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ABSTRACT 
Public cloud datacenters implement a distributed computing 
environment built for economy at scale, with hundreds of thousands 
of compute and storage servers and a large population of 
predominantly small customers often densely packed to a compute 
server. Several recent contributions have investigated how 
equitable sharing and differentiated services can be achieved in this 
multi-resource environment, using the Extended Dominant 
Resource Fairness (EDRF) algorithm. However, we find that EDRF 
requires prohibitive execution time when employed at datacenter 
scale due to its iterative nature and polynomial time complexity; its 
closed-form expression does not alter its asymptotic complexity. In 
response, we propose Deadline-Constrained DRF, or DC-DRF, an 
adaptive approximation of EDRF designed to support centralized 
multi-resource allocation at datacenter scale in bounded time. The 
approximation introduces error which can be reduced using a high-
performance implementation, drawing on parallelization 
techniques from the field of High-Performance Computing and 
vector arithmetic instructions available in modern server 
processors. We evaluate DC-DRF at scales that exceed those 
previously reported by several orders of magnitude, calculating 
resource allocations for one million predominantly small tenants 
and one million resources, in seconds. Our parallel implementation 
preserves the properties of EDRF up to a small error, and empirical 
results show that the error introduced by approximation is 
insignificant for practical purposes. 

 

1. INTRODUCTION 
 
This is an extended edition of a paper first presented at the 
ACM Symposium on Cloud Computing 2018 [27]. 
 
Public cloud datacenters (DC), of the sort hosting enterprise 
customer workloads, face a fundamental trade-off between 
providing performance isolation for each customer and 
achieving high resource utilization. Provisioning for each 
customer's peak demand for any given resource necessarily 
leaves resources idle much of the time, while 
oversubscribing resources runs the risk of one customer 
affecting another. Each customer has a set of virtual 
resources, collectively called a tenant, which may include 

one or several virtual machines (VMs), while the underlying 
physical resources are shared between tenants. Shared 
resources in a modern datacenter typically include storage 
servers [11, 18, 23, 29, 42], software load balancers [33, 40, 
46], middle-boxes [5, 16], shared caches [16, 41], bump-in-
the-wire offload devices [12], and the datacenter network [7, 
8, 21, 25, 28, 29, 35, 36, 38, 39, 44, 45, 47]. An ideal 
datacenter resource allocator would provide performance 
isolation between tenants to the extent possible, while 
gracefully degrading to some notion of fair or differentiated 
service when resources become congested. 
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Figure 1 An array (above) of shared resources on path 
from a VM in a compute rack (left) to a VHD in a storage 
rack (right). 
 
Overcoming the implications of sharing oversubscribed 
resources requires the design and implementation of a 
scalable centralized multi-resource allocator that operates at 
high frequency due to frequent changes in tenants' VM 
utilization levels. A centralized resource allocator has the 
advantage of datacenter-wide visibility that enables better 
allocation decisions, especially for tenants that span multiple 
clusters, such as compute, file storage, and database block 
stores. For instance, Figure 1 illustrates an array of physical 
resources on the path taken by I/O requests from a tenant 
with a single VM in a compute rack, to a virtual hard disk in 
a storage rack, including shared transmit and receive queues 
at the host hypervisor, a shared storage service, and shared 
network links at both sides. From time to time any single one 
of these resources could become a bottleneck---due to 
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sharing with an aggressive tenant---that limits the rate of 
service obtained by the compliant tenant.  
 
Numerous multi-resource allocation algorithms have been 
developed and evaluated at modest scale based on a 
generalization of max-min fairness, known as Dominant 
Resource Fairness (DRF) [17]. 1 Of these, Extended DRF 
(EDRF)  [32] represents the state-of-the-art due to its precise 
closed-form expression [5, 10, 13, 16, 20, 30, 31]. DRF 
considers what fraction of each resource a tenant is 
demanding, and the resource of which the tenant demands 
the largest fraction is the tenant's dominant resource. 
Fairness between tenants is determined according to their 
respective dominant resources, and at a system level this 
approach satisfies a number of desirable properties. In 
particular, DRF allows each tenant to be assigned a share of 
every resource in the datacenter and guarantees that the 
tenant will never be worse off than receiving that share, but 
may be better off if some other tenant is not using their full 
share. This allows for performance isolation when the shares 
reflect a lack of over-subscription and a fair resource 
allocation when they do. 
 
EDRF challenges. Designing a scalable datacenter-scale 
resource allocator based on EDRF is challenging due to its 
prohibitive quadratic complexity and the massive scale of 
today's datacenters.2  
 
Because each tenant demands only a fraction of each 
resource in a small subset of the resources [22], EDRF 
proceeds in a series of rounds; in each round it finds the most 
oversubscribed remaining resource and fully allocates it 
along with proportional amounts of each other resource. As 
only one resource is fully allocated in each round, the 
number of rounds required for completion is linear to the 
number of resources. Furthermore, each round requires 
consideration of every remaining resource, resulting in a 
quadratic relationship with the number of resources. 
 
EDRF's complexity is prohibitive when employed at 
datacenter scale. Today's cloud datacenters consist of around 
100K servers each with 𝑂(10) cores hence 𝑂(1𝑀) resources 
to be considered. In public clouds, tenants typically employ 
a handful of VMs (i.e., 80% of tenants deploy 1-5 VMs) [14] 
and VMs typically utilize just a few cores (i.e., 80% of VMs 
comprise 1-2 CPU cores) [14]. Under such scenarios, it is 
very likely that a single oversubscribed cloud datacenter may 
host 100K-1M tenants. While the quadratic nature of EDRF 

                                                           
1 DRF has been deployed in production as one of the resource 

schedulers in Hadoop, albeit only at cluster scale [1,24]. 
2 In contrast, we do not consider the infrastructure for 

signaling and enforcing multi-resource allocations as a 

easily requires minutes to complete at such massive scale, it 
is often necessary to recalculate allocations at a frequency, 
or control interval, measured in seconds [5], making EDRF 
impractical at such scales. 
 
Our proposal. We present Deadline Constrained DRF, or 
DC-DRF, an algorithm designed for performing fair 
reallocation of shared datacenter resources at cloud 
datacenter scale in bounded time. The key insight is to trade 
off a little (bounded) fairness for a significant gain in speed 
and scalability. DC-DRF includes a control variable, 𝜖, 
which indicates what fraction of a resource we are willing to 
discard to speed up computation. Doing so, it reduces the 
number of rounds as more resources are eliminated in each 
round, dropping the complexity of the algorithm from 
quadratic to essentially linear (see Lemmas 3.1 and 3.2 for a 
precise statement). Across successive control intervals, DC-
DRF searches for a value of 𝜖 such that it converges just 
short of a given deadline. 
 
The improved complexity, however, comes at the cost of 
error as some resources that would have been allocated by 
precise EDRF, remain unallocated. We reduce this error via 
an implementation that is tailored to the underlying 
hardware, leveraging its parallel nature (cores and vector 
arithmetic instructions) and utilizing effectively available 
on-chip cache capacity. The optimized implementation 
maximizes the number of completed rounds within the 
deadline, and hence converges to lower values of 𝜖 and 
results consequently in lower errors. 
 
The contributions of this paper are: 

 We introduce DC-DRF, an adaptive and 
approximate version of EDRF, whose accuracy and 
rate of convergence is adjusted by means of a 
control variable, 𝜖. DC-DRF adapts the value of 𝜖 
dynamically across successive control intervals so 
as to calculate allocations in time bounded by the 
control interval frequency; 

 We provide an efficient implementation of DC-
DRF, which is tailored to underlying hardware, so 
as to significantly reduce the approximation error 
introduced by 𝜖, improving the fairness of 
allocations estimated by DC-DRF; 

 We demonstrate that combining the ideas above 
enables practical multi-resource allocation at 
datacenter scale in bounded time, for a wide range 

barrier to adoption, having been adequately investigated in 
the literature [2, 5, 13, 30, 31, 42] 
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of resource demands, while achieving near-optimal 
resource allocations and utilization. 

 
We evaluate DC-DRF against EDRF using synthetic inputs 
modelled on characteristics of a public cloud datacenter [14], 
where the number of tenants exceeds that of prior work by 
up to two orders of magnitude and, equally important, there 
are significant variations in demand between tenants. Our 
results show that DC-DRF succeeds in enabling multi-
resource allocation at public cloud scale, on commodity 
hardware, in practical time, with much lower error (relative 
to EDRF) than previous approaches. 

2. BACKGROUND AND MOTIVATION 
 
Our interest and motivation for this work dates from 2012 
when the Windows Server team challenged us to propose a 
practical storage QoS architecture for private cloud that is 
capable of preventing performance collapse for tenants 
sharing physical resources with aggressive tenants. This led 
to the design of IoFlow [42] which is employed by End-to-
End Storage QoS feature of Windows Server 2016 and 
targets sharing of storage servers in private cloud setups, 
typically containing hundreds of servers. Extending such 
architecture to other shared resources led to the design and 
implementation of Pulsar [5]. Pulsar uses per-resource cost 
functions and vector rate limiters in hypervisors to a) 
measure tenants demand, and b) to enforce work conserving 
reservations according to allocations calculated by a central 
SDN-like controller running EDRF. While it proved easy to 
construct effective demand estimation and vector rate 
limiters, the major challenge lay in the implementation of a 
centralized resource allocator. In particular, the performance 
and scalability of EDRF stood out as a fundamental obstacle 
to scaling Pulsar to public cloud datacenter scales. 
 
2.1 Multi-Resource Allocation 
 
Originally introduced for job scheduling in Hadoop clusters, 
Dominant Resource Fairness (DRF) calculates multi-
resource allocations with four properties: (i) sharing 
incentive---i.e., no tenant would gain from a simple 
partitioning of resources across tenants; (ii) strategy-
proofness---i.e., no tenant can benefit by indicating a false 
set of resource requirements (demands); (iii) envy-freeness-
--i.e., no tenant would prefer the allocation made to some 
other tenant; and (iv) Pareto efficiency---i.e., increasing one 
tenant's allocation necessarily decreases another tenant's 
allocation. 
 
DRF computes the share of each resource allocated to each 
user. The maximum among all shares of a user is called that 
user's dominant share, and the resource corresponding to the 
dominant share is called the dominant resource. DRF simply 
applies max-min fairness across users' dominant shares---
i.e., DRF seeks to maximize the smallest dominant share in 
the system, then the second smallest, and so on until all 

resources are exhausted [17]. 
 
Input/Output. The algorithm takes as input a Demand 
matrix in which each row represents, for example, a tenant 
and each column represents a resource. A matrix cell  
(𝑎௜  , 𝑟௝) represents the demand of tenant 𝑎௜ for resource 𝑟௝. 
The output is an Allocation matrix whose cells contain an 
allocation of resources to tenants that satisfies the fairness 
properties of the algorithm. Optionally, the algorithm 
supports weights 𝑤௜௥ which allow differentiated guarantees. 
 
Algorithm. Algorithm 1 presents the state-of-the-art 
specification of DRF from [32]. The set of all tenants and 
resources are denoted by 𝑁 and 𝑅, respectively. Set 𝑆௧ 
denotes the set of active tenants at round 𝑡. The algorithm 
takes as input the normalized demand matrix, which is 
calculated by dividing the Demand matrix by the max 
demand resource. The algorithm reports the allocated 
resources in the Allocation matrix, denoted by 𝐴, where the 
proportions between each pair of resources in the demand 
vector of a tenant are preserved in the allocation vector 
calculated for that tenant. We adopt the notation from EDRF, 
summarized in Table 1. 
 

ALGORITHM 1: EDRF 
Data: Demands d, weights w 
Result: An allocation A 

1 𝑡 ← 1;  
2 ∀𝑟, 𝑠௥ଵ ← 1;  
3 𝑆ଵ ← 𝑁;  
4 while 𝑆௧ ≠ ∅ do 
5     𝑥௧ ← 𝑚𝑖𝑛௥∈ோ

௦ೝ೟

∑ ఘ೔∙ௗ೔ೝ೔∈ೄ೟

;  

6     ∀𝑖 ∈ 𝑆௧ , 𝑟 ∈ 𝑅, 𝐴௜௥,௧ ← 𝑥௧ ∙ 𝜌௜ ∙ 𝑑௜௥;  
7     ∀𝑖 ∈ 𝑁 \  𝑆௧ , 𝑟 ∈ 𝑅, 𝐴௜௥,௧ ← 0;  
8     ∀𝑟 ∈ 𝑅, 𝑠௥,௧ାଵ ← 𝑠௥௧ − ∑ 𝐴௜௥,௧;௜∈ௌ೟

  
9     𝑡 ← 𝑡 + 1;  
10     𝑆௧ ← {𝑖 ∈ 𝑁: ∀𝑟 ∈ 𝑅, 𝑑௜௥ > 0 ⇒ 𝑠௥௧ > 0}  
11 ∀𝑖 ∈ 𝑁, 𝑟 ∈ 𝑅, 𝐴௜௥ ← ∑ 𝐴௜௥,௞

௧ିଵ
௞ୀଵ   

  
 
 

Table 1: EDRF Notation 
𝑁 the set of tenants (called agents in DRF and EDRF) 
𝑅 the set of resources, 𝑟 ∈ 𝑅 
𝐷௜௥ demand of tenant i for r as a fraction of r 
𝑑௜௥ 𝐷௜௥/(max୰ᇲ  𝐷௜௥ᇲ) 
𝑑௜ < 𝑑௜ଵ, … , 𝑑௜௠ > normalized demand vector of 𝑖 
𝑤௜௥ weight of tenant i with respect to resource r 
𝐴௜௥ fraction of r allocated by DRF to tenant i 
𝑟௜

∗ weighted dominant resource of tenant i 
𝜌௜ 𝑤௜௥೔

∗/𝑑௜௥೔
∗ , weight ratio at dominant resource 

𝑠௥௧  residual fraction of r after round t 
𝐴௜௥,௧ fraction of r allocated to i in round t 
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Intuitively, EDRF calculates the allocation iteratively; each 
iteration is akin to a round of a Max-Min water-filling 
algorithm. For each resource 𝑟, the algorithm maintains the 
fraction remaining at the start of each iteration, and 
calculates the fraction that can be added before the water fills 
a resource. At the end of each round, at least one resource 
and all tenants who demand it are eliminated---i.e., the 
resource that determined the quantity allocated in that round. 
 
The complexity of the algorithm is 𝑂(|𝑅|ଶ|𝑁|) as in the 
worst case there is one round per resource and each iteration 
of lines 5-8 requires actions per each (tenant, resource) pair. 
Even with a bound 𝐵 on the number of demanded resources, 
complexity is 𝑂(|𝑅||𝑁|𝐵). As we show in Section 2.3, the 
algorithm suffers from scalability issues when the number of 
tenants and/or resources is large---e.g., 100s of thousands. 
 
2.2 Short Control Intervals 
 
In datacenters with high workload variation, it is important 
that resource allocations are recalculated at small control 
intervals so as to reduce the negative impact of staleness of 
resource demands. Short control intervals allow for 
accommodating the resource requirements of new tenants 
and idle tenants who become active, as well as reclaiming 
resources from tenants who become less active. Being 
reactive to the arrival of new tenants is particularly 
important. Without prior demands, these tenants have no 
allocations for resources; hence, we can either delay their 
progress until the next control interval, or allow them to 
ramp up unchecked until the next control interval. In the 
former case, a short control interval benefits tenants who are 
ramping up by allowing them to do so sooner, and in the 
latter case it benefits active tenants sharing resources that 
become temporarily overloaded by tenants ramping up---i.e., 
the so-called noisy neighbor effect. 
 
We substantiate the need of short control intervals by 
studying the variation in CPU load utilization of Azure 
virtual machines (VMs) [14]. Figure 2 plots the number of 
VMs that transition at least once within a five-minute 
interval either from an idle state to an active one or from an 
active state to an idle one. A VM is considered to become 
active within an interval in case that either its maximum 
CPU utilization is at least 3x higher than its average CPU 
utilization, or its maximum CPU utilization is at least 10% 
(absolute value) higher than its average CPU utilization 
(e.g., 20% to 30%). Likewise, a VM with non-negligible 
CPU utilization (at least 5\%) is considered to become idle 
within an interval in case that either its minimum CPU 
utilization is at least 3x lower than its average CPU 

utilization, or its minimum CPU utilization is at least 10% 
(absolute) lower than its average CPU utilization. The 
measured 95th percentile of the fraction of VMs that become 
active (29%) and idle (13\%) over a period of 350 five-
minute intervals corroborates earlier findings that VMs 
exhibit bursty traffic patterns [14]. 
 

 
 
Figure 2 Fraction of VMs that become active or idle at 
least once within each 5-min interval. 
 
Prior work in resource management advocates for control 
intervals ranging from 10 seconds to 30 seconds due to high 
workload variation in enterprise servers [5]. In order to 
obtain conservative estimates of datacenter workload 
variation at the proposed control intervals, we assume that 
the observed transitions: (a) occur only once within each 
five-minute interval and (b) are spread uniformly across all 
control intervals. For the proposed (10-second -- 30-second) 
intervals, 1.4-4.2% of VMs exhibit at least one state 
transition, indicating significant churn in the level of activity 
for a significant fraction of VMs. This VM-based estimate is 
low because we care about fairness on the level of workloads 
which span multiple VMs. This finding motivates the choice 
of a short control interval, such as ten seconds. 
 
2.3 Scalability Limitations 
 
We now demonstrate that conventional DRF is impractical 
at datacenter scale using a hypothetical datacenter modelled 
on modern cloud datacenters. Modern datacenters consist of 
around 100K servers arranged in racks of 20-40 servers each, 
connected to a shared multi-tier CLOS network built from 
40-100Gbps Ethernet [22]. Persistent data reside in shared 
storage racks, and customer VMs are packed into compute 
racks, so that VMs of each tenant access data and each other 
over a shared multi-resource environment. Access patterns 
exhibit variable degrees of locality [9, 11, 26, 34, 39]. 
Tenants are predominantly small, nearly 80% of VMs have 
only 1 or 2 cores and 80% of tenants have 5 or fewer VMs 
[14]. Thus, with multiple cores per server, the number of 
tenants, or tenants, may easily exceed the number of servers. 
 



 

5 

 

We generate synthetic multi-resource workloads for a 100K 
server datacenter supporting 1M tenants (Section 5.1). 
Figure 3 (left) plots the number of rounds and elapsed time 
using a basic implementation of DRF such as found in FILO 
[31] and Yarn [1]. Figure 3 (right) plots runtime as the 
number of resources increases for several (tenant:resource) 
ratios, demonstrating a non-linear relationship between 
completion time and scale. The number of rounds highly 
depends on the size (or scale) and diversity of the demand 
matrix. DRF may complete in a small number of rounds for 
either (a) small or (b) highly symmetric demand matrices. 
Cases where this is approximately true have been exploited 
by prior work [13]. In contrast, large inputs with high 
diversity require large execution times. 
 
2.4 Suboptimal Solutions 
 
Resource aggregation. We have investigated hierarchic 
structure and aggregation as a possible abstraction for 
limiting the complexity of DRF, and found that aggregating 
resources and/or tenants can introduce error and unfairness, 
as follows. Consider two tenants, 𝐴 and 𝐵, with demand 
vectors ranging over the sets {𝑟ଵ, 𝑟ଶ} and {𝑟ଶ, 𝑟ଷ}, 
respectively. In an attempt to decrease the number of tenants 
in the input to DRF, we construct an aggregate demand 
vector from the union of the above sets and sum the demand 
for any resources that appear in both sets, in this case 𝑟ଶ. 
Recall from Section 2.1 that DRF evicts a tenant in the round 
where one (or more) of its resources is saturated, thereby 
preserving demand proportions. If 𝑟ଵ is the only resource 
saturated in that round, then 𝐵 will be denied its share of the 
residual capacity remaining at 𝑟ଶ and 𝑟ଷ (likewise for 𝐴 and 
𝑟ଷ.) This finding compares to H-DRF in that while H-DRF 
does have a hierarchical structure, it does not rely on 
aggregation ensuring fairness but without improvement in 
complexity [10]. 
 
Early termination. Terminating EDRF after a reduced 
number of rounds (e.g., one round) introduces error. While 
it is guaranteed that the most demanded resources are fully 
allocated at the end of a round, the remaining resources are 

allocated proportionally. Depending on the ratio of resources 
allocated to resources not allocated, early termination may 
result in severe resource under-utilization and unfairness. 
Section 5 discusses and quantifies the implications of early 
termination on resource utilization and fairness. 
 

3. DC-DRF 
 

Algorithm 2 gives the specification for DC-DRF, which 
comprises an outer loop and an inner loop. Each iteration of 
the inner loop performs multi-resource allocation using an 
approximation of DRF whose time and relative error are 
determined by a control variable 𝜀. The outer loop represents 
consecutive control intervals of duration ∆ఈ  and has a 
deadline 𝜏 after which the inner loop will terminate on 
completing its current iteration. Over consecutive control 
intervals the outer loop searches for a value of 𝜀 such that 
the inner loop completes just within the deadline. The inner 
loop of DC-DRF derives from EDRF and our description 
highlights two key algorithmic changes, that are key in 
reducing the number of iterations and execution time of each 
iteration, respectively. 

Element 𝝐. DC-DRF introduces the approximation variable 
𝜖 ≪ 1, which relaxes the decision of when a resource is 
considered to be exhausted. Most importantly, this variable 
provides a mechanism for constraining the number of 
iterations required for the algorithm to converge and 
terminate. 

DC-DRF considers a resource 𝑟𝜖𝑅, to be exhausted when the 
residual capacity of 𝑟 falls below the value of 𝜖, thus causing 
early exhaustion of resources and early eviction of tenants 
compared to DRF. The early eviction implements a form of 
approximation, achieving faster termination than DRF, but 
introducing error relative to the allocations obtained by 
DRF. 

 

 

 
Figure 3 Conventional DRF performance analysis: (Left) Number of rounds and time for 100K resources and 1M 
tenants. Key: demand vector lengths [0,128] chosen by Gaussian (g) or Uniform (u), resource locality is none (0), 
single cluster (1) or two clusters (2); (Right) Scalability under variable scale and different Tenant:Resource ratios. 
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ALGORITHM 2: DC-DRF 
1 𝑗 = 1;  
2 𝜖ଵ ← 0;  
3 while true do /* once per control interval */ 
4    ∆௝← 𝑡𝑖𝑚𝑒() + ∆ఈ; 
5    𝑡 ← 1;  
6    ∀𝑟, 𝑠௥ଵ ← 1;  
7    𝑆ଵ ← 𝑁;  
8    μଵ௥ ← ∑ 𝜌௜ ∙ 𝑑௜௥௜∈ௌ೟

; /* see Element 𝜇 */ 
9    𝑦଴ ← 0 
10    𝑧௜ ← 0 
11    𝜏௝ ← 𝑓𝑎𝑙𝑠𝑒;  
12    while 𝑆௧ ≠ ∅  and not 𝜏௝ do /* inner loop */ 
13       x୲ ← min୰∈ୖ

ୱ౨౪

ஜ౪౨
  

14       y୲ ← y୲ିଵ + x୲ 

15       ∀𝑟 ∈ 𝑅,  𝑠௥,௧ାଵ ← 𝑠௥,௧ − 𝑥௧μ௧௥ 
16       S୲ାଵ ← {i ∈ N: ∀r ∈ R, d୧୰ > 0 ⇒ s୰(୲ାଵ) > ϵ୨} 

17       ∀𝑟 ∈ 𝑅, μ௧ାଵ,௥ ← 𝜇௧,௥ − ∑ 𝜌௜ ∙ 𝑑௜௥  ௜∈ௌ೟\ௌ೟శభ
 

18       ∀i ∈ S୲ \ S୲ାଵ,  z୧ ← y୲ 

19       τ୨ ← time() > ∆୨ 

20       𝒊𝒇 𝝉𝒋 𝒕𝒉𝒆𝒏 /* timeout occurred */ 
21          ∀i ∈ S୲ାଵ,  z୧ ← y୲ 
22       t ← t + 1 

23    ∀i ∈ N, r ∈ R, A୧୰ ← ρ୧ ∙ d୧୰ ∙  z୧ /* see y, z */ 
24    𝒊𝒇 𝝉𝒋 𝒕𝒉𝒆𝒏 
25       ϵ୨ାଵ ← raise൫ϵ୨൯ 
26    𝒆𝒍𝒔𝒆 
27       ϵ୨ାଵ ← lower(ϵ୨) 

 
 
Observe in line 16 that DC-DRF replaces the constant zero 
of EDRF line 10 with the control variable 𝜖௝. In the event 
that 𝜖௝ has value zero then the two constructs are equivalent; 
however, non-zero 𝜖௝ causes early exhaustion of the resource 
and early eviction of any tenant that has non-zero demand 
for that resource. The inner loop is terminated if its elapsed 
time exceeds the deadline ∆௝ with timeout indicated in 𝜏௝ 
(lines 11, 19, 20, 24). 

The outer loop, lines 3-11 and 23-27, represents consecutive 
control intervals, 𝑗, over which DC-DRF searches for a value 
of 𝜖 such that the inner loop can complete just ahead of a 
time deadline ∆ఈ. We assume that inputs vary from one 
interval to the next and that DC-DRF must continually adjust 
𝜖 to adjust for the variations in execution time. In the event 
of timeout the value of 𝜖 is increased, otherwise it is 
decreased, by the function raise() and lower(), respectively. 
We do not specify the precise search strategy followed by 
raise() and lower(); in our implementation we maintain a 
search window with initial fast-start gradient. The intention 
is, given stable inputs, DC-DRF will oscillate between an 𝜖 
that completes just within the deadline, and timeout that tests 

a slightly lower 𝜖. 
Element 𝝁. EDRF evaluates the expression ∑ 𝜌௜ ∙ 𝑑௜௥  in each 
iteration of its body at line 5. This entails repeatedly 
summing elements whose value has not changed from one 
iteration to the next. Based on this observation, DC-DRF 
introduces the element 𝜇 into which it performs the 
summation prior to entering the iterative part of its body (line 
8). Subsequently, DC-DRF subtracts from 𝜇 the values 
associated with evicted tenants once at the time of the 
tenant's eviction (line 17). This optimization allows us to 
compute the values of 𝑥௧  for each 𝑡 while performing 2 
operations per tenant-resource pair rather than 1 operation 
per tenant-resource pair per inner loop iteration. Relatedly, 
note that 𝜌௜ and 𝑑௜௥  only appear as the product 𝜌௜ ∙ 𝑑௜௥, and 
thus this product can be computed a single time per outer 
loop iteration. (For ease of comparison to EDRF, we omit 
this from the description in Algorithm 2.) 

 
Elements 𝒚 and 𝒛. EDRF calculates intermediate values of 
𝐴௜௥,௧ at line 6. We observe that computing all of these values 
𝑥௧ ∙ 𝜌௜ ∙ 𝑑௜௥  requires several operations per tenant-resource 
pair per round. Instead we can keep these implicit using 𝑦 
and 𝑧, allowing them to be computed just once per tenant-
resource pair. We use 𝑦௧  as an accumulator to hold a running 
total of the sum of all 𝑥௧ (line 14), and use 𝑧௜  to cache for 
each tenant the value of 𝑦௧  at the time of the tenant was 
evicted (typically line 18, or line 21 when terminating on 𝜏௝). 
In this way 𝐴௜௥.௧  is calculated once per tenant on exit from 
the inner loop (line 23). In addition, factoring things this way 
allows the sharing of some additional computations across 
tenants (we compute one 𝑦௧  per round rather than needing to 
do this addition for each tenant). Not only does this decrease 
the total number of arithmetic operations performed, it also 
improves the spatial locality of the algorithm by eliminating 
references to 𝐴௜௥ from the inner loop: this is important for 
performance and therefore for precision, as later sections 
will show. 

Computational Complexity. The variable 𝜖 is crucial for 
both the computational complexity of the algorithm. The key 
feature for the time complexity of the algorithm is the 
number of iterations of the inner loop required. For EDRF, 
there will be 𝑂(|𝑅|) iterations, as barring ties in line 5 only 
one resource is exhausted per iteration. For a simplified 
version of DC-DRF, we can show that the number of 
iterations is independent of |𝑅|. In particular, suppose that 
𝜇௧௥  is not updated in the course of the inner loop and instead 
is always fixed at 𝜇ଵ௥ . Furthermore, suppose that there is a 
constant 𝑐 such that min 𝑟, 𝑟ᇱ ∈ 𝑅

ఓభೝ

ఓభೝᇲ
> 𝑐. That is, there is 

a bound on how large the relative demands for two resources 
are. 

Lemma 3.1 Under the two assumptions the number of 
iterations of the inner loop is 𝑂(𝑙𝑜𝑔ିଵ(1 − 𝜖)), independent 
of |𝑅| . 
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Proof. The first iteration completes with 𝑦ଵ sufficient to 
exhaust some resource 𝑟ଵ(𝑦ଵ𝜇௥భଵ = 𝑠ଵ௥భ

= 1)). Any 
resource 𝑟 still demanded by some tenant in 𝑆ଶ must have at 
least an 𝜖 fraction remaining (𝑦ଵ𝜇௥ଵ < 1 − 𝜖). Taking 
advantage of our first assumption, we can express the more 
general version of this fact for each iteration as 𝑦௧𝜇௥೟ଵ = 1 
for the resource 𝑟௧ exhausted in iteration 𝑡 and 𝑦௧𝜇௥ଵ < 1 −
𝜖 for any resource 𝑟 still available in iteration 𝑡 + 1. In 
particular, this holds for 𝑟௧ାଵ. This means that 

(1 − 𝜖)𝜇௥೟ଵ > 𝜇௥೟శభଵ for all 𝑡. These inequalities telescope 
to give (1 − 𝜖)௧ିଵ𝜇௥భଵ > 𝜇௥೟ଵ. By our second assumption, 
this puts a bound on the number of iterations that 
(1 − 𝜖)௧ିଵ > 𝑐. Solving for 𝑡 gives the desired bound. ∎ 

 

The proof of the lemma suggests how pathological inputs 
can be constructed to cause DC-DRF to require |𝑅| 
iterations: cause the 𝜇௧௥  to decay in such a way that there is 
always only one resource exhausted per iteration. Note 
however that, (i) such inputs require a coordination of 
demand which seems unrealistic in a real system, (ii) in such 
cases DC-DRF effectively falls back to the performance of 
EDRF, and most importantly (iii) whether a given example 
is pathological depends on 𝜖, so we would expect our outer 
loop to drive 𝜖 smaller and restore good performance. Thus 
we believe such inputs have no relevance in practice. 

We can now quantify the overall computational complexity 
of an iteration of the outer loop. 

 
Lemma 3.2 The computational complexity of an iteration of 
DC-DRF is 𝑂(|𝑅||𝑁|). Furthermore, let 𝐵 be a bound on 
the number of resources a tenant demands and let 𝐼 be the 
number of iterations of the inner loop. Then the 
computational complexity of an iteration of DC-DRF is 
𝑂(|𝑁|𝐵 + 𝐼|𝑁| + 𝐼|𝑅|) 

Proof. Non-trivial amounts of computation occur in lines 8, 
13, 15--18, 21, and 23. Per the discussion of 𝜇, the combined 
complexity of lines 8 and 17 is 𝑂(|𝑁|𝐵). For lines 13 and 15 
is 𝑂(𝐼|𝑅|), while for line 16 it is 𝑂(𝐼|𝑁|). By hoisting the 
computation of allocations into the outer loop, lines 18, 21, 
and 23 have combined complexity 𝑂(|𝑁|𝐵). Since 𝐼 ≤
min(|𝑁|, |𝑅|) and 𝐵 ≤ |𝑅|, the result follows. ∎ 

 

Lemma 3.2 shows that our more careful implementation 
reduces the complexity of EDRF from 𝑂(|𝑅|ଶ|𝑁|) to 
𝑂(|𝑅||𝑁|) for the case without a bound 𝐵, and in this case 𝜖 
does not improve the overall complexity, which is 
dominated by calculating the initial demand for resources 
(line 8). However, with such a constant bound 𝐵, under the 
assumptions of Lemma 3.1 the gain from using 𝜖 is 
substantial (as 𝐼 is now constant for fixed 𝜖, from 𝑂(|𝑅||𝑁|) 
to 𝑂(|𝑁|). If |𝑅| and |𝑁| are of similar magnitude, as we 

expect in public cloud settings, this is a reduction from 
quadratic to linear. 

Approximation Quality. The variable 𝜖 is crucial for the 
quality of the approximation, but its effects of 𝜖 are 
somewhat subtle. The simplest concrete statement is that if 
the inner loop runs to completion (i.e. there is no timeout) 
then every tenant desires some resource of which we have 
allocated a 1 − 𝜖 fraction. However, this does not imply a 
1 − 𝜖 fraction of each tenant's optimal utilization because 
different tenants will have different bottleneck resources 
(although our results in Section 5 show that it does 
empirically). Additionally, consider the scenario in which 𝜖 
causes a tenant to get less than is “fair.” If all tenants using 
the tenant's bottleneck resource desired more, the tenant 

could get at most 
ଵ

ଵିఢ
≈ 1 + 𝜖 times its actual allocation, 

which is an insignificant difference. The possibility to have 
large gains requires other tenants be unable to use more 
because they are bottlenecked on some other resource. Thus 
the “unfairness”' corresponds to not getting an outsize share 
of a heavily loaded resource when others rely on an even 
more heavily loaded resource. Given the benefits of 
providing fairer and more efficient resource allocation 
overall, this particular ``unfairness'' may well be worth 
tolerating. 

Finally, EDRF was motivated by four desiderata [17]. 
Despite our approximation, DC-DRF fully satisfies two of 
them (i.e., sharing incentive and envy-freeness), while 
partially satisfying Pareto efficiency and strategy-proofness 
up to the resources discarded by 𝜖. 

 

4. DESIGN AND IMPLEMENTATION 
 

4.1 High-Level Design 
 
The scope of our work presented herein is limited to the 
design and implementation of the DC-DRF algorithm itself. 
While we have not attempted to integrate it into datacenter 
infrastructure, we provide context for the reader we sketch a 
design of how we envisage that might work. 
 
In outline, DC-DRF would provide a centralized service for 
calculating multi-resource allocations in a public cloud 
datacenter of around 1M resources, such as individual 
servers or storage volumes, and one million tenants. Separate 
admission control and VM placement services would 
provide DC-DRF with initialization data including resource 
identities. Trusted components within infrastructure report 
demands and enforce allocation limits; Pulsar demonstrated 
the use of cost functions in trusted hypervisor drivers to 
generate dynamic demand vectors based on the queued and 
in-flight operations of each tenant [5]. The frequency, or 
control interval, with which allocations are revised needs to 
be in the order of seconds, so as to rapidly curtail excessive 
resource consumption by tenants whose demand suddenly 
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becomes excessive, and to reclaim resource allocations from 
tenants whose demand has dropped. 
 

 
 
Figure 4 A central DC-DRF server receives tenant 
demands from trusted infrastructure components and 
returns allocations for enforcement. 
 
Referring to Figure 4, infrastructure components (A) 
determine a demand vector for each tenant by sampling 
queue lengths, sending these over the datacenter network (B) 
to a front-end server (C). The front-end offloads 
communication overheads from the performance-sensitive 
back-end, which runs on a dedicated server. The front-end 
loads tenant demands into the input buffer (D) of the back-
end DC-DRF process (E), where allocations for the current 
control interval are calculated and loaded into an output 
buffer (F). The front-end (G) retrieves the allocations and 
sends them for enforcement in the infrastructure (A). The 
network overheads are less than 2 Gbps.3 
 

4.2 Evaluation Platforms 
 
Unless stated otherwise, we use a dual-socket Dell R740 
server with Intel Xeon Platinum 8160 CPUs. Each CPU 
employs 24 cores operating at 2.1GHz and a shared 33MB 
L3 cache.4 
 

4.3 Data Structures 
 
In order to avoid memory allocation overheads at runtime, 
data structures are statically allocated during initialization to 
maximum sizes given by a runtime parameter. The first 
thread to run allocates the central data structures and 
initializes a set of worker threads, each of which allocates 
the private data structures and scratch space for its own use. 
 
Each tenant has a data structure encoding its demand, weight 
and accumulated allocation vectors for each resource for 
which it has non-zero demand. DC-DRF implements a 
sparse encoding of demand and allocation matrices, 
imposing an upper bound B on the number of resources that 
                                                           
3 Assume each tenant has demand for 128 resources and encodes 

this as a list of (resource,demand) integer pairs. With 1M tenants 
the DC-DRF server receives 1𝑀 × 128 × 4 × 4 bytes of demand 
data per control interval, and sends the same in allocation data. 

a tenant may demand. By default, B=128. This optimization 
helps reduce the memory footprint and working set of our 
implementation, alleviating pressure on CPU caches and 
memory bandwidth. 
 
 

4.4 Arithmetic Precision 
 
Assuming a worst case of 1M tenants each demanding an 
equal share of a given resource, then each tenant would 
receive a 1/1𝑀 allocation and this value sits comfortably 
within the range [5.96 × 10ି଼, 65504] of IEEE 754-2008 
half-precision (16-bit) floating point. In contrast, 16-bit 

integer arithmetic underflows to produce 
ଵ

ே
= 0 for 𝑁 ≥

65536. At public cloud datacenter scale the number of 
tenants sharing a resource could generate denominators 
much larger than that. 
 
Contemporary processors do not support 16-bit floating 
point; hence, we choose between 32-bit (single-precision) 
and 64-bit (double-precision) at compile-time. Figure 6 
shows that single-precision consistently outperforms 
double-precision, primarily due to better Last Level Cache 
(LLC) performance. The improved LLC performance is 
attributed to higher temporal and spatial locality. First, the 
working set of single-precision setups is half of double-
precision, thereby alleviating cache pressure at high thread 
count. Second, as caches utilize a 64-byte cache block, more 
single-precision variables are fetched upon a cache miss, 
leading to higher cache hit rates. 
 

4.5 Thread-level Parallelism 
 
We achieve parallelism by tiling the data space so that 
independent threads can proceed on distinct partitions, 
synchronizing when necessary on custom lock-free barriers 
based on atomic counters and busy-waiting. We employ two 
types of tile, namely tenant tiles and resource tiles. Tenant 
tiles partition the set of tenants, and resource tiles partition 
the set of resources. Each tile is assigned to a distinct thread. 
Careful memory alignment of resource tiles along cache-line 
boundaries avoids false sharing: the worker threads do not 
collide when updating fields within shared data structures. 
The two types of tile can be imagined as horizontal and 
vertical stripes over a 2D matrix. To illustrate, consider a 
system comprising n NUMA nodes each with c cores. Table 
2 summarizes how tiling is applied within the inner loop, and 
the level of parallelism (MPL) achieved. 
 
 

4 We have also tested on a Dell R730 dual-socket server with Intel 
Xeon E5-2660v3 processors of 10 cores each 2.6GHz and a 
shared 25MB L3 cache, typical of legacy servers still found in 
Public Cloud datacenters today. 
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Table 2: Degree of parallelism (MPL) for n NUMA nodes 
of c cores each. 

Line Tiles MPL (min) MPL (max) 

13 Resource 1 c*n 
15 Resource c*n c*n 
16 Tenant c*n c*n 
17 Resource c c*n 

 
Figure 5 (left) shows the elapsed time of a DC-DRF 
microbenchmark as we vary the number of cores, using 
hyperthreading and 32-bit variables throughout. Each step 
adds two threads to fully load each core (with 
hyperthreading the second thread on each core invariably 
provides less benefit than the first thread). With a small 
number of cores the computation is CPU-bound, and 
increasing the number of cores leads to a clear decrease in 
elapsed time. While adding more cores improves 
performance, the scalability is sub-linear to the number of 
cores and gradually the benefit of adding more cores 
decreases because (a) increased inter-thread contention for 
LLC space; as our data structures greatly exceed the LLC 
size, this contention spills over into demand for memory 
bandwidth for moving data between CPU caches and DRAM 
and (b) the existence of variables 𝑠௥,௧ and 𝜇௧,௥ shared across 
all threads require the use of synchronization primitives, 
thereby introducing a non-negligible sequential part which 
becomes dominant as the number of threads increase and the 
parallel part becomes smaller.5 
 

4.6 NUMA Awareness 
 
To eliminate unnecessary cross-NUMA memory accesses 
over QPI [3], we explicitly allocate memory to each thread 
from the DRAM attached to that thread's NUMA node, and 
                                                           
5 We choose C++ memory barriers over the native 

SYNCHONIZATIONBARRIER of our host OS as, while the 
latter provided correctness, its performance over multiple NUMA 
nodes was poor, leading to a drop-off in performance when 
operating over more than one NUMA node. 

perform intermediate aggregation of partial results at each 
NUMA node prior to calculating global results for each 
round of DRF.6   
 
We measure the benefit obtained from additional NUMA 
nodes by running a micro-benchmark on a Dell R910 server 
featuring four NUMA nodes, increasing the number of 
NUMA nodes at each step. The results are shown in Figure 
5 (right). Because each NUMA node employs its own LLC, 
adding a second NUMA node improves performance by 
almost 50 percent. However, the benefit from additional 
NUMA nodes decreases because, while the cache bottleneck 
is alleviated by the extra LLC capacity provided by each 
NUMA node, the sequential phase in each round of the 
algorithm limits the total performance. 
 

4.7 Vector Arithmetic 
 
Contemporary processors support 256-bit vector instructions 
(AVX-256) [4] while recently announced Intel Xeon-SP 
adds support for 512-bit vectors (AVX-512) capable of 
operating on eight double-precision or 16 single-precision 
values. The latter also adds a scatter instruction for moving 
values from a 512-bit vector registers into memory, an 
attractive feature given the sparse random memory access 
patterns of DC-DRF. Our implementation is optimized for 
both instruction sets. 
 
 
 
 
 
 

6 Our findings indicate the default OS allocator fails to choose local 
DRAM---i.e., DRAM that is connected to the NUMA node to 
which the invoking thread was bound. 

 
Figure 5 Multi-threaded scalability: (Left) Core-level scalability with hyperthreading enabled (two threads per core); 
(Right) NUMA-level scalability. 
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To illustrate with an example, Algorithm 3 shows AVX512 
[4] intrinsic functions from our implementation of DC-DRF 
line 17. At this point each thread is accumulating allocation 
vectors 𝐴௜௥ from its agent tile into a thread-local per-resource 
array eventually to be subtracted from 𝜇௧,௥. Line one loads 
an AVX register with indices identifying up to 16 resources 
(8 resources if compiled for 64-bit, throughout) from an 
agent’s allocation vector, 𝐴௜௥, which line 2 uses to gather 
(fetch from memory) the accumulated allocations made by 
this thread in this round for the resources identified in line 
one. Line 3 adds to these accumulated values the vector  𝐴௜௥ 
of the allocation made to agent 𝑖 in this round. Finally, line 
4 scatters (stores to memory) the newly updated values into 
the array accessed in line 2. Each thread executes this code 
in parallel, following which the thread-local results are 
aggregated at NUMA and global level using resource tiles. 
 
As shown in Figure 6, AVX-256 and AVX-512 deliver 
similar performance. Both AVX-256 and AVX-512 improve 
performance over the baseline scalar version by 25%. To our 
surprise, AVX-512 provides marginal performance gains 
over AVX-256 that are within the statistical error. We shed 
light on this surprising result through a micro-architectural 
analysis of all configurations, finding a trade-off between (a) 
instruction count and memory-level parallelism (MLP) and 
(b) operating core frequency. 
 
First, vectorization reduces the instruction count by up to 
21% and improves MLP (i.e., number of concurrent 
outstanding long-latency memory accesses [15]) by up to 8% 
allowing for overlapping memory stalls with computation. 
The small gain in MLP is attributed to the fact that the core 
is capable of extracting MLP from scalar loads and stores 
due to its out-of-order execution and large instruction 
window; hence, the gather/scatter instructions provide 
relatively small gains. 
 
Second, cores operate at lower frequency when using AVX-
256 and AVX-512, by 3% and 11%, respectively. The 
observed lower frequency is due to the higher number of 
switching transistors when vector instructions are executed 
(due to larger register file and execution unit's datapath). To 
account for this, core frequency is scaled down so that 
power/thermal limits are not exceeded. The resulting lower 
frequency offsets the performance gains of larger degree of 
vectorization. In the case of AVX-512, we observe 
diminishing returns as the drop in frequency is modest while 
instruction-count and MLP are improved over AVX-256 by 
a small factor. 
 

4.8 Baseline Configuration 
 
Figure 6 shows a parameter sweep of significant 
configuration options, ranked left to right in order of 
decreasing completion time. The right-most columns 
indicate the configurations that complete the same 
computation in the shortest time. While hyper-threading 
improves performance of scalar versions, it provides 
negative performance gains when vectorization is enabled. 
This is due to the fact that hyperthreads introduce a high 
degree of destructive inter-core and intra-core sharing: (i) 
hyperthreads contend against each other for core's vector 
unit which is utilized even when hyperthreading is disabled 
and (ii) inter-core contention for shared caches; thus making 
hyperthreading ineffective for parallel vectorized sections at 
high thread counts. Based on our findings, we use 32-bit 
floating point and 512-bit vector instructions without 
hyperthreading throughout Section 5. 
 

 
Figure 6 Configuration options ranked by runtime. Key: 
double (d) or single (f) precision, scalar (c), AVX256 (2), 
AVX512 (5), hyper-threading (h). 
 

5. EVALUATION 
 
We now report the results of our experiments to explore the 
precision of allocations calculated by DC-DRF, and its 
performance limits running on commodity servers. 
  

5.1 Methodology 
 
Demand profiles. We evaluate DC-DRF on datacenter-
scale inputs using demand profiles whose parameters model 
the workload characteristics of public cloud datacenters [14, 
22]. Table 3 summarizes the different demand profiles we 
use throughout the evaluation. 
 

ALGORITHM 3: Example use of AVX512 vector intrinsic functions from our implementation. 
1 __mm512_vindex vindex_512 = _MM512_LOAD_VINDEX(*ptr); 
2 __m512r mu_tr = _mm512_i32gather_pr(vindex_512,pScratchR); 
3 mu_tr = _mm512_add_pr(mu_tr, A_irt); 
4 _mm512_mask_i32scatter_pr(pScratchR, m, vindex_512, mu_tr); 
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Table 3: Demand profiles: U=Uniform, G=Gaussian, 
Resource locality: DC=datacenter, PodA=1st cluster, 
PodB=2nd cluster 
 

key vector len select resource res. 
U0 U[2,128] U(DC) U(R) 
U1 U[2,128] U(PodA*.5,PodB*.5) U(R) 
U2 U[2,128] U(PodA*.5,PodB*.3,DC*.2) U(R) 
G0 G[2,128] U(DC) U(R) 
G1 G[2,128] U(PodA*.5,PodB*.5) U(R) 
G2 G[2,128] U(PodA*.5,PodB*.3,DC*.2) U(R) 

 
Number of elements. We fix the number of resources at one 
million and the number of tenants at one million throughout 
[22]. 
 
Demand vector size. Cortez et al. recently contributed the 
first characterization of a full-scale Public Cloud VM 
workloads, finding that they are dominated by small tenants: 
80% of tenants use only 1-5 VMs and 40% of tenant VMs 
have a single virtual core [14]. We model this using a 
truncated Gaussian distribution to generate demand vectors 
drawn from the interval [2,128]. We also use a uniform 
distribution that better represents the substantial first-party 
(cloud provider) workloads. 
 
Resource selection. Traffic between VMs collocated at rack 
level exhibit strong locality [9, 26]. In contrast, Internet 
services, such as search and social media, exhibit similar 
locality only for heavy-hitter flows at rack level [37]. We 
model three different degrees of locality: first, uniform 
selection across the entire datacenter; second, 50% of 
resources selected locally within a single cluster of the 
datacenter; third, 50% of resources selected within one 
cluster and 30% within a second cluster. 
 
Demand vector values. The DC-DRF and DRF algorithms 
are sensitive to the value of each element in a demand vector. 
To minimize correlation between the demand at each 
resource across tenants, which could artificially accelerate 
the rate at which resources are exhausted, we select 
uniformly in the interval [1,C[r]] where C is the absolute 
capacity of resource r. 
 
DC-DRF configurations. We evaluate four run-time 
configurations: a) parallel DC-DRF (DC-DRF); b) single-
threaded DC-DRF (sDC-DRF); c) parallel EDRF terminated 
at the deadline (pEDRF); d) parallel EDRF allowing just one 
round of the inner loop akin to HUG [13] (pEDRF-1). 
pEDRF isolates the benefit of parallelism, and pEDRF-1 
highlights the fundamentally iterative nature of EDRF. We 
report results normalized to a baseline of conventional 
single-threaded EDRF which completes in 129 minutes. 
 

5.2 Sensitivity to Demand Profiles 
 
We use range of diverse demands to show that DC-DRF has 

not been inadvertently specialised to narrow inputs that 
cannot be guaranteed in practice, such as choosing highly 
symmetric demands [13]. We set the deadline at 8 seconds, 
based on results of Section 5.5. Figure 7 shows the number 
of rounds for each demand profile normalized to those of the 
baseline. In these cases the use of approximation in DC-DRF 
has decreased the number of rounds by an order of 
magnitude because more tenants are evicted in each round. 
Following FILO [31], we measure fairness using the 
standard deviation between the allocation obtained by DC-
DRF and the baseline allocation as shown in Figure 7. The 
low standard deviation from baseline, which remains very 
low throughout, indicates that there is no significant 
compromise made to fairness because the allocations 
obtained by DC-DRF lie close to those of EDRF which we 
take as ground truth. 
 

 
Figure 7 DC-DRF performance and fairness by demand 
profile. Bars show rounds normalized to baseline. 
Markers show standard deviation against baseline. Key: 
demand vector length [0,128], Gaussian (g), Uniform (u), 
resource locality none (0), one (1) or two (2) clusters. 
 

5.3 Resource Utilization 
 
Henceforth, unless stated otherwise, we use the G0 demand 
profile, vary the deadline in steps of one second and measure 
overall resource utilization summed over all resources. 
Figure 8 plots resource utilization normalized to baseline. 
Both sDC-DRF and DC-DRF achieve near-optimal 
utilization for deadlines to the right of the knee in Figure 8 
(discussed in in Section 5.5). 
 

 
Figure 8 Resource utilization against baseline. 
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In general, outside of narrow corner-cases, pEDRF-1 
performs poorly because only those resources selected by 
EDRF line 5 will be fully allocated in the first round; this set 
may consist of only one resource while the remaining 
resources will be allocated proportionally at each tenant. 
pEDRF enables higher resource utilization as more iterations 
are completed. pEDRF achieves a utilization that converges 
with baseline utilization as deadlines approach its 
completion time. 
 

5.4 Fairness Analysis 
 
Figure 9 (left) shows the standard deviation from baseline 
for increasing values of deadline. The knee in the curves of 
sDC-DRF and DC-DRF is explained in Section  5.5, and 
when DC-DRF is operating to the right of the knee the stddev 
remains small, indicating a high degree of fairness for 
epsilon values in that range.7 The standard deviation for 
pEDRF starts high but converges to zero as the deadline 
approaches the time within which it can complete. The 
standard deviation for pEDRF-1 is high throughout, making 
it a poor choice of configuration. Note that the error for 
pEDRF exceeds that of pEDRF-1 due to a higher variance 
between individual tenants, where instead the variance of 
pEDRF-1 remains uniformly poor throughout. 
 
However, the standard deviation may conceal outliers in the 
form of tenants whose deviation from baseline lies far from 
the mean. Of primary concern are tenants whose allocation 
under DC-DRF falls below their baseline allocation, because 
for them DC-DRF is in some sense less fair. To expose the 
fraction of tenants effected in this way we take the results for 
the DC-DRF configuration, rank them on deviation from 
baseline allocation, and show in Figure 9 (right) the under 
allocation for the tenant with the greatest shortfall, together 
with the shortfall at the first tenth of a percentile (i.e., the 
1000 tenants with the greatest shortfall). The shortfall for 

                                                           
7 Note that the standard deviation is orders of magnitude lower than 

the value of 1.0 reported for FILO. 

DC-DRF is substantially better than that of sDC-DRF, for 
both the outlier and at one tenth of a percentile. 
 

5.5 Value of Epsilon 
 
We have repeatedly observed a distinct knee in the results of 
preceding sub-sections, which we now explain. Figure 10 
plots the values of epsilon to which DC-DRF converges for 
the sDC-DRF and DC-DRF configurations. Both 
configurations feature an initial steep gradient for short 
deadlines, with a knee leading to a plateau after a few 
seconds. To the left of the knee, co-variant with the curves 
seen in earlier experiments, lies a region where DC-DRF is 
forced to terminate within a very small number of rounds, 
requiring aggressive values of epsilon. In particular, the first 
round considers the entire tenant and resource sets 
independent of the value of epsilon. Note that the values for 
DC-DRF, shown on the left hand axis, are two orders of 
magnitude lower than those of sDC-DRF, shown on the 
right-hand axis, reaffirming that DC-DRF achieves better 
fairness than sDC-DRF. 
 

 
Figure 10 Epsilon as function of deadline. 

 
 

 
Figure 9 Fairness analysis of various DRF configurations: (Left) StdDev of experimental allocation from baseline 
allocation; (Right) Under-allocation of outliers compared to baseline. Outlier shown as solid lines, 0.01 percentile as 
dotted. 
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5.6 Adaptation to Change 
 
Figure 11 demonstrates DC-DRF adapting to changes in 
demand and changes in deadline. As before, we use the 8-
second deadline suggested by section 5.5. In addition to 
earlier experiments, a random 5% of tenants change their 
demand by 5% at each control interval, to represent 
variations in demand that occur in the real world. 
 

 
Figure 11 Adapting to variable demand or deadline. 
 
Initially epsilon starts at zero, so the first control interval is 
terminated at the deadline triggering the search for epsilon 
in the second interval. Over the next 15 intervals, the DC-
DRF outer loop expands its search window as the algorithm 
completes within the deadline. In the 15th control interval 
the elapsed time exceeds the deadline so DC-DRF starts to 
contract its search window. Once stable, DC-DRF adjusts 
epsilon by small amounts while keeping close to the 
deadline, in order to detect when to restart its search in 
reaction to variations in demand. At control interval 35 there 
is an abrupt change in demand when half the tenants change 
their demands by 50%, as may happen in response to a 
significant infrastructure failure; DC-DRF absorbs this with 
minor adjustment to the value of epsilon. At control interval 
50 the deadline is increased to 10 seconds, for example due 
to a manual change by the datacenter provider, and DC-DRF 
adapts to this by commencing a new search for epsilon that 
completes at around interval 55. The deadline is changed 
back to 8 seconds at control interval 70, and again DC-DRF 
adapts by adjusting epsilon. 
 

6. RELATED WORK 
 
The foundational work of Dominant Resource Fairness 
(DRF) defined fairness properties upon which our work, and 
that of others, is based [17]. Extended DRF (EDRF) 
contributed a formalized specification of a DRF algorithm 
using a closed-form expression to calculate resource 
allocations in each round of the algorithm [32]. 
 
H-DRF investigated fairness for jobs in a shared compute 
cluster from the perspective of competing groups within the 
organizational structure (division, department, office, etc.) 
from which the jobs originate [10]. It concludes by 

recognizing that computing DRF for large inputs may be 
computationally expensive, and suggests this as an area for 
further research. 
 
HUG used EDRF to investigate trade-offs between 
utilization and isolation guarantees at Public Cloud scale in 
specialized cases where every tenant must have non-zero 
demand for each and every resource [13]. For such scenarios 
they introduce “elastic demands” and add an additional 
phase following EDRF to provide work conservation for 
elastic demands. When elastic demands are present, the 
HUG approach for achieving work conservation is 
orthogonal to our approach, and could be applied after DC-
DRF for those elastic demands that have been over-
estimated. 
 
Prior work utilized DRF at relatively small scales. Pulsar 
employed DRF to enable dynamic multi-resource 
differentiated service levels with work conversation for 
shared resources in a data center setting, running DRF in a 
central SDN-like controller [5]. Its scale was limited to 
Private Cloud due to the cost of calculating multi-resource 
allocations at its central controller. Filo used DRF to 
implement throughput guarantees in a distributed multi-
tenant Cloud-based consensus service [31]. To decrease the 
time spent in calculating allocations, it used a distributed 
adaptation of DRF. Relatively to DC-DRF, its scale was 
small and the error incurred by distribution was relatively 
high. 
Non-DRF approaches to resource allocation at cluster scale 
include a mix of priorities and quotas, as in Borg [43], and 
min-cost max-flow, as in Firmament [19]. 
Prior work has explored how to approximate max-min 
fairness. Awebuch et al. [6] designed an approximation 
algorithm up to a multiplicative $\epsilon$ factor, which 
works quite differently from our approach, based on a 
discretization of the set of permissible allocations on a 
logarithmic scale. However, being an approximation of max-
min, their approach considers a single-resource only and is 
therefore not directly comparable to multi-resource DRF. 
 
 

7. CONCLUSION 
 
We have presented the DC-DRF algorithm, an adaptive 
approximation of EDRF designed to support centralized 
multi-resource allocation in bounded time. We have shown 
that a high-performance implementation of DC-DRF 
calculates multi-resource allocations at Public Cloud scale in 
practical time and with lower error than previous 
approaches. This removes a fundamental barrier to the 
deployment of multi-resource allocation in future cloud 
datacenters. A possible opportunity for further work would 
be to explore dynamic ways of detecting the set of resources 
used by a tenant, when this is not explicitly specified by 
either provider or tenant. 
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