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Abstract

We study a variant of online linear optimization where the player receives a hint about the
loss function at the beginning of each round. The hint is given in the form of a vector that is
weakly correlated with the loss vector on that round. We show that the player can benefit from
such a hint if the set of feasible actions is sufficiently round. Specifically, if the set is strongly
convex, the hint can be used to guarantee a regret of O(log(7')), and if the set is g-uniformly
convex for ¢ € (2,3), the hint can be used to guarantee a regret of o(v/T). In contrast, we
establish Q(\/T) lower bounds on regret when the set of feasible actions is a polyhedron.

1 Introduction

Online linear optimization is a canonical problem in online learning. In this setting, a player attempts
to minimize an online adversarial sequence of loss functions while incurring a small regret, compared
to the best offline solution. Many online algorithms exist that are designed to have a regret of O(\/T )
in the worst case and it has been known that one cannot avoid a regret of Q(v/T) in the worst case.
While this worst-case perspective on online linear optimization has lead to elegant algorithms and
deep connections to other fields, such as boosting [9, 10] and game theory [4, 2], it can be overly
pessimistic. In particular, it does not account for the fact that the player may have side-information
that allows him to anticipate the upcoming loss functions and evade the Q(+/T) regret. In this
work, we go beyond this worst case analysis and consider online linear optimization when additional
information in the form of a function that is correlated with the loss is presented to the player.

More formally, online convex optimization [22, 11] is a T-round repeated game between a player
and an adversary. On each round, the player chooses an action x; from a convex set of feasible
actions K C R? and the adversary chooses a convex bounded loss function f;. Both choices are
revealed and the player incurs a loss of fi(x;). The player then uses its knowledge of f; to adjust its
strategy for the subsequent rounds. The player’s goal is to accumulate a small loss compared to the
best fixed action in hindsight. This value is called regret and is a measure of success of the player’s
algorithm.

When the adversary is restricted to Lipschitz loss functions, several algorithms are known to
guarantee O(v/T) regret [22, 16, 11]. If we further restrict the adversary to strongly convex loss
functions, the regret bound improves to O(log(7T)) [14]. However, when the loss functions are linear,
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no online algorithm can have a regret of o(v/T) [5]. In this sense, linear loss functions are the most
difficult convex loss functions to handle [22].

In this paper, we focus on the case where the adversary is restricted to linear Lipschitz loss
functions. More specifically, we assume that the loss function f;(z) takes the form ¢fz, where ¢
is a bounded loss vector in C C R%. We further assume that the player receives a hint before
choosing the action on each round. The hint in our setting is a vector that is guaranteed to be
weakly correlated with the loss vector. Namely, at the beginning of round ¢, the player observes a
unit-length vector v; € R? such that v]e; > al|eg]|2, and where « is a small positive constant. So
long as this requirement is met, the hint could be chosen maliciously, possibly by an adversary who
knows how the player’s algorithm uses the hint. Our goal is to develop a player strategy that takes
these hints into account, and to understand when hints of this type make the problem provably
easier and lead to smaller regret.

We show that the player’s ability to benefit from the hints depends on the geometry of the
player’s action set K. Specifically, we characterize the roundness of the set I using the notion of
(C, g)-uniform convexity for convex sets. In Section 3, we show that if K is a (C, 2)-uniformly convex
set (or in other words, if K is a C-strongly convex set), then we can use the hint to design a player
strategy that improves the regret guarantee to O((C’oz)_1 log(T)), where our O(-) notation hides
a polynomial dependence on the dimension d and other constants. Furthermore, as we show in
Section 4, if K is a (C, ¢)-uniformly convex set for ¢ € (2,3), we can use the hint to improve the

1 2—
regret to O ((C’a)TqT ﬁ) , when the hint belongs to a small set of possible hints at every step.

In Section 5, we prove lower bounds on the regret of any online algorithm in this model. We first
show that when K is a polyhedron, such as a Lj or a Ly, ball, even a stronger form of hint cannot
guarantee a regret of o(v/T). Furthermore, we prove a lower bound of Q(log(T)) regret when K is
strongly convex.

1.1 Comparison with Other Notions of Hints

The notion of hint that we introduce in this work generalizes some of the notions of predictabil-
ity on online learning. Hazan and Megiddo [13] considered as an example a setting where
the player knows the first coordinate of the loss vector at all rounds, and showed that when
|ci1] > « and when the set of feasible actions is the Euclidean ball, one can achieve a regret of
O(1/a -log(T)). Our work directly improves over this result, as in our setting a hint v; = +e;
also achieves O(1/a - log(T")) regret, but we can deal with hints in different directions at differ-
ent rounds and we allow for general uniformly convex action sets. Rakhlin and Sridharan [20]
considered online learning with predictable sequences, with a notion of
predictability that is concerned with the gradient of the convex loss functions.
They show that if the player receives a hint M; at round ¢, then the regret of

the algorithm is at most O(\/Zthl |V fi(z¢) — My]|2). In the case of linear
loss functions, this implies that having an estimate vector ¢} of the loss vector
within distance o of the true loss vector ¢; results in an improved regret
bound of O(cv/T). In contrast, we consider a notion of hint that pertains to
the direction of the loss vector rather than its location. Our work shows that
merely knowing whether the loss vector positively or negatively correlates Figure 1: Comparison
with another vector is sufficient to achieve improved regret bound, when the between notions of hint.
set is uniformly convex. That is, rather than having access to an approximate value of ¢;, we only




need to have access to a halfspace that classifies ¢; correctly with a margin. This notion of hint is
weaker that the notion of hint in the work of Rakhlin and Sridharan [20] when the approximation
error satisfies ||¢; — ¢jll2 < o - ||ct|ly for o € [0,1). In this case one can use ¢,/ ||c}||, as the direction
of the hint in our setting and achieve a regret of O( —logT') when the set is strongly convex. This
shows that when the set of feasible actions is strongly convex, a directional hint can improve the
regret bound beyond what has been known to be achievable by an approximation hint. However, we
note that our results require the hints to be always valid, whereas the algorithm of Rakhlin and
Sridharan [19] can adapt to the quality of the hints.
We discuss these works and other related works, such as [15], in more details in Appendix A.

2 Preliminaries

We begin with a more formal definition of online linear optimization (without hints). Let A denote
the player’s algorithm for choosing its actions. On round ¢ the player uses A and all of the information
it has observed so far to choose an action x; in a convex compact set K C RY. Subsequently, the
adversary chooses a loss vector ¢; in a compact set C C R?. The player and the adversary reveal
their actions and the player incurs the loss ¢/z;. The player’s regret is defined as

R(A,c1.7) E cray — IHIHE clT.

In online linear optimization with hints, the player observes v; € R? with ||v¢||2 = 1, before choosing
x¢, with the guarantee that v/ c; > a|¢t]|2, for some a > 0.

We use uniform convezity to characterize the degree of convexity of the player’s action set .
Informally, uniform convexity requires that the convex combination of any two points x and y on
the boundary of K be sufficiently far from the boundary. A formal definition is given below.

Definition 2.1 (Pisier [18]). Let K be a convex set that is symmetric around the origin. K and
the Banach space defined by IC are said to be uniformly convex if for any 0 < € < 2 there exists a
d > 0 such that for any pair of points x,y € K with ||z|x < 1,|lyllx < 1, ||z — yllx > €, we have
H:C“Ly HIC <1 — 0. The modulus of uniform-convexity di(€) is the best possible § for that €, i.e.,
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For brevity, we say that K is (C, q)-uniformly convex when dxc(€) = Ce? and we omit C' when it is
clear from the context.

Examples of uniformly convex sets include L, balls for any 1 < p < oo with modulus of convexity
dr,(€) = Cpe? for p > 2 and a constant C, and 6, (¢) = (p — 1)e? for 1 < p < 2. On the other hand,
Ly and L, units balls are not uniformly convex. When d(€) € O(e?), we say that K is strongly
convex.

Another notion of convexity we use in this work is called exp-concavity. A function f: K — R is
exp-concave with parameter 5 > 0, if exp(—8f(x)) is a concave function of x € IC. This is a weaker
requirement than strong convexity when the gradient of f is uniformly bounded [14]. The next
proposition shows that we can obtain regret bounds of order O(log(7")) in online convex optimization
when the loss functions are exp-concave with parameter 3.



Proposition 2.2 ([14]). Consider online convexr optimization on a sequence of loss functions
fi,..., fr over a feasible set K C R%, such that all t, f; : KK — R is exp-concave with parameter
B > 0. There is an algorithm, with runtime polynomial in d, which we call Agxp, with a regret that
is at most %(1 +log(T +1)).

Throughout this work, we draw intuition from basic orthogonal geometry. Given any vector
x and a hint v, we define 'V = (2"v)v and z+? = x — (z"v)v, as the parallel and the orthogonal
components of x with respect to v. When the hint v is clear from the context we simply use z" and
x* to denote these vectors.

Naturally, our regret bounds involve a number of geometric parameters. Since the set of actions of
the adversary C is compact, we can find G > 0 such that ||c||, < G for all ¢ € C. When K is uniformly
convex, we denote K = {w € R? | |lw||- < 1}. In this case, since all norms are equivalent in finite
dimension, there exist R > 0 and r > 0 such that B, C K C Bg, where B, (resp. Bg) denote the
Ly unit ball centered at 0 with radius r (resp. R). This implies that & |||l < [-[l,c < 2 |||,

3 Improved Regret Bounds for Strongly Convex K

At first sight, it is not immediately clear how one should use the hint. Since v; is guaranteed to
satisfy c{v; > a|ct]|2, moving the action x in the direction —v; always decreases the loss. One could
hope to get the most benefit out of the hint by choosing x; to be the extremal point in K in the
direction —v;. However, this naive strategy could lead to a linear regret in the worst case. For
example, say that ¢, = (1, 3) and v; = (0,1) for all ¢ and let K be the Euclidean unit ball. Choosing
z; = —v; would incur a loss of —Z, while the best fixed action in hindsight, the point (\_/—%, \_/—%),
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would incur a loss of _T\/ET. The player’s regret would therefore be @T.

Intuitively, the flaw of this naive strategy is that the hint does not give the player any information
about the (d — 1)-dimensional subspace orthogonal to v;. Our solution is to use standard online
learning machinery to learn how to act in this orthogonal subspace. Specifically, on round ¢, we use

vt to define the following virtual loss function:

é(r) = min cfw st. wr =z
wek t

1 vt

In words, we consider the 1-dimensional subspace spanned by v
and its (d — 1)-dimensional orthogonal subspace separately. For any
action z € K, we find another point, w € K, that equals z in the
(d — 1)-dimensional orthogonal subspace, but otherwise incurs the
optimal loss. The value of the virtual loss ¢ (z) is defined to be the
value of the original loss function ¢; at w. The virtual loss simulates
the process of moving x as far as possible in the direction —v; without
changing its value in any other direction (see Figure 2). This can be
more formally seen by the following equation.

Figure 2: Virtual function ¢(-).

argmin c¢jw = argmin ((ctl )it + (cf )TwH) = argmin vjw, (1)
wekwt =g+ wekwt =g+ wekw+ =g+
where the last transition holds by the fact that c} = Hc,‘:‘ H2 vy since the hint is valid.



This provides an intuitive understanding of a measure of
convexity of our virtual loss functions. When K is uniformly
convex then the function ¢(-) demonstrates convexity in the
subspace orthogonal to v;. To see that, note that for any z and
y that lie in the space orthogonal to vy, their mid point %ﬂ
transforms to a point that is farther away in the direction of —w,
than the midpoint of the transformations of x and y. As shown
in Figure 3, the modulus of uniform convexity of K affects the
degree of convexity of ¢(-). We note, however, that ¢/(-) is not
strongly convex in all directions. In fact, ¢/(-) is constant in the
direction of v;. Nevertheless, the properties shown here allude to
the fact that ¢(-) demonstrates some notion of convexity. As we
show in the next lemma, this notion is indeed exp-concavity:

Figure 3: Uniform-convexity of the
feasible set affects the convexity the
virtual loss function.

Lemma 3.1. If K is (C,2)-uniformly convez, then é(-) is 8%S. &7 ~€Tp-concave.

Proof. Let v = 8%’%’5 . Without loss of generality, we assume that ¢; # 0, otherwise é(-) =0 is a

constant function and the proof follows immediately. Based on the above discussion, it is not hard
to see that ¢ (-) is continuous (we prove this in more detail in the Appendix D.1). So, to prove that

¢(+) is exp-concave, it is sufficient to show that
(T + 1 ~ 1 R
exp (e (5)) 2 gow (- e + jes (- al) ) € K.

Consider (z,y) € K and choose corresponding (z,y) € K such that é(x) = ¢[& and é&(y) = ¢[9.
Without loss of generality, we have ||Z| . = ||y[/, = 1, as we can always choose corresponding &, ¢
that are extreme points of K. Since exp(—7¢é:(+)) is decreasing in é&(-), we have

exp | —v - & THYY) max exp(—7 - cfw). (2)
2 lwllc<1
wlvt:(mgy)Lvt

Note that w = m—&;g(Hi’ — QH,C)HUZ—T‘K satisfies [|wl| < 1, since [Jw]| <

20| +oc(ld — gllc) <
) w

Log — (xzﬂ)“’t. So, by using this w in Equation (2), we have

1 (see also Figure 3). Moreover, w
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On the other hand, since [Jv¢|[x < Lfvellz =L and |2 — gl = £[2 — 92, we have
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1 1
> 5 exp (% ef — ctT@)) + 5 exp (%
where the penultimate inequality follows by the definition of v and the last inequality is a consequence

of the inequality exp(z?/2) > %exp(z) + %exp(—z),Vz € R. Plugging the last inequality into (3)
yields

Y N N Y N N v A .
exp (—re("3) 2 joxw (= 3(cla + ) - {exp (Jcta — cli)) +exp (Jchi — ) }

(i - ),

which concludes the proof. O

Now, we use the sequence of virtual loss functions to reduce our problem to a standard online
convex optimization problem (without hints). Namely, the player applies Agxp (from Proposition 2.2),
which is an online convex optimization algorithm known to have O(log(T")) regret with respect to
exp-concave functions, to the sequence of virtual loss functions. Then our algorithm takes the action
I € K that is prescribed by Agxp and moves it as far as possible in the direction of —v;. This
process is formalized in Algorithm 1.

Algorithm 1 A;;,; FOR STRONGLY CONVEX K
Fort=1,...,T,

1. Use Algorithm Agxp with the history é-(-) for 7 < ¢, and let ; be the chosen action.

AJ_’Ut

2. Let 2y = argmin i (vjw) s.t. w*? = &; . Play x; and receive ¢; as feedback.

Next, we show that the regret of algorithm Agxp on the sequence of virtual loss functions is an
upper bound on the regret of Algorithm 1

Lemma 3.2. For any sequence of loss functions ci, ..., cr, let R(Apint, c1.7) be the regret of algorithm
Anpint on the sequence c1, ..., cp, and R(Agxp, ¢1.7) be the regret of algorithm Agxp on the sequence
of virtual loss functions é1,...,¢r. Then, R(Apint, c1.7) < R(Agpxp, ¢1.7).

Proof. Equation (1) provides an equivalent definition x; = arg min,cx(cjw) s.t. w** = #;""*. Using

this, we show that the loss of algorithm Ay;,; on the sequence cq.7 is the same as the loss of algorithm
Agxp on the sequence ¢é.7.

T T T T

Zét(it) = Z min  cjw = ch( argmin cjw) = Z L Tt

t=1 1= wekwt =g t=1 weKwt=i t=1
Next, we show that the offline optimal on the sequence ¢i.p is more competitive that the offline
optimal on the sequence c¢;.7. First note that for any « and ¢, é(z) = min, cx. L1 cfw < ¢[z.
Therefore, mingcx ZtT:1 ¢(z) < mingex ZZ;I c{x. The proof concludes by

T
R(Apint, c1.7) Z clre — mlnz clr < Z ét(2¢) —min Yy ¢é(z) = R(Agpxp, é1.7).

:EEIC



Our main result follows from the application of Lemmas 3.1 and 3.2.

Theorem 3.3. Suppose that K C R? is a (C,2)-uniformly convex set that is symmetric around the
ortgin, and B, C K C Bg for some r and R. Consider online linear optimization with hints where
the cost function at round t is ||c||2 < G and the hint vy is such that cfvy > «||ct||2, while ||ve]]2 = 1.
Algorithm 1 in combination with Agxp has a worst-case regret of

d-G-R?
R(Apint, c1.1) <

—— (L4 log(T + 1)).
<2 (14 log(T + 1)

Since Agxp requires the coefficient of exp-concavity to be given as an input, « needs to be known
a priori to be able to use Algorithm 1. However, we can use a standard doubling trick to relax
this requirement and derive the same asymptotic regret bound. We defer the presentation of this
argument to Appendix B.

4 TImproved Regret Bounds for (C,¢)-Uniformly Convex K

In this section, we consider any feasible set K that is (C, g)-uniformly convex for ¢ > 2. Our results
differ from the previous section in two aspects. First, our algorithm can be used with (C, ¢)-uniformly
convex feasible sets for any ¢ > 2 compared to the results of the previous section that only hold for
strongly convex sets (¢ = 2). On the other hand, the approach in this section requires the hints to
be restricted to a finite set of vectors V. We show that when K is (C, ¢)-uniformly convex for ¢ > 2,

our regret is O(T?Tg). If ¢ € (2,3), this is an improvement over the worst case regret of O(v/T)
guaranteed in the absence of hints.

We first consider the scenario where the hint is always pointing in the same direction, i.e. v; = v
for some v and all ¢ € [T]. In this case, we show how one can use a simple algorithm that picks the
best performing action so far (a.k.a the Follow-The-Leader algorithm) to obtain improved regret
bounds. We then consider the case where the hint belongs to a finite set V. In this case, we
instantiate one copy of the Follow-The-Leader algorithm for each v € V and combine their outcomes
in order to obtain improved regret bounds that depend on the cardinality of V), which we denote by

VI

Lemma 4.1. Suppose that vy =v for allt =1,--- T and that K is (C, q)-uniformly convez that is
symmetric around the origin, and B, C IC C Bg for some r and R. Consider the algorithm, called
Follow-The-Leader (FTL), that at every round t, plays xy € argmingex >, clx. If Zf—:l clv >0
forallt=1,--- T, then the regret is bounded as follows,

_ T 1/(g—1)
[[v]lc - R Hia=y) lleells
R(ApTL, c1.7) < ( e t S ot

=1 T=1

Furthermore, when v is a valid hint with margin «, i.e., cfv > o - ||¢illy for allt =1,--- T, the
right-hand side can be further simplified to obtain the regret bound:

1
R(ArtL, c1.7) < % G- (In(T) +1) ifq=2



and
1 q—1 _a=2

ayan ¢ Ty

R(ApTL, c1.1) <

Proof. We use a well-known inequality, known as FT(R)L Lemma (see e.g., [12, 17]), on the regret
incurred by the FTL algorithm:

R(ApTL, c1:7) i (z¢ — Te41).

Mq

t=1

Without loss of generality, we can assume that ||z:||, = ||z¢+1]x = 1 since the maximum of a linear
function is attained at a boundary point. Since K is (C, ¢)-uniformly convex, we have

IR <1 bl -zl
K
This implies that
DI e - sl | St
Moreover, ;11 € argming e x™ Y 4_; ¢-. So, we have
t T
(Z Cr) (xt—i_;tﬂ — ok (|lwe — xt+1||l€)‘”> = ;gf x ZCT =i ZCT
=1 =

Rearranging this last inequality and using the fact that Zizl v'er > 0, we obtain:

t T q t
— T4 drm1ver O loe — a3 T
E I A I — =T > . E .
( CT> ( ) st IC(HfL't xt-f—lHIC) ||UHK el ”’UHK R4 TZl’U Cr

By definition of FTL, we have x; € argmin, 27 > 0.

L ¢, which implies:

T=1
t—1 T Tt — @
(Z CT) L+l Tt > 0.
2
T=1
Summing up the last two inequalities and setting v = ”v” “ma» we derive:
€T Tia1 ot ! v (cf(x Tiy1))?
T t — Lt+ T q t t— Lt
G |l —— ) =2 —- VCr |||t — T4 — vie, |- .
t ( 2 ) z (Z ) ” =4 Z ’ Bk

Rearranging this last inequality and using the fact that Zi:l v'er > 0, we obtain:

1/(g—1)
leF (2 — 041)] < 1 el (4)
R O T B N S A '

Summing (1) over all ¢ completes the proof of the first claim. The regret bounds for when v'¢; >
a- ey forall t =1,--- T follow from the first regret bound. We defer this part of the proof to
Appendix D.2. O




Note that the regret bounds become O(T) when ¢ — oo. This is expected because L, balls are
g-uniformly convex for ¢ > 2 and converge to L., balls as ¢ — oo and it is well-known that
Follow-The-Leader yields ©(T") regret in online linear optimization when K is a Lo ball.

Using the above lemma, we introduce an algorithm for online linear optimization with hints
that belong to a set V. In this algorithm, we instantiate one copy of the FTL algorithm for each
possible direction of the hint. On round ¢, we invoke the copy of the algorithm that corresponds to
the direction of the hint v;, using the history of the game for rounds with hints in that direction.
We show that the overall regret of this algorithm is no larger than the sum of the regrets of the
individual copies.

Algorithm 2 Ag: SET-OF-HINTS
For all v € V, let T, = 0.
Fort=1,...,T,

1. Play x; € argmin,cx ZreTvt clx and receive ¢; as feedback.

2. Update T,, < T, U {t}.

Theorem 4.2. Suppose that K C R? is a (C, q)-uniformly convex set that is symmetric around the
ortgin, and B, C K C Bg for some r and R. Consider online linear optimization with hints where
the cost function at round t is ||cil|o < G and the hint vy comes from a finite set V and is such that
civg > al|etll2, while ||ville = 1. Algorithm 2 has a worst-case regret of

RQ

R(Asetacl:T) < ‘V’ : m

-G - (In(T) + 1), ifq=2,

and

q 1/(g-1) _ _

R(As, er1) < V] - (

Proof. We decompose the regret as follows:

T

T
_ T, s T T s T
R(Aset, c1.7) = g ¢y Ilglfc tE_l cix < E { E ey ;Iélfc g ct:c}

t=1 vey \teT, teT,
< |V| - max R(.AFTL, CT,,)-
veY

The proof follows by applying Lemma 4.1 and by using ||v¢||c < (1/7) - [Jvelly = 1/7.
O

Note that Age; does not require o or V to be known a priori, as it can compile the set of hint
directions as it sees new ones. Moreover, if the hints are not limited to finite set V a priori, then
the algorithm can first discretize the Lo unit ball with an a/2-net and approximate any given hint
with one of the hints in the discretized set. Using this discretization technique, Theorem 4.2 can be
extended to the setting where the hints are not constrained to a finite set while having a regret that
is linear in the size of the a/2-net (exponential in the dimension d.) Extensions of Theorem 4.2 are
discussed in more details in the Appendix C.



5 Lower Bounds

The regret bounds derived in Sections 3 and 4 suggest that the curvature of K can make up for the
lack of curvature of the loss function to get rates faster than O(v/T) in online convex optimization,
provided we receive additional information about the next move of the adversary in the form of a
hint. In this section, we show that the curvature of the player’s decision set K is necessary to get
rates better than O(v/T), even in the presence of a hint.

As an example, consider the unit cube, i.e. K = {z | ||z||,, < 1}. Note that this set is not
uniformly convex. Since, the i*" coordinate of points in such a set, namely z;, has no effect on the
range of acceptable values for the other coordinates, revealing one coordinate does not give us any
information about the other coordinates z; for j # ¢. For example, suppose that ¢; has each of
its first two coordinates set to +1 or —1 with equal probability and all other coordinates set to
1. In this case, even after observing the last d — 2 coordinates of the loss vector, the problem is
reduced to a standard online linear optimization problem in the 2-dimensional unit cube. This choice
of ¢; is known to incur a regret of Q(+/T) [1]. Therefore, online linear optimization with the set
K = {z | |z||, < 1}, even in the presence of hints, has a worst-case regret of Q(v/T). As it turns
out, this result holds for any polyhedral set of actions. We prove this by means of a reduction to the
lower bounds established in [8] that apply to the online convex optimization framework (without
hint). We defer the proof to the Appendix D.4.

Theorem 5.1. If the set of feasible actions is a polyhedron then, depending on the set C, either there
exists a trivial algorithm that achieves zero regret or every online algorithm has worst-case regret
Q(VT). This is true even if the adversary is restricted to pick a fived hint v = v for allt = 1,--- ,T.

At first sight, this result may come as a surprise. After all, since any L, ball with 1 < p <2
is strongly convex, one can hope to use a L1y, unit ball K’ to approximate K when K is a Ly ball
(which is a polyhedron) and apply the results of Section 3 to achieve better regret bounds. The
problem with this approach is that the constant in the modulus of convexity of K’ deteriorates when
p — 1since 67,(¢) = (p— 1) - €2, see [3]. As a result, the regret bound established in Theorem 3.3
becomes O(ﬁ -logT'). Since the best approximation of a L; unit ball using a L, ball is of the

1
form {z € R? | d1_5||$||p < 1}, the distance between the offline benchmark in the definition

1
of regret when using K’ instead of K can be as large as (1 — dEil) - T, which translates into an

additive term of order (1 — diil) -T in the regret bound when using K" as a proxy for K. Due to
the inverse dependence of the regret bound obtained in Theorem 3.3 on p — 1, the optimal choice of
p=1+ O(%) leads to a regret of order O(v/T).

Finally, we conclude with a result that suggests that O(log(7T)) is, in fact, the optimal achievable
regret when KC is strongly convex in online linear optimization with a hint. We defer the proof to the
Appendix D.4.

Theorem 5.2. If K is a Lo ball then, depending on the set C, either there exists a trivial algorithm
that achieves zero regret or every online algorithm has worst-case regret Q(log(T')). This is true even
if the adversary is restricted to pick a fized hint vy = v for allt =1,--- ,T.
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A Additional Related Works

The notion of hint introduced in this work is quite general and arises naturally in a variety of
settings. Indeed, this notion generalizes some of the previous notions of predictability in online
convex optimization.

Aside from the example, mentioned in Section 1.1, where a hint on the first coordinate of the
loss vector is provided to the player, Hazan and Megiddo [13] also considered modeling the prior
information in each round as a state space and measuring regret against a stronger benchmark
that uses a mapping from the state space to the feasible set. Chiang and Lu [6] considered actively
querying bits of the loss vector, but their result mainly improves the dependence of the regret on the
dimension d.

Another notion of predictability is concerned with predictability of the entire loss vector rather
than individual bits. Chiang et al. |7] considered online convex optimization with a sequence of
loss functions that demonstrates a gradual change and they derived a regret bound in terms of the
deviation of the loss functions. Rakhlin and Sridharan [19, 20] extended this line of work beyond
sequences with gradual changes and showed that one can achieve an improved regret bound if the
gradient of the loss function is predictable. They also applied this method to offline optimization
problems such as Max Flow and to the problem of computing Nash equilibria in zero-sum games. In
the latter case, they showed that when both players employ a variant of the Mirror Prox algorithm,
they converge to the minimax equilibrium at a rate O(log(T")). We compare our results to results
derived in the literature on online convex optimization in more details below.

Comparison with [13] Hazan and Megiddo [13]| considered as an example a setting where the
player knows the first coordinate of the loss vector at all rounds, and showed that when |c;;| > 0 and
when the set of feasible actions is the Euclidean ball, one can achieve a regret of O(d - log(7T)). Our
work directly improves over this result, as in our setting a hint v; = +e; also achieves O(log(T')) regret,
where the hidden factors are independent of d (see Theorem 4.2 with V = {ej, —e;}). Moreover, we
can deal with hints in different directions at different rounds and we allow for general uniformly
convex action sets.

Connection with [19, 20] Suppose that we are provided with a vector ¢ at the beginning of
time period t such that ¢ approximates ¢; in the following sense: ||¢; — &2 < ol|et]|2 for o € [0,1)
(if o > 1 this gives us essentially no information because ¢ = 0 is a valid choice). Then Hgﬁ (or 0 if
¢t = 0) is a valid hint with margin « = (1 —0)/(1 + o). Indeed note that ||é&ll2 < (14 o) - ||ct]|2 and
léell2 = (1 — o) - ||et]|2. Moreover:

Je 1 lledl3+ a3 = llé — cll
el 2 ¢t |2
1 lerl2
> —-(1+ 1—0)%—0o?%)- —
(L4 (1=0) oty
et
=1-0) —
=) &l
L2 e
- ||1C .
~— 140 ti2
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When K is strongly convex (e.g. a Lo ball) and ||¢; — &ll2 < o|ct||2 for o € [0,1) for all time periods
t=1,---,T, we get a regret bound of order O((1+ 0)/(1 — o) -log(T")) which improves upon the

bound o - /3>, ||e¢||2 obtained in [19]. However, the regret bounds that we get are not adaptive,
i.e. we need to assume that ||c; — &|2 < ol|c||2 holds at all time periods to establish the regret
bounds. This is in contrast with the analysis carried out in [19] where the regret bounds adapt to
the sequence (cp,- -+, cr) at hand.

Comparison with [15] The regret bounds obtained for the Follow-The-Leader algorithm in
Lemma 4.1 are stronger than the ones obtained in [15] for online linear optimization (without hints)
in two ways. First, we consider general uniformly convex sets, as opposed to strongly convex sets in
[15], which enables us to get intermediate rates that interpolate between log(T') and v/T. Second, in
the fully adversarial setting and when the set is strongly convex, their regret bound is guaranteed
to be of order O(log(T")) only if 0 ¢ conv(C). Our condition is much weaker, in particular we get
O(log(T)) bound even if 0 is an extreme point of conv(C). This generalization enables us to tackle

the general setting of an arbitrary sequence of hints, which would not be possible with the analysis
of [15].

B Doubling Trick when K is Strongly Convex and « is not Known
a Priori.

We break down the horizon into phases where, during phase i € N, we run Ay, from scratch
(discarding all previously observed values of the loss vectors ¢; and the hints v;) with exp-concavity
parameter taken as 271 - g%g Phase ¢ + 1 begins at time ¢;11 when the hint is no longer valid with

margin 1/2071 e

tipr = min{r > #; | cror < (1/271) - fler o} + 1
(with the convention that 0/0 = 1) and phase 1 begins at time ¢; = 1.

Lemma B.1. When « is not known a priori, using the doubling trick yields a regret bound that
is identical (up to a constant additive term) to the one we would obtain if we knew « a priori.
Specifically, we have:

d-G - R?
8a-C -1

Proof. Let N denote the number of phases and define t5+1 =T + 1. Note that there are at most

(AhlntaclT)<210g( ) G-R+ (1+10g(1+T))

g
N < log(1/a) phases since it € [, 1] for all time periods ¢ by assumption. Observe that, for

lleelly

T .

any phase i and for any time period ¢t = ¢;,--- ,t;41 — 2, we have Hcct:‘)‘; > 1/2t71 so that &(-) is
2i=1. ggg; -exp-concave. Using Lemmas 3.1 and 3.2, we get:

T 'L+1 1 7,+1 1

Zc{xt 1anctx<Z{ Z crae — mf Z cir}

=1 =1 t=t; t=t;

tigt1—2 tig1—2
<2N -G - R+ el 1nf clx
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N
1 1 d-G-R?
<2log(=) -G R 27l ———— (14 log(l +tip —t; — 1
<2og(() 0 R+ 322 S (gl 4t — 14 1)
1 d-G-R?
<2log(=)-G-R+2N - ———— (1+log(1+T
< 2log( ) + g0 (1+log(1+T))
1 d-G-R?
<2log(—)-G-R+——— -(1+1log(l+T
< 2log( ) tea.o., (Ltleg(l+T)),
where we use ||ct||y < G and ||z¢||y < R - [|a¢||, = R for the second inequality. This concludes the
proof. O

C Extensions of Theorem 4.2.

Hints pointing in arbitrary directions When the directions of the hints are arbitrary, we can
discretize the Ly unit sphere using an a/2-net (which contains at most (14 2)" points, see [21]),
which we denote by V. At any time ¢t = 1,--- , T, the hint v; is first mapped to its closest neighbor in
V, denoted by ¥y, and we use Ager with V = V and ¥ as “the” hint. We refer to this new algorithm
as Aget -

Theorem C.1. Suppose that K is (C, q)-uniformly convez. If the hints come from a finite set V,
then Aset yields the same regret bounds as Agset up to a multiplicative factor 2. If the hints point in
arbitrary directions then we have:

- A R
R(Aseta Cl:T) < (1 + —)d

o C-a-r

-G (In(T) + 1), if g =2,

and 1(g=1)
~ 4 R - qg—1 a2
R 1) < (14 —-)2. G Ta ' 2.
Aawsear) < (4 D (o) R TE
Proof. Observe that, at any time period t = 1,--- , T, ¥; is a valid hint with margin «/2. Indeed:

el = cjvg — ¢p (vp — V)
> a-ledly = lleelly - llve = el
> 04/2 ’ ”CtH2 )

by definition of V. If the hints come from a finite set V, the set of hints {0; |t = 1,--- , T} is also
finite with cardinality at most |V| since the mapping vy — ¥ is independent of ¢. This shows the
first part of the claim. If the hints point in arbitrary directions, then let, for each v € V, T, be the
subset of time periods such that v; is mapped to v. We have:

T T
R(Aser,c1r) = ey — inf Y cfa
ekl
t=1 t=1
< Z{ E clre — Q;Iellfc E cir}
vey t€Ty teT,

< V| - max R(AprL, c1,),
vey

which concludes the proof with Lemma 4.1. O
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Random hints We consider an extension to a stochastic setting where the hint is not necessarily
always valid at each round but rather in expectations. We next show that Age yields regret bounds
similar to the ones derived when the hint is always valid.

Theorem C.2. Suppose that: (a) the hints come from a finite set V, (b) K is (C,q)-uniformly
convez, (c) ((c,ve))ten 8 an independent stochastic process (but not necessarily i.i.d.), and (d)
Elcfve | ve =v] > o - E[||ctlly | v = v] for all v € V. Then, we have:

TR?
E sets : S D 1 T 1 1,
[R(Ast,cx0)] < V] - oo G- (n(T) + 1) + O(1)
ifq=2 and
7R NV g1 e
A< = R S =
Bl an] <V (go) oI ri o),
if g > 2.

The proof is deferred to the Appendix D.3. Note that Theorem C.2 is a strict generalization of
Theorem 4.2 since we allow the sequence ((ct,vt))ten not to be identically distributed.

To illustrate the applicability of Theorem C.2, we consider the setting studied in [15] where ((¢;))en
is an i.i.d. stochastic process with mean g # 0 and no hint is available. In this setting, we can
take v, = p/ ||p||o as the hint at any time period for the purpose of the analysis (but p need not be
known since we are using a single instance of FTL when the hint is the same at all time periods).
Indeed, in this case, we have:

Elcju] = Bla] "0
2
—
> 1 e

as long as ||c¢||, < G. Hence, when the set IC is a Lo ball, we recover the regret bound O(ﬁ -log(T))
established in [15].

D Omitted Proofs

D.1 Omitted Proof for Lemma 3.1

Lemma D.1. The function é(-) is continuous for any t € N.

Proof. Take a point x € K and a sequence x,, € L — z. For every n, there exists w, € K such that
wy =y and é&(z,) = ¢Jwy. Observe that the sequence (¢/wy)nen is bounded since |Jwy [/ < 1.
Hence, it is sufficient to show that (cfwp)nen has a unique limit point é(x). Consider a subsequence
of (¢fwp)nen that converges and, since K is compact, extract further a subsequence of (wy,)nen that
converges to some ws, € K. Without loss of generality, we continue to assume that these sequences

are indexed by all n € N. Taking limits in w,- = x,', we get w = x* (an orthogonal projection is a
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linear operator and thus is continuous in finite dimension). Consider w € K such that ||wl|,- < 1 and

wt =zxt. Forn big enough we have ||z* —leK <1—|w|, and so Hw—l—a:; —xt HK <1 and
(wHz,t —x*)t =z, By definition of wy,, we get clwy < clw+ef(xt —axt). Taking limits, we get
¢fWoo < cjw for all w such that [|w||, <1 and w* = z*. By continuity of linear functions this also
holds for all w € K such that w* = z* and we get é&(x) = cjws = nlgrolo clwy, = nlgrolo é(zy). O

D.2 Omitted Proofs for Lemma 4.1

As we showed in the main body of the paper, we have:

/(g—1)
lef (xr — x441)] < 1 . lleells .
= (2y/a) /@D T\ S e,

In what follows, we further assume that v is a valid hint with margin o, i.e., v7¢; > o - ||¢¢||, for
allt=1,---,T. We get:

1/(g—1)
lef (xp — 41)] < 11 5 tHCtHg .
@MY@\ el

Note that the right-hand side is finite even if ¢; = 0. Plugging this last inequality back into the first
regret bound, we derive:

T leell? 1/(¢=1)
R(Aprr, c1:r) < 1/q 0 Z( 2 )

t=1 ‘r 1 HCTHQ

1 T 7 1/(g=1)
< — - sup - .
(2y)1/(=0) <y1,~--,yT>e[o,G}T; (Zil yr>

We prove below that for any ¢ = 1,--- ,T and any fixed values (y1, - ,yt—1,Yt+1, - ,yr) €
1/(g—1)
[0,G]T~1, the function y; — 25:1 ( L ) is convex on [0, G] and thus the maximum of

27—:1 Yr

this function is attained at an extreme point: either 0 or G. Repeating this process for t =1,--- T,
we get:

1 T y 1/(g=1)
R(ArtL, c1.1) € ——7—— sup —t—
RGN > S

y1,-,y7)€{0,G}T 1 r=1Y7

k=1
2
This concludes the proof as 35, m <In(T)+1if ¢g=2and S1_, k;l/(q 7 < g 5 Tt if
q> 2.
Let us now prove that, for any ¢ = 1,--- T and any fixed values (y1, -, Yt—1,Yt+1, - ,yr) €
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q

[0, GJT~1, the function y; — 2521(27")1/(‘1 1) is convex on [0, G]. Clearly, y; — Zn#(znyql o )M/ (a=1)

1Yr
is convex on [0, G] since y; only appears in the denominator and 1/(¢—1) > 0. We use the shorthand

A= ZT 1 Yr- It remains to show that ¢ : y — ( y )1/(‘1 D is convex. We have:

" q 1\ _ 1y
¢ (y) = CEE Ly a=)=2 0 A2 (4 A)TY @D =2

which is non-negative for A

> 0 and y > 0 (for y = 0, we can directly show by hand that
PpA-0+(L1=A)-2) <A-0(0) + (1 -

A) - ¢(z) for A € [0,1] and z > 0).
D.3 Proof of Theorem C.2
We will need the following concentration inequality.

Lemma D.2 (Chernoff-Hoeffding concentration inequality). Let (X;)i=1.... 7 be a sequence of jointly
independent random variables in [0,1]. We have, for any e € (0,1):

T T 2 Z
P [Z Xy > (1+e) Y E[X)]| < exp(—= - D E[Xy)
t=1 t=1 t=1
and . . o T
P [ZXt < (1—6)'ZE[Xt] Sexp(—; ZE[Xt])
t=1 t=1 t=1

To establish the claims of Theorem C.2, first observe that:

E[R(Aset, c1.7)] th - 1nf th
< Z{E Z cr s — mIfC Z cix)}

vey teT, teTy,
< |V| - max E[R(ApTL, C1,,)]-
veY

Take v € V. In the same spirit as in Lemma 4.1, what remains to be done is to bound the
regret incurred by Follow-The-Leader for any independent stochastic sequence (¢;)ien such that
Elcfv] > o - E[||et]5) for all t =1,--- ,T . We start with the same standard inequality on the regret
incurred by Follow-The-Leader:

~

E[R(Artr, crr)] < E[Y o (2 — @e41)). (5)
t=1

Without loss of generality, we can assume that ||z¢||, = ||z¢+1]|c = 1. Hence, we have:

Tt + Tl
bl 2l <1 -zt — 241l x)s
K

which implies that

T+ Ter1 6
S (e — weall) o

K
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since ||v|[ < 1/r - ||v||, = 1/r. Since moreover we have z;41 € argmin, 2" > 0_, ¢, we derive,

along the same lines as in Lemma 4.1, that:

t T t
— 6
( E CT) % > - oc(lze — zegallc) -7 E v'e;

=1 =1

. . t—1
Moreover, since x; € argmin, ' Y " ¢, we have:

t—1 Ta: .
(ZCT> % > 0.

=1
Summing these two inequalities yields:

t

Tt — Tt41
c{%>? O (|lee — zeglle) -7 Z’UTCT

=1

Similarly, since:

Ty + T4l Ct

+oc(|ve — zepalle) 71 <1
2 el

. t : t—1
Typ1 € argming e x’ Y ¢, and ap € argmin, e x” Y T ¢, We get:

t P
— Ti+1 _1GC
(32 e > b — wenl) - =LA

lleellx

=1
and

2 Teelle
Summing these last two inequalities yields:

2

Ty — & C
FUIE > il — oall) 2
2 feellc

> Ok (llze = epall) -7 lleela

since ||c¢| < 1/7 - ||ce]|o. Define the events:

t—1 t—1
1
= {Z vier < 3 ZE[UTCT]}
=1 =1
and
t—1 3 il
By={)_llerlls > 3 > Elllerlla}-
=1 =1
Using Lemma D.2, we have:
=
PlA] < GXP(—@ ‘ ;E[UTCT])

19
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< exp(— s 2 Eller]2)

and

Pl < expl g 3_Bller )

since [v7¢y| < ||et|l, < G. Note that, conditioned on the events AV and BP, summing inequalities (6)
and (7) yields:

t—1
¢t (Tr1 — x4) = Oxc(llze — megallc) -7 (”CtHQ +6/TvTe + 6/7Z”TCT>

=1

t—1
> dc(l|lze = erall) (1/7 leelly +a/7 ||CT||2>
T=1

t
C-r-a
= 7.R1 <;HCTH2> [k —$t+1\|g-

Following the same steps as in Lemma 4.1, we conclude that:

1/(g—1)
et (21 — @e41)] < 1/1( = ( tHCtHg > ,
(V@D A el

with v = 07'17%;10‘. Plugging this last inequality back into (5), we get:

N

E[R(A™™", cr.7)] Z eelly - (lelly + llzesallz) - Laus,]

1 T el 1/(g—-1)
2
+ (7)¥/(@=D) ' ZE (Zt ) ‘ 1A9mBE

t=1 =1 HCTH2

T
<2R- ZE[HCt”Q ) lAtUBt]
t=1

1 T le ” 1/(g-1)
* (y)t/(a=1) ' Sup E Z( a )

P1, »pTGP t=1 7' 1 ||CT||2

T
=2R- ) E[cll,y) - (P[A] + P[By))
t=1

) 7 v 1/(g—1)
S — sup - ’
(MY ure,6] ; (Zizl y7>

where P(C) denotes the set of probability distributions on C and where we use ||z¢]2 < R-||z¢|lx < R
and ||ziy1l2 < R- ||zl < R since 2y, 2441 € K. The last equality is obtained by independence of
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¢t and (c1,- -+ ,¢—1). The second term is bounded in the proof of Lemma 4.1. As for the first term,
we have:
T

> Ellleelly] - (P[Ad] +P[Bd))

t=1

T t—1
«
<23 Elllally) - exp(— o - S Ellles )
t=1 T=1

T t—1

«

<2 sup Yo exp(———=" > ur).
y1,-+,y7€[0,G] ; 16G ;

Observe that, for any ¢ = 1,--- , T and for any fixed values (y1,--- ,¥t—1, Y1, - ,yr) € [0,G]T 1,

the function y; — S0 _, Yn - exXp(— 165 - S 1y,) is convex on [0, G]. Hence, its maximum is attained

at an extreme point: either 0 or G. Repeating this process for t =1,--- T, we get:

T T t—1

(6%
> Elleclly) - (PlA] +P[B]) <2 sup ye-exp(———=- > ur)
t=1 2 Y1, 7yT€{07G} tzl 16G 7-21

«
< 2G su exp(—— -k
nofp,TkZ:O (=15 k)
2G
=0(1),
l—exp(—%) (1)

which concludes the proof.

D.4 Derivation of the Lower Bounds

For any given a € (0, 1], we establish, depending on the curvature of I, lower bounds on regret when
the opponent adversarially chooses the hints (v1,- -+ ,v7) as well as the cost vectors (¢, --- ,er) € C.
In fact, we establish the regret bounds in the case of a weaker adversary who has to pick a fixed
hint v initially and to stick to it throughout the game (i.e. vy = v for all ¢t = 1,--- ,T"). Since this is
a weaker notion of adversary, the lower bounds carry over to the more adversarial setting where
the adversary is free to pick a different hint at every time period. The minimax regret that can be
achieved by an online algorithm in this setting is expressed as:

T T
Rr(C,K) = sup inf sup inf sup Z cr Ty — inIfCthT:): ,

veBy T1€K . e clv>a|eill, e ek er€C: chv>arerlly [=1 e
where By denotes the unit ball for the Ly norm. Observe that:
Rr(C,K) = sup ®(v),
vE Ba

where ®(v) is the minimax regret that can be achieved by an online algorithm in online linear
optimization without hints when the cost vectors ¢; all lie in CN {c € R? | ¢™v > a - ||c[|l,} and
x € K, ie:

T T
_ . . T _ . T
®(v) = inf sup inf sup th Ty érell% ;ctx

z1€K c1eC: cIvZa-||c1||2 zr el creC: c}vZochTHQ =1
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Given this characterization, all the lower bounds established in this section are derived by means of a
reduction to the lower bounds established in [8] in the standard online linear optimization framework
(without hints). Following Flajolet and Jaillet [8], we are first led to identify trivial settings where
there is an obvious algorithm that achieves zero regret.

Definition D.3. The “game with hints” is said to be trivial if and only if, for all hints v € Bs, there
exists x(v) € KC such that c'x(v) = mingex ¢’z for all ¢ € C that satisfy c'v > o - [|c]|,.

If the game with hints is trivial then the optimal strategy is to play z; = z(v;) at any time period
t € N in order to get zero regret. As it turns out, this uniquely identifies trivial games with hints, as
we next show.

Lemma D.4. For any T € N, Rp(C,K) > 0. Moreover, Rr(C,K) =0 if and only if the game with
hints is trivial.

Proof. For the first part, observe that either C = {0} in which case R7(C,K) = 0 or we can find
¢ # 0 in C in which case the opponent can pick v = m and ¢; = ¢ at any time period ¢ which yields:

T

T
Rr(C,K) > inf --- inf Zcht — inf Z c'z| =T inf 'z —T- inf 'z = 0.
1 EL e =1 e P ze zeX

For the second part, observe that if the game with hints is trivial, we can play x; = z(v;) at any
time period ¢t € N and the regret incurred is Zthl in’f; clr— inlfC Zthl ¢fx < 0, which in combination
S xre

with Rr(C, K) > 0 shows that R7(C, ) = 0. Conversely, suppose that R¢(C, ) = 0. Consider any
v € By. Using Lemma 3 of [8] for online linear optimization when the adversary’s decision set is
Z=Cn{ceR?|cv>a-|c|,} and the player’s decision set is F = K (in their notations), we
get that ®(v) > 0 and that ®(v) = 0 if and only if there exists a trivial algorithm for this online
linear optimization problem with zero regret, i.e. if and only if there exists z(v) € K such that
c'z(v) = mingex c'z for all ¢ € C satisfying c'v > a - ||c[|,. Since 0 = Ry (C, K) = sup,¢ g, ®(v), this
implies that the game with hints is trivial. O

Flajolet and Jaillet [3] show that it is essential for K to be sufficiently curved to get regret bounds
better than /T in online linear optimization. We extend this characterization and show that this is
true even in the presence of hints. To establish the regret bound, the goal is to find a hint v* such
that the online linear optimization problem where ¢; € CN {c € R? | c"v* > a - ||c[|,} and x; € K
is non-trivial, in the sense that there is no single point z* in K that belongs to argmin ¢y c'z
uniformly for all ¢ € CN {c € R? | c"v* > a - ||¢||,}. If we can find such a hint v*, then Theorem 2 of
[8] shows that ®(v*) = Q(VT) and thus Ry (C, K) = sup,ep, ®(v) = Q(VT).

Theorem D.5. Suppose that K is a polyhedron, then either the game with hints is trivial or
Rr(C,K) = Q(VT).

Proof. Suppose that the game with hints is not trivial. Then, there exists a hint v* € Bs such
that for all € K there exists ¢ € C such that c'v* > a - |[|c|, and ¢z > mingex c'z. As
a result, and borrowing the notations of Lemma D.4, ®&(v*) = Q(v/T) follows from Theorem
2 of [8] applied to the online linear optimization problem where the adversary’s decision set is
Z=Cn{ceR?|cv* > a-|c|,} and the player’s decision set is F = K (in their notations). Since
Rr(C,K) = sup,ep, ®(v), this concludes the proof. O
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This shows that o(+/T) regret bounds are not possible when K is not curved. It is a priori unclear
however whether log(7") is the optimal growth rate when K is strongly convex. We show that this is
indeed the case by means of a reduction to a standard online linear optimization problem where K is
a Lo ball and 0 does not lie in the convex hull of the adversary’s decision set.

Theorem D.6. If KC is a Ly ball, then either the game with hints is trivial or Ry (C, K) = Q(log(T)).

Proof. Suppose that the game with hints is not trivial. There exists a hint v* € By such that for
all z € IC, there exists ¢ € C such that c'v* > a - ||c||, and ¢"z > mingex ¢’2. In other words, for
all z € K, we can find a cost vector ¢ that is valid with respect to the hint v* and such that z is
not the optimal solution for c¢. Let x1,x2 be two non-co-linear points in X and let ¢; as a ¢y be
the corresponding valid cost vectors. Observe that, necessarily, ¢; and ¢s are non-co-linear and we
have 0 ¢ [c1, ¢o] since (Acy + (1— A)e) 70" = o+ (Alleally + (1 = A) llealy) = @ - min(lle ], ezlly) > 0
for A € [0,1]. Then ®(v*) = Q(log(T")) follows from Theorem 5 of [8] applied to the online linear
optimization problem where the adversary’s decision set is Z = {c;, co} and the player’s decision set
is F = K (in their notations). Note that the assumptions of Theorem 5 of [8] are satisfied since, as
shown above, 0 ¢ conv(Z). Since Rr(C,K) = sup,cp, ®(v) this concludes the proof. O
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