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Abstract

Most work building on the Stackelberg security games
model assumes that the attacker can perfectly observe
the defender’s randomized assignment of resources to
targets. This assumption has been challenged by re-
cent papers, which designed tailor-made algorithms that
compute optimal defender strategies for security games
with limited surveillance. We analytically demonstrate
that in zero-sum security games, lazy defenders, who
simply keep optimizing against perfectly informed at-
tackers, are almost optimal against diligent attackers,
who go to the effort of gathering a reasonable number
of observations. This result implies that, in some real-
istic situations, limited surveillance may not need to be
explicitly addressed.

Introduction
The deployment of game-theoretic algorithms for secu-
rity (Tambe 2012) is one of computational game the-
ory’s biggest success stories to date. These algorithms
are currently in use by major security agencies such as
the US Coast Guard, the Federal Air Marshals Service,
and the LA International Airport Police.

The basic model involves a Stackelberg game with
two players, a leader (the defender) and a follower (the
attacker). The defender deploys its security resources in
a randomized way, by choosing a distribution over as-
signments of resources to feasible subsets of potential
targets (for example, by sending a patrol to a certain
area). The attacker then observes this randomized strat-
egy and attacks a target with maximum expected payoff.
The defender’s goal is to compute an optimal random-
ized strategy to commit to.

One of the implicit assumptions underlying this
model is that the attacker has accurate information
about the defender’s randomized strategy, presumably
through surveillance. But in practice we would expect
the attacker to obtain only a limited number of obser-
vations. This insight motivates the recent work of An
et al. (2012; 2013), who design tailor-made algorithms
that specifically optimize against an attacker with a

given number of samples of the defender’s randomized
strategy.

We, too, are interested in understanding the impli-
cations of limited surveillance in security games. But
rather than designing new or improved algorithms, as
is common in the security games literature, we take the
opposite approach by analytically demonstrating that,
in realistic situations, limited surveillance may not be a
major concern.

Results and Implications
We would like to compare two hypothetical worlds:

1. The defender optimizes against an attacker with un-
limited observations (i.e., complete knowledge of the
defender’s strategy), but the attacker actually has
only k observations. This is, presumably, the current
status quo.

2. The defender optimizes against an attacker with k ob-
servations, and, miraculously, the attacker indeed has
exactly k observations.

We assume (without loss of generality) that the de-
fender’s utility function is normalized to be in [−1, 1].
Our main result is the following:

Theorem 1 (informal). For any zero-sum security game
with m security resources such that each resource can
cover at most d targets, and for any number of samples
k, The difference between the defender’s utility in world

2 and world 1 is at most O
(√

ln(mdk)
k

)
.

The loss decreases rather quickly as the number of
samples k grows, and scales gracefully with m and d.
Note that the bound does not depend on the overall
number of targets, denoted n. In most deployed appli-
cations we would expect m and d to be tiny compared
to n. For example, there are very few federal air mar-
shals compared to the staggering number of flights, and
each can cover only one flight at any given time. We
complement this result with a lower bound that shows
an almost tight dependence on k.



The zero-sum assumption may seem restrictive, but
in practice it is quite mild. Indeed, many deployed
security-games-based systems actually use zero-sum
payoffs; among others, these include PROTECT (Shieh
et al. 2012) and TRUSTS (Yin et al. 2012). We give an
example that shows that Theorem 1 does not hold when
the game is not zero sum.

Assuming a limited-surveillance situation, moving
from world 1 to world 2 requires very significant (de-
ployment and computational) effort, and existing so-
lutions (An et al. 2012; 2013) need new modeling as-
sumptions to come up with an estimate for the attacker’s
number of observations k. The operational upshot of
our main result is that existing, deployed algorithms —
which do, in fact, optimize for an attacker that accu-
rately observes the defender’s mixed strategy, and there-
fore live in world 1 — may be good enough, despite the
limited surveillance concern.

Related Work
Our paper is most closely related to two papers by An
et al. (2012; 2013). The first paper (An et al. 2012) pro-
poses a model for security games with limited surveil-
lance. In this model, the attacker has a prior over de-
fender strategies, which is updated as observations are
obtained (we use a slightly simpler, but still realistic,
belief update model). They present a few theoretical ex-
amples of interesting phenomena in this model. Their
main contribution is optimization techniques for com-
puting optimal defender strategies in the limited surveil-
lance setting, and experiments that show that these tech-
niques are effective. The games generated in the exper-
iments are not constrained to be zero-sum, so these em-
pirical results are not at odds with our theoretical re-
sults. In addition, the defender is assumed to be able
to exactly compute the number of observations that the
attacker will obtain.

The second paper (An et al. 2013) relaxes the last as-
sumption by giving a Markov Decision Process (MDP)
model for the attacker’s problem of obtaining additional
(costly) observations. They also focus on optimization
techniques for the new model, and on empirical results,
which are, similarly, carried out using games that are
not zero-sum. Our work complements these two papers
by demonstrating that in zero-sum games, customized
algorithms for limited surveillance may not be required.

A bit further afield, Yin et al. (2011) propose to model
observational uncertainty by assuming that the differ-
ence between the defender’s strategy and the attacker’s
belief about it is bounded. Pita et al. (2010) model set-
tings with imperfect observability by reasoning about
how humans perceive probability distributions. Simi-
larly to the majority of papers on security games, these
papers focus on new algorithmic techniques for the pro-
posed extensions. Finally, it is worth mentioning that
imperfect observability has also been studied in gen-

eral Stackelberg games (van Damme and Hurkens 1997;
Morgan and Vardy 2007)

Preliminaries
A security game is a two-player general-sum game be-
tween a defender and an attacker. In this game, the de-
fender commits to a mixed strategy that allocates a set
of resources to defend a set of targets. The attacker ob-
serves part or all of the defender’s strategy and attacks
a target. The defender and attacker both receive payoffs
that depend on the target that was attacked and whether
or not it was defended.

Formally, a security game is defined by a 5-tuple
(T,D, R,A, u):

• T = {1, . . . , n} is a set of n targets.

• R is a set of m resources.

• D ⊆ 2T , is a collection of subsets of targets, called
schedules. Every D ∈ D represents a subset of tar-
gets that can be simultaneously defended by a re-
source. The max-coverage of D is the maximum
number of targets that any resource can defend si-
multaneously, i.e. maxD∈D |D|.

• A : R → 2D is a function that takes a resource
and returns the set of schedules that can be defended
using that resource. An assignment of resources to
schedules is valid if for every r ∈ R, if r defends D
then D ∈ A(r).

• The utilities of target t are given by four functions: If
target t is attacked, the defender receives ucd(t) when
t is covered and uud(t) when it is not covered. Sim-
ilarly, the attacker receives uca(t) when t is covered
and uua(t) when it is not covered. We assume that the
attacker prefers it if the attacked target is not cov-
ered, and the defender prefers it if the attacked target
is covered i.e. uua(t) ≥ uca(t) and uud ≤ ucd(t). With-
out loss of generality, we assume that the targets are
ordered in decreasing order of uua(t). Furthermore,
we assume (also without loss of generality) that the
utilities are normalized to be in [−1, 1]. A security
game is zero-sum if for any target t, ucd(t) + uca(t) =
uud(t) + uua(t) = 0.

A pure strategy of the defender is a valid assignment
of resources to schedules. S is a mixed strategy (here-
inafter, called strategy) if it is a distribution over the
pure strategies. Given a defender’s strategy, the cover-
age probability of a target is the probability with which
it is defended. Let S be a defender’s strategy, t be the
attacker’s choice, and pt be the coverage probability of
target t under S; then the defender’s and attacker’s util-
ities are, respectively, as follow:

Ud(S, t) = ptu
c
d(t) + (1− pt)uud(t)

Ua(S, t) = ptu
c
a(t) + (1− pt)uua(t)
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Table 1: Defender’s utilities when he optimizes against
an attacker with k or infinitely many samples and the
attacker observes k or infinitely many samples.

The attacker’s best response to a strategy S is defined
by b(S) = arg maxt Ua(S, t). We assume (purely for
ease of exposition) that ties are broken in favor of tar-
gets with lower index and b(S) indicates a single target.

In our model, the attacker may obtain a limited num-
ber of observations of the defender’s strategy. The at-
tacker then responds to what he perceives the defender’s
strategy to be; we assume that this belief is the empir-
ical distribution over the attacker’s observed samples.
For example, if the attacker has observed a certain pure
strategy once, and another pure strategy twice, then he
will believe that the former pure strategy is played with
probability 1/3, and the latter pure strategy is played
with probability 2/3.

Given a mixed strategy S and integer k, S′ ∼ (S)k

is a random variable that indicates (the strategy equal
to) the empirical distribution over k random draws from
S. We define S∗k to be the defender’s optimal strat-
egy against an attacker that has k samples. In other
words, S∗k = arg maxS ES′∼(S)kUd(S, b(S′)). Simi-
larly, we define S∗∞ to be the defender’s optimal strat-
egy against an attacker who has complete knowledge
of the defender’s strategy. In other words, S∗∞ =
arg maxS Ud(S, b(S)).

Main Results
In this section, we focus on zero-sum security games.
We show that S∗∞ is a good replacement for S∗k
in terms of its utility to the defender against an
attacker with k observations. That is, we compare
ES∼(S∗k)kUd(S∗k , b(S)) (“World 2”, light gray cell in
Table 1) and ES∼(S∗∞)kUd(S∗∞, b(S)) (“World 1”, dark
gray cell in Table 1), and establish that S∗∞ guarantees
an additive gap of O(

√
ln(mdk) / k) (Theorem 1). We

prove that this bound is relatively tight by showing that
S∗∞ cannot guarantee a gap of o(1 /

√
k) (Theorem 2)

or even a constant gap when m and d are much larger
than k (Theorem 3).

Upper Bound
Our main result is:
Theorem 1. For any zero-sum security game with n
targets, m resources, and a set of schedules with max-

coverage d, and for any k,

ES∼(S∗
k
)kUd(S

∗
k , b(S))− ES∼(S∗∞)kUd(S

∗
∞, b(S))

∈ O

(√
lnmdk

k

)
The next lemmas are required for proving Theorem

1. Lemma 1 shows an important relation between the
utilities of the defender in various cases (see Table 1).

Lemma 1. For any zero-sum security game
and any integer k, ES∼(S∗k)kUd(S∗k , b(S)) ≥
ES∼(S∗∞)kUd(S∗∞, b(S)) ≥ Ud(S∗∞, b(S

∗
∞))

Proof. The first inequality holds by the optimal-
ity of S∗k against an attacker with k observations.
The second inequality holds by the optimality of
the minimax strategy in zero-sum games. In other
words, for all t, Ua(S∗∞, t) ≤ Ua(S∗∞, b(S

∗
∞)), so

ES∼(S∗∞)kUa(S∗∞, b(S)) ≤ Ua(S∗∞, b(S
∗
∞). How-

ever, the attacker’s utility is the negation of the de-
fender’s utility, hence, ES∼(S∗∞)kUd(S∗∞, b(S)) ≥
Ud(S∗∞, b(S

∗
∞)).

The next two lemmas show that if the observed cov-
erage probability on the attacked target is relatively ac-
curate in S∗k , then the defender’s utility is close to his
utility in S∗∞.

Lemma 2. Let S be a defender’s strategy, and let pi and
qi be the coverage probabilities of target i in S∗k and S,
respectively. Let t = b(S) and assume that pt − qt ≤ ε.
Then Ud(S∗k , b(S)) ≤ Ud(S∗∞, b(S

∗
∞)) + 2ε.

Proof. Since t = b(S), we have

Ud(S∗k , b(S)) = ptu
c
d(t) + (1− pt)uud(t)

≤ (qt + ε)ucd(t) + (1− qt − ε)uud(t)

≤ qtucd(t) + (1− qt)uud(t) + 2ε

≤ Ud(S, b(S)) + 2ε

≤ Ud(S∗∞, b(S
∗
∞)) + 2ε,

where the second transition holds because ucd(t) ≥
uud(t), the third holds because uud(t), ucd(t) ∈ [−1, 1],
and the last holds by the optimality of S∗∞.

Lemma 3. Let the defender havem resources, and a set
of schedules with max-coverage d. Let S be a strategy
with at most k pure strategies in its support, and let pi
and qi be the coverage probabilities of target i in S∗k
and S, respectively. If pi − qi ≤ ε for all i ≤ mdk + 1,
then Ud(S∗k , b(S)) ≤ Ud(S∗∞, b(S

∗
∞)) + 2ε.

Proof. Since S has at most k pure strategies in its sup-
port, there exists j ≤ mdk + 1, such that qj = 0. So,
for all i > mdk + 1, uua(j) ≥ uua(i) ≥ (1− qi)uua(i) +
qiu

c
a(i), where the first inequality uses the fact the tar-

gets are sorted in decreasing order of uua(·), and the last
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inequality holds because uua(i) ≥ uca(i). So, i is not at-
tacked. The rest comes directly from Lemma 2 and the
fact that one of the firstmdk+1 targets is attacked.

Proof of Theorem 1. For S ∼ (S∗k)k, let pi and qi be
the coverage probabilities of target i in S∗k and S, re-
spectively. Let ε =

√
ln(mdk + 1) / k. Let P be the

probability that for all i ≤ mdk + 1, pi − qi ≤ ε. S
surely has at most k pure strategies in its support, and
therefore by Lemma 3,

ES∼(S∗
k
)kUd(S

∗
k , b(S)) ≤ P · (U(S∗∞, b(S

∗
∞)) + 2ε)

+ (1− P ) · (U(S∗∞, b(S
∗
∞)) + 2)

≤ U(S∗∞, b(S
∗
∞)) + 2ε+ 2(1− P ).

Using the union bound and Hoeffding’s inequality,

1− P ≤
∑

i≤mdk+1

Pr(pi − qi > ε) ≤ (mdk + 1)e−2ε2k.

Hence,

ES∼(S∗
k
)kUd(S

∗
k , b(S)) ≤ Ud(S∗∞, b(S∗∞)) + 2ε

+ 2(mdk + 1)e−2ε2k

≤ Ud(S∗∞, b(S∗∞)) + 2

√
ln(mdk + 1)

k
+

2

mdk + 1

≤ ES∼(S∗∞)kUd(S
∗
∞, b(S)) + 2

√
ln(mdk + 1)

k

+
2

mdk + 1

= ES∼(S∗∞)kUd(S
∗
∞, b(S)) +O

(√
ln(mdk)

k

)
,

where the penultimate transition holds by Lemma
1.

One way to generalize Theorem 1 is to replace S∗∞
with an approximately optimal strategy. This is espe-
cially interesting because computing S∗∞ is NP-hard
even for zero-sum security games (Korzhyk, Conitzer,
and Parr 2010). By slightly modifying the proof of The-
orem 1, we can show that if S∗∞ is replaced with an
approximately optimal S∗ such that Ud(S∗, b(S∗)) ≥
Ud(S∗∞, b(S

∗
∞))− α, then the same upper bound holds

up to an additional term of α.

Lower Bounds
The next result shows that Theorem 1 is almost tight
with respect to k.
Theorem 2. For any m, d, and k, there exists a zero-
sum security game with m resources and schedules of
max-coverage d, such that

ES∼(S∗k)kUd(S∗k , b(S))− ES∼(S∗∞)kUd(S∗∞, b(S))

∈ Θ

(
1√
k

)

Target Defender
i ucd(·) uud(·)
1 1 −1
...

...
...

md 1 −1

md+ 1 ε −ε
...

...
...

2md ε −ε

Table 2: Utilities associated with each target in Theorem
2. The attacker’s utilities are the additive inverse of the
defender’s utilities.

Proof. Let there be n = 2md targets, m resources,
and a schedule set D = {D ⊆ T : |D| = d},
such that any resource can defend any schedule. For
i ≤ md, let ucd(i) = −uud(i) = 1, and for i > md,
let ucd(i) = −uud(i) = ε, for an arbitrary ε < 0.17
(as seen in Table 2). It is not difficult to see that S∗∞
covers each target with probability 0.5. These probabil-
ities can be imposed using a mixed strategy that with
probability 0.5 defends the first md targets, and with
probability 0.5 defends the last md targets. In this case,
the expected utility of every target is 0 and as a result
ES∼(S∗∞)kUd(S∗∞, b(S)) = 0.

Let the mixed strategy Sk be such that with probabil-
ity 0.5 + 1 /

√
4(k + 1) it defends the first md targets

and with probability 0.5− 1 /
√

4(k + 1) it defends the
last md targets. Clearly, this strategy imposes coverage
probabilities of pi = 0.5 + 1 /

√
4(k + 1) for i ≤ md,

pi = 0.5− 1 /
√

4(k + 1) for i > md.
We are interested in computing the probability that

one of the first md targets is attacked. For S ∼ Sk, let
qi be the observed coverage probability of target i in S.
Due to the structure of Sk (defending the first or last
half of the targets at any time), qi = qj for all i, j ≤ md
or i, j > md. So, the attacker would attack one of the
first md targets if qi ≥ 0.5 for any (and all) i > md.

Let X be a random variable indicating the number of
attacker’s observations, out of k, in which targetmd+1
(and any target i > md) is defended. Then

Pr
S∼(Sk)

k
(qmd+1 ≥

1

2
) = Pr

X∼Bin(k,pmd+1)
(X ≥ k

2
)

= Pr
X∼Bin(k,pmd+1)

(
X ≥ kpmd+1 +

k√
4(k + 1)

)
= Pr
X∼Bin(k,pmd+1)

(X ≥ E[X] + s.d[X])

≈ Pr
X∼N (E[X],s.d2[X])

(X ≥ E[X] + s.d[X])

≈ 0.159,

where the third transition holds because in the Bino-
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mial distribution, E[X] = kpmd+1 and s.d[X] =√
kpmd+1(1− pmd+1) = k√

4(k+1)
; and the fourth

transition uses a Normal approximation for the Bino-
mial distribution (which is valid because we are inter-
ested in a result that is asymptotic in k). Therefore,

ES∼(S∗
k
)kUd(S

∗
k , b(S))− ES∼(S∗∞)kUd(S

∗
∞, b(S))

≥ Pr

(
qmd+1 ≥

1

2

)
Ud(Sk, 1)

+ Pr

(
qmd+1 <

1

2

)
Ud(Sk,md+ 1)− 0

≥ 0.159(2p1 − 1) + 0.841ε(2pmd+1 − 1)

≥ 0.159− 0.841ε√
k + 1

∈ Θ

(
1√
k

)

The lower bound given in Theorem 2 does not im-
prove (i.e., become larger) with m and d. We next show
that when m and d are considerably larger than k, there
is a security game in which the approximation gap be-
tween playing S∗∞ and S∗k is a constant. Note that this
bound is independent of the number of observations.

Theorem 3. For any m, d, and k, such that 2md ≥(
2k
k

)
, and for any ε, there is a zero-sum security game

with m resources and max-coverage d, such that re-
gardless of the value of k

ES∼(S∗k)kUd(S∗k , b(S))− ES∼(S∗∞)kUd(S∗∞, b(S))

≥ 1

2
− ε

The next lemma is needed for the proof of Theorem
3. This lemma shows that we can cover a set of elements
with a relatively small collection of sets, such that each
element appears in half of this collection, but if we take
only half of the sets, then at least one element does not
appear in their union.

Lemma 4. For any set A and integer k such that |A| =(
2k
k

)
, there exists D = {D1, . . . , D2k} ⊆ 2A such that:

(1) for all i ≤ 2k, |Di| = |A|/2; (2) for any a ∈ A, a is
in exactly k members of D; and (3) for any k elements
of D, there exists a ∈ A that does not appear in any of
them, i.e. if D′ ⊂ D and |D′| ≤ k, then

⋃
D′ 6= A.

Proof. There are
(
2k
k

)
= |A| subsets of the set [2k] =

{1, . . . , 2k} with size k, so, there is a bijection between
these subsets and elements of A. For any S ⊆ [2k] such
that |S| = k, let aS ∈ A be the member of A that
corresponds to S. For all i ≤ 2k, let Di = {aS : S ⊂
[2k], |S| = k, i ∈ S}. Define D = {Di : i ≤ 2k}. We
will show that D has the required properties.

First, for any Di, if aS ∈ Di then aSc 6∈ Di, where
Sc is the complement of S. So |Di| = |A|/2. Second,
for a given S and for all i ∈ S, aS ∈ Di. Since |S| = k,
aS is in exactly k members of D. Third, for any D′ ⊂
D, such that |D′| ≤ k, |{i : Di 6∈ D′}| ≥ k. Let S′
be any k-subset of {i : Di 6∈ D′}. For all Di ∈ D′,
aS′ 6∈ Di. Hence,

⋃
D′ 6= A.

Now, we are ready to prove Theorem 3.

Proof of Theorem 3. Let there be n = dmd/εe tar-
gets and let any resource be able to defend any d-
sized subset of the targets. For any target i ≤ n, let
ucd(i) = 1 and uud(i) = 0. In the best case, S∗∞ de-
fends every target equally with probability md/n. So
ES∼(S∗∞)kUd(S∗∞, b(S)) ≤ md/n ≤ ε.

Now we define a mixed strategy S∗. Consider the set
A of targets 1, . . . ,

(
2k
k

)
. Let {D1, . . . , D2k} be the sub-

sets of targets with the properties mentioned in Lemma
4. For every Di, let Si be the pure strategy in which
every target in Di is defended. This is a valid strategy
because |Di| = |A|/2 ≤ md (by the theorem’s assump-
tion) and any resource can defend any d-sized subset of
targets. Define S∗ to be the uniform distribution over
S1, . . . , S2k. Since, each target is defended in k out of
2k schedules, for all i ≤

(
2k
k

)
, the coverage probability

of target i is pi = 0.5.
After any k observations, at most k of these strategies

are observed. Using Lemma 4, there is at least one tar-
get that is not covered in any of these observations, so
it is perceived to have the highest expected utility to the
attacker. So, the attacker always attacks one of the first(
2k
k

)
targets. Hence, ES∼(Sk)kUd(Sk, b(S)) = 0.5 and

ES∼(S∗k)kUd(S∗k , b(S)) − ES∼(S∗∞)kUd(S∗∞, b(S)) ≥
1
2 − ε

(Impossible) Extensions
In this section we examine the assumptions and choices
made in the statement of Theorem 1, and show that they
are necessary. In other words, we give counterexamples
to two potential extensions.

Multiplicative vs. Additive Approximation
Theorem 1 asserts that the utility of playing S∗∞ gives
a good additive approximation to that of S∗k against
an attacker that makes k observations. Another com-
mon measure of performance guarantee is multiplica-
tive approximation. However, because expected utilities
can be positive or negative, a multiplicative approxima-
tion is not a suitable measure. Indeed, in the next ex-
ample, we demonstrate that for any k < n − 1 there
exists a game with n targets, one resource, and single-
ton schedules, such that the multiplicative gap between
ES∼(S∗k)kUd(S∗k , b(S)) and ES∼(S∗∞)kUd(S∗∞, b(S)) is
infinitely large, although these values are additively
close.
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Targets Defender’s Utility
i ucd(·) uud(·)
1 1 − 1

n−1
...

...
...

n 1 − 1
n−1

Table 3: Utilities associated with each target in Example
1. The attacker’s utilities are the zero-sum complement
of the defender’s utilities.

Example 1. Let there be n targets and one resource that
can defend any single target. For all i ≤ n, let ucd(i) = 1
and uud(i) = − 1

n−1 and let the attacker’s utilities be the
additive inverse of the defender’s (see Table 3). Let Pi

represent the coverage probability of i in S∗∞. Then for
all i ≤ n, Pi = 1

n and the utility of every target is 0. So,
ES∼(S∗∞)kUd(S∗∞, S) = 0.

Let Sk be the strategy with pi = 1
k+1 for all i ≤ k+1,

and pi = 0 otherwise. Note that in any k observations,
at least one of the first k + 1 targets is never defended.
This target has higher perceived utility to the attacker
than any target i > k + 1. Then,

ES∼(S∗
k
)kUd(S

∗
k , b(S)) ≥ ES∼(Sk)

kUd(Sk, b(S))

≥ min
i≤k+1

piu
c
d(i) + (1− pi)uud(i)

≥ 1

k + 1
− k

(k + 1)(n− 1)

> 0.

It follows that

ES∼(S∗k)kUd(S∗k , b(S))

ES∼(S∗∞)kUd(S∗∞, b(S))
=∞,

but using Theorem 1, the additive gap is O
(√

ln k
k

)
.

General-Sum vs. Zero-Sum
Unlike the zero-sum setting, S∗∞ is not always a good
alternative to S∗k in the general-sum games (in terms
of its utility to the defender). In the next example,
we construct a (general-sum) security game where
ES∼(S∗k)kUd(S∗k , b(S))−ES∼(S∗∞)kUd(S∗∞, b(S)) is ar-
bitrarily close to 1

2 , even for large k.

Example 2. Consider n targets and one resource that
can defend any single target. Let ucd(1) = uua(1) =
uua(2) = 1, uud(2) = −1, and set other utilities to 0
(see Table 4). Let Pi be the coverage probability of tar-
get i in S∗∞. Then, P1 = P2 = 0.5 and Pi = 0 for all
i > 2.

For ease of exposition, assume k is odd. Let X be a
random variable for the number of observations (out of

Targets Defender Attacker
i ucd(·) uud(·) uca(·) uua(·)
1 1 0 0 1

2 0 −1 0 1

3 0 0 0 0
...

...
...

...
...

n 0 0 0 0

Table 4: This table shows the utilities associated with
each target in Example 2.

k) in which the first target is defended. Since, k is odd,
PrS∼(S∗∞)k(X < k/2) = PrS∼(S∗∞)k(X > k/2) =

0.5. Therefore, ES∼(S∗∞)kUd(S∗∞, b(S)) = 0.
On the other hand, let Sk be the strategy in which

p1 = 1 − p2 = 0.5 + ε and pi = 0 for all i > 2 and a
small ε > 0. Using the Central Limit Theorem,

lim
k→∞

Pr
S∼(Sk)k

(
X >

k

2

)
= 1.

Therefore, for large enough k that is also odd, the at-
tacker will attack target 1 with high probability. Because
ε > 0 is arbitrarily small, ES∼(S∗k)kUd(S∗k , b(S)) ≈
1/2, and hence the gap is arbitrarily close to 1/2.

Discussion
Limited surveillance is not the only way in which the
Stackelberg security games model (Kiekintveld et al.
2009) is unrealistic. Motivated by the practical appli-
cations of security games, researchers have pointed out
the model’s shortcomings, and have proposed custom-
made algorithms to alleviate them, in a slew of pa-
pers. For example, there may be different types of at-
tackers (Paruchuri et al. 2008; Jain, Kiekintveld, and
Tambe 2011), but even taking that into account, the de-
fender’s estimate of the attacker’s payoffs may be inac-
curate (Kiekintveld, Marecki, and Tambe 2010; 2011).
And instead of choosing a best response to the attacker’s
strategy, the attacker may play suboptimally (Pita et al.
2010; Yang, Ordóñez, and Tambe 2012; Jiang et al.
2013). Most papers tend to focus on algorithmic solu-
tions for one shortcoming, and some papers (especially
those that are more theoretically inclined) abstract all of
these issues away (Korzhyk, Conitzer, and Parr 2010;
Korzhyk et al. 2011).

This is why we believe that our work offers a new
perspective on security games research. Our conceptual
approach is unusual, in seeking to understand in which
cases we do not need new algorithms, thereby helping
focus the community’s attention on the most pressing
algorithmic problems. Going forward, we imagine that
a similar approach would be useful in all aspects of se-
curity games research.
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Ordóñez, F. F.; and Kraus, S. 2008. Playing games
for security: An efficient exact algorithm for solving

Bayesian Stackelberg games. In Proceedings of the 7th
International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), 895–902.
Pita, J.; Jain, M.; Tambe, M.; Ordóñez, F.; and Kraus,
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Risk-averse strategies for security games with execution
and observational uncertainty. In Proceedings of the
25th AAAI Conference on Artificial Intelligence (AAAI),
758–763.
Yin, Z.; Jiang, A. X.; Tambe, M.; Kiekintveld, C.;
Leyton-Brown, K.; Sandholm, T.; and Sullivan, J. P.
2012. TRUSTS: Scheduling randomized patrols for fare
inspection in transit systems using game theory. AI
Magazine 33(4):59–72.

7


