Behav Res (2017) 49:1696-1715
DOI 10.3758/s13428-016-0824-z

@ CrossMark

REVIEW

nodeGame: Real-time, synchronous, online experiments

in the browser

Stefano Balietti!

Published online: 18 November 2016
© Psychonomic Society, Inc. 2016

Abstract nodeGame is a free, open-source JavaScript/
HTMLS framework for conducting synchronous experi-
ments online and in the lab directly in the browser window.
It is specifically designed to support behavioral research
along three dimensions: (i) larger group sizes, (ii) real-time
(but also discrete time) experiments, and (iii) batches of
simultaneous experiments. nodeGame has a modular source
code, and defines an API (application programming inter-
face) through which experimenters can create new strategic
environments and configure the platform. With zero-install,
nodeGame can run on a great variety of devices, from desk-
top computers to laptops, smartphones, and tablets. The
current version of the software is 3.0, and extensive docu-
mentation is available on the wiki pages at http://nodegame.
org.

Keywords Behavioral experiments - Software -
Real-time - Browser - Online - Open-source - JavaScript

Introduction

Online research is almost as old as the Internet (Musch
& Reips, 2000). However, until just a few years ago,
it has mainly focused on surveys or individual decision
tasks, whereas synchronous group behavior experiments
were defined as “rare commodities” (Horton et al., 2011).

P4 Stefano Balietti
s.balietti @neu.edu

Network Science Institute, Northeastern University,
177 Huntington Ave, Boston, MA, USA

@ Springer

More recently, the number of synchronous online experi-
ments has increased (Suri & Watts, 2011; Wang et al., 2012;
Ciampaglia, 2014; Mao, 2015; DellaVigna, 2016), but all of
them made use of custom implementations, leaving a large
number of open methodological challenges yet to be solved,
or reimplemented, by each individual researcher (Paolacci
et al., 2010; Hawkins, 2014). For example: How to effi-
ciently synchronize a large number of computers? How to
bring together a large number of participants? How to han-
dle disconnections? How to dispatch new games? How to
validate the requirements for participation? How to avoid
repeated (or multiple) participation? etc.

Finding common solutions to these challenges can open
up a concrete chance of rapid progress in the understand-
ing of human interactions in the coming years. For this to
happen, it is necessary that researchers can focus more on
research and less on implementation issues. This motivates
a strong need for standardization and for the establishment
of a common platform for performing synchronous online
experiments, similar to what Z-tree has represented for the
growth of the field of laboratory experiments (Fischbacher,
2007). Improving and standardizing the methodology for
conducting synchronous online experiments is expected
to generate novel insights along three major conceptual
dimensions: (i) size, (ii) time, and (iii) granularity. The
next subsection briefly explains the meaning of these three
dimensions (see also Fig. 1).

Three dimensions for future online behavioral
research: size, time, and granularity

Size

Online research is not bounded by the size of university
labs; therefore there is virtually no limit to the number of

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-016-0824-z&domain=pdf
http://nodegame.org
http://nodegame.org
mailto:s.balietti@neu.edu

Behav Res (2017) 49:1696-1715

1697

A Size

- The size of a group influence the behavior of group members.
- Can we detect non-linear scaling laws?
- Do we observe interactions with the other dimesions?
- Can we perform online experiments
with hundreds or thousands of participants?

Time

(2l

Fig. 1 Three conceptual dimensions for online experimentation’s
future developments. Size: running experiments with group of hun-
dreds or even thousands of participants. Time: testing groups for

individuals that can simultaneously interact (Reips &
Krantz, 2010). The size of a group is an important vari-
able that can affect the behavior of interacting individuals
in a number of ways. For example, Heinrich (2004) argued
that group size is the main driver of cultural complexity.
More recently, Derex et al. (2013) found experimental evi-
dence of Heinrich’s hypothesis, but other scholars are still
contending this view (Andersson and Read, 2014). Group
size is also known to negatively affect the level of cooper-
ation in collective actions and public-good games (Olson,
1965; Nosenzo et al., 2013), although this negative exter-
nality can be mitigated (Chaudhuri, 2011). In sum, group
size is an open, hot area of research, especially when
online experimentation can shift the meaning of a “large
group” from a couple of dozens to hundreds of simultaneous
participants.

Time

Real-time gaming is another opportunity offered by online
experimentation (Hawkins, 2014). Just like when players
are expected to react to changes in group size, moving from
discrete to continuous time can “fundamentally alter the
character of strategic interaction” (Simon & Stinchcombe,
1989). The shift can be so extreme that decision-makers
can even converge to equilibria that are significantly differ-
ent from those found in experiments in discrete time. For
instance, Friedman and Oprea (2012) found that cooper-
ation in continuous time prisoner’s dilemmas experiments

- Do real-time games qualitatively
differ from turn-based games?

- Can we observe people playing
games for long periods of time?

- Can we realize highly controlled,
yet highly realistic experiments?

- Explore the full space of model parameter of a theory

- Perform large number of repetitions to produce more
accurate effect-size estimates.

- Can we detect non-linear effects of treatments?

Granularity

extended period of times, or with games that involve real-time inter-
actions and measurements. Granularity: scanning the full parameter
space of a theory to detect possible non-linear effects

increased from less than 50 % to over 90 %. Furthermore,
real-time interactions can be exploited to perform experi-
ments in more “immersive” environments or on more realis-
tic tasks. For example, Mao (2015, Chap. 4) recently studied
team-work coordination efficiency in a task that consisted
of localizing tweets about Typhoon Pablo.! Furthermore,
online research can also “stretch” the time dimension to
study human interactions for extended periods of time, such
as weeks or months (Butler, 2001; Bos, 2002; Salganik
et al., 2006; Centola, 2010), allowing researchers to draw
insights on evolutionary or cascading dynamics. In sum,
online experiments grant great flexibility to experimenters
to study human interactions at different time intervals, from
very quick (almost real-time) to very long (weeks and
months).

Granularity

Online experiments, due to their lower costs, allow one
to test multiple combinations of parameters of behavioral
theories (Birnbaum, 2004; Reips & Krantz, 2010). Nowa-
days, the scanning of a model’s parameter space is usually
done via computational modeling, but in the future this
could increasingly be done via a batch of parallel online
experiments. The result would be a so-called “phase dia-
gram,” where the value of the outcome variable is plotted

I'See http://en.wikipedia.org/wiki/Typhoon_Bopha for details

@ Springer

 http://en.wikipedia.org/wiki/Typhoon_Bopha

1698

Behav Res (2017) 49:1696-1715

against all the possible combinations of model parame-
ters.> This fine-grained analysis will allow researchers to
detect the existence of non-linear effects between treat-
ment and outcome variables, and to measure their effect-size
much more accurately. In sum, large-scale online experi-
ments will make it possible to conduct stronger tests of
the predictions of behavioral theories, an endeavor that
has been extremely difficult so far. This, in turn, might
facilitate convergence and bring synthesis into the frag-
mented situation of many social sciences disciplines today
(Balietti et al., 2015).

Software for online synchronous experiments

As argued in the previous section, online synchronous
experiments are a promising methodology, and a growing
area of research. However, the field is still young, and it
is missing established software for conducting synchronous
online experiments. The experimental software Z-tree (Fis-
chbacher, 2007), which can be considered as a de facto
standard for synchronous laboratory experiments, was not
originally designed to work on the Web, and neither does
it support a very large number of participants or real-time
interactions.

A number of projects have made an attempt to fill the
gap; however, none of them has yet become a standard.
Early examples are: Wextor (Reips & Neuhaus, 2002),
FactorWiz (Birnbaum, 2000), and EconPort (Cox &
Swarthout, 2005). More recent examples at different stages
of development, are: MWERT (Hawkins, 2014), ConG
(Pettit & et al. 2014), oTree (Chen et al., 2014), the CLOSE
project (Lakkaraju & et al. 2015), the MIT Seaweed project
(http://dspace.mit.edu/handle/1721.1/53094), Breadboard
(http://breadboard.yale.edu/), and Microsoft’s Virtual Lab
(https://github.com/VirtualLab). Finally, even if currently
limited to single-participant Web experiments, the soft-
ware jsPsych (Leeuw, 2014) has received a fair amount of
adoption.?

This paper introduces nodeGame,* a new free and open-
source framework to conduct synchronous online experi-
ments designed to support the three lines of research previ-
ously described: size, time, granularity. An experiment—or

2See for example (Helbing, 2014) for a phase diagram of a model of
social norm emergence in a two population settings.

3For more platforms refer to the list of available experimental software
maintained by the University of Alaska Anchorage (UAA) Experimen-
tal Economics Laboratory at the URL: http://econlab.uaa.alaska.edu/
Software.html

4The name nodeGame comes from the technology used for its imple-
mentation: Node.js. For details about Node.js and architecture of
nodeGame, refer to “nodeGame’s architecture”. The name nodeGame
has also affinity with the fact that each client of the game is also a
separate computing node.

@ Springer

a games—implemented in nodeGame can run in any

device equipped with a browser, be it personal computer, a
mobile device, or a computer in the university laboratory.
nodeGame can be freely downloaded from http://nodegame.
org.

Outline of this paper

The remainder of the paper is organized as follows.
Section ‘“nodeGame: Overview” gives an overview of
the nodeGame software, the design principles, and the
domain of applicability. Section “Creating experiments with
nodeGame” describes how to create a new experiment in
nodeGame, trying to avoid the most technical details, which
are available in the online wiki of the project Website.
Section “nodeGame Features” highlights some of the main
features that make nodeGame particularly suited to carry
out online experimentation. Sections “The Window object”
and “Widgets” focus on two specific features of the API:
the Window object, and the Widgets, a collection of re-
usable components that can be loaded dynamically during
an experiment. Section “nodeGame’s architecture” intro-
duces the nodeGame technical architecture, and might as
well be skipped if the reader is not a developer. Finally,
“Conclusions” summarizes the advantages and current lim-
itations of nodeGame, concluding the paper with some gen-
eral considerations about the use of open-source software
in scientific research, and about the benefits of accelerating
the cycle of hypothesis testing and generation in the social
sciences.

nodeGame: Overview

nodeGame is designed and implemented taking into account
the features and limitations of current experimental soft-
ware, aiming to accomplish the following goals:

use only open-source and free software technologies,
realize a robust and fault-tolerant application,

run discrete- and real-time experiments,

support hundreds of simultaneous participants,

grant flexibility and fine-grained control to the experi-
menter.

RAEE ol .

To the best of our knowledge, no other experimental
software besides nodeGame has so far achieved all five
design goals simultaneously. The following list provides an
overview of nodeGame’s main features:

SnodeGame is a flexible environment that permits to implement sci-
entific experiments in the form of games with strategic interactions
among players, individual decision tasks, and combinations thereof.
In this article, the words game and experiment will be used mostly
interchangeably.

http://dspace.mit.edu/handle/1721.1/53094
http://breadboard.yale.edu/
https://github.com/VirtualLab
http://econlab.uaa.alaska.edu/Software.html
http://econlab.uaa.alaska.edu/Software.html
http://nodegame.org
http://nodegame.org

Behav Res (2017) 49:1696-1715

1699

— nodeGame provides a programming framework that is
easy to extend and customize via the nodeGame API
(Application Programming Interface). The current ver-
sion of the API is 3.0, and the language is JavaScript,°
both on the client and on the server. Through the
nodeGame API, the experimenter obtains fine-grained
control over both experimental variables and technical
settings. However, most of the complexity regarding
the latter is hidden away by nodeGame’s preconfigured
default options.

— nodeGame’s API offers game developers configurable
waiting rooms, support for disconnecting and recon-
necting players, authorization and technical require-
ments checks, automated players (bots), reusable
widgets components, a highly customizable game
sequence, timers, an admin interface, and more.

— nodeGame is entirely based on open Web technologies
(HTMLS, CSS, JavaScript), therefore, it allows one to
create both simple and very complex experiments. For
example, nodeGame can go beyond traditional turn-
based experiments, and it also allows one to conduct
real-time games, by exploiting the power of HTMLS5
WebSockets.” Moreover, nodeGame integrates seam-
lessly with popular third-party libraries, such as jQuery
and D3, to create stunning visualizations and rich user
interfaces.

— nodeGame experiments run directly in the browser
window. They are completely cross-browser and cross-
platform. Desktop devices (Windows, Mac OS X,
and Linux) and mobile devices can connect to the
nodeGame server and join an experiment at the same
time. Every new release of nodeGame is rigorously
tested against an array of different browsers to guaran-
tee its correct functioning.

— nodeGame can be used to run experiments on online
labor markets.” One of those, Amazon Mechanical

6JavaScript is the scripting language of the browser, and it is also
an efficient server-side language for dealing with asynchronous 1/O
(Input/Output) operations, such as accessing a database or the file
system.

7WebSockets represents a major improvement in the history of Web
data communication. For more information see http://en.wikipedia.
org/wiki/WebSocket or https://www.websocket.org/.

8jQuery (http://jquery.com) is a cross-browser JavaScript library
designed to simplify the client-side manipulation of an HTML page.
D3 (http://d3js.org) is a JavaScript library for creating data-driven
interactive visualizations.

9Common online labor markets include Amazon Mechanical Turk,
oDesk, Freelancer, Elance, Guru, CrowdFlower, Innocentive, or Sur-
veySampling, etc. If monetary incentives are not required, it is simply
possible to upload a link to Web sites like “Psychological Research
on the Net” (http://psych.hanover.edu/research/exponnet.html), “The
Web Experiment List” (http://www.wexlist.net), or “Online Social
Psychology Studies” (http://www.socialpsychology.org/expts.htm).

Turk (AMT), has been extensively used for conduct-
ing online psychological, sociological, and economic
research (Paolacci et al., 2010; Mason & Suri, 2012).
The integration between AMT and nodeGame is based
on a shared list of authorization codes, which are
assigned to online workers upon accepting a task and
are checked by nodeGame as a requirement for par-
ticipation. However, the upload of the work task on
AMT must be done by the experimenter outside of
nodeGame.

— nodeGame is under steady development, but it has
already been used by several research teams to run
experiments in the laboratory and online, such as: pris-
oner dilemma games, ultimatum games, public-goods
games with and without assortative matching (Nax
et al., 2016), burden-sharing games (Anderson et al.,
2016), art-exhibition games (Balietti et al., 2016), and
congestion games (Balietti et al., 2016). Figure 2 con-
tains screenshots of the nodeGame interface for public-
goods games with noisy assortative matching.

— Finally, in addition to online and laboratory behavioral
experiments, nodeGame can also be used to perform
other types of data collection, such as surveys and field
experiments, as well as for didactic purposes in the
lecture hall.

Creating experiments with nodeGame

The purpose of this section is not to be a thorough user man-
ual for nodeGame, but rather to present the main concepts
behind the creation of experiments, and the most important
API methods in nodeGame (version 3.0). Additional infor-
mation and code examples are available on the online wiki
of the project: http://nodegame.org/wiki/.

Installation/Quick start

To install nodeGame, just follow the instructions available
on the wiki of the project: http://nodegame.org/wiki. After
the installation is completed:

- Open a terminal and browse to the folder nodegame/

- Start the server with the command:
launcher.js

- Access the default ultimatum game at the URL:
localhost:8080/ultimatum

- Start an automated player (bot) at the URL:
localhost:8080/ultimatum?clientType
=autoplay

- Access the administrator interface at the URL:
localhost:8080/ultimatum/monitor/

node

@ Springer

http://en.wikipedia.org/wiki/WebSocket
http://en.wikipedia.org/wiki/WebSocket
https://www.websocket.org/
http://jquery.com
http://d3js.org
http://psych.hanover.edu/research/exponnet.html
http://www.wexlist.net
http://www.socialpsychology.org/expts.htm
http://nodegame.org/wiki/
http://nodegame.org/wiki

1700

Behav Res (2017) 49:1696-1715

Current Round 3/ 40

You have received: 20 coins.

You decide to put in the group account: ’

Reminder: in the previous round

You decided to put 17 coins into the personal account.

%1 coins.

You decided to put 3 coins into the group account and the return was 5.5.

Your final payoff was 22.5.

Attention: if you do not make a choice before the time expires,
your previous decision will be used.

Fig. 2 Screenshot of the nodeGame interface of a public-goods game.
Left: the interface allows a participant to place a contribution between
0 and the full endowment, and displays the previous contribution and

Creating and joining a new experiment

To start the creation of a new experiment, go to the bin/
folder inside the nodegame installation directory, open a
terminal and type:'?

node nodegame create-game myexperiment

This command automatically creates a new folder in
nodeGame’s games directory containing all the necessary
files to run a new experiment. After the server is started,
participants can join the experiment by appending the name
of the experiment, e.g., myexperiment, to the address of the
Server, viz:

http:// myserver.com :8080, /myexperiment, ?param=XX

protocol server address port game name or alias query string

All the elements of the experimental URL can be config-
ured. For example, the protocol can be http or https, the port
number can be changed or omitted, the name of the exper-
iment can be replaced by an alias, or omitted completely.
Query string parameters are optional, and can as well be
disabled.

19Windows computers might need to manually install the nodegame-
generator package. For details, see the wiki page https://github.com/
nodeGame/nodegame/wiki/Game-basics-v3

@ Springer

Your Payoff: 16 + 7 = 23

Payoff = coins in the personal account + return from the group account.

Group A

20

Group B

outcome. Right: the interface shows the groups formed through a
noisy assortative matching based on the subjects’ initial contributions.
Within each group, payoffs realize

The core components of an experiment

Inside the newly created experimental folder, the follow-
ing core components should be adapted to suit the desired
experimental design:

Game variables and treatments,
Game sequence,

Client types,

Waiting room

b S

Each component will be briefly reviewed in the next
subsections together with the most important related API
commands.

Game variables and treatments

Game variables include values such as: how many monetary
units are assigned to players, the duration of a timer in a
step, the conversion rate from an experimental to a real cur-
rency, etc. These variables can be grouped together under a
common label to define an experimental treatment.

nodeGame API to define game variables and treatments

All the experimental variables and treatments are defined
in file game/game.settings. js, which must export

http://www.myexperiment
https://github.com/nodeGame/nodegame/wiki/Game-basics-v3
https://github.com/nodeGame/nodegame/wiki/Game-basics-v3

Behav Res (2017) 49:1696-1715

1701

a settings object. Game developers can define as many
variables as needed, but some names are reserved for
specific options by the nodeGame engine. For example,
WAIT_TIME controls the default waiting time in case of a
disconnection of a player and TIMER contains the duration
of timers for specific steps.

Treatments are defined as properties of the
TREATMENTS object. In the example below, two treat-
ments are created: “treatmentl,” and “treatment2.” All
the variables defined outside the TREATMENTS object
are shared by all treatments; variables defined inside
the TREATMENTS object are available only to a spe-
cific treatment, and can also overwrite global variables.
In the example below, “treatmentl” overwrites the value
for “max_offer,” and “treatment2” overwrites variable
WAIT_TIME.

var settings = {
// Game variables shared among all treatments.
WAIT_TIME: 30000,
TIMER: {
offer: 20000,
respond: 15000
1,
max_offer: 100,
// Game variables that are treatment specific.
TREATMENTS: {
treatmentl: {
max_offer: 50
},
treatment2: {
WAIT_TIME: 20000
}
}
I

The game sequence

The game sequence consists of one or more stages that
are executed sequentially after the experiment begins. Each
stage consists of one or more steps that are executed sequen-
tially within the stage. For example, the stages of a hypothet-
ical ultimatum game experiment could be: (i) ’instructions,’
(i1) ’quiz, (iii) ’game, and (iv) ’questionnaire.” The stages
could be further subdivided in steps as follows:

— Instructions. Three steps: instruction_1, instruction_2,
instruction_3. In this way, long texts are broken across
multiple pages, and the time spent on each step is
automatically measured.

— Quiz. One step containing the quiz itself. Optionally,
another step displaying the correct answers could be
added.

— Game. Three steps corresponding to the turns of the
ultimatum game: (i) making an offer/waiting for an

offer, (ii) accepting or rejecting it, (iii) displaying the
results to the players.

— Questionnaire. One or more steps, depending on the
number of questions in the survey.

Furthermore, stages can be repeated multiple times, each
repetition of which constitutes a new round. The number of
rounds can be predefined before the experiment starts, or it
can be determined at run-time, upon fulfillment of certain
criteria, e.g., players reaching an agreement upon a bargain-
ing. In our example, the game’ stage is repeated for three
rounds, during which players randomly alternate between
the role of bidder and respondent. Figure 3a illustrates the
stages and steps discussed so far.

nodeGame API to define the game sequence

The sequence of stages and steps of a game is defined in
file game /game . stages. js via the stager APIL The
order in which stages and steps are added to the stager
defines the sequence.

stager.stage("instructions")
.step("instructions_1")
.step("instructions_2")
.step("instructions_3");

stager.stage("quiz");

stager.repeat ("game", 3)
.step("offer")
.step("respond")
.step("display_results");

stager.stage("questionnaire");

Additionally, the stager API also defines the following
useful methods:

— stager.skip(stage, step): Skips an entire
stage, or a step when executing the game.

— stager.loop(stage, function): Repeats
the stage conditional on the callback function returning
true.

— stager.doLoop (stage, function):
stager.loop, but the stage is executed at least once.

Like

Client types
Once the game sequence is defined, stages and steps must

be “implemented,” i.e., the actions taking place in each step
must be defined (see Fig. 3b). Each implementation of the

@ Springer

1702

Behav Res (2017) 49:1696-1715

1) Instructions
~1.1) Instructions_1

~1.2) Instructions_2

/ ~1.3) Instructions_3
2) Quiz
7N
3) Game x 3 Rounds

~ 3.1) Offer .

~ 3.2) Respond
< ~ 3.3) Display_Results

4) Questionnaire

Fig. 3 Creating an experiment with nodeGame. a Simplified repre-
sentation of the stages and steps of an ultimatum game. b Simplified
representation of a fictitious Instructions_1 step. The step contains a

game sequence is called client type, and it can be radically
different depending on what its purpose is.

Two client types are mandatory: (i) player, and (ii) logic.
The player type is assigned to participants connecting to
the experiment with a browser. It has the purpose to load
the pages of the game, to handle users’ interaction with the
screen (e.g., the movement of the mouse, or the click on
a button), and to exchange messages with the server. The
logic type is executed on the server and controls the flow
of operations of a game room, such as creating sub-groups,
accessing external datasets, handling player disconnections,
etc. Its implementation obviously varies depending on the
experimental design.

Other optional client types are automated players, used
to interact with human participants, or to test the correct
functioning of the experiment (see Bots and Phantoms in
“nodeGame Features™).

nodeGame API to define client types

Each client type is defined in a separate file inside the
game/client_types/ directory. Client types are con-
structed by adding properties to the “empty” stages and
steps created in the game sequence, and available through
the stager object. By default, steps inherit all the prop-
erties defined by the stage in which they are included.
Moreover, stages inherit all “default” properties defined at
the stager level. For example, if we define the property
coins as follows:

@ Springer

1.1) Instructions_1 B

<HTML> <SCRIPT>

node.say('hello");
node.done();

Extends Step

Player-Type Logic-Type
timer: 20000 minPlayers: 4
Bot-Type

auto-play: true

unique name, an execution callback, and an HTML page. In this exam-
ple, three client types (Player, Logic, and Bot) extend the step by
adding further properties to the step object

stager.setDefaultProperty("coins", 100);
stager.extendStage("game", { coins: 200 });
stager.extendStep("offer", { coins: 50 });

then, invoking node .game .getProperty (' ‘coins’ ‘)
would return 50 in step ’offer’, 200 in steps 'respond’ and
“display results’ inside the ’game’ stage, and 100 in any
other step.

Game developers can define their own properties, but
some names are already reserved by the nodeGame engine
for special purposes. The most important reserved proper-
ties are:

— frame: The URL of the page to load.

— ¢b: The callback (cb) function to be executed after the
frame is loaded, but before the player can interact with
it.

— done: The callback function that is executed when
node.done is executed to terminate a step.

— timer: The duration of the timer for current step (in
milliseconds).

— timeup: The callback function to execute when the
timer for the current step expires.

Inside the cb function, the game developer can make use
of several methods of the nodeGame API to implement the
intended experimental design. On the browser, the methods
of the API are exposed through two objects:

— mnode: sends and receives messages, starts timers,
steps through the game sequence, loads widgets, etc.

Behav Res (2017) 49:1696-1715

1703

— W (Window): manipulates information on screen and the
behavior of user interface, e.g., disabling right click,
locking screen, etc.

At the end of each step, the game developer must call
the method node . done, which triggers a procedure that
advances the client to the next step. For example, the
pseudo-code for the “offer” step of the player client type
could be as follows:

// Player made a choice and clicked the submit button.
submit.onclick = function() {
// Inform other player about offer.
node.say("offer", "respondent", offer);
// Conclude step and store offer in server.
node.done (offer) ;

};

The respondent would then receive the offer, display it
on screen, and terminate the step.

// On incoming data labeled "offer", execute the function.
node.on.data("offer", function(msg) {
// Write offer on screen using the W object.
W.setInnerHTML("offer", msg.data);
node.done() ;

b;
Waiting room

The waiting room has the purpose of starting a new experi-
ment when certain criteria are met, e.g., a certain number of
clients is simultaneously connected, or the maximum wait-
ing time has expired. While waiting for the next game to
begin, participants in the waiting room usually receive infor-
mation about how much time they have been waiting, how
many other players are still needed, etc.

The waiting room operates in different execution modes.
By default, the waiting room selects a treatment and dis-
patches a new game room as soon as the requested number
of players is available. However, it is possible to sched-
ule a date and a time in the future when a new game
room will be created, or to manually start the experiment
from the monitor interface (useful in the lab environment).
For each execution mode, several additional options are
available to give the experimenter a fine control over the
conditions for dispatching new games. Finally, in the case
of more complex experimental setups, it is also possible to
use a completely customized waiting room, in place of the
standard one.

nodeGame API to define waiting room settings
The criteria for dispatching new games are defined in

file: waitroom/waitroom.settings.js. The most
important options are:

— EXECUTION_MODE: Available
"WAIT FOR_N_PLAYERS" and "TIMEOUT".

— POOL_SIZE: How many players must be connected
before dispatching new game rooms.

— GROUP_SIZE: How many players to assign to every
new game room. If the pool size is a multiple of the
group size, then multiple game rooms will be created.

— N_GAMES: Limits the total number of dispatchable
games.

MAX WAIT TIME: Limits the total wait time for par-
ticipants.

— CHOSEN_TREATMENT: Decides which treat-
ment is assigned to a given game room (use
"treatment_rotate™ for rotating the treatments).

— START_DATE: Sets the beginning of a game a certain
date in the future.

PLAYER SORTING: Sorts players in a specific order
before dispatching them.

— PLAYER GROUPING: Creates groups of players to
dispatch.

— PING_BEFORE DISPATCH: Pings all players before
a dispatch (useful if the desired group size is large).

options

nodeGame Features

This section centers around additional features of
nodeGame (version 3.0) that have not already been covered
in “Creating experiments with nodeGame”. NodeGame
is under active development, so new features might be
added in newer versions, however, those described here are
expected to be kept also in future versions.

Authorization rules

The Web is a great source of anonymity. This is why it
permits to do research on more sensitive topics or on indi-
viduals with rare conditions of interest that would not be
possible to do in the lab (Mangan & Reips, 2007).!! How-
ever, synchronous experiments usually require to identify
experimental participants to prevent them from entering the
same game room multiple times, or to exclude those who
have already played the experiment. nodeGame provides a
default authorization system that stores authorization tokens
in the browser. Moreover, it is possible to define a custom
authorization function that can accept or reject incom-
ing connections based on properties such as IP, browser
type, etc.

'There also exist studies that can be conducted only in the lab and not
online. For example, when some physiological parameters need to be
measured directly, or when specialized hardware is required.

@ Springer

1704

Behav Res (2017) 49:1696-1715

nodeGame API to create authorization rules

Authorization rules are specified in the auth/ directory.
File auth.settings. js allows one to disable or enable
authorization checks. The most important options are:

— enabled: Boolean flag.

— mode: Available modes: dummy: creates dummy
ids and passwords in sequential order; auto: cre-
ates random eight-digit alphanumeric ids and pass-
words; local: reads the authorization codes from
file; remote: fetches the authorization codes from a
remote URI; custom: uses the ’customCb’ field.

— nCodes: The number of codes to create.

— addpPwd: If TRUE, a password is added to each code
created.

— codesLength: The length of generated codes.

— claimId: If TRUE, remote clients will be able to
claim an id via GET request (useful when posting tasks
on online labor markets, such as Amazon Mechanical
Turk).

— claimIdvalidateRequest: Authorization call-
back for incoming ’claimld’ requests.

Automated players: bots and phantoms

Bots and phantoms are two computer-controlled client types
executed in the server (see “Client types”). The only dif-
ference between them consists of the fact that phantoms
are executed in a headless browser,!2 while bots are not. A
headless browser is a normal Web browser without a graph-
ical user interface. It behaves exactly as a normal computer
browser, with the only exception that rendered pages are not
shown to anyone. In other words, phantoms are able to load
a full HTML page like human players would do with their
“headed” browser. This makes phantoms particularly suited
for testing and debugging an experiment before launch-
ing it. Bots, on the other hand, cannot load HTML pages,
and therefore are much more light-weighted processes. This
means that an experimenter can create a large number of
them without a significant memory and CPU overhead. Bots
can be used to replace a disconnected human player during
an experiment which requires a minimum number of par-
ticipants, or to play alongside humans in an synchronous
environment.

nodeGame API to handle automated players
Phantoms and bots are defined in dedicated client-type

files, each one being a custom implementation of the game
sequence. They are usually instantiated by a logic client

12The headless browser used by nodeGame is Phantom.JS, therefore
the name “phantoms.” For more information see http://phantomjs.org.

@ Springer

type in the server-side environments, where the game devel-
oper has access to two objects of the nodeGame-server API:
gameRoom and channel. They offer several methods,
among which:

— gameRoom.getClientType (’player’):
Returns the raw player type that can be modified and
adapted to behave in an automated way.

— channel.connectBot (options): Connects a
bot to channel.

— channel.connectPhantom(options):
Connects a phantom to channel.

Disconnections and reconnections

In the online world, participants can leave a previously
joined experiment for any reason. Dropouts (disconnec-
tions) are a major problem for synchronous online experi-
ments, as they increase both the budget and the time neces-
sary to complete the data collection. However, dropouts not
only have negative externalities. In fact, as some researchers
have pointed out, the voluntary nature of online participa-
tion can often lead to the production of better-quality data
than laboratory experiments, because in the laboratory sub-
jects feel obliged to stay in the lab even when they have
stopped paying attention to the task at hand (Reips, 2002).

nodeGame makes available a number of solutions to han-
dle the dropout problem. For example, it is known that
dropouts can be significantly mitigated by making use of
apposite measures such as ‘warm-up phases’, and ‘serious-
ness checks’ (Reips, 2002; Reips & Krantz, 2010). Those
are easy to implement by just adding an extra stage in the
game sequence, or by adding a dedicated game level (see
“Game levels”). Alternatively, it is possible to specify a
“disconnection handler” associated with a minimum num-
ber of players that need to stay connected in order for the
experiment to continue. This handler can be global, i.e.,
throughout the whole experiment, or it can be attached to
single stages or steps. In this way, the minimum-players-
connected condition is verified only when really needed. In
fact, it is common that some parts of an experiment can be
executed with a variable number of players, while others
have stricter requirements. For example, at the end of a col-
lective behavior experiment, participants are often presented
with a final questionnaire. Here, a single disconnection
should not affect any other player.

nodeGame has implemented a default behavior for han-
dling disconnections: it immediately pauses the experiment,
displaying a notice to all connected clients. Simultaneously,
a countdown is started, at the end of which the experimenter
can decide whether to continue with less players, connect
a bot player, or cancel the experimental session, redirecting
the participants to an exit stage.

http://phantomjs.org

Behav Res (2017) 49:1696-1715

1705

nodeGame API to handle disconnections/reconnections

In the logic client type, three disconnect handlers are avail-
able: minPlayers, maxPlayers, or exactPlayers.
They can be a number (threshold), or an array containing up
to three elements ordered as follows:

1. threshold: The desired value of min/max/exact con-
nected players.

2. threshold_cb: A callback executed when the speci-
fied threshold is passed.

3. recovery._cb: A callback executed when the num-
ber of connected players is correct again (viz. after the
threshold_cb was executed once).

Additionally, in the logic client type, it is possible to
define a reconnect property to fine-tune the reconnec-
tion parameters of the reconnecting clients.

Game levels

Game levels divide an experiment into multiple parts, each
of which can have a separate waiting room and a differ-
ent game sequence with distinct synchronization rules. For
example, an experiment could start with a preparatory part
where participants do not interact with each other, but they
only answer some survey questions. Only in a second part
would they reach a waiting room and form groups for syn-
chronous play. This setup has the advantage of reducing the
number of dropouts in the second part, where synchronous
play is happening.

nodeGame API to create game levels

In order to add a new game level, create a new folder with
the name of the level (e.g., “part2”) inside the levels/
directory. Then, inside the new game level directory, add
a game/ folder, and optionally a waitroom/ folder, fol-
lowing exactly the same structure as for the folders with
the same name at the top-level of the directory of the
experiment.

Matcher

The Matcher API is currently limited to matching play-
ers into pairs. Two matching algorithms are implemented:
“round robin” (also known as perfect stranger matching),
and “random.” However, custom matching algorithms can
be easily added into the APL

nodeGame API to match players

The following code example illustrates how to create a
round robin tournament schedule for four players.

// Require and instantiate the Matcher class.
var Matcher = require("nodegame-client") .Matcher;
var matcher = new Matcher();

// Select algorithms, and creates schedule.
matcher.generateMatches ("roundrobin", 4);
matcher.match(["a", "b", "c", "d" 1);

// Get next match.
matcher.getMatch(); // ["a", "b"];

matcher.getMatchObject(); // {a: "b", c: "d" }

Monitor interface

The monitor interface includes the list of all games cur-
rently available, the list of game rooms dispatched, and the
list client connected (see Fig. 4). The state of every client
is reported, including the client type and the stage of the
game they are currently in. Moreover, the interface allows
one to send group or individual game commands to pause,
resume, advance, or restart the game. Finally, a chat window
can be opened to communicate with participants in need of
assistance.

Additionally, for the experimenter’s convenience, the
configuration of the game is displayed in a separated tab;
moreover, the content of the data/ folder (where the
results are saved) is listed and available for download.
The state of the server is also displayed in a separated
tab.

Multiple games and access points

Self-selection bias (Kraut et al., 2004) is a known problem
from which online experiments can suffer. That is, only peo-
ple who are interested in a certain type of experiment partic-
ipate or stay in the experiment. However, this issue can be
mitigated with the use of an ad hoc countermeasure called
the ‘multiple-site-access’ technique (Reips, 2002; Reips &
Krantz, 2010). In nodeGame, the same game can have as
many access points as necessary. Each access point is called
an alias (see “Creating and joining a new experiment”)
and can be specified in the channel configuration file:
channel/channel.settings.js.

Furthermore, nodeGame not only supports running mul-
tiple access points for the same game but also supports
running completely different games at the same time. Each
game would then have its own access points.

Requirements
Even if authorized to take part in an experiment, a client
might not actually have the technical requirements to go

through all the steps. In fact, in the Internet, there are hun-
dreds, or even thousands, of different browsers and browser

@ Springer

1706

Behav Res (2017) 49:1696-1715

Clients Games

ultimatum1 / Clients

Channel ID

Room
ulti A

SN A0 ®

60247333953157

Selected IDs: ["13533739140257","88411166402511
3","60247333953157"]

Commands

Setup Start Stop Pause Resume Force
Change stage to: Send

Disable right-click On Off

Disable Esc Oon Off

Promptonleave On Off

Wait-screen On Off

ultimatum /

Custom Message

action SETRRY
target DATA
text

data

Send Toggle advanced options

Fig. 4 Screenshot of the monitor interface. At the top of the panel, it
is possible to browse the game rooms currently active in the channel.
The clients connected to the selected room are shown: two players and
one logic. The middle panel allows one to send a game command to

versions, each one equipped with a slightly different imple-
mentation of the HTML and JavaScript standards. For
example, Internet Explorer browsers below version 10 are
notoriously famous for not being fully standard-compatible.
They can generate glitches in the visualization of a page, or
in the communication with the server. Therefore, it is nec-
essary to test the correct functioning of nodeGame on each
client before letting it into an experiment.'3

Clients connecting from mobile devices, such as tables
or smartphones, also require special attention. Differences
in the size of the displays should be taken into account, and
clients with requirements below compliance should not be
accepted. Making use of CSS frameworks helps obtaining

13Most people participating in online labor markets usually have mul-
tiple browsers installed on their machine, and they can be invited to
retry connecting to the experiment with another one.

@ Springer

13533739140257 player false 5.1.2
884111664025113 player false 5.1.2

Type Admin Stage Connection SID
connected ~ SP687440859484040645
connected SP12137742872037984766

logic true 0.0.0 connected DA1

ALL Y.

?clientType=autop Start bot

the clients selected in the upper panel; other actions are available, such
as manually connecting a computer-controlled client. The lower panel
permits creating and sending a custom game message to the clients
selected in the top panel

a consistent cross-device visualization of the experiment.'#
Therefore, they should always be used when perform-
ing online experiments. Furthermore, clients connecting
via mobile devices might not only experience visualiza-
tion issues due to the smaller size of the display but also
encounter connectivity troubles due to a sudden failure of
the mobile network.

By default, in nodeGame, the following requirement
checks are performed: whether JavaScript is enabled and
cookies supported, if the client can load HTML pages in
a dedicated iframe, and if it can communicate with the
server without an excessive delay. Additional checks can be
added, as seen appropriate. For example, it is possible to

14A CSS framework is a collection of HTML- and CSS-based design
templates and JavaScript modules for developing responsive, mobile-
compliant Web interfaces. nodeGame makes use of CSS-framework
Twitter Bootstrap (http://getbootstrap.com/).

http://getbootstrap.com/

Behav Res (2017) 49:1696-1715

1707

impose restrictions based on the location of the client. Some
online labor markets allow to specify similar constraints
when uploading the task, but this does not always lead to
accurate results. HTML 5 Geolocation API can localize
clients even at the level of single streets in dense urban
areas.'> However, clients must allow to be geolocated, and
this could be introduced as a requirement for participation
in the experiment.

nodeGame API to create requirement rules

Requirements rules are specified in the requirements/
directory. File requirements.settings.js allows
one to disable or enable authorization checks. The most
important options are:

— enabled: Boolean flag.

— maxExecTime: Limits the maximum execution time
for all tests.

— speedTest: Verifies that the client can exchange a
given number of messages in the specified amount of
time.

— viewportsSize: Verifies that the client’s screen reso-
Iution is between the min and max specified.

— DbrowserDetect: Verifies that the client’s user agent
has got the required name, type, and version (more
checks available).

— cookieSupport: Verifies that the client supports
cookies (‘persistent’ or ‘session’).

Templates and internationalization

nodeGame supports the dynamic creation of HTML pages
from templates that are rendered upon request from a con-
nected client. Templates allow one to write modular Web
pages that can be filled with blocks of content depend-
ing on the actual configuration of the experiment. As will
be explained below, the use of templates presents multi-
ple advantages, and therefore they should be preferred over
static HTML pages whenever possible.

Firstly, templates introduce a clearer separation between
changeable and static parts of the user interface. For exam-
ple, in an ultimatum-game-like experiment, participants
would divide a certain budget B of monetary units between
a bidder and a respondent. An experimenter could hard code
the actual value of B in every page, but this would make
the code very hard to maintain whenever the value of B
is updated. Instead, by using a template, the value of B

5The HTML 5 Geolocation API is available on all major modern
browsers. Since it can compromise user privacy, it cannot be used
unless the user approves it. For info see http://en.wikipedia.org/wiki/
W3C_Geolocation_API.

would be automatically inserted in every page by the tem-
plate engine. In this way, updating the value of B in the
settings of a treatment does not require further modifications
in other parts of the code.

Secondly, templates can create nested layout structures
that reduce the complexity of the markup of the single com-
ponents and the load on the server upon requesting them. A
nested layout usually consists of a fixed outer frame and a
variable number of interchangeable blocks. With this con-
figuration, instead of requesting a whole new page to the
server every time, only the block actually being updated will
be downloaded.

Finally, templates allow one to achieve the internation-
alization of an experiment, e.g., the display of the text of
the experiment in different languages. This can be obtained
separating the translation files into different directories
(contexts) corresponding to the different prefixes of the
requested languages, e.g., “en”, “de”, “it”, etc. They will be
automatically matched upon receiving a new request, and
the properly localized page will be rendered and sent to the
client.

nodeGame API to create templates

nodeGame serves all the static files from the public/
folder. However, it is possible to dynamically create HTML
pages by adding files inside the views/ folder.

The views/ folder is further divided into two
sub-folders: templates/ and contexts/. The
templates/ folder contains Pug16 files to create and
format HTML pages. Templates support dynamic code, and
allow the game developer to reuse and extend components
across pages. The contexts/ folder contains JavaScript
files named after the corresponding template. Each file
must export a function returning the “context,” i.e., an
object containing all the variables used to fill-in a template.

Timers

Response times can be used as an indicator of the type
of internal reasoning process used by decision-makers.
Its systematic analysis can reveal a personality trait that
makes use of heuristics vs. iterative, rationale thinking
(Rubinstein, 2013), or whether a person is expected to
play more cooperatively or more selfishly in synchronous
games (Rand et al., 2012). To support research investigat-
ing these questions, nodeGame has a dedicated API for
defining new timers, and measuring time intervals between
specific events. Most importantly, such intervals are mea-
sured directly on the client machines, so that they network

16The Jade template language is now called Pug. See http://pugjs.org.

@ Springer

http://en.wikipedia.org/wiki/W3C_Geolocation_API
http://en.wikipedia.org/wiki/W3C_Geolocation_API
http://pugjs.org

1708

Behav Res (2017) 49:1696-1715

latency is excluded from calculations. The precision of
JavaScript timers is in the order of hundreds of millisec-
onds, slightly higher, but still comparable to other tech-
nologies, such as Flash, Psychtoolbox, and Java (Neath
et al., 2011; Reimers and Stewart, 2015). Such differ-
ences are anyway not detectable by human subjects, and
the variance in response times is approximately equivalent
(Leeuw & Motz, 2016).

nodeGame timers are synchronized with the flow of the
game, so that they are automatically paused and resumed
as the game goes. Finally, the value of a timer can be eas-
ily visualized on the screen in different formats using the
appropriate widget (see “Widgets”).

nodeGame API for timer operations

Each game exposes a default timer object:
node.game.timer. This timer is used to measure the
time of execution of the current step and contains the
default timeup function as defined by the stager. There-
fore, under normal conditions, the game developer should
never change its properties directly, but rather create new
timers when needed using the timer API, available via
the node . timer object.

// Creating a new timer.
var mytimer = node.timer.createTimer (’mytimer’, {
update: 1000,
milliseconds: 10000,
// This is executed at every update.
// Hooks can also be an array of functions.
hooks: function(){
},// This can be an event, or a function
// to execute when the timer expires.
timeup: "TIMEUP"
b;
// Timer operations.
mytimer.start();
mytimer.pause();
mytimer.resume();
mytimer.stop();
mytimer.isStopped() ;
mytimer.isRunning() ;

Furthermore, the node . t imer object allows the game
developer to measure time intervals from the beginning of a
step, a stage, the whole game, or a custom event. The time
interval measured can be absolute or effective, i.e., the time
during which a game has been paused is not counted.

// Measuring time intervals.
node.timer.getTimeSince("step");
node.timer.getTimeDiff ("start", "step");

// Creating a custom timestamp.
node.timer.createTimestamp ("myts") ;

// Measuring effective time, i.e. without paused time.
node.timer.getTimeSince("myts", true);
node.timer.getTimeDiff ("start", "step", true);

@ Springer

The Window object

The Window object, or W, is available in the browser envi-
ronment to load and cache pages, manipulate the DOM
(Document Object Model), and to setup the user interface.

Frames and header

Frames are HTML pages containing the interface of a game
step. Unless a widget is used, frames must be generally
implemented by the game developer in one or more sepa-
rate files: as static resources (in public/), or as dynamic
templates (in views /). Frames are loaded into a dedicated
iframe,!” which is separate from the rest of the page.

The header is another special region of the page that can
be appositely created to contain elements that need to per-
sist throughout the whole game, e.g., a timer, or a counter
with the accumulated earnings. The position of the header
relative to the frame can be easily manipulated via API.

Frames and other static resources can be explicitly
cached at any time during an experiment. Caching provides
a twofold advantage. Firstly, it decreases the load on the
server (especially stages are repeated for many rounds). Sec-
ondly, it guarantees a smoother game experience by bring-
ing down the transition time between two subsequent steps.
However, caching might not be available in older browsers
(e.g., IE8), therefore a pre-caching test is performed auto-
matically upon loading nodeGame, and the results are saved
in a global variable.

nodeGame Window API to load and manipulate frames

— W.generateFrame () : Generates the frame.

— W.generateHeader (): Generates the header.

— W.setHeaderPosition (position): Moves the
header in one of the four cardinal positions: ‘top’,
‘bottom’, ‘left’, ‘right.’

— W.loadFrame (uri, cb, options): Loads a
page from the given URI, and then executes the call-
back cb. This function is automatically called whenever
the £rame property of a step is set.

— W.setUriPrefix (prefix): Adds a prefix to the
URIs loaded with W. loadFrame.

— W.preCache([resl, res2, ...]1, cb):
Caches the requested resources, and executes the
callback cb when finished.

— W.cacheSupported: Flags the support for caching
resources.

Tframes are special HTML tags that are used to visualize entire
HTML documents inside of a nested HTML page. nodeGame uses
iframes to render the pages of the different stages of an the experiment.
For more information about iframes see: http://en.wikipedia.org/wiki/
HTML _element#Frames

http://en.wikipedia.org/wiki/HTML_element#Frames
http://en.wikipedia.org/wiki/HTML_element#Frames

Behav Res (2017) 49:1696-1715

1709

Searching and manipulating the DOM

Elements of the frame might not be immediately accessi-
ble from the parent page. Therefore, the W object offers a
number of methods to access and manipulates them easily.

nodeGame Window API to search and manipulate the DOM

— W.getElementById(id): Looks up an element
with the specified id in the frame of the page.

— W.setInnerHTML (search, replace, mod):
Sets the content of element/s with matching id or class
name or both.

— W.searchReplace(elements, mod,
prefix): Replaces the content of the element/s with
matching id or class name or both.

— W.write/writeln(text, root):
text to the root element.

— W.sprintf (string, args, root):Appendsa
formatted string to the root element.

— W.hide/show (idOrObj): Hides/shows an HTML
element.

Appends a

User interface

The W object also exposes methods to directly restrict or
control some types of user action, such as: disabling the
back button, detecting when a user switches tab, displaying
an animation in the tab’s header, etc.

nodeGame Window API to manipulate the user interface

— W.disableRightClick (): Disable the right click
menu.

— W.enableRightClick(): Enables the right click
menu.

— W.lockScreen (text): Disables all inputs, over-
lays a gray layer above the elements of the page and
optionally writes a text on top of it.

— W.unlockScreen (): Undoes W.lockScreen.

— W.promptOnleave (text): Displays a message if
the user attempt to close the tab of the experiment.

— W.restoreOnleave(): Undoes
W.promptOnleave
— W.disableBackButton(disable): Disables

the back button if parameter ‘disable’ is true, re-enables
it if false.

— W.onFocusIn (cb): Executes a callback each time
the players switches tab.

— W.onFocusOut (cb) : Executes a callback each time
the players returns to the experiment’s tab.

— W.blinkTitle ():Displays arotating text on the tab
of the experiment.

— W.playSound (sound): Plays a sound, if supported
by browser.

Widgets

Widgets are reusable user interface components that can be
loaded dynamically in a nodeGame experiment. They serve
multiple purposes. For example, they can display the values
of internal timer objects, the number of remaining rounds
in a stage, the amount of monetary rewards gained by a
player so far, etc. They can also offer a chat window to com-
municate between experimenter and participants, or simply
display debugging information during the development and
testing of the experiment. Figure 5 shows some examples
of widgets displaying timers and counting the number of
rounds.

Widgets API

Widgets are available via the node . widgets object that
exposes a number of methods, among which:

— mnode.widgets.get (widget, options):
Returns a new instance of the specified widget (no
HTML code is created here, so the method is safe
to be called also by bots running on the server).
Adds a reference of the widget to the collection
node.widgets.instances.

— node.widgets.append(widget, root,
options): Calls the get method, and then appends
the widget to the specified root.

— node.widgets.register (name,
prototype): Register a new widgets to the
collection.

All widgets implement a set of standard methods, such
as:

Round and

Stage info Time left

Sta -
oo Time left

>4 01:37

Max. wait timer

00:27

Fig. 5 Illustration of the VisualRound and VisualTimer widgets
for nodeGame. On the left, the VisualRound widget visualizes the
stage and round counts. In the middle, the VisualTimer widget shows
the default time countdown. On the right, a participant completed the
stage and this triggered the VisualTimer widget to stop; the timer now
shows the maximum time left until all other participants complete the
stage

@ Springer

1710

Behav Res (2017) 49:1696-1715

— hide/show: Makes the widget visible or invisible.

— disable/enable: The widget stays visible, but it is
not clickable.

— unhighlight/highlight: Highlights the widget
in some way, or restores its appearance to default.

— getValues/setValues: Get/set the current selec-
tion of the widget (when available).

— destroy: Removes any listener defined by the
widget, removes HTML created by the widget
from the DOM, and removes its reference from
node.widgets.instances.

— setTitle: Writes content to the HTML title of the
widget.

— setFooter: Writes content to the HTML footer of the
widget.

— setContext: Sets the Twitter-Bootstrap context, i.e.,
‘primary’, ‘info’, ‘success’, ‘warning’, or ‘danger.’

Moreover, after a widget has been appended, the follow-
ing references to the HTML elements of the interface are
added as properties of the widget:

— panelDiv: The main div containing all sub-elements.

— headingDiv: The div containing the title of the wid-
get.

— bodyDiv: The div containing the main content of the
widget.

— footerDiv: The div containing the footer of the
widget (hidden by default).

List of selected widgets

— ChernoffFaces: Displays parametric images in the
form Chernoff faces (Chernoff, 1973). Optionally, an
interface to draw customized Chernoff faces can be
added.

— Chat: Creates a configurable chat element.

— ChoiceTable: Creates a row (or column) or
selectable choices.

— ChoiceTableGroup: Creates a configurable group
of ChoiceTable widgets.

— ChoiceManager: Creates and manages a group of

widgets.

— DebugInfo: Displays information useful for debug-
ging purposes.

— DoneButton: Creates a button that executes

node.done when pressed. The button can be
customized via the donebutton property of the
stager.

— LanguageSelector: Displays a selector box with
the languages supported by the game (see “Templates
and internationalization”). The selection is saved and
used to update the URIs of the loaded frames accord-

ingly.

@ Springer

MoneyTalks: Displays a configurable box count-
ing the accumulated earnings of a participant in the
currency of choice.

— MoodGauge: Displays a customizable mood measure-
ment interface. Available gauge: Positive and Negative
Affect Schedule (PANAS) Short Form (I-PANAS-SF)
(Watson et al., 1988; Thompson, 2007).

— SVOGauge: Displays a customizable social value
orientation (SVO) measurement interface. Available
gauge: slider measure (Murphy et al., 2011).

— VisualTimer: Creates a box displaying the remain-
ing/elapsed time of a game timer. The box can be
customized via the timer property of the stager.

— VisualRound: Displays a customizable box con-

taining information about the current round, step, and

stage.

Widget-steps

Widgets-steps are a particular type of steps where a widget
is loaded in the frame and waits for some user input. When
node.done () is called, the widget checks if the input is
correct, and in case it is not, it will not let the player step
forward. Correct and incorrect values are stored and sent to
the server when the game advances.

To create a widget-step, just add a widget property to
an existing step:

stager.extendStep("mood", { widget: "MoodGauge" });

nodeGame’s architecture

Even though developed independently, nodeGame follows
the same software paradigm proposed by Hawkins (2014).
However, nodeGame is not just a proof of concept, but
a stable software package ready to be used by behavioral
researchers. Compared to Hawkins (2014), nodeGame (ver-
sion 3.0) does not yet implement a physics engine, nor a
collision detection system for the positions of players in vir-
tual 2D or 3D space. For the time being, these features could
be implemented by a game developer following the imple-
mentation by Hawkins (2014), until they are integrated in
successive versions of the software.

The next paragraphs describe nodeGame’s architecture
and a few technical concepts related with the technologies
used: Node.JS, JavaScript, HTMLS5.

Overview
nodeGame is a modular framework, entirely implemented

in JavaScript/Node.js. JavaScript is the standard program-
ming language of the browser, it is completely event-driven

Behav Res (2017) 49:1696-1715

1711

and permits to respond to users’ actions, such as the click of
a button, and to fully manipulate the content of an HTML
page. Node.js is its server side equivalent. Based on the V8
JavaScript engine used by Chromium and Google Chrome,
Node.js can execute CPU intensive tasks with performances
comparable or even superior to other interpreted program-
ming languages (Bezanson and et al. 2014). However, the
greatest advantage of Node.js is that it is entirely event-
based, exactly like JavaScript. This means that Node.js deals
with I/O (Input/Output) requests asynchronously, making
access to resources such as file system and databases “non-
blocking.” Let us consider the following example to clarify
the concept. When a client connects to the server for the first
time, its credentials need to be verified. Usually, this implies
an access to the database, a task that Node.js delegates
to the operating system. In this way, while the creden-
tials are being retrieved from the database, Node.js can
serve another request. After a certain amount of time, the
operating system returns the results of the database oper-
ation to Node.js, which processes and serves them to the
requester as soon as possible. This feature makes Node.js
particular suited to handle a large number of simultane-
ous connections, optimizing application’s throughput and
scalability.'8

Besides performance and scalability, using Node.js as
server side language introduces another important advan-
tage: code re-use. In fact, nodeGame follows the Client-
Server paradigm, and shares the same classes and data
structures between its two main architectural components:
(i) nodeGame client and (ii) nodeGame server. This means
that an instance of nodeGame client can be executed on the
browser to respond to a player’s action, or on the server
machine to control a game room (logic) or as an automated
player (bot). As Fig. 6 shows, nodeGame client itself is
a modular application, and nodeGame server imports only
those components that are actually needed from it.

The rest of the nodeGame infrastructure includes a num-
ber of popular software packages as dependencies to handle
non-core tasks such as implementing the network transport
layer or the logging system. As shown in Fig. 7, nodeGame
uses Winston'? for logging, Express?? for answering HTTP
requests, and Socket.io?! as a multi-transport messaging
library. In particular, Socket.io guarantees fast delivery of
messages over the network across a broad range of devices

18As reported on the Web site of the project (http://nodejs.org):
“Node.js building fast, scalable network applications. Node.js uses
an event-driven, non-blocking I/O model that makes it lightweight
and efficient, perfect for data-intensive real-time applications that run
across distributed devices.”

19See https://github.com/winstonjs/winston.

20See http://expressjs.com/.

2ISee http://socket.io/.

nodeGame Client

Polyfills e-——ts > Support for older browsers
% JSUS e > Functional programming library
* NDDB &t > Internal database

Shelf.js ot > Storage library for the browser
% Client Core e > Game stepping, emitting events,

timers, sending / receiving messages
* Client Modules e > Auxiliary methods for game developers

Loading new frames, caching,

Game Window e > locking inputs, manipulating DOM

Loading / Unloading user interface

W|dgets [PS >
components

Fig. 6 Schematic representation of the nodeGame client architecture.
nodeGame client is composed of a collection of modules serving dif-
ferent purposes. In the browser, all of them are usually loaded, while
on the server only those modules marked with an asterisk are used by
logics and bots

and environments. In fact, it implements a number of differ-
ent message-transport protocols, and automatically negoti-
ates with incoming clients the one achieving the best results.
Socket.io supports HTMLS5 WebSockets, which represents a
major improvement in the history of Web data communica-
tion and constitute the royal road for the implementation of
large-scale real-time synchronous games in the browser.?

Channels

A central component of the nodeGame server architecture
is the server channel. A server can have as many chan-
nels as needed, and generally as many as the number of
games currently installed. As illustrated in Fig. 8, a chan-
nel is composed of several nested objects: the waiting room,
the clients registry, the collection of game levels and game
rooms, and two independent game servers, one for the
players and one for the administrators. Each of the two
internal game servers features a different set of event han-
dlers, and requires different privileges of access to them.
Event handlers reply to incoming messages either by return-
ing another message or by triggering an internal operation.
The Admin game server has an extended set of event han-
dlers, which includes methods, for example, to redirect and
remotely setup any connected client. Such privileged oper-
ations are not allowed by the Player game server, whose
task is limited to pass along messages. Each of the two

22For more information see http://en.wikipedia.org/wiki/WebSocket or
https://www.websocket.org/.

@ Springer

http://nodejs.org
https://github.com/winstonjs/winston
http://expressjs.com/
http://socket.io/
http://en.wikipedia.org/wiki/WebSocket
https://www.websocket.org/

1712

Behav Res (2017) 49:1696-1715

Client (Browser)

nodeGame Server

Socket-io Client

nodeGame Client

nodeGame Client

Server Channels

Optional Libraries

Socket-io Server

use

Optional Libraries

Express HTTP Server

JQuery

Twitter Bootstrap

Logger (Winston)

D3

|
|
|
|
|
|

|
|
‘ @ >(MongoDB
|
|
Node.js ‘

Fig. 7 Schematic representation of the nodeGame architecture. The
two main components, server and client, are modularized in nested
components. Notice how nodeGame client is shared among client and

internal game servers contains a dedicated socket manager,
which is an abstraction of the actual type of connection
used by the server to communicate with the clients based
on their location of execution. For example, Socket.io is
the type of socket used to communicate with clients located
in the browser of remote machines; Socket Direct, instead,
is used to exchange messages with logics and bots run-
ning as separated processes within nodeGame server. The
channel registry stores information about all connected and
disconnected clients, such as their game state and the game
room they belong to. The registry can be accessed by the
other software components whenever needed. For example,

Waiting Room Hosts and Dispatches Clients
. A L g *x
create f EUSe I
? lexchange Y y jexchange
° °
Player Server Registry Admin Server
Clients
Socket Info Socket
Manager asesl Leusey Manager
Events Events
Handler Handler
A
Y ;exchange Y ‘exchange

Game Room 1 Game Rooms

Treatment A Room1 Room2 Room3 RoomN

Logic
Clients
DB / File System

Fig. 8 Schematic representation of the server channel architecture.
The server channel is composed of the following components: the
waiting room, the clients registry, the collection of game rooms, and
two independent game servers, one for the players and one for the
administrators

@ Springer

server. For more details about the internal components of nodeGame
client refer to Fig. 6

the channel waiting room might consult the registry before
starting a new game room. Each game room represents a
wrapper around a group of clients, which can exchange mes-
sages in a dedicated space. One of those, the logic, has the
purpose of controlling the advancement of the game. The
logic is implemented by the experimenter, as explained in
“Creating experiments with nodeGame”.

Get involved

nodeGame is an open-source project under active devel-
opment. A public organization containing its source code
is hosted at Github> at the address https:/github.com/
nodeGame/. Therein, it is possible to access the source code
of all the individual components of the nodeGame architec-
ture: client, server, and all the supporting libraries. People
interested in joining the development of nodeGame are
welcome, and are encouraged to follow the guidelines for
developers on the project wiki (http://nodegame.org/wiki/),
to sign up to the nodeGame mailing list for announcements,
help or features requests, or to follow the Twitter channel
@nodegameorg.

Conclusions

This paper introduced nodeGame, new software for con-
ducting real-time (but also discrete-time), synchronous
online experiments. The source code is open, and it can be
downloaded for free from http://nodegame.org.

The main motivation behind the software was to sup-
port behavioral research along three dimensions: (i) size, (ii)
time, and (iii) granularity. As described in “Waiting room”,

2 Github is a collaborative platform for code review and code manage-
ment of software projects.

https://github.com/nodeGame/
https://github.com/nodeGame/
http://nodegame.org/wiki/
http://nodegame.org

Behav Res (2017) 49:1696-1715

1713

nodeGame can support a large group size simply by modify-
ing the settings of the waiting room, for example increasing
the value of the parameters POOL_SIZE and GROUP_SIZE.
Moreover, the time dimension can be easily manipulated by
implementing game steps with the desired speed of inter-
action among players. For example, implementing a con-
tinuous dilemma game (Friedman & Oprea, 2012), would
simply require: a new call to the method node . say each
time a player presses a submit button, and registering an
event handler with node . on . data that updates the screen
with the last information received (see “Client types”).
Finally, the granularity dimension can be addressed by
adding multiple treatments with the desired values for the
parameters (see “Game variables and treatments”). This
is easy to implement because treatments are just normal
JavaScript objects that can be created in a standard for-loop.

Summary of advantages of nodeGame

— nodeGame can be executed in different environments,
such as laboratory, online, field, and even lecture hall,
and makes switching among those easy.

— nodeGame grants great flexibility to the experimenters
in the definition of experimental setups.

— nodeGame supports both turn-based and real-time
experiments.

— nodeGame’s scalable architecture can support large-
scale experiments with hundreds of players even with a
standard laptop machine.

— nodeGame lowers the barrier for online participation
because clients can join an experiment without the need
of installing any additional software.

— nodeGame can reduce the costs of maintaining a labora-
tory pool, since only one computer needs to be updated
with future releases of the software.

— nodeGame makes it possible to realize rich and inter-
active user interfaces with the use of standard Web
technologies (HTML, CSS, JavaScript).

— Being open source, it is relatively easy to find good
Web developers able to implement experiments at a
reasonably low cost.

Current limitations of nodeGame

— Experimenters need some programming skills to imple-
ment new experiments in nodeGame. This is a design
feature, because programming an own experiment
grants more flexibility, and can increase the general per-
formance of the application, a vital goal for achieving
large-scale experiments.

— There is only limited support for matching algorithms,
and mapping roles to participants. However, with aver-
age computer programming skills it is possible to write

custom code achieving the same goals in a relatively
straightforward way.

— There is only limited support for integration with exter-
nal databases. Currently, only MongoDB is supported.

— nodeGame does not provide a physics engine or an
engine for the movement of sprites in 2D or 3D envi-
ronments.

— nodeGame does not do the recruitment of participants.
This is unlikely to change in the future given the broad
ecosystem of online labor markets available.

— nodeGame provides only partial integration with one
online labor market: Amazon Mechanical Turk. Exper-
imenters must have their own employer accounts, and
upload their tasks outside of nodeGame.

— The online documentation for nodeGame covers most
of the use cases, but not yet all of them. 100 % cover-
age will be reached in the near future, hopefully with
the help of a community of users and contributors. As
pointed out by Horton et al. (2011), we not only need
better tools but also better documentation.

Future developments of nodeGame

Future developments of nodeGame will focus on extend-
ing the number of available widgets and predefined game
frames, with special attention to multi-player widgets. This
will further reduce the implementation load on developers.

Furthermore, more matching algorithms will be pro-
vided, including network algorithms and automatic assign-
ments of roles to players.

Finally, even though it cannot be guaranteed that no
backward-incompatible change will be introduced, future
versions of nodeGame will try to minimize these. To this
extent, an apposite migration page on the project of the wiki
will keep an up-to-date list of such changes for every new
release of nodeGame, see for example: https://github.com/
nodeGame/nodegame/wiki/Migrating-To-v3.

Some final considerations

nodeGame is entirely open-source and free software. As
science increasingly relies on computational technologies
to achieve its goals, it is tremendously important that sci-
entific research is performed making use of open-source
and free software as much as possible (Sonnenburg et al.,
2007; Schwarz and Takhteyev, 2010). Choosing open and
free software ensures full replicability to scientific results
obtained with computer-mediated methods. Moreover, it
guarantees that errors in the source code can easily be spot-
ted and quickly fixed by the same community of users (Von
Krogh et al., 2003).

nodeGame is specifically designed to support behavioral
research conducted along three dimensions: (i) experiments

@ Springer

https://github.com/nodeGame/nodegame/wiki/Migrating-To-v3
https://github.com/nodeGame/nodegame/wiki/Migrating-To-v3

1714

Behav Res (2017) 49:1696-1715

with larger group size, (ii) real-time experiments, and (iii)
batches of parallel experiments. The simultaneous explo-
ration of these three research dimensions in the laboratory
and online is expected to put under severe fest the pre-
dictions of current theories, and to lead to the generation
of new ones of greater explanatory power. Accelerating
the cycle of hypothesis production and testing is key to
make rapid scientific progress by iteratively generating and
refining evidence-based knowledge about human behav-
ior. nodeGame aims at being a valuable instrument freely
available to the community of social scientists in such a
process.

Acknowledgments The author is grateful to all the persons who
have contributed to the development of nodeGame over the years:
Philipp Kiing, Benedek Vartok, Sebastien Arnold, Lionel Miserez, Jan
Wilken Dorrie, and Nicole Barbara Lipsky. The author is also indebted
for insightful and strategic discussions with Oliver Brigger, Stefan
Wehrli, Michael Mis, Dirk Helbing, Ryan O. Murphy, Christoph
Riedl, and Luke Horgan. The author’s work on nodeGame was grat-
ified over the years by the financial support from the group of
Computational Social Science (COSS) at ETH Ziirich, the ETH Deci-
sion Science Laboratory (DeScil), and the seed grant PEER by the
Institute for Science Technology and Policy (ISTP).

References

Anderson, B., Bernauer, T., & Balietti, S. (2016). Effects of fairness
principles on willingness to pay for climate change mitigation,
submitted.

Andersson, C., & Read, D. (2014). Group size and cultural complexity.
Nature, 511(7507), E1. doi:10.1038/nature13411.

Balietti, S., Goldstone, R.L., & Helbing, D. (2016). Peer review
and competition in the Art Exhibition Game. Proceedings of the
National Academy of Sciences (PNAS), 113(30), 8414-8419.

Balietti, S., Jaggi, B., & Axhausen, K. (2016). Efficiency gains in coor-
dination in information-poor environments. Available at SSRN
2802049.

Balietti, S., Mis, M., & Helbing, D. (2015). On disciplinary fragmen-
tation and scientific progress. PLoS ONE, 10(3). e0118747.

Bezanson, J., et al. (2014). Julia: a fresh approach to numerical
computing. arXiv:1411.1607 [cs.MS].

Birnbaum, M.H. (2000). SurveyWiz and FactorWiz: JavaScript Web
pages that make HTML forms for research on the Internet.
Behavior Research Methods, Instruments, & Computers, 32(2),
339-346.

Birnbaum, M.H. (2004). Human research and data collection via the
Internet. Annual Review of Psychology, 55, 803-832.

Bos, N. (2002). Effects of Four Computer-Mediated Communications
Channels on Trust Development. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, (pp. 135—
140).

Butler, B.S. (2001). Membership size, communication activity, and
sustainability: a resource-based model of online social structures.
Information Systems Research, 12(4), 346-362.

Centola, D. (2010). The spread of behavior in an online social network
experiment. Science, 329(5996), 1194-1197.

Chaudhuri, A. (2011). Sustaining cooperation in laboratory public
goods experiments: a selective survey of the literature. Experimen-
tal Economics, 14, 47-83.

@ Springer

Chen, C., Schonger, M., & Wickens, C. (2014). oTree: an open-source
platform for laboratory, online, and field experiments. http://www.
otree.org/.

Chernoff, H. (1973). The use of faces to represent points in K-
dimensional space graphically. Journal of the American Statistical
Association, 68(342), 361-368.

Ciampaglia, G.L. (2014). Power and fairness in a generalized ultima-
tum game. PLoS ONE, 9(6). €99039.

Cox, J.C., & Swarthout, J.T. (2005). EconPort: creating and maintain-
ing a knowledge commons. Andrew Young School of Policy Studies
Research Paper, 6-38.

DellaVigna, S. (2016). What motivates effort? Evidence and expert
forecasts NBER Working Paper No. 22193.

Derex, M., et al. (2013). Experimental evidence for the influence of
group size on cultural complexity. Nature, 503(7476), 389-391.

Fischbacher, U. (2007). z-Tree: Zurich toolbox for ready-made eco-
nomic experiments. Experimental Economics, 10(2), 171-178.

Friedman, D., & Oprea, R. (2012). A continuous dilemma. The
American Economic Review, 337-363.

Hawkins, R.X.D. (2014). Conducting real-time multiplayer experi-
ments on the Web. Behavior Research Methods, 1-11.

Helbing, D. (2014). Conditions for the emergence of shared norms
in populations with incompatible preferences. PLoS ONE, 9(8).
e104207.

Heinrich, J. (2004). Demography and cultural evolution: How adaptive
cultural processes can produce maladaptive losses: the Tasmanian
case. American Antiquity, 197-214.

Horton, J.J., Rand, D.G., & Zeckhauser, R.J. (2011). The online
laboratory: conducting experiments in a real labor market. Exper-
imental Economics, 14(3), 399-425.

Kraut, R., et al. (2004). Psychological research online: Report of Board
of Scientific Affairs’ Advisory Group on the Conduct of Research
on the Internet. American Psychologist, 59(2), 105-107.

Lakkaraju, K., et al. (2015). The Controlled, Large Online Social
Experimentation Platform (CLOSE). In International Conference
on Social Computing, Behavioral-Cultural Modeling, and Predic-
tion, (pp. 339-344).

Leeuw, J.R.d.e. (2014). jsPsych: A JavaScript library for creating
behavioral experiments in a Web browser. Behavior Research
Methods, 47(1), 1-12.

Leeuw, J.R.d.e., & Motz, B.A. (2016). Psychophysics in a Web
browser? Comparing response times collected with JavaScript and
psychophysics toolbox in a visual search task. Behavior Research
Methods, 48(1), 1-12.

Mangan, M.A., & Reips, U.-D. (2007). Sleep, sex, and the Web: sur-
veying the difficult-to-reach clinical population suffering from
sexsomnia. Behavior Research Methods, 39(2), 233-236.

Mao, Q. (2015). Experimental studies of human behavior in social
computing systems. PhD thesis. Harvard.

Mason, W., & Suri, W. (2012). Conducting behavioral research on
Amazon’s Mechanical Turk. Behavior Research Methods, 44(1),
1-23.

Murphy, R.O., Ackermann, K.A., & Handgraaf, M. (2011). Measur-
ing social value orientation. Judgment and Decision Making, 6(8),
771-781.

Musch, J., & Reips, U.-D. (2000). A Brief History of Web Experi-
menting. Birnbaum, M.H. (Ed.) Psychological experiments on the
Internet: Academic Press.

Nax, H.H., et al. (2016). A welfare investigation of generalized
contribution-based competitive grouping. Available at SSRN
2604140.

Neath, I, et al. (2011). Response time accuracy in Apple Macintosh
computers. Behavior Research Methods, 43(2), 353-362.

Nosenzo, D., Quercia, S., & Sefton, M. (2013). Cooperation in small
groups: the effect of group size. Experimental Economics, 18(1),
4-14.

http://dx.doi.org/10.1038/nature13411
http://arxiv.org/abs/1411.1607
http://www.otree.org/
http://www.otree.org/

Behav Res (2017) 49:1696-1715

1715

Olson, M. (1965). The logic of collective action: public goods and the
theory of groups. Cambridge: Harvard University Press.

Paolacci, G., Chandler, J., & Ipeirotis, P.G. (2010). Running exper-
iments on Amazon Mechanical Turk. Judgment and Decision
making, 5(5), 411-419.

Pettit, J., et al. (2014). Software for continuous game experiments.
Experimental Economics, 17(4), 631-648.

Rand, D.G., Greene, J.D., & Nowak, M.A. (2012). Spontaneous giving
and calculated greed. Nature, 489(7416), 427-430.

Reimers, S., & Stewart, N. (2015). Presentation and response timing
accuracy in Adobe Flash and HTMLS5/JavaScript Web experi-
ments. Behavior Research Methods, 47(2), 309-327.

Reips, U.-D. (2002). Standards for Internet-based experimenting.
Experimental Psychology, 49(4), 243-256.

Reips, U.-D., & Krantz, J.H. (2010). Conducting True Experiments
on the Web. Gosling, S.D., & Johnson, J.A. (Eds.) Advanced
methods for conducting online behavioral research: American
Psychological Association.

Reips, U.-D., & Neuhaus, C. (2002). WEXTOR: A Web-based tool for
generating and visualizing experimental designs and procedures.
Behavior Research Methods, Instruments, & Computers, 34(2),
234-240.

Rubinstein, A. (2013). Response time and decision making: an exper-
imental study. Judgment and Decision Making, 8(5), 540-551.
Salganik, M.J., Dodds, P.S., & Watts, D.J. (2006). Experimental study
of inequality and unpredictability in an artificial cultural market.

Science, 311(5762), 854-856.

Schwarz, M., & Takhteyev, Y. (2010). Half a century of public soft-
ware institutions: open source as a solution to hold-up problem.
Journal of Public Economic Theory, 12(4), 609—639.

Simon, L.K., & Stinchcombe, M.B. (1989). Extensive form games
in continuous time: Pure strategies. Econometrica: Journal of the
Econometric Society, 1171-1214.

Sonnenburg, S., et al. (2007). The need for open-source software
in machine learning. Journal of Machine Learning Research, 8,
2443-2466.

Suri, S., & Watts, D.J. (2011). Cooperation and contagion in Web-
based, networked public goods experiments. PLoS One, 6(3).
e16836.

Thompson, E.R. (2007). Development and validation of an interna-
tionally reliable short-form of the Positive and Negative Affect
Schedule (PANAS). Journal of Cross-Cultural Psychology, 38(2),
227-242.

Von Krogh, G., Spaeth, S., & Lakhani, K.R. (2003). Community, join-
ing, and specialization in open-source software innovation: a case
study. Research Policy, 32(7), 1217-1241.

Wang, J., Suri, S., & Watts, D.J. (2012). Cooperation and assor-
tativity with dynamic partner updating. In Proceedings of the
National Academy of Sciences (PNAS), (Vol. 109, pp. 14363—
14368).

Watson, D., Clark, L.A., & Tellegen, A. (1988). Development and
validation of brief measures of Positive and Negative Affect: the
PANAS Scales. Journal of Personality and Social Psychology,
54(6), 1063-1070.

@ Springer

	nodeGame: Real-time, synchronous, online experiments in the browser
	Abstract
	Introduction
	Three dimensions for future online behavioral research: size, time, and granularity
	Size
	Time
	Granularity

	Software for online synchronous experiments
	Outline of this paper

	nodeGame: Overview
	Creating experiments with nodeGame*.2pt
	Installation/Quick start*.2pt
	Creating and joining a new experiment
	The core components of an experiment*-1pt
	Game variables and treatments*-1pt
	nodeGame API to define game variables and treatments*-1pt

	The game sequence
	nodeGame API to define the game sequence

	Client types
	nodeGame API to define client types

	Waiting room
	nodeGame API to define waiting room settings

	nodeGame Features
	Authorization rules
	nodeGame API to create authorization rules

	Automated players: bots and phantoms
	nodeGame API to handle automated players

	Disconnections and reconnections
	nodeGame API to handle disconnections/reconnections

	Game levels
	nodeGame API to create game levels

	Matcher
	nodeGame API to match players

	Monitor interface*-.5pt
	Multiple games and access points
	Requirements
	nodeGame API to create requirement rules

	Templates and internationalization
	nodeGame API to create templates

	Timers
	nodeGame API for timer operations*.2pt

	The Window object
	Frames and header
	nodeGame Window API to load and manipulate frames

	Searching and manipulating the DOM
	nodeGame Window API to search and manipulate the DOM

	User interface
	nodeGame Window API to manipulate the user interface

	Widgets
	Widgets API
	List of selected widgets
	Widget-steps

	nodeGame's architecture
	Overview
	Channels
	Get involved

	Conclusions
	Summary of advantages of nodeGame
	Current limitations of nodeGame
	Future developments of nodeGame
	Some final considerations

	Acknowledgments
	References

