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ABSTRACT

Public cloud datacenters implement a distributed computing
environment built for economy at scale, with hundreds of thousands
of compute and storage servers and a large population of
predominantly small customers often densely packed to a compute
server. Several recent contributions have investigated how
equitable sharing and differentiated services can be achieved in this
multi-resource environment, using the Extended Dominant
Resource Fairness (EDRF) algorithm. However, we find that EDRF
requires prohibitive execution time when employed at datacenter
scale due to its iterative nature and polynomial time complexity; its
closed-form expression does not alter its asymptotic complexity. In
response, we propose Deadline-Constrained DRF, or DC-DRF, an
adaptive approximation of EDRF designed to support centralized
multi-resource allocation at datacenter scale in bounded time. The
approximation introduces error which can be reduced using a high-
performance implementation, drawing on parallelization
techniques from the field of High-Performance Computing and
vector arithmetic instructions available in modern server
processors. We evaluate DC-DRF at scales that exceed those
previously reported by several orders of magnitude, calculating
resource allocations for one million predominantly small tenants
and one million resources, in seconds. Our parallel implementation
preserves the properties of EDRF up to a small error, and empirical
results show that the error introduced by approximation is
insignificant for practical purposes.

1. INTRODUCTION

This is an extended edition of a paper first presented at the
ACM Symposium on Cloud Computing 2018 [27].

Public cloud datacenters (DC), of the sort hosting enterprise
customer workloads, face a fundamental trade-off between
providing performance isolation for each customer and
achieving high resource utilization. Provisioning for each
customer's peak demand for any given resource necessarily
leaves resources idle much of the time, while
oversubscribing resources runs the risk of one customer
affecting another. Each customer has a set of virtual
resources, collectively called a tenant, which may include
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one or several virtual machines (VMs), while the underlying
physical resources are shared between tenants. Shared
resources in a modern datacenter typically include storage
servers [11, 18, 23, 29, 42], software load balancers [33, 40,
46], middle-boxes [5, 16], shared caches [16, 41], bump-in-
the-wire offload devices [12], and the datacenter network [7,
8, 21, 25, 28, 29, 35, 36, 38, 39, 44, 45, 47]. An ideal
datacenter resource allocator would provide performance
isolation between tenants to the extent possible, while
gracefully degrading to some notion of fair or differentiated
service when resources become congested.
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Figure 1 An array (above) of shared resources on path
from a VM in a compute rack (left) to a VHD in a storage
rack (right).

Overcoming the implications of sharing oversubscribed
resources requires the design and implementation of a
scalable centralized multi-resource allocator that operates at
high frequency due to frequent changes in tenants' VM
utilization levels. A centralized resource allocator has the
advantage of datacenter-wide visibility that enables better
allocation decisions, especially for tenants that span multiple
clusters, such as compute, file storage, and database block
stores. For instance, Figure 1 illustrates an array of physical
resources on the path taken by I/O requests from a tenant
with a single VM in a compute rack, to a virtual hard disk in
a storage rack, including shared transmit and receive queues
at the host hypervisor, a shared storage service, and shared
network links at both sides. From time to time any single one
of these resources could become a bottleneck---due to



sharing with an aggressive tenant---that limits the rate of
service obtained by the compliant tenant.

Numerous multi-resource allocation algorithms have been
developed and evaluated at modest scale based on a
generalization of max-min fairness, known as Dominant
Resource Fairness (DRF) [17]. ! Of these, Extended DRF
(EDRF) [32] represents the state-of-the-art due to its precise
closed-form expression [5, 10, 13, 16, 20, 30, 31]. DRF
considers what fraction of each resource a tenant is
demanding, and the resource of which the tenant demands
the largest fraction is the tenant's dominant resource.
Fairness between tenants is determined according to their
respective dominant resources, and at a system level this
approach satisfies a number of desirable properties. In
particular, DRF allows each tenant to be assigned a share of
every resource in the datacenter and guarantees that the
tenant will never be worse off than receiving that share, but
may be better off if some other tenant is not using their full
share. This allows for performance isolation when the shares
reflect a lack of over-subscription and a fair resource
allocation when they do.

EDRF challenges. Designing a scalable datacenter-scale
resource allocator based on EDREF is challenging due to its
prohibitive quadratic complexity and the massive scale of
today's datacenters.?

Because each tenant demands only a fraction of each
resource in a small subset of the resources [22], EDRF
proceeds in a series of rounds; in each round it finds the most
oversubscribed remaining resource and fully allocates it
along with proportional amounts of each other resource. As
only one resource is fully allocated in each round, the
number of rounds required for completion is linear to the
number of resources. Furthermore, each round requires
consideration of every remaining resource, resulting in a
quadratic relationship with the number of resources.

EDRF's complexity is prohibitive when employed at
datacenter scale. Today's cloud datacenters consist of around
100K servers each with 0(10) cores hence O (1M) resources
to be considered. In public clouds, tenants typically employ
a handful of VMs (i.e., 80% of tenants deploy 1-5 VMs) [14]
and VMs typically utilize just a few cores (i.e., 80% of VMs
comprise 1-2 CPU cores) [14]. Under such scenarios, it is
very likely that a single oversubscribed cloud datacenter may
host 100K-1M tenants. While the quadratic nature of EDRF

! DRF has been deployed in production as one of the resource
schedulers in Hadoop, albeit only at cluster scale [1,24].

2 In contrast, we do not consider the infrastructure for
signaling and enforcing multi-resource allocations as a

easily requires minutes to complete at such massive scale, it
is often necessary to recalculate allocations at a frequency,
or control interval, measured in seconds [5], making EDRF
impractical at such scales.

Our proposal. We present Deadline Constrained DRF, or
DC-DRF, an algorithm designed for performing fair
reallocation of shared datacenter resources at cloud
datacenter scale in bounded time. The key insight is to trade
off a little (bounded) fairness for a significant gain in speed
and scalability. DC-DRF includes a control variable, €,
which indicates what fraction of a resource we are willing to
discard to speed up computation. Doing so, it reduces the
number of rounds as more resources are eliminated in each
round, dropping the complexity of the algorithm from
quadratic to essentially linear (see Lemmas 3.1 and 3.2 for a
precise statement). Across successive control intervals, DC-
DREF searches for a value of € such that it converges just
short of a given deadline.

The improved complexity, however, comes at the cost of
error as some resources that would have been allocated by
precise EDRF, remain unallocated. We reduce this error via
an implementation that is tailored to the underlying
hardware, leveraging its parallel nature (cores and vector
arithmetic instructions) and utilizing effectively available
on-chip cache capacity. The optimized implementation
maximizes the number of completed rounds within the
deadline, and hence converges to lower values of € and
results consequently in lower errors.

The contributions of this paper are:

e We introduce DC-DRF, an adaptive and
approximate version of EDRF, whose accuracy and
rate of convergence is adjusted by means of a
control variable, €. DC-DRF adapts the value of €
dynamically across successive control intervals so
as to calculate allocations in time bounded by the
control interval frequency;

e We provide an efficient implementation of DC-
DRF, which is tailored to underlying hardware, so
as to significantly reduce the approximation error
introduced by €, improving the fairness of
allocations estimated by DC-DREF;

e We demonstrate that combining the ideas above
enables practical multi-resource allocation at
datacenter scale in bounded time, for a wide range

barrier to adoption, having been adequately investigated in
the literature [2, 5, 13, 30, 31, 42]



of resource demands, while achieving near-optimal
resource allocations and utilization.

We evaluate DC-DRF against EDRF using synthetic inputs
modelled on characteristics of a public cloud datacenter [14],
where the number of tenants exceeds that of prior work by
up to two orders of magnitude and, equally important, there
are significant variations in demand between tenants. Our
results show that DC-DRF succeeds in enabling multi-
resource allocation at public cloud scale, on commodity
hardware, in practical time, with much lower error (relative
to EDRF) than previous approaches.

2. BACKGROUND AND MOTIVATION

Our interest and motivation for this work dates from 2012
when the Windows Server team challenged us to propose a
practical storage QoS architecture for private cloud that is
capable of preventing performance collapse for tenants
sharing physical resources with aggressive tenants. This led
to the design of IoFlow [42] which is employed by End-to-
End Storage QoS feature of Windows Server 2016 and
targets sharing of storage servers in private cloud setups,
typically containing hundreds of servers. Extending such
architecture to other shared resources led to the design and
implementation of Pulsar [5]. Pulsar uses per-resource cost
functions and vector rate limiters in hypervisors to a)
measure tenants demand, and b) to enforce work conserving
reservations according to allocations calculated by a central
SDN-like controller running EDRF. While it proved easy to
construct effective demand estimation and vector rate
limiters, the major challenge lay in the implementation of a
centralized resource allocator. In particular, the performance
and scalability of EDRF stood out as a fundamental obstacle
to scaling Pulsar to public cloud datacenter scales.

2.1 Multi-Resource Allocation

Originally introduced for job scheduling in Hadoop clusters,
Dominant Resource Fairness (DRF) -calculates multi-
resource allocations with four properties: (i) sharing
incentive---i.e., no tenant would gain from a simple
partitioning of resources across tenants; (ii) strategy-
proofness-—i.e., no tenant can benefit by indicating a false
set of resource requirements (demands); (iii) envy-freeness-
--i.e., no tenant would prefer the allocation made to some
other tenant; and (iv) Pareto efficiency---i.e., increasing one
tenant's allocation necessarily decreases another tenant's
allocation.

DRF computes the share of each resource allocated to each
user. The maximum among all shares of a user is called that
user's dominant share, and the resource corresponding to the
dominant share is called the dominant resource. DRF simply
applies max-min fairness across users' dominant shares---
i.e., DRF seeks to maximize the smallest dominant share in
the system, then the second smallest, and so on until all

resources are exhausted [17].

Input/Output. The algorithm takes as input a Demand
matrix in which each row represents, for example, a tenant
and each column represents a resource. A matrix cell
(a;, 1) represents the demand of tenant a; for resource 7;.
The output is an Allocation matrix whose cells contain an
allocation of resources to tenants that satisfies the fairness
properties of the algorithm. Optionally, the algorithm
supports weights w;,- which allow differentiated guarantees.

Algorithm. Algorithm 1 presents the state-of-the-art
specification of DRF from [32]. The set of all tenants and
resources are denoted by N and R, respectively. Set S;
denotes the set of active tenants at round ¢t. The algorithm
takes as input the normalized demand matrix, which is
calculated by dividing the Demand matrix by the max
demand resource. The algorithm reports the allocated
resources in the Allocation matrix, denoted by A, where the
proportions between each pair of resources in the demand
vector of a tenant are preserved in the allocation vector
calculated for that tenant. We adopt the notation from EDRF,
summarized in Table 1.

ALGORITHM 1: EDRF

Data: Demands d, weights w
Result: An allocation A

1 te<1;
2 V71,8 < 1;
3 S1 < N;
4 while S; # @ do
5 Xp & Milycg —H—o;
Yies; pirdir
6 Vi €Sy,1T €ER, Ay < X * p; - dyy;
7 ViEN\ S,7 ER,Ajy, < 0;
8 vr e R!Sr,t+1 < Sy — ZieStAir,t;
9 t—t+1;
10 S; «{ieEN:VreR,d; >0= s, >0}
11 VieN,r €RA; « X2 Ak

Table 1: EDRF Notation

N the set of tenants (called agents in DRF and EDRF)
R the set of resources, r € R

D;, demand of tenant i for  as a fraction of r

dir Dy /(maxys Dypr)

d; <dj,..,dy, > normalized demand vector of i
w;,- weight of tenant i with respect to resource r

A fraction of r allocated by DRF to tenant i

r;  weighted dominant resource of tenant i

pi  Wipr/d;ys , weight ratio at dominant resource

S+ residual fraction of r after round ¢

Ay fraction of r allocated to i in round ¢




Intuitively, EDRF calculates the allocation iteratively; each
iteration is akin to a round of a Max-Min water-filling
algorithm. For each resource r, the algorithm maintains the
fraction remaining at the start of each iteration, and
calculates the fraction that can be added before the water fills
a resource. At the end of each round, at least one resource
and all tenants who demand it are eliminated---i.e., the
resource that determined the quantity allocated in that round.

The complexity of the algorithm is O(|R|?|N|) as in the
worst case there is one round per resource and each iteration
of lines 5-8 requires actions per each (tenant, resource) pair.
Even with a bound B on the number of demanded resources,
complexity is O(|R||N|B). As we show in Section 2.3, the
algorithm suffers from scalability issues when the number of
tenants and/or resources is large---e.g., 100s of thousands.

2.2 Short Control Intervals

In datacenters with high workload variation, it is important
that resource allocations are recalculated at small control
intervals so as to reduce the negative impact of staleness of
resource demands. Short control intervals allow for
accommodating the resource requirements of new tenants
and idle tenants who become active, as well as reclaiming
resources from tenants who become less active. Being
reactive to the arrival of new tenants is particularly
important. Without prior demands, these tenants have no
allocations for resources; hence, we can either delay their
progress until the next control interval, or allow them to
ramp up unchecked until the next control interval. In the
former case, a short control interval benefits tenants who are
ramping up by allowing them to do so sooner, and in the
latter case it benefits active tenants sharing resources that
become temporarily overloaded by tenants ramping up---i.e.,
the so-called noisy neighbor effect.

We substantiate the need of short control intervals by
studying the variation in CPU load utilization of Azure
virtual machines (VMs) [14]. Figure 2 plots the number of
VMs that transition at least once within a five-minute
interval either from an idle state to an active one or from an
active state to an idle one. A VM is considered to become
active within an interval in case that either its maximum
CPU utilization is at least 3x higher than its average CPU
utilization, or its maximum CPU utilization is at least 10%
(absolute value) higher than its average CPU utilization
(e.g., 20% to 30%). Likewise, a VM with non-negligible
CPU utilization (at least 5\%) is considered to become idle
within an interval in case that either its minimum CPU
utilization is at least 3x lower than its average CPU

utilization, or its minimum CPU utilization is at least 10%
(absolute) lower than its average CPU utilization. The
measured 95th percentile of the fraction of VMs that become
active (29%) and idle (13\%) over a period of 350 five-
minute intervals corroborates earlier findings that VMs
exhibit bursty traffic patterns [14].

Active Transition Idle Transition I
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Figure 2 Fraction of VMs that become active or idle at
least once within each 5-min interval.

Prior work in resource management advocates for control
intervals ranging from 10 seconds to 30 seconds due to high
workload variation in enterprise servers [5]. In order to
obtain conservative estimates of datacenter workload
variation at the proposed control intervals, we assume that
the observed transitions: (a) occur only once within each
five-minute interval and (b) are spread uniformly across all
control intervals. For the proposed (10-second -- 30-second)
intervals, 1.4-4.2% of VMs exhibit at least one state
transition, indicating significant churn in the level of activity
for a significant fraction of VMs. This VM-based estimate is
low because we care about fairness on the level of workloads
which span multiple VMs. This finding motivates the choice
of a short control interval, such as ten seconds.

23 Scalability Limitations

We now demonstrate that conventional DRF is impractical
at datacenter scale using a hypothetical datacenter modelled
on modern cloud datacenters. Modern datacenters consist of
around 100K servers arranged in racks of 20-40 servers each,
connected to a shared multi-tier CLOS network built from
40-100Gbps Ethernet [22]. Persistent data reside in shared
storage racks, and customer VMs are packed into compute
racks, so that VMs of each tenant access data and each other
over a shared multi-resource environment. Access patterns
exhibit variable degrees of locality [9, 11, 26, 34, 39].
Tenants are predominantly small, nearly 80% of VMs have
only 1 or 2 cores and 80% of tenants have 5 or fewer VMs
[14]. Thus, with multiple cores per server, the number of
tenants, or tenants, may easily exceed the number of servers.
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Figure 3 Conventional DRF performance analysis: (Left) Number of rounds and time for 100K resources and 1M
tenants. Key: demand vector lengths [0,128] chosen by Gaussian (g) or Uniform (u), resource locality is none (0),
single cluster (1) or two clusters (2); (Right) Scalability under variable scale and different Tenant:Resource ratios.

We generate synthetic multi-resource workloads for a 100K
server datacenter supporting 1M tenants (Section 5.1).
Figure 3 (left) plots the number of rounds and elapsed time
using a basic implementation of DRF such as found in FILO
[31] and Yarn [1]. Figure 3 (right) plots runtime as the
number of resources increases for several (tenant:resource)
ratios, demonstrating a non-linear relationship between
completion time and scale. The number of rounds highly
depends on the size (or scale) and diversity of the demand
matrix. DRF may complete in a small number of rounds for
either (a) small or (b) highly symmetric demand matrices.
Cases where this is approximately true have been exploited
by prior work [13]. In contrast, large inputs with high
diversity require large execution times.

2.4 Suboptimal Solutions

Resource aggregation. We have investigated hierarchic
structure and aggregation as a possible abstraction for
limiting the complexity of DRF, and found that aggregating
resources and/or tenants can introduce error and unfairness,
as follows. Consider two tenants, A and B, with demand
vectors ranging over the sets {ry,7r,} and {ry, 713},
respectively. In an attempt to decrease the number of tenants
in the input to DRF, we construct an aggregate demand
vector from the union of the above sets and sum the demand
for any resources that appear in both sets, in this case 5.
Recall from Section 2.1 that DRF evicts a tenant in the round
where one (or more) of its resources is saturated, thereby
preserving demand proportions. If 7; is the only resource
saturated in that round, then B will be denied its share of the
residual capacity remaining at r, and 3 (likewise for A and
1r3.) This finding compares to H-DRF in that while H-DRF
does have a hierarchical structure, it does not rely on
aggregation ensuring fairness but without improvement in
complexity [10].

Early termination. Terminating EDRF after a reduced
number of rounds (e.g., one round) introduces error. While
it is guaranteed that the most demanded resources are fully
allocated at the end of a round, the remaining resources are

allocated proportionally. Depending on the ratio of resources
allocated to resources not allocated, early termination may
result in severe resource under-utilization and unfairness.
Section 5 discusses and quantifies the implications of early
termination on resource utilization and fairness.

3. DC-DRF

Algorithm 2 gives the specification for DC-DRF, which
comprises an outer loop and an inner loop. Each iteration of
the inner loop performs multi-resource allocation using an
approximation of DRF whose time and relative error are
determined by a control variable . The outer loop represents
consecutive control intervals of duration A, and has a
deadline t after which the inner loop will terminate on
completing its current iteration. Over consecutive control
intervals the outer loop searches for a value of € such that
the inner loop completes just within the deadline. The inner
loop of DC-DRF derives from EDRF and our description
highlights two key algorithmic changes, that are key in
reducing the number of iterations and execution time of each
iteration, respectively.

Element €. DC-DRF introduces the approximation variable
€ < 1, which relaxes the decision of when a resource is
considered to be exhausted. Most importantly, this variable
provides a mechanism for constraining the number of
iterations required for the algorithm to converge and
terminate.

DC-DREF considers a resource reR, to be exhausted when the
residual capacity of r falls below the value of €, thus causing
early exhaustion of resources and early eviction of tenants
compared to DRF. The early eviction implements a form of
approximation, achieving faster termination than DRF, but
introducing error relative to the allocations obtained by
DRF.



ALGORITHM 2: DC-DRF

1 j=1
2 €, < 0;
3 while true do /* once per control interval */
4 Aje time() + Ay
5 t<1;
6 V1,54 < 1;
7 S;1 < N;
8 Wi < Yies, Pi - dip; /* see Element p */
9 Yo <0
10 z; <0
11 T; < false;
12 while S, # @ and not 7; do /* inner loop */
13 X¢ & Mingeg &
Htr
14 Yt < Ye-1 H X
15 VI €R, Sypr1 < Sy — XeMyr
16 Sty « {iEN:Vr € R, djr > 0= sp(04q) > )
17 VI € R, Wes1r < Her — Diesp\Spy, Pi " Dir
18 Vi€ St \ St41, Zi < Vi
19 Tj < time() > 4
20 if T; then /* timeout occurred */
21 Vi € Sii1, 24 < Vi
22 te—t+1

23 Vi€ N,r ER Aj, <« p;-dj - z; /*seey,z*/
24 if T then

25 €41 < raise(g)
26 else
27 €41 < lower(g)

Observe in line 16 that DC-DRF replaces the constant zero
of EDRF line 10 with the control variable €;. In the event
that €; has value zero then the two constructs are equivalent;
however, non-zero €; causes early exhaustion of the resource
and early eviction of any tenant that has non-zero demand
for that resource. The inner loop is terminated if its elapsed
time exceeds the deadline A; with timeout indicated in ;
(lines 11, 19, 20, 24).

The outer loop, lines 3-11 and 23-27, represents consecutive
control intervals, j, over which DC-DREF searches for a value
of € such that the inner loop can complete just ahead of a
time deadline A,. We assume that inputs vary from one
interval to the next and that DC-DRF must continually adjust
€ to adjust for the variations in execution time. In the event
of timeout the value of € is increased, otherwise it is
decreased, by the function raise() and lower(), respectively.
We do not specify the precise search strategy followed by
raise() and lower(); in our implementation we maintain a
search window with initial fast-start gradient. The intention
is, given stable inputs, DC-DRF will oscillate between an €
that completes just within the deadline, and timeout that tests

a slightly lower €.

Element . EDRF evaluates the expression Y, p; - d;,- in each
iteration of its body at line 5. This entails repeatedly
summing elements whose value has not changed from one
iteration to the next. Based on this observation, DC-DRF
introduces the element g into which it performs the
summation prior to entering the iterative part of its body (line
8). Subsequently, DC-DRF subtracts from u the values
associated with evicted tenants once at the time of the
tenant's eviction (line 17). This optimization allows us to
compute the values of x, for each t while performing 2
operations per tenant-resource pair rather than 1 operation
per tenant-resource pair per inner loop iteration. Relatedly,
note that p; and d;,- only appear as the product p; - d;,., and
thus this product can be computed a single time per outer
loop iteration. (For ease of comparison to EDRF, we omit
this from the description in Algorithm 2.)

Elements y and z. EDRF calculates intermediate values of
Ajr ¢ at line 6. We observe that computing all of these values
X¢ - p; - di requires several operations per tenant-resource
pair per round. Instead we can keep these implicit using y
and z, allowing them to be computed just once per tenant-
resource pair. We use y; as an accumulator to hold a running
total of the sum of all x; (line 14), and use z; to cache for
each tenant the value of y, at the time of the tenant was
evicted (typically line 18, or line 21 when terminating on ;).
In this way A, is calculated once per tenant on exit from
the inner loop (line 23). In addition, factoring things this way
allows the sharing of some additional computations across
tenants (we compute one y; per round rather than needing to
do this addition for each tenant). Not only does this decrease
the total number of arithmetic operations performed, it also
improves the spatial locality of the algorithm by eliminating
references to A;- from the inner loop: this is important for
performance and therefore for precision, as later sections
will show.

Computational Complexity. The variable € is crucial for
both the computational complexity of the algorithm. The key
feature for the time complexity of the algorithm is the
number of iterations of the inner loop required. For EDRF,
there will be O(|R]) iterations, as barring ties in line 5 only
one resource is exhausted per iteration. For a simplified
version of DC-DRF, we can show that the number of
iterations is independent of |R|. In particular, suppose that
U 18 not updated in the course of the inner loop and instead
is always fixed at pq,.. Furthermore, suppose that there is a

constant ¢ such that minr,r’ € R :i > c. That is, there is
1r!
a bound on how large the relative demands for two resources

are.

Lemma 3.1 Under the two assumptions the number of
iterations of the inner loop is 0(log~1(1 — €)), independent

of IR| .



Proof. The first iteration completes with y; sufficient to
exhaust some resource Ty(Vily1 = Sir, = 1)). Any
resource 7 still demanded by some tenant in S, must have at
least an € fraction remaining (V4 <1 —¢€). Taking
advantage of our first assumption, we can express the more
general version of this fact for each iteration as y;py,4 = 1
for the resource 7, exhausted in iteration t and y, i,y < 1 —
€ for any resource r still available in iteration t + 1. In
particular, this holds for 7;,;. This means that

(1 — €)1 > Uy, 1 for all t. These inequalities telescope
to give (1 — 6)t_1yr11 > 1. By our second assumption,
this puts a bound on the number of iterations that
(1 — €)1 > c. Solving for t gives the desired bound. m

The proof of the lemma suggests how pathological inputs
can be constructed to cause DC-DRF to require |R)|
iterations: cause the y, to decay in such a way that there is
always only one resource exhausted per iteration. Note
however that, (i) such inputs require a coordination of
demand which seems unrealistic in a real system, (ii) in such
cases DC-DRF effectively falls back to the performance of
EDREF, and most importantly (iii) whether a given example
is pathological depends on €, so we would expect our outer
loop to drive € smaller and restore good performance. Thus
we believe such inputs have no relevance in practice.

We can now quantify the overall computational complexity
of an iteration of the outer loop.

Lemma 3.2 The computational complexity of an iteration of
DC-DRF is O(|R||N|). Furthermore, let B be a bound on
the number of resources a tenant demands and let | be the
number of iterations of the inner loop. Then the
computational complexity of an iteration of DC-DRF is
O(IN|B + I|N| +I|R))

Proof. Non-trivial amounts of computation occur in lines 8,
13, 15--18, 21, and 23. Per the discussion of u, the combined
complexity of lines 8 and 17 is O(|N|B). For lines 13 and 15
is O(I|R]), while for line 16 it is O(I|N|). By hoisting the
computation of allocations into the outer loop, lines 18, 21,
and 23 have combined complexity O(|N|B). Since I <
min(|N|, |R]) and B < |R], the result follows. m

Lemma 3.2 shows that our more careful implementation
reduces the complexity of EDRF from O(|R|?|N]|) to
O(|R||N]) for the case without a bound B, and in this case €
does not improve the overall complexity, which is
dominated by calculating the initial demand for resources
(line 8). However, with such a constant bound B, under the
assumptions of Lemma 3.1 the gain from using € is
substantial (as I is now constant for fixed €, from O (|R]||N|)
to O(|N]). If |R| and |N| are of similar magnitude, as we

expect in public cloud settings, this is a reduction from
quadratic to linear.

Approximation Quality. The variable € is crucial for the
quality of the approximation, but its effects of € are
somewhat subtle. The simplest concrete statement is that if
the inner loop runs to completion (i.e. there is no timeout)
then every tenant desires some resource of which we have
allocated a 1 — € fraction. However, this does not imply a
1 — € fraction of each tenant's optimal utilization because
different tenants will have different bottleneck resources
(although our results in Section 5 show that it does
empirically). Additionally, consider the scenario in which €
causes a tenant to get less than is “fair.” If all tenants using
the tenant's bottleneck resource desired more, the tenant

could get at most i ~ 1 + € times its actual allocation,

which is an insignificant difference. The possibility to have
large gains requires other tenants be unable to use more
because they are bottlenecked on some other resource. Thus
the “unfairness™ corresponds to not getting an outsize share
of a heavily loaded resource when others rely on an even
more heavily loaded resource. Given the benefits of
providing fairer and more efficient resource allocation
overall, this particular “‘unfairness" may well be worth
tolerating.

Finally, EDRF was motivated by four desiderata [17].
Despite our approximation, DC-DRF fully satisfies two of
them (i.e., sharing incentive and envy-freeness), while
partially satisfying Pareto efficiency and strategy-proofness
up to the resources discarded by €.

4. DESIGN AND IMPLEMENTATION

4.1 High-Level Design

The scope of our work presented herein is limited to the
design and implementation of the DC-DRF algorithm itself.
While we have not attempted to integrate it into datacenter
infrastructure, we provide context for the reader we sketch a
design of how we envisage that might work.

In outline, DC-DRF would provide a centralized service for
calculating multi-resource allocations in a public cloud
datacenter of around 1M resources, such as individual
servers or storage volumes, and one million tenants. Separate
admission control and VM placement services would
provide DC-DRF with initialization data including resource
identities. Trusted components within infrastructure report
demands and enforce allocation limits; Pulsar demonstrated
the use of cost functions in trusted hypervisor drivers to
generate dynamic demand vectors based on the queued and
in-flight operations of each tenant [5]. The frequency, or
control interval, with which allocations are revised needs to
be in the order of seconds, so as to rapidly curtail excessive
resource consumption by tenants whose demand suddenly



becomes excessive, and to reclaim resource allocations from
tenants whose demand has dropped.

DC-DRF server
front-end back-end

~c+D

compute
servers

A

Data Center Network

()
....... . @+®

Figure 4 A central DC-DRF server receives tenant
demands from trusted infrastructure components and
returns allocations for enforcement.

Referring to Figure 4, infrastructure components (A)
determine a demand vector for each tenant by sampling
queue lengths, sending these over the datacenter network (B)
to a front-end server (C). The front-end offloads
communication overheads from the performance-sensitive
back-end, which runs on a dedicated server. The front-end
loads tenant demands into the input buffer (D) of the back-
end DC-DRF process (E), where allocations for the current
control interval are calculated and loaded into an output
buffer (F). The front-end (G) retrieves the allocations and
sends them for enforcement in the infrastructure (A). The
network overheads are less than 2 Gbps.?

4.2 Evaluation Platforms

Unless stated otherwise, we use a dual-socket Dell R740
server with Intel Xeon Platinum 8160 CPUs. Each CPU
employs 24 cores operating at 2.1GHz and a shared 33MB
L3 cache.*

4.3 Data Structures

In order to avoid memory allocation overheads at runtime,
data structures are statically allocated during initialization to
maximum sizes given by a runtime parameter. The first
thread to run allocates the central data structures and
initializes a set of worker threads, each of which allocates
the private data structures and scratch space for its own use.

Each tenant has a data structure encoding its demand, weight
and accumulated allocation vectors for each resource for
which it has non-zero demand. DC-DRF implements a
sparse encoding of demand and allocation matrices,
imposing an upper bound B on the number of resources that

3 Assume each tenant has demand for 128 resources and encodes
this as a list of (resource,demand) integer pairs. With 1M tenants
the DC-DREF server receives 1M X 128 X 4 X 4 bytes of demand
data per control interval, and sends the same in allocation data.

a tenant may demand. By default, B=128. This optimization
helps reduce the memory footprint and working set of our
implementation, alleviating pressure on CPU caches and
memory bandwidth.

4.4 Arithmetic Precision

Assuming a worst case of 1M tenants each demanding an
equal share of a given resource, then each tenant would
receive a 1/1M allocation and this value sits comfortably
within the range [5.96 x 1078,65504] of IEEE 754-2008
half-precision (16-bit) floating point. In contrast, 16-bit

integer arithmetic underflows to produce %z 0 for N >

65536. At public cloud datacenter scale the number of
tenants sharing a resource could generate denominators
much larger than that.

Contemporary processors do not support 16-bit floating
point; hence, we choose between 32-bit (single-precision)
and 64-bit (double-precision) at compile-time. Figure 6
shows that single-precision consistently outperforms
double-precision, primarily due to better Last Level Cache
(LLC) performance. The improved LLC performance is
attributed to higher temporal and spatial locality. First, the
working set of single-precision setups is half of double-
precision, thereby alleviating cache pressure at high thread
count. Second, as caches utilize a 64-byte cache block, more
single-precision variables are fetched upon a cache miss,
leading to higher cache hit rates.

4.5 Thread-level Parallelism

We achieve parallelism by tiling the data space so that
independent threads can proceed on distinct partitions,
synchronizing when necessary on custom lock-free barriers
based on atomic counters and busy-waiting. We employ two
types of tile, namely tenant tiles and resource tiles. Tenant
tiles partition the set of tenants, and resource tiles partition
the set of resources. Each tile is assigned to a distinct thread.
Careful memory alignment of resource tiles along cache-line
boundaries avoids false sharing: the worker threads do not
collide when updating fields within shared data structures.
The two types of tile can be imagined as horizontal and
vertical stripes over a 2D matrix. To illustrate, consider a
system comprising # NUMA nodes each with ¢ cores. Table
2 summarizes how tiling is applied within the inner loop, and
the level of parallelism (MPL) achieved.

4 We have also tested on a Dell R730 dual-socket server with Intel
Xeon E5-2660v3 processors of 10 cores each 2.6GHz and a
shared 25MB L3 cache, typical of legacy servers still found in
Public Cloud datacenters today.



\ - = = Xeon
. 08{-\
° \ - o = Xcon-SP
N \
© 06 A \
£
5 \
£ 04
g
= 0.2 4 ~~—._-_-_-_--------
0.0

Time (normalized)

1 2 3 < 5 6 7 8 9 10 11
Number of cores

1.0 -
038 -
06 -
0.4 -
02 - I I
0.0 A ’ . .
1 2 3 4

Number of NUMA -nodes

Figure 5 Multi-threaded scalability: (Left) Core-level scalability with hyperthreading enabled (two threads per core);

(Right) NUMA-level scalability.

Table 2: Degree of parallelism (MPL) for » NUMA nodes
of ¢ cores each.

Line Tiles MPL (min) MPL (max)
13 Resource 1 c*n
15 Resource c*n c*n
16 Tenant c*n c*n
17 Resource C c*n

Figure 5 (left) shows the elapsed time of a DC-DRF
microbenchmark as we vary the number of cores, using
hyperthreading and 32-bit variables throughout. Each step
adds two threads to fully load each core (with
hyperthreading the second thread on each core invariably
provides less benefit than the first thread). With a small
number of cores the computation is CPU-bound, and
increasing the number of cores leads to a clear decrease in
elapsed time. While adding more cores improves
performance, the scalability is sub-linear to the number of
cores and gradually the benefit of adding more cores
decreases because (a) increased inter-thread contention for
LLC space; as our data structures greatly exceed the LLC
size, this contention spills over into demand for memory
bandwidth for moving data between CPU caches and DRAM
and (b) the existence of variables s, , and p, ,- shared across
all threads require the use of synchronization primitives,
thereby introducing a non-negligible sequential part which
becomes dominant as the number of threads increase and the
parallel part becomes smaller.’

4.6 NUMA Awareness

To eliminate unnecessary cross-NUMA memory accesses
over QPI [3], we explicitly allocate memory to each thread
from the DRAM attached to that thread's NUMA node, and

> We choose C++ memory barriers over the native
SYNCHONIZATIONBARRIER of our host OS as, while the
latter provided correctness, its performance over multiple NUMA
nodes was poor, leading to a drop-off in performance when
operating over more than one NUMA node.

perform intermediate aggregation of partial results at each
NUMA node prior to calculating global results for each
round of DRF.¢

We measure the benefit obtained from additional NUMA
nodes by running a micro-benchmark on a Dell R910 server
featuring four NUMA nodes, increasing the number of
NUMA nodes at each step. The results are shown in Figure
5 (right). Because each NUMA node employs its own LLC,
adding a second NUMA node improves performance by
almost 50 percent. However, the benefit from additional
NUMA nodes decreases because, while the cache bottleneck
is alleviated by the extra LLC capacity provided by each
NUMA node, the sequential phase in each round of the
algorithm limits the total performance.

4.7 Vector Arithmetic

Contemporary processors support 256-bit vector instructions
(AVX-256) [4] while recently announced Intel Xeon-SP
adds support for 512-bit vectors (AVX-512) capable of
operating on eight double-precision or 16 single-precision
values. The latter also adds a scatter instruction for moving
values from a 512-bit vector registers into memory, an
attractive feature given the sparse random memory access
patterns of DC-DRF. Our implementation is optimized for
both instruction sets.

6 Our findings indicate the default OS allocator fails to choose local
DRAM---i.e., DRAM that is connected to the NUMA node to
which the invoking thread was bound.



ALGORITHM 3: Example use of AVX512 vector intrinsic functions from our implementation.

1 ~ mm512 vindex vindex 512= MMS512 LOAD VINDEX(*ptr);
~ m512rmu_tr=_mm512_i32gather pr(vindex 512,pScratchR);

2
3 mu_tr=_mm512 add pr(mu_tr, A _irt);
4

~mm51 2:mask7i3250atter - pr(pScratchR, m, vindex 512, mu_tr);

To illustrate with an example, Algorithm 3 shows AVX512
[4] intrinsic functions from our implementation of DC-DRF
line 17. At this point each thread is accumulating allocation
vectors A;,- from its agent tile into a thread-local per-resource
array eventually to be subtracted from p;,. Line one loads
an AVX register with indices identifying up to 16 resources
(8 resources if compiled for 64-bit, throughout) from an
agent’s allocation vector, A;,, which line 2 uses to gather
(fetch from memory) the accumulated allocations made by
this thread in this round for the resources identified in line
one. Line 3 adds to these accumulated values the vector 4;,
of the allocation made to agent i in this round. Finally, line
4 scatters (stores to memory) the newly updated values into
the array accessed in line 2. Each thread executes this code
in parallel, following which the thread-local results are
aggregated at NUMA and global level using resource tiles.

As shown in Figure 6, AVX-256 and AVX-512 deliver
similar performance. Both AVX-256 and AVX-512 improve
performance over the baseline scalar version by 25%. To our
surprise, AVX-512 provides marginal performance gains
over AVX-256 that are within the statistical error. We shed
light on this surprising result through a micro-architectural
analysis of all configurations, finding a trade-off between (a)
instruction count and memory-level parallelism (MLP) and
(b) operating core frequency.

First, vectorization reduces the instruction count by up to
21% and improves MLP (i.e., number of concurrent
outstanding long-latency memory accesses [15]) by up to 8%
allowing for overlapping memory stalls with computation.
The small gain in MLP is attributed to the fact that the core
is capable of extracting MLP from scalar loads and stores
due to its out-of-order execution and large instruction
window; hence, the gather/scatter instructions provide
relatively small gains.

Second, cores operate at lower frequency when using AVX-
256 and AVX-512, by 3% and 11%, respectively. The
observed lower frequency is due to the higher number of
switching transistors when vector instructions are executed
(due to larger register file and execution unit's datapath). To
account for this, core frequency is scaled down so that
power/thermal limits are not exceeded. The resulting lower
frequency offsets the performance gains of larger degree of
vectorization. In the case of AVX-512, we observe
diminishing returns as the drop in frequency is modest while
instruction-count and MLP are improved over AVX-256 by
a small factor.
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4.8 Baseline Configuration

Figure 6 shows a parameter sweep of significant
configuration options, ranked left to right in order of
decreasing completion time. The right-most columns
indicate the configurations that complete the same
computation in the shortest time. While hyper-threading
improves performance of scalar versions, it provides
negative performance gains when vectorization is enabled.
This is due to the fact that hyperthreads introduce a high
degree of destructive inter-core and intra-core sharing: (i)
hyperthreads contend against each other for core's vector
unit which is utilized even when hyperthreading is disabled
and (ii) inter-core contention for shared caches; thus making
hyperthreading ineffective for parallel vectorized sections at
high thread counts. Based on our findings, we use 32-bit
floating point and 512-bit vector instructions without
hyperthreading throughout Section 5.

1.00 A

0.75 1

Time (normalized)

0.00 +

dhc dc dh2 dh5 fc fhc d5 d2 fh2 fhS 5 f2

Figure 6 Configuration options ranked by runtime. Key:
double (d) or single (f) precision, scalar (c), AVX256 (2),
AVXS512 (5), hyper-threading (h).

5. EVALUATION

We now report the results of our experiments to explore the
precision of allocations calculated by DC-DRF, and its
performance limits running on commodity servers.

5.1 Methodology

Demand profiles. We evaluate DC-DRF on datacenter-
scale inputs using demand profiles whose parameters model
the workload characteristics of public cloud datacenters [14,
22]. Table 3 summarizes the different demand profiles we
use throughout the evaluation.



Table 3: Demand profiles: U=Uniform, G=Gaussian,
Resource locality: DC=datacenter, PodA=1%" cluster,
PodB=2"! cluster

key vector len select resource res.

U0 U[2,128] UDdC) UR)
Ul U[2,128] U(PodA*.5,PodB*.5) UR)
U2 U[2,128] U(PodA*.5,PodB*.3,DC*.2) U(R)
GO  G[2,128] UDdC) UR)
Gl  G[2,128] U(PodA*.5,PodB*.5) UR)
G2  G[2,128] U(PodA*.5,PodB*.3,DC*.2) U(R)

Number of elements. We fix the number of resources at one
million and the number of tenants at one million throughout
[22].

Demand vector size. Cortez et al. recently contributed the
first characterization of a full-scale Public Cloud VM
workloads, finding that they are dominated by small tenants:
80% of tenants use only 1-5 VMs and 40% of tenant VMs
have a single virtual core [14]. We model this using a
truncated Gaussian distribution to generate demand vectors
drawn from the interval [2,128]. We also use a uniform
distribution that better represents the substantial first-party
(cloud provider) workloads.

Resource selection. Traffic between VMs collocated at rack
level exhibit strong locality [9, 26]. In contrast, Internet
services, such as search and social media, exhibit similar
locality only for heavy-hitter flows at rack level [37]. We
model three different degrees of locality: first, uniform
selection across the entire datacenter; second, 50% of
resources selected locally within a single cluster of the
datacenter; third, 50% of resources selected within one
cluster and 30% within a second cluster.

Demand vector values. The DC-DRF and DRF algorithms
are sensitive to the value of each element in a demand vector.
To minimize correlation between the demand at each
resource across tenants, which could artificially accelerate
the rate at which resources are exhausted, we select
uniformly in the interval [1,C[r]] where C is the absolute
capacity of resource .

DC-DRF configurations. We evaluate four run-time
configurations: a) parallel DC-DRF (DC-DRF); b) single-
threaded DC-DRF (sDC-DRF); ¢) parallel EDRF terminated
at the deadline (nEDRF); d) parallel EDRF allowing just one
round of the inner loop akin to HUG [13] (pEDRF-I).
pEDREF isolates the benefit of parallelism, and pEDRF-1
highlights the fundamentally iterative nature of EDRF. We
report results normalized to a baseline of conventional
single-threaded EDRF which completes in 129 minutes.

5.2 Sensitivity to Demand Profiles

We use range of diverse demands to show that DC-DRF has
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not been inadvertently specialised to narrow inputs that
cannot be guaranteed in practice, such as choosing highly
symmetric demands [13]. We set the deadline at 8 seconds,
based on results of Section 5.5. Figure 7 shows the number
of rounds for each demand profile normalized to those of the
baseline. In these cases the use of approximation in DC-DRF
has decreased the number of rounds by an order of
magnitude because more tenants are evicted in each round.
Following FILO [31], we measure fairness using the
standard deviation between the allocation obtained by DC-
DRF and the baseline allocation as shown in Figure 7. The
low standard deviation from baseline, which remains very
low throughout, indicates that there is no significant
compromise made to fairness because the allocations
obtained by DC-DREF lie close to those of EDRF which we
take as ground truth.
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Demand profile
Figure 7 DC-DRF performance and fairness by demand
profile. Bars show rounds normalized to baseline.
Markers show standard deviation against baseline. Key:
demand vector length [0,128], Gaussian (g), Uniform (u),
resource locality none (0), one (1) or two (2) clusters.

5.3 Resource Utilization

Henceforth, unless stated otherwise, we use the GO demand
profile, vary the deadline in steps of one second and measure
overall resource utilization summed over all resources.
Figure 8 plots resource utilization normalized to baseline.
Both sDC-DRF and DC-DRF achieve near-optimal
utilization for deadlines to the right of the knee in Figure 8
(discussed in in Section 5.5).
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In general, outside of narrow corner-cases, pEDRF-1
performs poorly because only those resources selected by
EDREF line 5 will be fully allocated in the first round; this set
may consist of only one resource while the remaining
resources will be allocated proportionally at each tenant.
pEDREF enables higher resource utilization as more iterations
are completed. pEDRF achieves a utilization that converges
with baseline utilization as deadlines approach its
completion time.

5.4 Fairness Analysis

Figure 9 (left) shows the standard deviation from baseline
for increasing values of deadline. The knee in the curves of
sDC-DRF and DC-DRF is explained in Section 5.5, and
when DC-DREF is operating to the right of the knee the stddev
remains small, indicating a high degree of fairness for
epsilon values in that range.” The standard deviation for
pEDREF starts high but converges to zero as the deadline
approaches the time within which it can complete. The
standard deviation for pEDRF-1 is high throughout, making
it a poor choice of configuration. Note that the error for
pEDRF exceeds that of pEDRF-1 due to a higher variance
between individual tenants, where instead the variance of
pEDRF-1 remains uniformly poor throughout.

However, the standard deviation may conceal outliers in the
form of tenants whose deviation from baseline lies far from
the mean. Of primary concern are tenants whose allocation
under DC-DRF falls below their baseline allocation, because
for them DC-DREF is in some sense less fair. To expose the
fraction of tenants effected in this way we take the results for
the DC-DRF configuration, rank them on deviation from
baseline allocation, and show in Figure 9 (right) the under
allocation for the tenant with the greatest shortfall, together
with the shortfall at the first tenth of a percentile (i.e., the
1000 tenants with the greatest shortfall). The shortfall for

7 Note that the standard deviation is orders of magnitude lower than
the value of 1.0 reported for FILO.
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DC-DREF is substantially better than that of sSDC-DRF, for
both the outlier and at one tenth of a percentile.

5.5 Value of Epsilon

We have repeatedly observed a distinct knee in the results of
preceding sub-sections, which we now explain. Figure 10
plots the values of epsilon to which DC-DRF converges for
the sDC-DRF and DC-DRF configurations. Both
configurations feature an initial steep gradient for short
deadlines, with a knee leading to a plateau after a few
seconds. To the left of the knee, co-variant with the curves
seen in earlier experiments, lies a region where DC-DRF is
forced to terminate within a very small number of rounds,
requiring aggressive values of epsilon. In particular, the first
round considers the entire tenant and resource sets
independent of the value of epsilon. Note that the values for
DC-DRF, shown on the left hand axis, are two orders of
magnitude lower than those of sDC-DRF, shown on the
right-hand axis, reaffirming that DC-DRF achieves better
fairness than sDC-DRF.
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5.6 Adaptation to Change

Figure 11 demonstrates DC-DRF adapting to changes in
demand and changes in deadline. As before, we use the 8-
second deadline suggested by section 5.5. In addition to
earlier experiments, a random 5% of tenants change their
demand by 5% at each control interval, to represent
variations in demand that occur in the real world.
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Figure 11 Adapting to variable demand or deadline.

Initially epsilon starts at zero, so the first control interval is
terminated at the deadline triggering the search for epsilon
in the second interval. Over the next 15 intervals, the DC-
DREF outer loop expands its search window as the algorithm
completes within the deadline. In the 15th control interval
the elapsed time exceeds the deadline so DC-DREF starts to
contract its search window. Once stable, DC-DRF adjusts
epsilon by small amounts while keeping close to the
deadline, in order to detect when to restart its search in
reaction to variations in demand. At control interval 35 there
is an abrupt change in demand when half the tenants change
their demands by 50%, as may happen in response to a
significant infrastructure failure; DC-DRF absorbs this with
minor adjustment to the value of epsilon. At control interval
50 the deadline is increased to 10 seconds, for example due
to a manual change by the datacenter provider, and DC-DRF
adapts to this by commencing a new search for epsilon that
completes at around interval 55. The deadline is changed
back to 8 seconds at control interval 70, and again DC-DRF
adapts by adjusting epsilon.

6. RELATED WORK

The foundational work of Dominant Resource Fairness
(DRF) defined fairness properties upon which our work, and
that of others, is based [17]. Extended DRF (EDRF)
contributed a formalized specification of a DRF algorithm
using a closed-form expression to calculate resource
allocations in each round of the algorithm [32].

H-DRF investigated fairness for jobs in a shared compute
cluster from the perspective of competing groups within the
organizational structure (division, department, office, etc.)
from which the jobs originate [10]. It concludes by
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recognizing that computing DRF for large inputs may be
computationally expensive, and suggests this as an area for
further research.

HUG used EDRF to investigate trade-offs between
utilization and isolation guarantees at Public Cloud scale in
specialized cases where every tenant must have non-zero
demand for each and every resource [13]. For such scenarios
they introduce “elastic demands” and add an additional
phase following EDRF to provide work conservation for
elastic demands. When elastic demands are present, the
HUG approach for achieving work conservation is
orthogonal to our approach, and could be applied after DC-
DRF for those elastic demands that have been over-
estimated.

Prior work utilized DRF at relatively small scales. Pulsar
employed DRF to enable dynamic multi-resource
differentiated service levels with work conversation for
shared resources in a data center setting, running DRF in a
central SDN-like controller [5]. Its scale was limited to
Private Cloud due to the cost of calculating multi-resource
allocations at its central controller. Filo used DRF to
implement throughput guarantees in a distributed multi-
tenant Cloud-based consensus service [31]. To decrease the
time spent in calculating allocations, it used a distributed
adaptation of DRF. Relatively to DC-DREF, its scale was
small and the error incurred by distribution was relatively
high.

Non-DRF approaches to resource allocation at cluster scale
include a mix of priorities and quotas, as in Borg [43], and
min-cost max-flow, as in Firmament [19].

Prior work has explored how to approximate max-min
fairness. Awebuch et al. [6] designed an approximation
algorithm up to a multiplicative $\epsilon$ factor, which
works quite differently from our approach, based on a
discretization of the set of permissible allocations on a
logarithmic scale. However, being an approximation of max-
min, their approach considers a single-resource only and is
therefore not directly comparable to multi-resource DRF.

7. CONCLUSION

We have presented the DC-DRF algorithm, an adaptive
approximation of EDRF designed to support centralized
multi-resource allocation in bounded time. We have shown
that a high-performance implementation of DC-DRF
calculates multi-resource allocations at Public Cloud scale in
practical time and with lower error than previous
approaches. This removes a fundamental barrier to the
deployment of multi-resource allocation in future cloud
datacenters. A possible opportunity for further work would
be to explore dynamic ways of detecting the set of resources
used by a tenant, when this is not explicitly specified by
either provider or tenant.
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