benchmarking has been

done in the research community to establish the foundations for this effort, it is hard to find all

the information in one place, along with concrete parameter recommendations for applications

and deployment.

This document is an attempt to capture the collective knowledge at the workshop regarding the

currently known state of security of these schemes, to specify the schemes, and to recommend

a wide selection of parameters to be used for homomorphic encryption at various security

levels. We describe known attacks and their estimated running times in order to make these

parameter recommendations. We also describe additional features of these encryption schemes

which make them useful in different applications and scenarios. Many sections of this document

are intended for direct use as a first draft of parts of the standard to be prepared by the Working

Group formed at this workshop.

Outline of the document:

Section 1: introduces notation and definitions.

Section 2: defines the security properties for homomorphic encryption.

Section 3: describes the BGV and B/FV schemes, plus refers to three alternative

schemes: YASHE, NTRU/LTV, and GSW.

Section 4: describes the security assumptions, such as the RLWE assumption.

Section 5: describes known attacks and recommends concrete parameters.

Section 6: describes additional features of the schemes.

Section 1. INTERFACES AND DEFINITIONS

• ParamGen(𝜆, 𝑃, 𝐾, 𝐵) → Params

The parameter generation algorithm is used to instantiate various parameters used in the HE

algorithms outlined below. As input, it takes:

• 𝜆 denotes the desired security level of the scheme. For instance, 128-bit security

(𝜆 = 128) or 256-bit security.

• 𝑃 denotes the modulus of the plaintext numbers one wants to encrypt. For instance, 𝑃 =

 1024 implies that each individual element of the message space is chosen from range

(0, 1023) and all operations over individual elements are performed modulo P.

• 𝐾 denotes the dimension of the vectors to be encrypted. For instance, 𝐾 = 100, 𝑃 =

1024 means the messages to be encrypted are vectors (𝑉1, … , 𝑉𝐾) where each 𝑉𝑖 is

chosen from the range (0, 1023) and operations are performed component-wise. That is,

by defintion, (𝑉1, … , 𝑉𝐾) + (𝑉1
′, … , 𝑉𝐾

′) = (𝑉1 + 𝑉1
′, … , 𝑉𝐾 + 𝑉𝐾

′). The multiplication

operation over two vectors is defined similarly. The space of all possible vectors

(𝑉1, … , 𝑉𝐾) is referred to as the message space (MS).

• 𝐵: denotes an auxiliary parameter that is used to control the complexity of the

programs/circuits that one can expect to run over the encrypted messages. Lower

parameters denotes “smaller”, or less expressive, or less complex programs/circuits.

Lower parameters, generally means smaller parameters of the entire scheme. This, as a

result, translates into smaller ciphertexts and more efficient evaluation procedures.

Higher parameters, generally increases key sizes, ciphertext sizes, and complexity of

the evaluation procedures. Higher parameters are, of course, necessary to evaluate

more complex programs.

• PubKeygen(Params) → SK, PK, EK

The public key-generation algorithm is used to generate a pair of secret and public keys. The

public key can be shared and used by anyone to encrypt messages. The secret key should be

kept private by a user and can be used to decrypt messages. The algorithm also generates an

evaluation key that is needed to perform homomorphic operations over the ciphertexts. It should

be given to any entity that will perform homomorphic operations over the ciphertexts. Any entity

that has only the public and the evaluation keys cannot learn anything about the messages from

the ciphertexts only.

• SecKeygen(Params) → SK, EK

The secret key-generation algorithm is used to generate a secret key. This secret key is needed

to both encrypt and decrypt messages by the scheme. It should be kept private by the user. The

algorithm also generates an evaluation key that is needed to perform homomorphic operations

over the ciphertexts. The evaluation key should be given to any entity that will perform

homomorphic operations over the ciphertexts. Any entity that has only the evaluation key cannot

learn anything about the messages from the ciphertexts only.

• PubEncrypt(PK, M) → C

The public encryption algorithm takes as input the public key of the scheme and any message

M from the message space. The algorithm outputs a ciphertext C. This algorithm generally

needs to be randomized (that is, use random or pseudo-random coins) to satisfy the security

properties.

• SecEncrypt(SK, M) → C

The secret encryption algorithm takes as input the secret key of the scheme and any message

M from the message space. The algorithm outputs a ciphertext C. This algorithm generally

needs to be randomized (that is, use random or pseudo-random coins) to satisfy the security

properties.

• Decrypt(SK, C) → M

The decryption algorithm takes as input the secret key of the scheme, SK, and a ciphertext C. It

outputs a message M from the message space. The algorithm may also output special symbol

FAIL, if the decryption cannot successfully recover the encrypted message M.

• EvalAdd(Params, EK, C1, C2) → C3.

EvalAdd is a randomized algorithm that takes as input the system parameters Params, the

evaluation key EK, two ciphertexts C1 and C2, and outputs a ciphertext C3.

The correctness property of EvalAdd is that if C1 is an encryption of plaintext element M1 and

C2 is an encryption of plaintext element M2, then C3 should be an encryption of M1+M2.

• EvalAddConst(Params, EK, C1, M2) → C3.

EvalAddConst is a randomized algorithm that takes as input the system parameters Params,

the evaluation key EK, a ciphertext C1, and a plaintext M2, and outputs a ciphertext C3.

The correctness property of EvalAddConst is that if C1 is an encryption of plaintext element M1,

then C3 should be an encryption of M1+M2.

• EvalMult(Params, EK, C1, C2) → C3.

EvalMult is a randomized algorithm that takes as input the system parameters Params, the

evaluation key EK, two ciphertexts C1 and C2, and outputs a ciphertext C3.

The correctness property of EvalMult is that if C1 is an encryption of plaintext element M1 and

C2 is an encryption of plaintext element M2, then C3 should be an encryption of M1*M2.

• EvalMultConst(Params, EK, C1, M2) → C3.

EvalMultConst is a randomized algorithm that takes as input the system parameters Params,

the evaluation key EK, a ciphertexts C1, and a plaintext M2, and outputs a ciphertext C3.

The correctness property of EvalMultConst is that if C1 is an encryption of plaintext element M1,

then C3 should be an encryption of M1*M2.

• Refresh(Params, flag, EK, C1) → C2.

Refresh is a randomized algorithm that takes as input the system parameters Params, a multi-

valued flag (which can be either one of “Relinearize”, “ModSwitch” or “Bootstrap”), the

evaluation key EK, and a ciphertext C1, and outputs a ciphertext C2.

The correctness property of Refresh is that if C1 is an encryption of plaintext element M1, then

C2 should be an encryption of M1 as well.

The desired property of the Refresh algorithm is that it turns a “complex” ciphertext of a

message into a “simple” one of the same message. Two embodiments of the Refresh algorithm

are (a) the bootstrapping procedure, which takes a ciphertext with large noise and outputs a

ciphertext of the same message with a fixed amount of noise; and (b) the key-switching

procedure, which takes a ciphertext under one key and outputs a ciphertext of the same

message under a different key.

• ValidityCheck(Params, EK, [C], COMP) → flag.

ValidityCheck is a deterministic algorithm that takes as input the system parameters Params,

the evaluation key EK, an array of ciphertexts [C], and a specification of the homomorphic

computation encoded as a straight-line program COMP, and outputs a Boolean flag.

The correctness property of ValidityCheck is that if ValidityCheck outputs flag = 1, then doing

the homomorphic computation COMP on the vector of ciphertexts [C] produces a ciphertext that

decrypts to the correct answer.

Section 2. PROPERTIES

1. Semantic Security or IND-CPA Security:

At a high level, a homomorphic encryption scheme is said to be secure if no adversary has an

advantage in guessing (better than ½ chance) whether a given ciphertext is an encryption of two

different messages. This requires encryption to be randomized so that two different encryptions

of the same message do not look the same.

Suppose a user runs the parameter and the key-generation algorithms to provide the key tuple.

An adversary is assumed to have the parameters, the evaluation key EK, a public key PK (only

in the public-key scheme), and can obtain encryptions of messages of its choice. The adversary

is then given an encryption of one of two messages (computed by the above encryption

algorithm) of its choice without knowing which message the encryption corresponds to. The

security of HE then guarantees that the adversary cannot guess which message the encryption

corresponds to with significant advantage better than a ½ chance. This captures the fact that no

information about the messages is revealed in the ciphertext.

2. Compactness

The compactness property of a homomorphic encryption scheme guarantees that homomorphic

operations on the ciphertexts do not expand the length of the ciphertexts. That is, any evaluator

can perform an arbitrary supported list of evaluation function calls and obtain a ciphertext in the

ciphertext space (that does not depend on the complexity of the evaluated functions).

3. Efficient decryption

Efficient decryption property says that the homomorphic encryption scheme always guarantees

that the decryption runtime does not depend on the functions which was evaluated on the

ciphertexts.

Section 3. HOMOMORPHIC ENCRYPTION SCHEMES

In this section, we describe the two primary schemes that we recommend for implementation of

homomorphic encryption, [BGV12] and [B12]/[FV12]. In addition, we refer to 3 alternative

schemes [YASHE], [NTRU]/[LTV], [GSW]. These alternative schemes have features which BGV

and B/FV do not have, however they also have disadvantages with respect to performance and

security.

a. Brakerski-Gentry-Vaikuntanathan (BGV)

We focus here on describing the basic version of the BGV encryption scheme. Optimizations to

the basic scheme will be discussed at the end of this section.

• BGV.ParamGen(λ, P, K, B) → Params.

Recall that λ is the security level parameter, 𝑃 > 1 is an integer plaintext modulus and 𝐾 ≥ 1 is

an integer vector length.

In the basic BGV scheme, the auxiliary input 𝐵 is simply an integer that determines the

maximum multiplicative depth of the homomorphic computation which is simply the maximum

number of sequential multiplications required to perform the computation. For example, the

function 𝑓(𝑥1, 𝑥2 , 𝑥3, 𝑥4) = 𝑥1𝑥2 + 𝑥3𝑥4 has multiplicative depth 1.

In the basic BGV scheme, the parameters param consists of the degree parameter 𝑛, the

ciphertext modulus parameter 𝑞, and the error distribution 𝜒 which is a discrete Gaussian

distribution with standard deviation parameter 𝛼 set according to the security guidelines

specified in Section 5.

• BGV.SecKeygen(params) → SK, EK

In the basic BGV scheme, the secret key SK is an element s chosen from the error distribution

𝜒.

In the basic BGV scheme, there is no evaluation key EK.

• BGV.PubKeygen(params) → SK, PK, EK.

In the basic BGV scheme, PubKeygen first runs SecKeygen and obtains (SK, EK) where SK is

an element 𝑠 that belongs to the ring R.

PubKeygen chooses a uniformly random element a from the ring 𝑅/𝑞𝑅 and outputs the public

key PK which is a pair of ring elements (𝑎, 𝑏) = (𝑎, 𝑎 ∗ 𝑠 + 𝑝 ∗ 𝑒) where 𝑒 is chosen from the

error distribution 𝜒.

• BGV.SecEncrypt(SK, M) → C

In the basic BGV scheme, SecEncrypt first maps the message M which comes from the

plaintext space 𝑍𝑝
𝑘 into an element of the ring 𝑅/𝑝𝑅.

SecEncrypt then samples a uniformly random element a from the ring R/qR and outputs the pair

of ring elements (𝑐0, 𝑐1) = (𝑎, 𝑎 ∗ 𝑠 + 𝑝 ∗ 𝑒 + 𝑀) where 𝑒 is chosen from the error distribution 𝜒.

• BGV.PubEncrypt(PK, M) → C

In the basic BGV scheme, Pub.Encrypt first maps the message 𝑀 which comes from the

plaintext space 𝑍𝑝
𝑘 into an element of the ring 𝑅/𝑝𝑅. Recall that the public key PK is a pair of

elements (𝑎, 𝑏).

PubEncrypt then samples three uniformly random elements 𝑟, 𝑓 and 𝑓’ from the error distribution

𝜒 and outputs the pair of ring elements (𝑐0, 𝑐1) = (𝑎 ∗ 𝑟 + 𝑓, 𝑏 ∗ 𝑟 + 𝑝 ∗ 𝑓’ + 𝑀).

• BGV.Decrypt(SK, C) → M

In the basic BGV scheme, Decrypt takes as input the secret key which is an element 𝑠 of the

ring 𝑅, and a ciphertext C = (𝑐0, 𝑐1) which is a pair of elements from the ring 𝑅/𝑞𝑅.

We remark that a ciphertext C produced as the output of the encryption algorithm has two

elements in 𝑅/𝑞𝑅, but upon homomorphic evaluation, ciphertexts can grow to have more ring

elements. The decryption algorithm has to be modified appropriately to handle such ciphertexts.

Decrypt first computes the ring element 𝑐0 ∗ 𝑠 + 𝑐1 over 𝑅/𝑞𝑅 and interprets it as an element 𝑐’

in the ring 𝑅. It then computes 𝑐’ (mod 𝑝), an element of 𝑅/𝑝𝑅, which it outputs.

• BGV.EvalAdd(Params, EK, C1, C2) → C3.

In the basic BGV scheme, EvalAdd takes as input ciphertexts C1 = (𝑐1,0, 𝑐1,1) and C2 =

(𝑐2,0, 𝑐2,1) and outputs C3 = (𝑐1,0 + 𝑐2,0, 𝑐1,1 + 𝑐2,1).

• BGV.EvalMult(Params, EK, C1, C2) → C3.

In the basic BGV scheme, EvalMult takes as input ciphertexts C1 = (𝑐1,0, 𝑐1,1) and C2 =

(𝑐2,0, 𝑐2,1) and outputs C3 = (𝑐1,0 ∗ 𝑐2,0, 𝑐1,0 ∗ 𝑐2,1 + 𝑐1,1 ∗ 𝑐2,0, 𝑐1,1 ∗ 𝑐2,1).

The Full BGV Scheme

In the basic BGV scheme, ciphertexts grow as a result of EvalMult. For example, given two

ciphertexts each composed of two ring elements, EvalMult as described above results in three

ring elements. This can be further repeated, but has the disadvantage that upon evaluating a

degree-𝑑 polynomial on the plaintexts, the resulting ciphertext has 𝑑 + 1 ring elements.

This deficiency is mitigated in the full BGV scheme, with two additional procedures. The first is

called “Key Switching” or “Relinearization” which is implemented by calling the Refresh

subroutine with flag = “KeySwitch”, and the second is “Modulus Switching” or “Modulus

Reduction” which is implemented by calling the Refresh subroutine with flag = “ModSwitch”.

Support for key switching and modulus switching also necessitates augmenting the key

generation algorithm.

For details on the implementation of the full BGV scheme, we refer the reader to [BGV12].

Properties Supported. The BGV scheme supports many features described in Section 6,

including packed evaluations of circuits and can be extended into a threshold homomorphic

encryption scheme. In terms of security, the BGV homomorphic evaluation algorithms can be

augmented to provide evaluation privacy. Note that evaluation privacy is defined below with

respect to semi-honest adversaries.

b. Brakerski/Fan-Vercauteren (BFV)

We assume the parameters are instantiated following the recommendations outlined in Section

5. The parameters include:

• Two distributions 𝐷1, 𝐷2

• a ring 𝑅 and its corresponding integer modulo q

• Integer 𝑇, and 𝐿 = log𝑇 𝑞. T is the bit-decomposition modulus.

• Plaintext modulus 𝑃, and plaintext ring 𝑅/𝑃𝑅

• Integer 𝑊 = ⌊𝑞/𝑃⌋

• BFV.SecKeygen(Params)

The secret key SK of the encryption scheme is a random element 𝑆 from the distribution 𝐷2

defined as per Section 5. The evaluation key consists of 𝐿 LWE samples encoding the secret 𝑆

in a specific fashion.

In particular, for 𝑖 = 0, … , 𝐿, sample a random 𝐴𝑖 from 𝑅 and error 𝐸𝑖 from 𝐷1, compute

𝐸𝐾𝑖 = (−(𝐴𝑖𝑆 + 𝐸𝑖) + 𝑇𝑖𝑆2, 𝐴𝑖),

and set 𝐸𝐾 = (𝐸𝐾0, … , 𝐸𝐾𝐿).

• BFV.PubKeygen(params):

The secret key SK of the encryption scheme is a random element S from the distribution D2

defined as per Section XYZ. The public key is a random LWE sample with the secret S. In

particular, it is computed by sampling a random element 𝐴 from 𝑅 and an error 𝐸 from the

distribution 𝐷1 and setting:

𝑃𝐾 = (−(𝐴𝑆 + 𝐸), 𝐴), where all operations are performed over the ring 𝑅.

The evaluation key is computed as in BFV.SecKeygen.

• BFV.PubEncrypt(PK, M):

BFV.Pub.Encrypt first maps the message 𝑀 which comes from the message space into an

element in the ring 𝑅/𝑃𝑅 .

To encrypt a message 𝑀 from 𝑅/𝑃𝑅, parse the public key as a pair 𝑃𝐾0, 𝑃𝐾1. Encryption

consists of two LWE samples using a secret 𝑈 where 𝑃𝐾0, 𝑃𝐾1 is treated as public randomness.

The first LWE sample encodes the message 𝑀, whereas the second sample is auxiliary.

In particular, C = (𝑃𝐾0 ∗ 𝑈 + 𝐸1 + 𝑊 ∗ 𝑀, 𝑃𝐾1 ∗ 𝑈 + 𝐸2) where 𝑈 is a sampled from 𝐷2, and

𝐸1, 𝐸2 are sampled from 𝐷1.

• BFV.SecEncrypt(PK, M):

• BFV.Decrypt(SK, C):

The main invariant of the BFV scheme is that when we interpret the elements of a ciphertext

C as the coefficients of a polynomial then, C(S) = 𝑊 ∗ 𝑀 + 𝐸 for some “small” error 𝐸. From it,

𝑀 can be recovered easily by dividing by 𝑊 and rounding the result.

• BFV.EvalAdd(EK, C1, C2):

Parse the ciphertexts as Ci = (𝐶𝑖,0, 𝐶𝑖,1). Then, addition simply corresponds to component-wise

addition of two ciphertext components.

That is, 𝐶+ = (𝐶1,0 + 𝐶2,0, 𝐶1,1 + 𝐶2,1).

It is easy to verify that 𝐶+(𝑆) = 𝑊 ∗ (𝑀1 + 𝑀2) + 𝐸, where M1, M2 are messages encrypted

in C1, C2 and E is the new error component.

• BFV.EvalMult(EK, C1, C2):

To multiple two ciphertexts, we interpret each ciphertext as a list of polynomial coefficients over

a variable. EvalMult is just a polynomial multiplication (followed by a rounding step to the

nearest integer).

Concretely, 𝐶∗ = 𝑟𝑜𝑢𝑛𝑑((𝑃/𝑞)𝐶1 ∗ 𝐶2) 𝑚𝑜𝑑 𝑞. Recalls that 𝑊 = ⌊𝑞/𝑃⌋).

It is somewhat easy to verify that 𝐶∗(𝑆) = 𝑊 ∗ (𝑀1 ∗ 𝑀2) + 𝐸, for some new error 𝐸.

One may note that the ciphertext size increases in this operation. One may apply a Refresh

algorithm to obtain a new compact ciphertext of the original size encoding the same message

𝑀1 ∗ 𝑀2.

Properties Supported. The complete BFV scheme supports many features described in

Section 6, including packed evaluations of circuits and can be extended into a threshold

homomorphic encryption scheme. In terms of security, the BFV homomorphic evaluation

algorithms can be augmented to provide evaluation privacy.

For details on the implementation of the full BFV scheme, we refer the reader to [B12], [FV12].

c. Comparison between BGV and BFV

When implementing HE schemes, there are many choices which can be made to optimize

performance for different architectures and different application scenarios. This makes a direct

comparison of these schemes quite challenging. A paper by Costache and Smart [CS16] gives

some initial comparisons between BGV, B/FV and two of the schemes described below: YASHE

and LTV/NTRU. A paper by Kim and Lauter [KL15] compares the performance of the BGV and

YASHE schemes in the context of applications. Since there is further ongoing work in this area,

we leave this comparison as an open research question.

d. Other Schemes

Yet Another Somewhat Homomorphic Encryption ([YASHE]) is similar to the BGV and BFV

schemes and offers the same set of features.

The scheme NTRU/Lopez-Alt-Tromer-Vaikuntanathan ([NTRU]/[LTV]) relies on the NTRU

assumption (also called the “small polynomial ratios assumption”). It offers all the features of

BGV and BFV, and in addition, also offers an extension that supports multi-key homomorphism.

The scheme proposed by Gentry-Sahai-Waters [GSW13] offers a different set of trade-offs

between advantages and disadvantages.

Section 4. SECURITY ASSUMPTIONS

This section describes the problems which are assumed to be hard as the basis for the security

of the homomorphic encryption schemes. Known security reductions to other problems are not

included here. Section 5 describes the best currently known attacks on these problems and their

concrete running times.

a. The Learning with Errors (LWE) Assumption

The LWE assumption is defined by a triple of parameters (𝑛, 𝑚, 𝑞, 𝜒) where 𝑛 is a positive

integer referred to as the “dimension parameter”, 𝑞 is a positive integer referred to as the

“modulus parameter” and 𝜒 is a probability distribution over rational integers referred to as the

“error distribution”.

The LWE assumption requires that the following two probability distributions are computationally

indistinguishable:

Distribution 1. Choose a uniformly random matrix 𝑛×𝑚 matrix 𝐴, a uniformly random (row)

vector 𝑠 from the vector space 𝑍𝑞
𝑛, and a (row) vector 𝑒 from 𝑍𝑚 where each coordinate is

chosen from the error distribution 𝜒. Compute 𝑏 ∶= 𝑠𝐴 + 𝑒. By definition, all computations here

are carried out modulo 𝑞. Output (𝐴, 𝑏).

Distribution 2. Choose a uniformly random 𝑛×𝑚 matrix 𝐴, and a uniformly random (row) vector 𝑏

from 𝑍𝑞
𝑚. Output (𝐴, 𝑏).

The error distribution 𝜒 can be either a discrete Gaussian distribution over the integers, or

another distribution supported on small integers. We refer the reader to Section 5.3 for more

details on particular error distributions, algorithms for sampling from these distributions, and the

associated security implications.

b. The Ring Learning with Errors (RLWE) Assumption

The RLWE assumption is a specific case of LWE where the matrix 𝐴 is chosen to have special

algebraic structure.

The RLWE assumption is defined by a triple of parameters (𝑛, 𝑚, 𝑞, 𝜒) where 𝑛 is a positive

integer which is a power of two, referred to as the “degree parameter”, 𝑞 is a positive integer

referred to as the “modulus parameter” and 𝜒 is a probability distribution over the ring 𝑅 ∶=

 𝑍[𝑋]/(𝑋𝑛 + 1), referred to as the “error distribution”.

The RLWE assumption requires that the following two probability distributions are

computationally indistinguishable:

Distribution 1. Choose a uniformly random element a from the ring 𝑅/𝑞𝑅, a uniformly random

element 𝑠 from the ring 𝑅/𝑞𝑅, and an element 𝑒 from the ring 𝑅 chosen from the error

distribution 𝜒. Compute 𝑏 ∶= 𝑠𝑎 + 𝑒. By definition, all computations here are carried out over the

ring 𝑅/𝑞𝑅. Output (𝑎, 𝑏).

Distribution 2. Choose a uniformly random element 𝑎 from the ring 𝑅/𝑞𝑅, and a uniformly

random element 𝑏 from the ring 𝑅/𝑞𝑅. Output (𝑎, 𝑏).

The error distribution 𝜒 can be either a discrete Gaussian distribution over the ring 𝑅, or another

distribution supported on “small” ring elements. We refer the reader to Section 5.3 for more

details on particular error distributions, algorithms for sampling from these distributions, and the

associated security implications.

Section 5. Attacks and Secure Parameter Selection

Assessing the best attacks and explaining the running times of the attacks

We review attacks on the LWE problem and use them to suggest concrete parameter choices.

The schemes described above all have versions based on the LWE and the RLWE

assumptions. When the schemes based on RLWE are instantiated with rings which are 2-power

cyclotomic rings, we do not currently know better attacks on RLWE than on LWE. The following

estimates and attacks refer to attacks on the LWE problem with the specified parameters. In a

later section, we will discuss security issues related to varying the choice of ring to non-2-power

cyclotomic fields.

Much of this section is based on the paper by Albrecht, Player, and Scott [APS15] and the

online Estimator tool which accompanies that paper. Estimated security levels in all the tables in

this section were obtained by running the Estimator based on its state in July 2017. The tables

in this section give the best attacks (in terms of running time in bits) among all known attacks as

implemented by the Estimator tool. As attacks or implementations of attacks change, or as new

attacks are found, these tables will need to be updated. A sound strategy for standardization

might be be to take currently predicted security levels and augment the requirements to allow

for future improvements to attacks based on a historical analysis of how fast attacks have

improved over time. First, we describe all the attacks which give the best running times when

working on parameter sizes in the range which are interesting for Homomorphic Encryption.

5.1 Descriptions of attack algorithms

a. The uSVP attack

The unique shortest vector attack takes as input a sequence of 𝑚 LWE samples of the form

(𝑎𝑖 , 〈𝑎𝑖, 𝑠〉 + 𝑒𝑖). Here, 𝑎𝑖 are 𝑛-dimensional vectors chosen randomly and uniformly from 𝑍𝑞
𝑛, 𝑠 is

a fixed secret 𝑛-dimensional vector, the 𝑒𝑖 are chosen from a discrete Gaussian distribution with

mean 0, and standard deviation 𝜎 = 𝛼𝑞 /√2𝜋, and 〈𝑎, 𝑠〉 represents the inner product of 𝑎 and 𝑠.

Note that 𝛼 is a public parameter. The coefficients of the secret 𝑠 are often drawn from a

uniform distribution, or from the same discrete Gaussian distribution as the errors 𝑒𝑖. The lattice

reduction attack sketched here applies to all of these instances, but the corresponding lattice is

altered accordingly. The unique shortest vector attack translates the sequence of 𝑚 samples

into an appropriate 𝑚 + 𝑛 + 1 by 𝑚 + 𝑛 + 1 matrix. The rows of this matrix generate a lattice,

and will contain information revealing the 𝑚 secret errors 𝑒1, 𝑒2, … , 𝑒𝑚. Thus if the shortest vector

can be recovered, the secret 𝑠 can usually be recovered as long as 𝑚 is sufficiently larger than

𝑛.

Given enough time, BKZ 2.0 lattice reduction will solve the problem of locating this shortest

vector, and hence solve the LWE problem, if the ratio of the length of the expected shortest

vector of the lattice by the length of the actual shortest vector (the target) is greater than a

certain quantity. Let 𝑒 = 2.7108 …; in [AFG14, APS15] it is shown that for practical choices of

parameters given in this document, for any 𝜖′ > 1, this quantity is greater than 𝑞−
𝑛

𝑚/

(𝜖′𝛼√2𝑒) with probability greater than

𝜌(𝑚, 𝜖′) = 1 − (𝜖′𝑒
1−𝜖′2

2)

𝑚

.

They also show that if the root-Hermite factor 𝛿0 satisfies

log(𝛿0) = log2
𝜖′𝜏𝛼√2𝑒

4𝑛 log 𝑞
,

then the optimal choice of 𝑚 is 𝑚 = √𝑛 log(𝑞)/ log(𝛿0). They also remark that 𝜏 can be taken to

equal 0.4. Assuming the Gaussian heuristic for their lattice, they ultimately establish that for an

LWE problem with parameters 𝑛, 𝑞, 𝛼, the problem has a probability of at least
𝜌(𝑚,𝜖′)

10
 of being

ultimately solvable by BKZ 2.0, with the optimal choice of 𝑚 given above. The length of time

required to solve the problem is determined by 𝑛 and 𝛿0. It is an open research problem to more

precisely predict the exact relationship between time required to solve the problem and 𝑛, 𝛿0 as

𝑛 increases (see Section 5.2 below for further discussion).

b. The Decoding attack on LWE

This attack solves the search-LWE problem by viewing it as the equivalent Bounded Distance

Decoding (BDD) problem on 𝑞-ary lattices. The attack is due to Lindner and Peikert [LP11] with

improvements and variations suggested by Albrecht et al. [APS15].

The algorithm works on the lattice given by integer vectors 𝑧 such that 𝑧 = 𝐴𝑇𝑠 𝑚𝑜𝑑 𝑞, where 𝑠 ∈

𝑍𝑞
𝑛 is the secret vector, 𝐴 is an 𝑚×𝑛 matrix, and 𝑚 denotes the number of samples used in the

attack. It starts with a sufficiently reduced basis, e.g., using BKZ 2.0, and then applies a

modified version of the recursive Nearest Plane algorithm due to Babai [Bab86]. Given a basis

B and a target vector 𝑡, the Nearest Plane algorithm finds a vector 𝑣 such that the error vector

𝑒 = 𝑡 − 𝑣 falls in the fundamental parallelepiped of the Gram-Schmidt orthogonalization (GSO)

of B.

Lindner and Peikert note that for a BKZ-reduced basis B, the fundamental parallelepiped is long

and thin, by the Geometric Series Assumption (GSA) due to Schnorr that the GSO of a BKZ-

reduced basis decay geometrically and this makes the probability that the Gaussian error vector

𝑒 falls in the corresponding fundamental parallelepiped very low. To improve this success

probability, they “fatten” the parallelepiped by essentially scaling its principal axes. They do this

by running the Nearest Plane algorithm on several distinct planes at each level of recursion. For

a Gaussian error vector 𝑒, the probability that it falls in this fattened parallelepiped is expressed

in terms of the scaling factors and the lengths of the GSO of B.

The run time of the Nearest Planes algorithm mainly depends on the number of points

enumerated, which is the product of the scaling factors. The run time of the basis reduction step

depends on the quality of the reduced basis, expressed, for instance, by the root Hermite factor

𝛿0. The scaling factors and the quality of the basis together determine the success probability of

the attack. Hence to maximize the success probability, the scaling factors are determined based

on the (predicted) quality of the BKZ-reduced basis. There is no closed formula for the scaling

factors and there seems to be no algorithmic approach to determine them. In practice, these are

determined by experimentation and can be chosen to be powers of two. The scaling factors and

the quality of the basis are chosen to achieve a target success probability and to minimize the

running time (by balancing its first and second components mentioned above)

c. The dual attack

The dual attack solves the decisional problem, so it does not recover the secret. This works well

for “small” or “short” secrets.

This attack is to distinguish the case of 𝑚 LWE samples (𝐴, 𝑐) from 𝑚 uniformly random

samples. In an LWE sample, we have 𝑐 = 𝐴𝑠 + 𝑒, where 𝑒 is the error vector.

The attack will first find a short row vector 𝑣 such that 𝑣𝐴 = 0. We present it as a lattice

problem: find a vector v in the scaled (by q) dual lattice of the lattice generated by 𝐴,

𝐿 = {𝑤 ∈ 𝑍𝑞
𝑚 | 𝑤𝐴 ≡ 0 𝑚𝑜𝑑 𝑞}.

This is known as solving the Short Integer Solutions problem (SIS).

Now consider 〈𝑣, 𝑐〉; if 𝑐 = 𝐴𝑠 + 𝑒, then we have that 〈𝑣, 𝑐〉 = 〈𝑣, 𝐴𝑐 + 𝑒〉 = 〈𝑣, 𝑒〉, where 𝑒

follows a Gaussian distribution over 𝑍/𝑞𝑍. This means the result should give small samples, as

both 𝑣 and 𝑒 are small. On the other hand, if 𝑐 is uniformly random then 〈𝑣, 𝑐〉 is uniformly

random on 𝑍/𝑞𝑍. By looking at 〈𝑣, 𝑐〉, we may distinguish these two cases, thus solving the

Decision-LWE problem.

We must however ensure that indeed 𝑣 is short enough, since if 𝑣 is too large, the (Gaussian)

distribution of 〈𝑣, 𝑒〉 will be too flat to distinguish from random. There is a claim in [LP11] that for

an LWE instance with parameters 𝑛, 𝛼, 𝑞 and a vector 𝑣 of length |𝑣| in the scaled dual lattice

𝐿 = {𝑤 ∈ 𝑍𝑞
𝑚 |𝑤𝐴 ≡ 0 𝑚𝑜𝑑 𝑞}, the advantage of distinguishing 〈𝑣, 𝑒〉 from random is close to

𝑒𝑥𝑝 (−𝜋(|𝑣| · 𝛼)2). To obtain a probability 𝜖 of success in solving an LWE instance

parametrized by 𝑛, 𝑞 and 𝛼 via the SIS strategy, we require a vector 𝑣 of norm

|𝑣| =
√𝑙𝑛 (

1
𝜖)

𝜋
 / 𝛼.

Concretely, the attack applies a conventional lattice reduction algorithm, in particular, BKZ 2.0,

to return the shortest non-zero vector it can find, which is then used to distinguish the samples.

There are heuristic estimates to obtain the computational complexity to find the desired vector

for the distinguishing attack.

5.2 Lattice Reduction algorithm: BKZ

BKZ is an iterative, block-wise algorithm for basis reduction. It requires solving the SVP problem

(using sieving or enumeration, say) in a smaller dimension 𝛽, the block size. First, the input

lattice 𝐿 is LLL reduced, giving a basis {𝑏0, … , 𝑏𝑛−1}. For 0 ≤ 𝑖 ≤ 𝑛 − 1, the vectors

𝑏𝑖, … , 𝑏min (𝑖+𝛽−1,𝑛) are projected onto the orthogonal complement of the span of 𝑏0, … , 𝑏{𝑖−1};

this projection is called a local block. In the local block, we find a shortest vector, view it as a

vector 𝑏 of 𝐿, and perform LLL on the list of (now linearly dependent) vectors

{𝑏𝑖, … , 𝑏min (𝑖+𝛽−1,𝑛), 𝑏}. We use the resulting vectors to update {𝑏𝑖, … , 𝑏min (𝑖+𝛽−1,𝑛)}. This process

is repeated until a basis is not updated after a full pass.

There have been improvements to BKZ, which are collectively referred to BKZ 2.0 (see [CN11]

for example). The authors of [AFG14, APS15] take these improvements into account in their

analysis of the quality and runtime of BKZ and in their estimator.

Given a lattice basis {𝑏0, … , 𝑏𝑛−1} of a lattice 𝐿, we can measure how reduced the basis is with

the root-Hermite factor 𝛿0, defined as follows: assume that 𝑏0 is the shortest vector of the basis

and define the volume of 𝐿, 𝑣𝑜𝑙(𝐿), to be √det (𝐵𝑇𝐵) where 𝐵 is a matrix consisting of the

vectors of any basis of 𝐿. Then define 𝛿0 so that 𝛿0
𝑛 = |𝑏0|/𝑣𝑜𝑙(𝐿)1/𝑛. While many attacks on

LWE base their runtime and advantage on achieving a certain 𝛿0, it is difficult to capture the

runtime required to achieve such a 𝛿0 in terms of the blocksize 𝛽, or the number of rounds of

BKZ. The runtime largely depends also on what method is used to solve the SVP in the local

blocks. For a detailed discussion of the state of the art, see [APS15], where estimates for the

number of clock cycles 𝑡𝛽 required to solve SVP in dimension 𝛽 using the various methods can

be found. In our tables, we always chose the sieving method, which is faster but requires

exponential memory. In particular, from [APS15] we have log(𝑡𝛽) = .3366𝛽 + 12.31, and if we

take the estimate in [APS15] for the number of rounds of BKZ required to be
𝑛2log (𝑛)

𝛽2 , this results

in a total runtime for BKZ in dimension 𝑛 with blocksize 𝛽 to be
𝑛3 log(𝑛)

𝛽2 𝑡𝛽 clock cycles; for a

detailed explanation of these estimates, see [APS15], Section 3.2.

We note that the estimator allows specification of multiple cost models for solving SVP:

• “lp” The Lindner-Peikert model, taken from [LP11], which does not take into account the

improvements in BKZ 2.0.

• “sieve” Assumes sieving is used as the SVP oracle. We chose this for our tables as it

provides the lowest security estimates for given 𝑛, 𝛼, 𝑞. It may be impractical due to the

memory requirements, however, for sieving.

• “enum” Based on the model in [CN11] which takes into account improvements in solving

the SVP with enumeration.

• “qsieve” Model based on estimates for a quantum algorithm for sieving from [LMvP13].

Our tables for quantum security estimates use this model.

5.3. Parameter recommendations

Specifying an LWE or a Ring-LWE scheme for encryption requires specifying a ring, 𝑅, of a

given dimension, 𝑛, along with a ciphertext modulus 𝑞, and a choice for the error distribution

and a choice for a secret distribution.

Ring. In practice, we take the ring 𝑅 to be a 2-power cyclotomic ring 𝑅 = 𝑍[𝑥]/(𝑥𝑛 + 1), where

𝑛 is a power of 2.

Error distribution. The error is usually chosen from a Discrete Gaussian distribution with width

𝜎 = 8/√2𝜋. Selecting the error according to a Discrete Gaussian distribution is motivated by

theoretical security reductions proved in [LPR13]. However, those theoretical guarantees do not

apply to fixed small error widths such as 𝜎 = 8/√2𝜋, and would instead require that the error

width grow with the square root of the dimension of the lattice, √𝑛 . None of the known attacks

appear to take advantage of the shape of the error distribution, only the width; however, the

analysis of the security levels given below relies on running time estimates which assume that

the shape of the error distribution is Discrete Gaussian. For that reason we continue to assume

that the error is chosen from a Discrete Gaussian distribution of fixed small width. The width is

chosen to be small for practical performance reasons, and is justified by the concrete running

times of known attacks with those error widths. However, over time if attacks improve or new

attacks are found, the width of the error may need to be increased in practice.

Secret key. For efficiency reasons, in practice we often choose the secret from a non-uniform

distribution, such as the ternary distribution, which means to select uniformly from {−1,0,1}. In

the recommended parameters given below, we will present tables for three choices of secret-

distribution: {uniform, error, and ternary}. We will not present tables for sparse secrets because

we do not suggest standardizing the case of sparse secret due to significantly better known

attacks which are not stable enough to assess since they continue to be improved.

Number of samples. For most of the attacks listed in the tables below, it is assumed that a

certain number of samples are used in the attack. From an RLWE ciphertext, we can obtain

𝑛 log𝑇 𝑞 LWE samples, where T is the bit-decomposition modulus.

Sampling Methods. We restrict to the case where 𝑅 = 𝑍[𝑥]/(𝑥𝑛 + 1), where 𝑛 is a power of

2. In this case, the Discrete Gaussian distribution on 𝑅 can be generated as

𝑒 = ∑ 𝑒𝑖𝑥𝑖

𝑛−1

𝑖=0

 ,

where each 𝑒𝑖 follows a discrete Gaussian distribution over the integers. Therefore, it suffices to

sample from a discrete Gaussian distribution over the integers of width 𝑠 > 0, which we denote

by 𝐷𝑍,𝑠.

There are several known methods to sample from 𝐷𝑍,𝑠, including rejection sampling, inversion

sampling, Discrete Zuggurat, Bernoulli-type, Knuth-Yao and Von Neumann-type. For efficiency,

we recommend the Von Neumann-type sampling method introduced by Karney in [Kar16].

Constant-time sampling. In the aforementioned sampling methods, the time it takes to

generate one sample could leak information about the actual sample. Therefore, it is important

that the entire error-sampling process is constant-time. To achieve this, one possible method is

to fix some upper bound 𝑇 > 0 such that sampling all the 𝑛 coordinates 𝑒𝑖 sequentially without

interruption takes time less than 𝑇 time with overwhelming probability. Then after these samples

are generated, using time 𝑡, we wait for (𝑇 − 𝑡) time units, so that the entire error-generating

time always takes time 𝑇. In this way, the total time does not reveal information about the

generated error polynomial.

Ring-LWE security for other rings. As noted above, in practice in the application of

homomorphic encryption we use error distributions of small width. When using error

distributions with small width and considering other rings besides the 2-power cyclotomic rings,

there are better known attacks on the RLWE problem. These attacks and examples of weak

rings were first given in [ELOS15] and [CLS15], and were subsequently improved in [CLV16a],

[CLV16b], and [CLS16]. Because rings can be weak with respect to these attacks in many

different ways depending on their geometry, and we don’t have uniform ways to check for such

weakness yet, we do not recommend using non-cyclotomic rings for cryptography. For general

cyclotomic rings (which are not 2-power cyclotomics), there is more research to be done: for

prime cyclotomics an efficient concrete attack on search RLWE was given in [CLS15] when q is

the ramified prime, and an efficient attack on the decision RLWE problem was given for other

choices of q. There are also strong incentives to use 2-power cyclotomic rings for performance

reasons, so unless there are better attacks it makes sense to standardize those anyway.

5.4 TABLES of RECOMMENDED PARAMETERS

In practice, in order to implement homomorphic encryption for a particular application or task,

the application will have to select a dimension 𝑛, and a ciphertext modulus 𝑞, (along with a

plaintext modulus and a choice of encoding which are not discussed here). For that reason, we

give pairs of (𝑛, 𝑞) which achieve different security levels for each 𝑛. In other words, given 𝑛, the

table below recommends a value of 𝑞 which will achieve a given level of security (e.g. 128 bits)

for the given error width 𝜎 ≈ 3.2.

We have the following tables for 3 different security levels, 128-bit, 192-bit, and 256-bit security,

where the secret follows the uniform, error, and ternary distributions. For applications, we give

values of 𝑛 from 𝑛 = 2𝑘 where 𝑘 = 11, … ,15. We note that we used commit f59326c of the lwe-

estimator of [APS15], which the authors continue to develop and improve. The tables give

estimated running times (in bits) for the three attacks described in Section 5.1: uSVP, dec

(decoding attack), and dual.

distribution n security level log(q) uSVP dec dual

uniform 1024 128 31 130.6 133.8 147.5

 192 22 203.6 211.2 231.8

 256 18 269.9 280.5 303.6

 2048 128 59 129.5 129.7 139.2

 192 42 194.0 197.6 212.4

 256 33 263.8 270.7 289.9

 4096 128 113 131.9 129.4 136.8

 192 80 192.7 193.2 203.2

 256 63 260.7 263.6 277.6

 8192 128 222 132.9 128.9 134.9

 192 157 195.4 192.8 200.6

 256 124 257.0 256.8 266.7

 16384 128 440 133.9 129.0 133.0

 192 310 196.4 192.4 198.7

 256 243 259.5 256.6 264.1

 32768 128 880 134.3 129.1 131.6

 192 612 198.8 193.9 198.2

 256 480 261.6 257.6 263.6

distribution n security level log(q) uSVP dec dual

(-1,1) 1024 128 29 139.6 145.9 128.9

 192 20 226.9 241.2 196.8

 256 15 344.3 366.1 273.9

 2048 128 56 136.2 137.9 128.3

 192 39 210.3 217.5 194.6

 256 30 294.5 307.5 268.8

 4096 128 110 135.1 133.5 128.5

 192 77 203.1 205.5 192.4

 256 60 274.7 280.4 259.0

 8192 128 219 134.6 130.9 128.6

 192 153 200.3 199.0 193.1

 256 119 268.7 270.0 257.9

 16384 128 441 133.3 128.7 128.1

 192 306 199.0 195.3 192.4

 256 239 263.8 261.6 257.2

 32768 128 885 133.4 128.2 128.0

 192 615 197.4 192.8 192.2

 256 479 261.9 258.2 257.0

distribution n security level log(q) uSVP dec dual

error 1024 128 31 130.6 133.8 129.6

 192 22 203.6 211.2 200.8

 256 19 269.9 280.5 259.5

 2048 128 58 132.1 132.4 130.2

 192 42 194.0 197.6 190.6

 256 33 263.8 270.7 258.1

 4096 128 113 131.9 129.4 128.8

 192 80 195.6 196.1 192.2

 256 62 266.0 268.9 259.3

 8192 128 223 132.3 128.3 128.0

 192 157 195.4 192.8 192.3

 256 123 259.6 259.4 256.2

 16384 128 443 133.0 128.1 129.3

 192 310 196.4 192.4 193.9

 256 243 259.5 256.6 259.3

 32768 128 886 133.4 128.2 129.4

 192 616 197.4 192.5 192.2

 256 481 261.0 257.0 256.2

Post-quantum security. The BKZ.qsieve model assumes access to a quantum computer and

gives lower estimates than BKZ.sieve. In what follows, we give tables of recommended (“Post-

quantum”) parameters which achieve the desired levels of security against a quantum

computer.

distribution n security level log(q) uSVP dec dual

uniform 1024 128 29 131.9 136.4 149.9

 192 21 200.3 209.9 200.3

 256 17 269.8 284.1 303.8

 2048 128 56 128.1 128.9 138.1

 192 39 196.7 201.7 216.1

 256 31 263.5 272.2 290.1

 4096 128 107 130.6 128.4 135.6

 192 76 192.1 192.2 203.2

 256 59 260.2 264.17 277.7

 8192 128 209 132.4 128.3 134.4

 192 147 194.7 192.9 200.4

 256 116 256.2 256.6 266.2

 16384 128 415 132.9 128.5 132.2

 192 290 195.7 192.1 198.5

 256 226 259.8 257.3 265.0

 32768 128 831 133.1 128.1 130.5

 192 575 196.9 192.3 196.2

 256 449 260.3 261.1 262.3

distribution n security level log(q) uSVP dec dual

(-1,1) 1024 128 27 141.6 149.3 130.6

 192 19 224.6 241.6 193.9

 256 14 350.8 378.7 274.4

 2048 128 52 138.1 140.8 130.2

 192 36 214.4 223.4 197.8

 256 28 296.1 312.1 267.0

 4096 128 103 135.4 134.2 128.6

 192 72 203.2 206.2 192.2

 256 56 274.8 281.9 259.0

 8192 128 202 134.0 130.7 128.0

 192 143 200.3 199.3 192.9

 256 111 268.6 270.8 257.6

 16384 128 413 133.4 129.0 128.2

 192 286 198.6 195.3 192.1

 256 223 263.8 261.5 256.5

 32768 128 829 133.3 128.4 128.2

 192 574 197.5 193.1 192.0

 256 449 260.0 256.1 256.4

distribution n security level log(q) uSVP dec Dual

error 1024 128 29 131.9 136.4 131.5

 192 21 200.3 209.9 197.5

 256 17 269.8 284.1 259.0

 2048 128 55 130.7 131.5 129.0

 192 39 196.7 201.7 193.1

 256 31 263.5 272.2 257.3

 4096 128 106 132.0 129.7 128.9

 192 74 198.2 199.6 195.2

 256 58 266.6 269.7 258.8

 8192 128 208 132.4 128.3 128.0

 192 146 196.3 194.3 193.5

 256 114 261.5 262.0 258.2

 16384 128 415 132.9 128.5 129.3

 192 289 195.7 192.1 193.7

 256 226 259.8 257.3 260.2

 32768 128 831 133.1 128.1 129.5

 192 575 197.2 192.8 192.0

 256 449 260.3 256.1 257.5

Section 6. Additional Features & Discussion

Distributed HE

Homomorphic Encryption is especially suitable to use for multiple users who may want to run

computations on an aggregate of their sensitive data. For the setting of multiple users, an

additional property which we call threshold-HE is desirable. In threshold-HE the key-generation

algorithms, encryption and decryption algorithms are replaced by a distributed-key-generation

(DKG) algorithm, distributed-encryption (DE) and distributed-decryption (DD) algorithms. Both

the distributed-key-generation algorithm and the distributed-decryption algorithm are executed

via an interactive process among the participating users. The evaluation algorithms EvalAdd,

EvalMult, EvalMultConst, EvalAddConst and Refresh remain unchanged.

We will now describe the functionality of the new algorithms.

We begin with the distributed-key-generation (DKG) algorithm to be implemented by an

interactive protocol among 𝑡 parties 𝑝1, … , 𝑝𝑡 . The DKG algorithm is a randomized algorithm.

The inputs to DKG are: security parameter, number of parties 𝑡, and threshold parameter 𝑑.

The output of DKG is a vector of secret keys 𝑠 = (𝑠1, , 𝑠𝑡) of dimension 𝑡 and a public

evaluation key Ek where party 𝑝𝑖 receives (Ek,𝑠𝑖).

We remark that party 𝑝𝑖 doesn’t receive 𝑠𝑗 for 𝑖 ≠ 𝑗 and party 𝑖 should maintain the secrecy of its

secret key 𝑠𝑖.

Next, the distributed-encryption (DE) algorithm is described.

The DE algorithm is a randomized algorithm which can be run by any party 𝑝𝑖

The inputs to DE run by party 𝑝𝑖 are: the secret key 𝑠𝑖 and the plaintext 𝑀

The output of DE is a ciphertext C.

Finally, we describe the distributed-decryption (DD) algorithm to be implemented by an

interactive protocol among a subset of the 𝑡 parties 𝑝1, … , 𝑝𝑡.

The DD algorithm is a randomized algorithm.

The inputs to DD are: a subset of secret keys 𝑠 = (𝑠1, , 𝑠𝑡), the threshold parameter 𝑑, and a

ciphertext C. In particular, every participating party 𝑝𝑖 provides the input𝑠𝑖. The ciphertext C can

be provided by any party.

The output of DD is: plaintext 𝑀.

The correctness requirement that the above algorithms should satisfy is as follows.

If at least 𝑑 of the parties correctly follow the prescribed interactive protocol that implements the

DD decryption algorithm, then the output of the decryption algorithm will be correct.

The security requirement is for semantic security to hold as long as fewer than 𝑑 parties collude

adversarially.

An example usage application for (DKG,DE,DD) is for two hospitals, 𝑡 = 2 and 𝑑 = 2 with

sensitive data sets 𝑀1 and 𝑀2(respectively) who want to compute some analytics 𝐹 on the joint

data set without revealing anything about 𝑀1 and 𝑀2 except for what is revealed by 𝐹(𝑀1, 𝑀2).

In such a case the two hospitals execute the interactive protocol for DKG and obtain their

respective secret keys 𝑠1 and 𝑠2 and the evaluation key EK. They each use DE on secret key 𝑠𝑖

and data 𝑀𝑖 to produce ciphertext Ci. The evaluation algorithms on C1, C2 and the evaluation

key EK allow the computation of a ciphertext C which is an encryption of 𝐹(𝑀1, 𝑀2). Now, the

hospitals execute the interactive protocol DD using their secret keys and ciphertext C to obtain

𝐹(𝑀1, 𝑀2).

Active Attacks

One can consider stricter security requirements beyond semantic security. For example,

Suppose a client holds data 𝑀 and wishes to compute 𝐹(𝑀) for a specified algorithm 𝐹.

The client outsources the computation of 𝐹(𝑀) to a cloud maintaining the privacy of 𝑀 as

follows. The client encrypts 𝑀 into ciphertext C and hands C to the cloud server. The server is

supposed to use the evaluation algorithms to compute a ciphertext C’ which is an encryption of

𝐹(𝑀) and return this to the client for decryption.

Suppose that instead the cloud computes some other C’’ which is the encryption of 𝐺(𝑀) for

some other function 𝐺. This may be problematic to the client as it would introduce errors of

potentially significant consequences. This is an example of an active attack which is not ruled

out by semantic security.

We remark that to such attacks against homomorphic encryption schemes cannot be prevented

without additional measures.

Another, possibly even more severe attack, is the situation where the adversary somehow gains

temporary ability to decrypt certain C’s of its choice with the goal of learning sensitive data of

the client. Again, this attack is not addressed by the semantic security guarantee.

Evaluation Privacy

A desirable additional security property beyond semantic security would be that the ciphertext C

hides which computations were performed homomorphically to obtain C. We call this security

requirement Evaluation Privacy.

For example, suppose a cloud service offers a service in the form of computing a proprietary

machine learning algorithm 𝐹 on the client’s sensitive data. As before, the client encrypts its

data 𝑀 to obtain C and sends the cloud C and the evaluation key EK. The cloud now computes

C’ which is an encryption of 𝐹(𝑀) to hand back to the client. Evaluation privacy will guarantee

that C’ does not reveal anything about the algorithm 𝐹 which is not derivable from the pair

(𝑀, 𝐹(𝑀)). Here we can also distinguish between semi-honest and malicious evaluation privacy

depending on whether the ciphertext C is generated correctly according to the Encrypt

algorithm.

A weaker requirement would be to require evaluation privacy only with respect to an adversary

who does not know the secret decryption key. This may be relevant for an adversary who

intercepts encrypted network traffic.

Key Evolution

Say that a corpus of ciphertexts encrypted under a secret key SK is held by a server, and the

client who owns SK realizes that SK may have been compromised.

It is desirable for an encryption scheme to have the following key evolution property. Allow the

client to generate a new secret key SK’ which replaces SK, a new evaluation key EK’, and a

transformation key TK such that: the server, given only TK and EK’, may convert all ciphertexts

in the corpus to new ciphertexts which (1) can be decrypted using SK’ and (2) satisfy semantic

security even for an adversary who holds SK.

Any sufficiently homomorphic encryption scheme satisfies the key evolution property as follows.

Let TK be the encryption of SK under SK’. Namely, TK is a ciphertext which when decrypted

using secret key SK’ yields SK. A server given TK and EK’, can convert a ciphertext C in the

corpus into C’ by homomorphically evaluating the decryption process. Security follows from

semantic security of the original homomorphic encryption scheme.

Proxy Re-encryption

Imagine two parties each with a different secret key SK1 and Sk2 respectively.

They wish to enable a third party to convert ciphertext decryptable with SK1 to ciphertext (with

the same underlying plaintext) decryptable with SK2.

The idea is to generate a so called re-encryption key TK, the knowledge of which allows this

conversion to occur and to hand TK to the third party. We they say that the third party is a proxy

which performs proxy re-encryption.

Note that the key evolution procedure described above can also be utilized to achieve

Proxy re-encryption. In this case SK1=SK and SK2=Sk’.

The security property required is that the third party holding TK cannot decrypt ciphertexts which

can be decrypted with SK1 or SK2 alone.

This security property follows from semantic security of the original homomorphic encryption

scheme.

Side Channel Attacks

Side channel attacks consider adversaries who can obtain partial information about the secret

key of an encryption scheme, for example by running timing attacks during the execution of the

decryption algorithm. A desirable security requirement from an encryption scheme is resiliency

against such attacks, often referred to as leakage resiliency. That is, it should be impossible to

violate semantic security even in presence of side channel attacks. Naturally, leakage resilience

can hold only against limited information leakage about the secret key.

An attractive feature of encryption schemes based on intractability of integer lattice problems,

and in particular known HE schemes based on intractability of integer lattice problems, is that

they satisfy leakage resilience to a great extent. This is in contrast to public-key cryptosystems

such as RSA.

Identity Based Encryption

In an identity based encryption scheme it is possible to send encrypted messages to users

without knowing either a public key or a secret key, but only the identity of the recipient where

the identity can be a legal name or an email address.

This is possible as long as there exists a trusted party (TP) that publishes some public

parameters PP and holds a master secret key MSK. A user with identity X upon authenticating

herself to the TP (e.g. by showing a government issued ID), will receive a secret key SKx that

the user can use to decrypt any ciphertext that was sent to the identity X. To encrypt message

M to identity X, one needs only to know the public parameters PP and X.

Identity based homomorphic encryption is a variant of public key homomorphic encryption which

may be desirable.

Remark: A modification of GSW supports identity based homomorphic encryption.

Appendix A

Organizers

Kristin Lauter klauter@microsoft.com

Vinod Vaikuntanathan vinod.nathan@gmail.com

Contributors

Melissa Chase melissac@microsoft.com

Hao Chen haoche@microsoft.com

Jintai Ding jintai.ding@gmail.com

Shafi Goldwasser shafi@theory.csail.mit.edu

Sergey Gorbunov sgorbunov100@gmail.com

Jeffrey Hoffstein hoffsteinjeffrey@gmail.com

Satya Lokam Satya.Lokam@microsoft.com

Dustin Moody dustin.moody@nist.gov

Travis Morrison txm950@psu.edu

Amit Sahai amitsahai@gmail.com

References

[AFG14] Martin R. Albrecht, Robert Fitzpatrick, and Florian Gopfert: On the Efficacy of Solving

LWE by Reduction to Unique-SVP. In Hyang-Sook Lee and Dong-Guk Han, editors, ICISC 13,

volume 8565 of LNCS, pages 293-310. Springer, November 2014.

[APS15] Martin R. Albrecht, Rachel Player and Sam Scott. On the concrete hardness of

Learning with Errors. Journal of Mathematical Cryptology. Volume 9, Issue 3, Pages 169–203,

ISSN (Online) 1862-2984, October 2015.

[Bab86] László Babai: On Lovász’ lattice reduction and the nearest lattice point problem,

Combinatorica, 6(1):1-3, 1986.

[BGV12]: Zvika Brakerski, Craig Gentry, Vinod Vaikuntanathan. (Leveled) fully homomorphic

encryption without bootstrapping. In ITCS '12 Proceedings of the 3rd Innovations in Theoretical

Computer Science Conference. Pages 309-325.

[B12] Zvika Brakerski. Fully Homomorphic Encryption without Modulus Switching from

Classical GapSVP, In CRYPTO 2012. Pages 868 – 886.

[CIV16a] W. Castryck, I. Iliashenko, F. Vercauteren, Provably weak instances of ring-lwe

revisited. In: Eurocrypt 2016. vol. 9665, pp. 147–167. Springer (2016)

[CIV16b] W. Castryck, I. Iliashenko, F. Vercauteren, On error distributions in ring-based LWE.

LMS Journal of Computation and Mathematics 19(A), 130–145 (2016) 7.

[CLS15] Hao Chen, Kristin Lauter, Katherine E. Stange, Attacks on Search RLWE, Cryptology

ePrint Archive, Report 2015/971, 2015. https://eprint.iacr.org/2015/971

[CLS16] Hao Chen, Kristin Lauter, Katherine E. Stange. Vulnerable Galois RLWE families and

improved attacks. In SAC 2016. Cryptology ePrint Archive, Report 2016/193, 2016.

[CN11] Y. Chen, P.Q. Nguyen. BKZ 2.0: Better Lattice Security Estimates. In: Lee D.H., Wang

X. (eds) Advances in Cryptology – ASIACRYPT 2011. ASIACRYPT 2011. Lecture Notes in

Computer Science, vol. 7073. Springer, Berlin, Heidelberg.

[CS16] Ana Costache, Nigel P. Smart, Which Ring Based Somewhat Homomorphic Encryption

Scheme is Best? Topics in Cryptology - CT-RSA 2016, LNCS, volume 9610, Pages 325-340.

[GSW] C. Gentry, A. Sahai, and B. Waters. Homomorphic Encryption from Learning with Errors:

Conceptually-Simpler, Asymptotically-Faster, Attribute-Based. In CRYPTO 2013 (Springer).

[ELOS15] Yara Elias, Kristin Lauter, Ekin Ozman, Katherine E. Stange, Provably weak

instances of Ring-LWE, CRYPTO 2015

[FV12] J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryption.

Cryptology ePrint Archive, Report 2012/144, 2012. http://eprint.iacr.org/2012/144.pdf

[Kar16] C.F.F. Karney, Sampling Exactly from the Normal Distribution. ACM Transactions on

Mathematical Software, 42, Article No. 3.

http://dl.acm.org/author_page.cfm?id=81322508192&coll=DL&dl=ACM&trk=0&cfid=790587702&cftoken=47193319
http://research.microsoft.com/en-us/um/newengland/events/ITCS2012/
https://eprint.iacr.org/2015/971
http://eprint.iacr.org/2012/144.pdf

[KL15] Miran Kim and Kristin Lauter, Private Genome Analysis through Homomorphic

Encryption, BioMedCentral Journal of Medical Informatics and Decision Making 2015 15 (Suppl

5):S3.

[LMvP13] Laarhoven T., Mosca M., van de Pol J. (2013) Solving the Shortest Vector Problem in

Lattices Faster Using Quantum Search. In: Gaborit P. (eds) Post-Quantum Cryptography.

PQCrypto 2013. Lecture Notes in Computer Science, vol 7932. Springer, Berlin, Heidelberg.

[LP11] Richard Lindner and Chris Peikert: Better key sizes (and attacks) for LWE-based

encryption. In Topics in Cryptology - CT-RSA 2011 - The Cryptographers' Track at the RSA

Conference 2011, Aggelos Kiayias, Editor, volume 6558 of LNCS, pages 319—339.

[LTV] A. Lopez-Alt, E. Tromer, and V. Vaikuntanathan. On-the-fly multiparty computation on

the cloud via multikey fully homomorphic encryption. In STOC, pages 1219–1234, 2012.

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev : On Ideal Lattices and Learning

with Errors over Rings. Journal of the ACM (JACM), Volume 60, Issue 6, November 2013,

Article No. 43.

[NTRU] J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A ring-based public key

cryptosystem. In J. Buhler, editor, ANTS, volume 1423 of Lecture Notes in Computer Science,

pages 267–288. Springer, 1998.

[YASHE] Joppe W. Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. Improved Security

for a Ring-Based Fully Homomorphic Encryption Scheme, in IMA CC 2013.

http://eprint.iacr.org/2013/075.pdf

Software references for 6 Homomorphic Encryption libraries:

[SEAL] http://sealcrypto.org

[HElib] https://github.com/shaih/HElib

[NFLlib] https://github.com/CryptoExperts/FV-NFLlib

[Palisade] https://git.njit.edu/groups/palisade

[cuHE] https://github.com/vernamlab/cuHE

[HEAAN] https://github.com/kimandrik/HEAAN

http://eprint.iacr.org/2013/075.pdf
http://sealcrypto.org/
https://github.com/shaih/HElib
https://github.com/CryptoExperts/FV-NFLlib
https://git.njit.edu/groups/palisade
https://github.com/vernamlab/cuHE
https://github.com/kimandrik/HEAAN

