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Abstract

Recently there has been significant activity in developing al-
gorithms with provable guarantees for topic modeling. In this
work we consider a broad generalization of the traditional
topic modeling framework, where we no longer assume that
words are drawn i.i.d. and instead view a topic as a complex
distribution over sequences of paragraphs. Since one could
not hope to even represent such a distribution in general (even
if paragraphs are given using some natural feature representa-
tion), we aim instead to directly learn a predictor that given a
new document, accurately predicts its topic mixture, without
learning the distributions explicitly. We present several natural
conditions under which one can do this from unlabeled data
only, and give efficient algorithms to do so, also discussing
issues such as noise tolerance and sample complexity. More
generally, our model can be viewed as a generalization of the
multi-view or co-training setting in machine learning.

1 Introduction
Topic modeling is an area with significant recent work
in the intersection of algorithms and machine learning
[4, 5, 3, 1, 2, 8]. In topic modeling, a topic (such as sports,
business, or politics) is modeled as a probability distribution
over words, expressed as a vector ai. A document is gener-
ated by first selecting a mixture w over topics, such as 80%
sports and 20% business, and then choosing words i.i.d. from
the associated mixture distribution, which in this case would
be 0.8asports+0.2abusiness. Given a large collection of such
documents (and some assumptions about the distributions
ai as well as the distribution over mixture vectors w) the
goal is to recover the topic vectors ai and then to use the ai
to correctly classify new documents according to their topic
mixtures. Algorithms for this problem have been developed
with strong provable guarantees even when documents con-
sist of only two or three words each [5, 1, 18]. In addition,
algorithms based on this problem formulation perform well
empirically on standard datasets [9, 15].

As a theoretical model for document generation, however,
an obvious problem with the standard topic modeling frame-
work is that documents are not actually created by inde-
pendently drawing words from some distribution. Moreover,
important words within a topic often have meaningful corre-
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lations, like shooting a free throw or kicking a field goal.
Better would be a model in which sentences are drawn i.i.d.
from a distribution over sentences. Even better would be
paragraphs drawn i.i.d. from a distribution over paragraphs
(this would account for the word correlations that exist within
a coherent paragraph). Or, even better, how about a model in
which paragraphs are drawn non-independently, so that the
second paragraph in a document can depend on what the first
paragraph was saying, though presumably with some amount
of additional entropy as well? This is the type of model we
study here.

Note that an immediate problem with considering such
a model is that now the task of learning an explicit distri-
bution (over sentences or paragraphs) is hopeless. While a
distribution over words can be reasonably viewed as a proba-
bility vector, one could not hope to learn or even represent
an explicit distribution over sentences or paragraphs. Indeed,
except in cases of plagiarism, one would not expect to see
the same paragraph twice in the entire corpus. Moreover, this
is likely to be true even if we assume paragraphs have some
natural feature-vector representation. Instead, we bypass this
issue by aiming to directly learn a predictor for documents—
that is, a function that given a document, predicts its mixture
over topics—without explicitly learning topic distributions.
Another way to think of this is that our goal is not to learn
a model that could be used to write a new document, but
instead just a model that could be used to classify a document
written by others. This is much as in standard supervised
learning where algorithms such as SVMs learn a decision
boundary (such as a linear separator) for making predictions
on the labels of examples without explicitly learning the dis-
tributions D+ and D− over positive and negative examples
respectively. However, our setting is unsupervised (we are
not given labeled data containing the correct classifications
of the documents in the training set) and furthermore, rather
than each data item belonging to one of the k classes (topics),
each data item belongs to a mixture of the k topics. Our goal
is given a new data item to output what that mixture is.

We begin by describing our high level theoretical formula-
tion. This formulation can be viewed as a generalization both
of standard topic modeling and of multi-view learning or co-
training [10, 12, 11, 7, 21]. We then describe several natural
assumptions under which we can indeed efficiently solve the
problem, learning accurate topic mixture predictors.



2 Preliminaries
We assume that paragraphs are described by n real-valued
features and so can be viewed as points x in an instance
space X ⊆ Rn. We assume that each document consists of
at least two paragraphs and denote it by (x1,x2). Further-
more, we consider k topics and partial membership func-
tions f1, . . . , fk : X → [0, 1], such that fi(x) determines
the degree to which paragraph x belongs to topic i, and,∑k
i=1 fi(x) = 1. For any vector of probabilities w ∈ Rk —

which we sometimes refer to as mixture weights — we define
Xw = {x ∈ Rn | ∀i, fi(x) = wi} to be the set of all para-
graphs with partial membership values w. We assume that
both paragraphs of a document have the same partial mem-
bership values, that is (x1,x2) ∈

⋃
w Xw × Xw, although

we also allow some noise later on. To better relate to the
literature on multi-view learning, we also refer to topics as
“classes” and refer to paragraphs as “views” of the document.

Much like the standard topic models, we consider an unla-
beled sample set that is generated by a two-step process. First,
we consider a distribution P over vectors of mixture weights
and draw w according to P . Then we consider distribution
Dw over the set Xw × Xw and draw a document (x1,x2)
according to Dw. We consider two settings. In the first set-
ting, which is addressed in Section 3, the learner receives the
instance (x1,x2). In the second setting, the learner receives
samples (x̂1, x̂2) that have been perturbed by some noise. We
discuss two noise models in Sections 4 and F.2. In both cases,
the goal of the learner is to recover the partial membership
functions fi.

More specifically, in this work we consider partial mem-
bership functions of the form fi(x) = f(vi · x), where
v1, . . . ,vk ∈ Rn are linearly independent and f : R→ [0, 1]
is a monotonic function.1 For the majority of this work, we
consider f to be the identity function, so that fi(x) = vi · x.
Define ai ∈ span{v1, . . . ,vk} such that vi · ai = 1 and
vj ·ai = 0 for all j 6= i. In other words, the matrix containing
ais as columns is the pseudoinverse of the matrix containing
vis as columns, and ai can be viewed as the projection of
a paragraph that is purely of topic i onto span{v1, . . . ,vk}.
Define ∆ = CH({a1, . . . ,ak}) to be the convex hull of
a1, . . . ,ak.

Throughout this work, we use ‖ · ‖2 to denote the spectral
norm of a matrix or the L2 norm of a vector. When it is
clear from the context, we simply use ‖ · ‖ to denote these
quantities. We denote by Br(x) the ball of radius r around x.
For a M , we use M+ to denote the pseudoinverse of M .

Generalization of Standard Topic Modeling
Let us briefly discuss how the above model is a generalization
of the standard topic modeling framework. In the standard
framework, a topic is modeled as a probability distribution
over n words, expressed as a vector ai ∈ [0, 1]n, where
aij is the probability of word j in topic i. A document is
generated by first selecting a mixture w ∈ [0, 1]k over k
topics, and then choosing words i.i.d. from the associated

1We emphasize that linear independence is a much milder as-
sumption compared to the assumption that topic vectors are orthog-
onal.

mixture distribution
∑k
i=1 wiai. The document vector x̂ is

then the vector of word counts, normalized by dividing by
the number of words in the document so that ‖x̂‖1 = 1.

As a thought experiment, consider infinitely long docu-
ments. In the standard framework, all infinitely long docu-
ments of a mixture weight w have the same representation
x =

∑k
i=1 wiai. This representation implies x · vi = wi for

all i ∈ [k], where V = (v1, . . . ,vk) is the pseudo-inverse
of A = (a1, . . . ,ak). Thus, by partitioning the document
into two halves (views) x1 and x2, our noise-free model with
fi(x) = vi · x generalizes the standard topic model for long
documents. However, our model is substantially more gen-
eral: features within a view can be arbitrarily correlated, the
views themselves can also be correlated, and even in the zero-
noise case, documents of the same mixture can look very
different so long as they have the same projection to the span
of the a1, . . . ,ak.

For a shorter document x̂, each feature x̂i is drawn accord-
ing to a distribution with mean xi, where x =

∑k
i=1 wiai.

Therefore, x̂ can be thought of as a noisy measurement of x.
The fewer the words in a document, the larger is the noise in
x̂. Existing work in topic modeling, such as [5, 2], provide
elegant procedures for handling large noise that is caused
by drawing only 2 or 3 words according to the distribution
induced by x. As we show in Section 4, our method can
also tolerate large amounts of noise under some conditions.
While our method cannot deal with documents that are only
2- or 3-words long, the benefit is a model that is much more
general in many other respects.

Generalization of Co-training Framework
Here, we briefly discuss how our model is a generalization of
the co-training framework. The standard co-training frame-
work of [10] considers learning a binary classifier from pri-
marily unlabaled instances, where each instance (x1,x2) is
a pair of views that have the same classification. For exam-
ple, [10] and [6] show that if views are independent of each
other given the classification, then one can efficiently learn a
halfspace from primarily unlabeled data. In the language of
our model, this corresponds to a setting with k = 2 classes,
unknown class vectors v1 = −v2, where each view of an in-
stance belongs to one class fully using membership function
fi(x) = sign(vi ·x). Our work generalizes co-training by ex-
tending it to multi-class settings where each instance belongs
to one or more classes partially, using a partial membership
function fi(·).

3 An Easier Case with Simplifying
Assumptions

We make two main simplifying assumptions in this section,
both of which will be relaxed in Section 4: 1) The documents
are not noisy, i.e., x1 ·vi = x2 ·vi; 2) There is non-negligible
probability density on instances that belong purely to one
class. In this section we demonstrate ideas and techniques.

The Setting: We make the following assumptions. The
documents are not noisy, that is for any document (x1,x2)
and for all i ∈ [k], x1 · vi = x2 · vi. Regarding distribution
P , we assume that a non-negligible probability density is



assigned to pure documents for each class. More formally,
for some ξ > 0, for all i ∈ [k], Prw∼P [w = ei] ≥ ξ.
Regarding distribution Dw, we allow the two paragraphs in a
document, i.e., the two views (x1,x2) drawn from Dw, to be
correlated as long as for any subspace Z ⊂ null{v1 . . . ,vk}
of dimension strictly less than n − k, Pr(x1,x2)∼Dw [(x1 −
x2) 6∈ Z] ≥ ζ for some non-negligible ζ. One way to view
this in the context of topic modeling is that if, say, “sports”
is a topic, then it should not be the case that the second
paragraph always talks about the exact same sport as the first
paragraph; else “sports” would really be a union of several
separate but closely-related topics. Thus, while we do not
require independence we do require some non-correlation
between the paragraphs.

Algorithm and Analysis: The main idea behind our ap-
proach is to use the consistency of the two views of the
samples to first recover the subspace spanned by v1, . . . ,vk
(Phase 1). Once this subspace is recovered, we show that
a projection of a sample on this space corresponds to the
convex combination of class vectors using the appropriate
mixture weight that was used for that sample. Therefore, we
find vectors a1, . . . ,ak that purely belong to each class by
taking the extreme points of the projected samples (Phase 2).
The class vectors v1, . . . ,vk are the unique vectors (up to
permutations) that classify a1, . . . ,ak as pure samples. Phase
2 is similar to that of [5]. Algorithm 1 formalizes the details
of this approach.

Algorithm 1 ALGORITHM FOR GENERALIZED TOPIC
MODELS — NO NOISE

Input: A sample set S = {(x1
i ,x

2
i ) | i ∈ [m]} such that for

each i, first a vector w is drawn from P and then (x1
i ,x

2
i ) is

drawn from Dw.
Phase 1: Let X1 and X2 be matrices where the ith column

is x1
i and x2

i , respectively. Let P be the projection matrix on
the last k left singular vectors of (X1 −X2).
Phase 2: Let S = {Pxji | i ∈ [m], j ∈ {1, 2}}. Let A

be a matrix whose columns are the extreme points of the
convex hull of S . (This can be found using farthest traversal
or linear programming.)2

Output: Return columns of A+ as v1, . . . ,vk.

In Phase 1 for recovering span{v1, . . . ,vk}, note that for
any sample (x1,x2) drawn from Dw, we have that vi · x1 =
vi · x2 = wi. Therefore, regardless of what w was used to
produce the sample, we have that vi · (x1 − x2) = 0 for all
i ∈ [k]. That is, v1, . . . ,vk are in the null-space of all such
(x1 − x2). The assumptions on Dw show that after seeing
sufficiently many samples, (x1

i−x2
i ) span a n−k dimensional

subspace. So, span{v1, . . . ,vk} can be recovered by taking
null{(x1 − x2) | (x1,x2) ∈ Xw × Xw, ∀w ∈ Rk}. This
null space is spanned by the last k singular vectors of X1 −
X2, where X1 and X2 are matrices with columns x1

i and x2
i ,

respectively. The next lemma (see Appendix A.1 for a proof)
formalizes this discussion.
Lemma 3.1. Let Z = span{(x1

i − x2
i ) | i ∈ [m]}. Then,

m = O(n−kζ log( 1
δ )) is sufficient such that with probability

1− δ, rank(Z) = n− k.

Figure 1: v1,v2 correspond to class 1 and 2, and a1 and a2 corre-
spond to canonical vectors purely of class 1 and 2, respectively.

Using Lemma 3.1, Phase 1 of Algorithm 1 recovers
span{v1, . . . ,vk}. Next, we show that pure samples are the
extreme points of the convex hull of all samples when pro-
jected on the subspace span{v1, . . . ,vk}. Figure 1 demon-
strates the relation between the class vectors, vi, projection
of samples, and the projection of pure samples ai. The next
lemma, whose proof appears in Appendix A.2, formalizes
this claim.
Lemma 3.2. For any x, let x represent the projection of x
on span{v1, . . . ,vk}. Then, x =

∑
i∈[k](vi · x)ai.

With
∑
i∈[k](vi · x)ai representing the projection of x on

span{v1, . . . ,vk}, it is clear that the extreme points of the
set of all projected instances that belong to Xw for all w are
a1, . . . ,ak. Since in a large enough sample set, with high
probability for all i ∈ [k], there is a pure sample of type i,
taking the extreme points of the set of projected samples is
also a1, . . . ,ak. The following lemma, whose proof appears
in Appendix A.3, formalizes this discussion.
Lemma 3.3. Let m = c( 1

ξ log(kδ )) for a large enough
constant c > 0. Let P be the projection matrix for
span{v1, . . . ,vk} and S = {Pxji | i ∈ [m], j ∈ {1, 2}}
be the set of projected samples. With probability 1 − δ,
{a1, . . . ,ak} is the set of extreme points of CH(S ).

Therefore, a1, . . . ,ak can be learned by taking the ex-
treme points of the convex hull of all samples projected on
span({v1, . . . ,vk}). Furthermore, V = A+ is unique, there-
fore v1, . . . ,vk can be easily found by taking the pseudoin-
verse of matrix A. Together with Lemma 3.1 and 3.3 this
proves the next theorem regarding learning class vectors in
the absence of noise.
Theorem 3.4 (No Noise). There is a polynomial time algo-
rithm for which m = O

(
n−k
ζ ln( 1

δ ) + 1
ξ ln(kδ )

)
is sufficient

to recover vi exactly for all i ∈ [k], with probability 1−δ.

4 Relaxing the Assumptions
In this section, we relax the two main simplifying assump-
tions from Section 3. We relax the assumption on non-noisy
documents and allow a large fraction of the documents to not
satisfy vi · x1 = vi · x2. In the standard topic model, this
corresponds to having a large fraction of short documents.
Furthermore, we relax the assumption on the existence of



pure documents to an assumption on the existence of “almost-
pure” documents.

The Setting: We assume that any sampled document has a
non-negligible probability of being non-noisy and with the
remaining probability, the two views of the document are
perturbed by additive Gaussian noise, independently. More
formally, for a given sample (x1,x2), with probability p0 >
0 the algorithm receives (x1,x2) and with the remaining
probability 1− p0, the algorithm receives (x̂1, x̂2), such that
x̂j = xj + ej , where ej ∼ N (0, σ2In).

We assume that for each topic, the probability that a docu-
ment is mostly about that topic is non-negligible. More for-
mally, for any topic i ∈ [k], Prw∼P [‖ei−w‖1 ≤ ε‖] ≥ g(ε),
where g is a polynomial function of its input. A stronger form
of this assumption, better known as the dominant admixture
assumption, assumes that every document is mostly about
one topic and has been empirically shown to hold on several
real world data sets [8]. Furthermore, in the Latent Dirichlet
Allocation model, Prw∼P [maxi∈[k] wi ≥ 1−ε] ≥ O(ε2) for
typical values of the concentration parameter.

We also make assumptions on the distribution over in-
stances. We assume that the covariance of the distribution
over (x1

i −x2
i )(x

1
i −x2

i )
> is larger than the noise covariance

σ2.3 That is, for some δ0 > 0, the least significant non-zero
eigen value of E(x1

i ,x
2
i )

[(x1
i − x2

i )(x
1
i − x2

i )
>], equivalently

its (n − k)th eigen value, is greater than 6σ2 + δ0. More-
over, we assume that the L2 norm of each view of a sample
is bounded by some M > 0. We also assume that for all
i ∈ [k], ‖ai‖ ≤ α for some α > 0. At a high level, ‖ai‖s
are inversely proportional to the non-zero singular values of
V = (v1, . . . ,vk). Therefore, ‖ai‖ ≤ α implies that the k
topic vectors are sufficiently different.

Algorithm and Results: Our approach follows the
general theme of the previous section: First, recover
span{v1, . . . ,vk} and then recover a1, . . . ,ak by taking the
extreme points of the projected samples. In this case, in the
first phase we recover span{v1, . . . ,vk} approximately, by
finding a projection matrix P̂ such that ‖P − P̂‖ ≤ ε for
an arbitrarily small ε, where P is the projection matrix on
span{v1, . . . ,vk}. At this point in the algorithm, the projec-
tion of samples on P̂ can include points that are arbitrarily far
from ∆. This is due to the fact that the noisy samples are per-
turbed by N (0, σ2In), so, for large values of σ some noisy
samples map to points that are quite far from ∆. Therefore,
we have to detect and remove these samples before continu-
ing to the second phase. For this purpose, we show that the
low density regions of the projected samples can safely be
removed such that the convex hull of the remaining points is
close to ∆. In the second phase, we consider projections of
each sample using P̂ . To approximately recover a1, . . . ,ak,
we recover samples, x, that are far from the convex hull of

3This assumption is only used in Phase 1. One can assure that
this assumption holds by taking the average of several documents in
phase 1, where the average of documents (x̂1

1, x̂
2
1), . . . , (x̂1

m, x̂
2
m)

is
(∑m

i=1 x̂
1
i /m,

∑m
i=1 x̂

2
i /m

)
. Since the noise shrinks in the aver-

aged documents, the noise level falls under the required level. This
would mildly increase the sample complexity.

the remaining points, when x and a ball of points close to it
are removed. We then show that such points are close to one
of the pure class vectors, ai. Algorithm 2 and the details of
the above approach and its performance are as follows.

Algorithm 2 ALGORITHM FOR GENERALIZED TOPIC
MODELS — WITH NOISE

Input: A sample set {(x̂1
i , x̂

2
i ) | i ∈ [m]} such that for each i,

first a vector w is drawn from P , then (x1
i ,x

2
i ) is drawn from

Dw, then with probability p0, x̂ji = xji , else with probability
1− p0, x̂ji = xji +N (0, σ2In) for i ∈ [m] and j ∈ {1, 2}.
Phase 1:

1. Take m1 = Ω
(
n−k
ζ ln( 1

δ ) + nσ2M4r2

δ20ε
2 polylog(nrMεδ )

)
samples.

2. Let X̂1 and X̂2 be matrices where the ith column is x̂1
i

and x̂2
i , respectively.

3. Let P̂ be the projection matrix on the last k left singular
vectors of X̂1 − X̂2.

Denoising Phase:
4. Let ε′ = ε/(8r) and γ = g (ε′/(8kα)).
5. Take m2 = Ω

(
k
p0γ

ln 1
δ

)
fresh samples and let Ŝ ={

P̂ x̂1
i | ∀i ∈ [m2]

}
.

6. Remove x̂ from Ŝ , for which there are less than p0γm2

2

points within distance of ε
′

2 in Ŝ .
Phase 2:

7. For all x̂ in Ŝ , if dist(x ,CH(Ŝ \ B6rε′(x̂))) ≥ 2ε′

add x̂ to C.
8. Cluster C using single linkage with threshold 16rε′. As-

sign any point from cluster i as âi.
Output: Return â1, . . . , âk.

Theorem 4.1. Consider any small enough ε > 0 and any
δ > 0, there is an efficient algorithm for which an unlabeled
sample set of size

m = O

(
n− k
ζ

ln(
1

δ
) +

nσ2M4r2

δ20ε
2

polylog(
nrM

εδ
)

+
k ln(1/δ)

p0 g(ε/(krα))

)
is sufficient to recover âi such that ‖âi − ai‖2 ≤ ε for all
i ∈ [k], with probability 1− δ. Where, r is a parameter that
depends on the geometry of the simplex ∆ and will be defined
in section 4.3.

The proof of Theorem 4.1 relies on the next lemmas re-
garding the performance of each phase of the algorithm. We
formally state them here, but defer their proofs to Sections 4.1,
4.2 and 4.3.
Lemma 4.2 (Phase 1). For any σ, ε > 0, it is sufficient to
have an unlabeled sample set of size

m = O

(
n− k
ζ

ln(
1

δ
) +

nσ2M2

δ20ε
2

polylog(
n

εδ
)

)
.

so with probability 1−δ, Phase 1 of Algorithm 2 returns a
matrix P̂ , such that ‖P−P̂‖2 ≤ ε.



Lemma 4.3 (Denoising). Let ε′ ≤ 1
3σ
√
k, ‖P − P̂‖ ≤

ε′/8M , and γ = g
(

ε′

8kα

)
. An unlabeled sample size of m =

O
(

k
p0γ

ln( 1
δ )
)

is sufficient such that for Ŝ defined in Step 6
of Algorithm 2 the following holds with probability 1 − δ:
For any x ∈ Ŝ , dist(x,∆) ≤ ε′, and, for all i ∈ [k], there
exists âi ∈ Ŝ such that ‖âi − ai‖ ≤ ε′.

Lemma 4.4 (Phase 2). Let Ŝ be a set for which the conclu-
sion of Lemma 4.3 holds with the value of ε′ = ε/8r. Then,
Phase 2 of Algorithm 2 returns â1, . . . , âk such that for all
i ∈ [k], ‖ai − âi‖ ≤ ε.

We now prove our main Theorem 4.1 by directly leverag-
ing the three lemmas we just stated.

Proof of Theorem 4.1. By Lemma 4.2, sample set of size
m1 is sufficient such that Phase 1 of Algorithm 2 leads to
‖P − P̂‖ ≤ ε

32Mr , with probability 1 − δ/2. Let ε′ = ε
8r

and take a fresh sample of size m2. By Lemma 4.3, with
probability 1 − δ/2, for any x ∈ Ŝ , dist(x,∆) ≤ ε′, and,
for all i ∈ [k], there exists âi ∈ Ŝ such that ‖âi − ai‖ ≤ ε′.
Finally, by Lemma 4.4 we have that Phase 2 of Algorithm 2
returns âi, such that for all i ∈ [k], ‖ai − âi‖ ≤ ε.

Theorem 4.1 discusses the approximation of ai for all
i ∈ [k]. It is not hard to see that such an approximation
also translates to the approximation of class vectors, vi for
all i ∈ [k]. That is, using the properties of perturbation of
pseudoinverse matrices (see Proposition B.5) one can show
that ‖Â+ − V ‖ ≤ O(‖Â − A‖). Therefore, V̂ = Â+ is a
good approximation for V .
4.1 Proof of Lemma 4.2 — Phase 1
For j ∈ {1, 2}, letXj and X̂j be n×mmatrices with the ith

column being xji and x̂ji , respectively. As we demonstrated
in Lemma 3.1, with high probability rank(X1 − X2) =
n − k. Note that the nullspace of columns of X1 − X2

is spanned by the left singular vectors of X1 − X2 that
correspond to its k zero singular values. We show that the
nullspace of columns of X1 − X2 can be approximated
within any desirable accuracy by the space spanned by the
k least significant left singular vectors of X̂1 − X̂2, given a
sufficiently large number of samples.

Let D = X1 − X2 and D̂ = X̂1 − X̂2. For ease of
exposition, assume that all samples are perturbed by Gaus-
sian noise N (0, σ2In).4 Since each view of a sample is per-
turbed by an independent draw from a Gaussian noise dis-
tribution, we can view D̂ = D + E, where each column
of E is drawn i.i.d from distribution N (0, 2σ2In). Then,
1
mD̂D̂

> = 1
mDD

> + 1
mDE

> + 1
mED

> + 1
mEE

>. As a
thought experiment, consider this equation in expectation.
Since E[ 1

mEE
>] = 2σ2In is the covariance matrix of the

4The assumption that with a non-negligible probability a sample
is non-noisy is not needed for the analysis and correctness of Phase
1 of Algorithm 2. This assumption only comes into play in the
denoising phase.

noise and E[DE> + ED>] = 0, we have

1

m
E
[
D̂D̂>

]
− 2σ2In =

1

m
E
[
DD>

]
. (1)

Moreover, the eigen vectors and their order are the same
in 1

mE[D̂D̂>] and 1
mE[D̂D̂>]− 2σ2In. Therefore, one can

recover the nullspace of 1
mE[DD>] by taking the space of the

smallest k eigen vectors of 1
mE[D̂D̂>]. Next, we show how

to recover the nullspace using D̂D̂>, rather than E[D̂D̂>].
Assume that the following properties hold:
1. Equation 1 holds not only in expectation, but also with

high probability. That is, with high probability, ‖ 1
mD̂D̂

>−
2σ2In − 1

mDD
>‖2 ≤ ε.

2. With high probability λn−k( 1
mD̂D̂

>) > 4σ2 + δ0/2,
where λi(·) denotes the ith most significant eigen value.

Let D = UΣV > and D̂ = Û Σ̂V̂ > be SVD representations.
We have that 1

mD̂D̂
>− 2σ2In = Û( 1

m Σ̂2− 2σ2In)Û>. By
property 2, λn−k( 1

m Σ̂2) > 4σ2 + δ0/2. That is, the eigen
vectors and their order are the same in 1

mD̂D̂
> − 2σ2In and

1
mD̂D̂

>. As a result the projection matrix, P̂ , on the least
significant k eigen vectors of 1

mD̂D̂
>, is the same as the

projection matrix, Q, on the least significant k eigen vectors
of 1

mD̂D̂
> − 2σ2In.

Recall that P̂ and P and Q are the projection matrices on
the least significant k eigen vectors of 1

mD̂D̂
>, 1

mDD
>, and

1
mD̂D̂

>−2σ2I , respectively. As we discussed, P̂ = Q. Now,
using the Wedin sin θ theorem [13, 24] (see Proposition B.1)
from matrix perturbation theory, we have,

‖P − P̂‖2 = ‖P −Q‖

≤
‖ 1
mD̂D̂

> − 2σ2In − 1
mDD

>‖2∣∣∣λn−k( 1
mD̂D̂

>)− 2σ2 − λn−k+1( 1
mDD

>)
∣∣∣ ≤ 2ε

δ0
,

where we use Properties 1 and 2 and the fact that
λn−k+1( 1

mDD
>) = 0, in the last transition.

Concentration It remains to prove Properties 1 and 2.
We briefly describe our proof that when m is large, with
high probability ‖ 1

mD̂D̂
> − 2σ2In − 1

mDD
>‖2 ≤ ε

and λn−k( 1
mD̂D̂

>) > 4σ2 + δ0/2. Let us first describe
1
mD̂D̂

> − 2σ2In − 1
mDD

> in terms of the error matrices.
We have

1

m
D̂D̂> − 2σ2In −

1

m
DD> =

(
1

m
EE> − 2σ2In

)
+

(
1

m
DE> +

1

m
ED>

)
. (2)

It suffices to show that for large enough m > mε,δ,
Pr[‖ 1

mEE
> − 2σ2In‖2 ≥ ε] ≤ δ and Pr[‖ 1

mDE
> +

1
mED

>‖2 ≥ ε] ≤ δ. In the former, note that 1
mEE

> is the
sample covariance of the Gaussian noise matrix and 2σ2In is
the true covariance matrix of the noise distribution. The next
two claims follow by the convergence properties of sample



covariance of the Gaussians and the use of Matrix Bernstein
inequality [22] (Appendix B). See, Appendix C.1 for a proof.

Claim 1. m = O(nσ
4

ε2 log( 1
δ )) is sufficient to get ‖ 1

mEE
>−

2σ2In‖2 ≤ ε, with probability 1− δ.

Claim 2. m=O(nσ
2M2

ε2 polylog n
εδ ) is sufficient to get∥∥ 1

mDE
>+ 1

mED
>
∥∥
2
≤ε, with probability 1−δ.

We prove that λn−k( 1
mD̂D̂

>) > 4σ2 + δ0/2. Since for
any two matrices, the difference in λn−k can be bounded by
the spectral norm of their difference (see Proposition B.4),
by Equation 2, we have∣∣∣∣λn−k

(
1

m
D̂D̂>

)
−λn−k

(
1

m
DD>

)∣∣∣∣
≤
∥∥∥∥2σ2I+

(
1

m
EE>−2σ2In

)
−
(

1

m
DE>+

1

m
ED>

)∥∥∥∥
≤ 2σ2+

δ0
4
,

where in the last transition we use Claims 1 and 2 with the
value of δ0/8 to bound the last two terms by a total of δ0/4.
Since λn−k(E[ 1

mDD
>]) ≥ 6σ2 + δ0, it is sufficient to show

that |λn−k(E[ 1
mDD

>]) − λn−k([ 1
mDD

>])| ≤ δ0/4. Simi-
larly as before, this is bounded by ‖ 1

mDD
> − E[ 1

mDD
>]‖.

We use the Matrix Bernstein inequality to prove this concen-
tration result; see Appendix C.2 for a proof.

Claim 3. m=O
(
M4

δ20
log n

δ

)
is sufficient to get∥∥ 1

mDD
>−E

[
1
mDD

>]∥∥
2
≤ δ0

4 , with probability 1−δ.

This completes the analysis of Phase 1 of our algorithm
and the proof of Lemma 4.2 follows directly from the above
analysis and the application of Claims 1 and 2 with the error
of εδ0, and Claim 3.

4.2 Proof of Lemma 4.3 — Denoising Step

We use projection matrix P̂ to partially denoise the samples
while approximately preserving ∆ = CH({a1, . . . ,ak}). At
a high level we show that, in the projection of samples on P̂ ,
1) the regions around ai have sufficiently high density, and,
2) the regions that are far from ∆ have low density.

We claim that if x̂ ∈ Ŝ is non-noisy and corresponds
almost purely to one class then Ŝ also includes a non-
negligible number of points withinO(ε′) distance of x̂ . This
is due to the fact that a non-negligible number of points
(about p0γm points) correspond to non-noisy and almost-
pure samples that using P would get projected to points
within a distance of O(ε′) of each other. Furthermore, the
inaccuracy in P̂ can only perturb the projections up to O(ε′)
distance. So, the projections of all non-noisy samples that are
almost purely of class i fall withinO(ε′) of ai. The following
claim, whose proof appears in Appendix D.1, formalizes this
discussion.

In the following lemmas, let D denote the flattened distri-
bution of the first paragraphs. That is, the distribution over
x̂1 where we first take w ∼ P , then take (x1,x2) ∼ Dw,
and finally take x̂1.

Claim 4. For all i ∈ [k], Prx∼D

[
P̂x ∈ Bε′/4(ai)

]
≥ p0γ.

On the other hand, any projected point that is far from the
convex hull of a1, . . . ,ak has to be noisy, and as a result, has
been generated by a Gaussian distribution with variance σ2.
For a choice of ε′ that is small with respect to σ, such points
do not concentrate well within any ball of radius ε′. In the
next claim, we show that the regions that are far from the
convex hull have low density.
Claim 5. For any z such that dist(z,∆) ≥ ε′, we have

Prx∼D

[
P̂x ∈ Bε′/2(z)

]
≤ p0γ

4 .

Proof. We first show that Bε′/2(z) does not include any non-
noisy points. Take any non-noisy sample x. Note that Px =∑k
i=1 wiai, where wi are the mixture weights corresponding

to point x. We have,∥∥∥z− P̂x∥∥∥ =

∥∥∥∥∥z−
k∑
i=1

wiai + (P − P̂ )x

∥∥∥∥∥
≥

∥∥∥∥∥z−
k∑
i=1

wiai

∥∥∥∥∥− ‖P − P̂‖‖x‖ ≥ ε′/2
Therefore, Bε′/2(z) only contains noisy points. Since

noisy points are perturbed by a spherical Gaussian, the pro-
jection of these points on any k-dimensional subspace can be
thought of points generated from a k-dimensional Gaussian
distributions with variance σ2 and potentially different cen-
ters. One can show that the densest ball of any radius is at
the center of a Gaussian. Here, we prove a slightly weaker
claim. Consider one such Gaussian distribution, N (0, σ2Ik).

Figure 2: Density is maximized when blue and red gaussians coin-
cide and the ball is at their center.

Note that the pdf of the Gaussian distribution decreases as we
get farther from its center. By a coupling between the density
of the points, Bε′/2(0) has higher density than any Bε′/2(c)
with ‖c‖2 > ε′. Therefore,
sup
c

Pr
x∼N (0,σ2Ik)

[x ∈ Bε′/2(c)] ≤ Pr
x∼N (0,σ2Ik)

[x ∈ B3ε′/2(0)].

So, over D this value will be maximized if the Gaussians
had the same center (see Figure 2). Moreover, inN (0, σ2Ik),
Pr[‖x‖2 ≤ σ

√
k(1− t)] ≤ exp(−kt2/16). Since 3ε′/2 ≤

σ
√
k/2 ≤ σ

√
k(1−

√
16
k ln 4

p0γ
) we have

Pr
x̂∼D

[x ∈ Bε′/2(c)] ≤ Pr
x∼N (0,σ2Ik)

[‖x‖2 ≤ 3ε′/2] ≤ p0γ

4
.



Figure 3: Demonstrating the distinction between points close to ai

and far from ai. The convex hull of CH(Ŝ|| \ Br2(x̂)), which is
a subset of the blue and gray region, intersects Br1(x̂) only for x̂
that is sufficiently far from ai’s.

The next claim shows that in a large sample set, the fraction
of samples that fall within any of the described regions in
Claims 4 and 5 is close to the density of that region. The
proof of this claim follows from VC dimension of the set of
balls.
Claim 6. Let D be any distribution over Rk and x1, . . . ,xm
be m points drawn i.i.d from D. Then m = O( kγ ln 1

δ ) is
sufficient so that with probability 1− δ, for any ball B ⊆ Rk
such that Prx∼D[x ∈ B] ≥ 2γ, |{xi | xi ∈ B}| > γm
and for any ball B ⊆ Rk such that Prx∼D[x ∈ B] ≤ γ/2,
|{xi | xi ∈ B}| < γm.

Therefore, upon seeing Ω( k
p0γ

ln 1
δ ) samples, with prob-

ability 1 − δ, for all i ∈ [k] there are more than p0γm/2
projected points within distance ε′/4 of ai (by Claims 4 and
6), and, no point that is ε′ far from ∆ has more than p0γm/2
points in its ε′/2-neighborhood (by Claims 5 and 6). Phase
2 of Algorithm 2 leverages these properties of the set of
projected points for denoising the samples while preserv-
ing ∆: Remove any point from Ŝ with fewer than p0γm/2
neighbors within distance ε′/2.

We conclude the proof of Lemma 4.3 by noting that the
remaining points in Ŝ are all within distance ε′ of ∆. Fur-
thermore, any point in Bε′/4(ai) has more than p0γm/2
points within distance of ε′/2. Therefore, such points re-
main in Ŝ and any one of them can serve as âi for which
‖ai − âi‖ ≤ ε′/4.

4.3 Proof of Lemma 4.4 — Phase 2
At a high level, we consider two balls around each projected
sample point x̂ ∈ Ŝ with appropriate choice of radii r1 < r2
(see Figure 3). Consider the set of projections Ŝ when points
in Br2(x) are removed from it. For points that are far from
all ai, this set still includes points that are close to ai for
all topics i ∈ [k]. So, the convex hull of Ŝ \ Br2(x) is
close to ∆, and in particular, intersects Br1(x). On the other
hand, for x that is close to ai, Ŝ \Br2(x) does not include
an extreme point of ∆ or points close to it. So, the convex
hull of Ŝ \ Br2(x) is considerably smaller than ∆, and in

Figure 4: Parameter r is determined by the geometry of ∆.

particular, does not intersect Br1(x).
The geometry of the simplex and the angles between

a1, . . . ,ak play an important role in choosing the appropriate
r1 and r2. Note that when the samples are perturbed by noise,
a1, . . . ,ak can only be approximately recovered if they are
sufficiently far apart and the angles of the simplex at each ai
is far from being flat. That is, we assume that for all i 6= j,
‖ai−aj‖ ≥ 3ε. Furthermore, define r ≥ 1 to be the smallest
value such that the distance between ai and CH(∆\Brε(ai))
is at least ε. Note that such a value of r always exists and
depends entirely on the angles of the simplex defined by the
class vectors. Therefore, the number of samples needed for
our method depends on the value of r. The smaller the value
of r, the larger is the separation between the topic vectors
and the easier it is to identify them. The next claim, whose
proof appears in Appendix E.1, demonstrates this concept.

Claim 7. Let ε′ = ε/8r. Let Ŝ be the set of denoised projec-
tions, as in step 6 of Algorithm 2. For any x̂ ∈ Ŝ such that
for all i, ‖x̂−ai‖ > 8rε′, dist(x̂,CH(Ŝ \B6rε′(x̂))) ≤ 2ε′.
Furthermore, for all i ∈ [k] there exists âi ∈ Ŝ such that
‖âi − ai‖ < ε′ and dist(âi,CH(Ŝ \B6rε′(âi))) > 2ε′.

Given the above structure, it is clear that set of points in C
are all within ε of one of the ai’s. So, we can cluster C using
single linkage with threshold ε to recover ai upto accuracy ε.

5 Additional Results and Extensions
In this section, we briefly mention some additional results
and extensions. We explain these and discuss other exten-
sions (such as alternative noise models) in more detail in
Appendix F.
Sample Complexity Lower bound As we observed the
number of samples required by our method is poly(n). How-
ever, as the number of classes can be much smaller than the
number of features, one might hope to recover v1, . . . ,vk,
with a number of samples that is polynomial in k rather than
n. Here, we show that in the general case Ω(n) samples are
needed to learn v1, . . . ,vk regardless of the value of k. See,
Appendix F for more information.
General function f(·) We also consider the general model
described in Section 2, where fi(x) = f(vi · x) for an un-
known strictly increasing function f : R+ → [0, 1] such
that f(0) = 0. We describe how variations of the techniques
discussed up to now can extend to this more general setting.
See Appendix F for more information.
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A Omitted Proof from Section 3 — No Noise
A.1 Proof of Lemma 3.1

For all j ≤ n − k, let Zj = {(x1
i − x2

i ) | i ≤
j
ζ ln n

δ }.
We prove by induction that for all j, rank(Zj) < j with
probability at most j δn .

For j = 0, the claim trivially holds. Now assume that the
induction hypothesis holds for some j. Furthermore, assume
that rank(Zj) ≥ j. Then, rank(Zj+1) < j + 1 only if the
additional 1

ζ ln n
δ samples in Zj+1 all belong to span(Zj).

Since, the space of such samples has rank < n− k, this hap-
pens with probability at most (1 − ζ)

1
ζ ln n

δ ≤ δ
n . Together

with the induction hypothesis that rank(Zj) ≥ j with proba-
bility at most j δn , we have that rank(Zj+1) < j+1 with prob-
ability at most (j+1)δ

n . Therefore rank(Z) = rank(Zn−k) =
n− k with probability at least 1− δ.

A.2 Proof of Lemma 3.2
First note that V is a the pseudo-inverse of A, so their
span is equal. Hence,

∑
i∈[k](vi · x)ai ∈ span{v1, . . . ,vk}.

It remains to show that
(
x−

∑
i∈[k](vi · x)ai

)
∈

null{v1, . . . ,vk}. We do so by showing that this vector is
orthogonal to vj for all j. We have(

x−
k∑
i=1

(vi · x)ai

)
· vj = x · vj −

k∑
i=1

(vi · x)(ai · vj)

= x · vj −
∑
i 6=j

(vi · x)(ai · vj)− (vj · x)(aj · vj)

= x · vj − x · vj = 0.

Where, the second equality follows from the fact when A =
V +, for all i, ai · vi = 1 and aj · vi = for j 6= i. Therefore,∑
i∈[k](vi ·x)ai is the projection of x on span{v1, . . . ,vk}.

A.3 Proof of Lemma 3.3
Assume that S included samples that are purely of type i,
for all i ∈ [k]. That is, for all i ∈ [k] there is j ≤ m, such
that vi · x1

j = vi · x2
j = 1 and vi′ · x1

j = vi′ · x2
j = 0 for

i′ 6= i. By Lemma 3.2, the set of projected vectors form the
set {

∑k
i=1(vi ·xj)ai | j ∈ [m]}. Note that

∑k
i=1(vi ·xj)ai

is in the simplex with vertices a1, . . . ,ak. Moreover, for
each i, there exists a pure sample in S of type i. Therefore,
CH{

∑k
i=1(vi · xj)ai | j ∈ [m]} is the simplex on linearly

independent vertices a1, . . . ,ak. As a result, a1, . . . ,ak are
the extreme points of it.

It remains to prove that with probability 1− δ, the sample
set has a document of purely type j, for all j ∈ [k]. By the
assumption on the probability distribution P , with probability
at most (1−ξ)m, there is no document of type purely j. Using
the union bound, we get the final result.

B Technical Spectral Lemmas

Proposition B.1 (sin θ theorem [13] ). . Let B, B̂ ∈ Rp×p
be symmetric, with eigen values λ1 ≥ · · · ≥ λp and

λ̂1 ≥ · · · ≥ λ̂p, respectively. Fix 1 ≤ r ≤ s ≤ p and
let V = (vr, . . . ,vs) and V̂ = (v̂r, . . . , v̂s) be the or-
thonormal eigenvectors corresponding to λr, . . . , λs and
λ̂r, . . . , λ̂s. Let δ = inf{|λ̂ − λ| : λ ∈ [λs, λr], λ̂ ∈
(−∞, λ̂s−1] ∪ [λ̂r+1,∞)} > 0. Then ,

‖ sin Θ(V, V̂ )‖2 ≤
‖B̂ −B‖2

δ
.

where sin Θ(V, V̂ ) = PV − PV̂ , where PV and PV̂ are the
projection matrices for V and V̂ .
Proposition B.2 (Corollary 5.50 of [23]). Consider a Gaus-
sian distribution in Rn with co-variance matrix Σ. Let
A ∈ Rn×m be a matrix whose rows are drawn i.i.d from
this distribution, and let Σm = 1

mAA
>. For every ε ∈ (0, 1),

and t, if m ≥ cn(t/ε)2 for some constant c, then with proba-
bility at least 1− 2 exp(−t2n), ‖Σm − Σ‖2 ≤ ε‖Σ‖2
Proposition B.3 (Matrix Bernstein [22]). Let S1, . . . , Sn
be independent, centered random matrices with common
dimension d1 × d2, and assume that each one is uniformly
bounded. That is, ESi = 0 and ‖Si‖2 ≤ L for all i ∈ [n].
Let Z =

∑n
i=1 Si, and let v(Z) denote the matrix variance:

v(Z) = max

{∥∥∥∥∥
n∑
i=1

E[SiS
>
i ]

∥∥∥∥∥ ,
∥∥∥∥∥
n∑
i=1

E[S>i Si]

∥∥∥∥∥
}
.

Then,

P[‖Z‖ ≥ t] ≤ (d1 + d2) exp

(
−t2/2

v(Z) + Lt/3

)
.

Proposition B.4 (Theorem 4.10 of [20]). Let Â = A + E
and let λ1, . . . , λn and λ′1, . . . , λ

′
n be the eigen values of A

and A+ E. Then, max{|λ′i − λi|} ≤ ‖E‖2.
Proposition B.5 (Theorem 3.3 of [19]). For any A and B =
A+ E,

‖B+ −A+‖ ≤ max 3
{
‖A+‖2, ‖B+‖2

}
‖E‖,

where ‖ · ‖ is an arbitrary norm.

C Omitted Proof from Section 4.1 — Phase 1
C.1 Proof of Claim 2

Let ei and di be the ith row of E and D. Then
ED> =

∑m
i=1 eid

>
i and DE> =

∑m
i=1 die

>
i . Let

Si = 1
m

[
0 eid

>
i

die
>
i 0

]
. Then, ‖ 1

mDE
> + 1

mED
>‖2 ≤

2‖
∑m
i=1 Si‖2. We will use matrix Bernstein to show that∑

i∈[m] Si is small with high probability.
First note that the distribution of ei is a Gaussian centered

at 0, therefore, E[Si] = 0. Furthermore, for each i, with prob-
ability 1− δ, ‖ei‖2 ≤ σ

√
n log 1

δ . So, with probability 1− δ,
for all samples i ∈ [m], ‖ei‖2 ≤ σ

√
n log m

δ . Moreover,
by assumption ‖di‖ = ‖x1

i − x2
i ‖ ≤ 2M . Therefore, with

probability 1− δ,

L = max
i
‖Si‖2 =

1

m
max
i
‖ei‖‖di‖ ≤

2

m
σ
√
nM polylog

n

εδ
.



Note that,
∥∥E[SiS

>
i ]
∥∥ = 1

m2

∥∥E[(eid
>
i )2]

∥∥ ≤ L2. Since
Si is Hermitian, the matrix covariance defined by Matrix
Bernstein inequality is

v(Z) = max

{∥∥∥∥∥
m∑
i=1

E[SiS
>
i ]

∥∥∥∥∥ ,
∥∥∥∥∥
m∑
i=1

E[S>i Si]

∥∥∥∥∥
}

=

∥∥∥∥∥
m∑
i=1

E[SiS
>
i ]

∥∥∥∥∥ ≤ mL2.

If ε ≤ v(Z)/L and m ∈ Ω(nσ
2M2

ε2 polylog n
εδ ) or ε ≥

v(Z)/L and m ∈ Ω(
√
nσM
ε polylog n

εδ ), using Matrix Bern-
stein inequality (Proposition B.3), we have

Pr

[∥∥∥∥ 1

m
DE> +

1

m
ED>

∥∥∥∥ ≥ ε] = Pr

[∥∥∥∥∥
m∑
i=1

Si

∥∥∥∥∥ ≥ ε

2

]
≤ δ.

C.2 Proof of Claim 3

Let di be the ith row D. Then DD> =
∑m
i=1 did

>
i .

Let Si = 1
mdid

>
i − 1

mE[did
>
i ]. Then, ‖ 1

mDD
> −

E
[
1
mDD

>] ‖2 = ‖
∑m
i=1 Si‖2. Since, di = x1

i − x2
i and

‖xji‖ ≤ M , we have that for any i, ‖did>i − E[did
>
i ]‖ ≤

4M2. Then,

L = max
i
‖Si‖2 =

1

m
max
i
‖did>i − E[did

>
i ]‖2 ≤

4

m
M2,

and ‖E[SiS
>
i ] ≤ L2. Note that Si is Hermitian, so, the matrix

covariance is

v(Z) = max

{∥∥∥∥∥
m∑
i=1

E[SiS
>
i ]

∥∥∥∥∥ ,
∥∥∥∥∥
m∑
i=1

E[S>i Si]

∥∥∥∥∥
}

=

∥∥∥∥∥
m∑
i=1

E[SiS
>
i ]

∥∥∥∥∥ ≤ mL2.

If δ0 ≤ 4M2 and m ∈ Ω(M
4

δ20
log n

δ ) or δ0 ≥ 4M2

and m ∈ Ω(M
2

δ0
log n

δ ), then by Matrix Bernstein inequality
(Proposition B.3), we have

Pr

[∥∥∥∥∥
m∑
i=1

Si

∥∥∥∥∥ ≥ δ0
2

]
≤ δ.

D Omitted Proof from Section 4.2 —
Denoising

D.1 Proof of Claim 4
Recall that for any i ∈ [k], with probability γ = g(ε′/(8kα))
a nearly pure weight vector w is generated from P , such that
‖w − ei‖ ≤ ε′/(8kα). And independently, with probability
p0 the point is not noisy. Therefore, there is p0γ density on
non-noisy points that are almost purely of class i. Note that
for such points, x,

‖Px− ai‖ =

∥∥∥∥∥∥
k∑
j=1

wjaj − ai

∥∥∥∥∥∥ ≤ k(ε′/(8kα))(α) ≤ ε′

8
.

Since ‖P − P̂‖ ≤ ε′/8M , we have

‖ai − P̂x‖ = ‖ai − Px‖+ ‖Px− P̂x‖ ≤ ε′

8
+
ε′

8
≤ ε′

4

The claim follows immediately.

E Omitted Proof from Section 4.3 — Phase 2
E.1 Proof from Claim 7

Recall that by Lemma 4.3, for any x̂ ∈ Ŝ there exists x ∈ ∆
such that ‖x̂ − x‖ ≤ ε′ and for all i ∈ [k], there exists
âi ∈ Ŝ such that ‖âi − ai‖ ≤ ε′. For the first part, let x =∑
i αiai ∈ ∆ be the corresponding point to x̂, where αi’s

are the coefficients of the convex combination. Furthermore,
let x′ =

∑
i αiâi. We have,

‖x′ − x̂‖ ≤

∥∥∥∥∥
k∑
i=1

αiâi −
k∑
i=1

αiai + x− x̂

∥∥∥∥∥
≤
∥∥∥∥max
i∈[k]

(âi − ai)

∥∥∥∥+ ‖x− x̂‖ ≤ 2ε′.

The first claim follows from the fact that ‖x̂ − ai‖ > 8rε′

and as a result x′ ∈ CH(Ŝ \ B6rε′(x̂)). Next, note that
B4rε′(ai) ⊆ B5rε′(âi). So, by the fact that ‖ai − âi‖ ≤ ε′,
dist (âi,CH(∆ \B5rε′(âi))) ≥ dist (ai,CH(∆ \B4rε′(ai)))− ε′

≥ 3ε′.

Next, we argue that if there is x̂ ∈ CH(Ŝ \B5rε′(âi)) then
there exists x ∈ CH(∆ \B4rε′(âi)), such that ‖x− x̂‖ ≤ ε′.

To see this, let x =
∑
i αiẑi be the convex combination

of ẑ1, . . . , ẑ` ∈ Ŝ \ Bd+ε′(âi). By Claim 4.3, there are
z1, . . . , z` ∈ ∆, such that ‖zi − ẑi‖ ≤ ε′ for all i ∈ [k].
Furthermore, by the proximity of zi to ẑi we have that zi 6∈
Bd(âi). Therefore, z1, . . . , z` ∈ ∆ \ Bd(âi). Then, x =∑
i αizi is also within distance ε′.
Using this claim, we have

dist
(
âi,CH(Ŝ \B6rε′(âi))

)
≥ 2ε′.

F Additional Results, Extensions, and Open
Problems

F.1 Sample Complexity Lower bound
As we observed the number of samples required by our
method is poly(n). However, as the number of classes can be
much smaller than the number of features, one might hope
to recover v1, . . . ,vk, with a number of samples that is poly-
nomial in k rather than n. Here, we show that in the general
case Ω(n) samples are needed to learn v1, . . . ,vk regardless
of the value of k.

For ease of exposition, let k = 1 and note that in this case
every sample should be purely of one type. Assume that the
class vector, v, is promised to be in the set C = {vj | vj` =

1/
√

2, if ` = 2j−1 or 2j, else vj` = 0}. Consider instances
(x1
j ,x

2
j ) such that the `th coordinate of x1

j is x1j` = −1/
√

2

if ` = 2j − 1 and 1/
√

2 otherwise, and x2j` = −1/
√

2 if



` = 2j and 1/
√

2 otherwise. For a given (x1
j ,x

2
j ), we have

that vj · x1
j = vj · x2

j = 0. On the other hand, for all
` 6= j, v` · x1

j = v` · x2
j = 1. Therefore, sample (x1

j ,x
2
j ) is

consistent with v = v` for any ` 6= j, but not with v = vj .
That is, each instance (x1

j ,x
2
j ) renders only one candidate

of C invalid. Even after observing at most n2 − 2 samples of
this types, at least 2 possible choices for v remain. So, Ω(n)
samples are indeed needed to find the appropriate v. The next
theorem, whose proof appears in Appendix G generalizes
this construction and result to the case of any k.
Theorem F.1. For any k ≤ n, any algorithm that for all
i ∈ [k] learns v′i such that ‖vi − v′i‖2 ≤ 1/

√
2, requires

Ω(n) samples.

Note that in the above construction samples have large
components in the irrelevant features. It would be interesting
to see if this lower bound can be circumvented using addi-
tional natural assumptions in this model, such as assuming
that the samples have length poly(k).

F.2 Alternative Noise Models
Consider the problem of recovering v1, . . . ,vk in the pres-
ence of agnostic noise, where for an ε fraction of the sam-
ples (x1,x2), x1 and x2 correspond to different mixture
weights. Furthermore, assume that the distribution over the
instance space is rich enough such that any subspace other
than span{v1, . . . ,vk} is inconsistent with a set of instances
of non-negligible density.5 Since the VC dimension of the
set of k dimensional subspaces in Rn is min{k, n − k},
from the information theoretic point of view, one can re-
cover span{v1, . . . ,vk} as it is the only subspace that is
inconsistent with less than O(ε) fraction of Õ( kε2 ) samples.
Furthermore, we can detect and remove any noisy sample,
for which the two views of the sample are not consistent with
span{v1, . . . ,vk}. And finally, we can recover a1, . . . ,ak
using phase 2 of Algorithm 1.

In the above discussion, it is clear that once we have recov-
ered span{v1, . . . ,vk}, denoising and finding the extreme
points of the projections can be done in polynomial time. For
the problem of recovering a k-dimensional nullspace, [14]
introduced an efficient algorithm that tolerates agnostic noise
up to ε = O(k/n). Furthermore, they provide an evidence
that this result might be tight. It would be interesting to see
whether additional structure present in our model, such as
the fact that samples are convex combination of classes, can
allow us to efficiently recover the nullspace in presence of
more noise.

Another interesting open problem is whether it is possible
to handle the case of p0 = 0. That is, when every document is
affected by Gaussian noiseN (0, σ2In), for σ � ε. A simpler
form of this problem is as follows. Consider a distribution
induced by first drawing x ∼ D, where D is an arbitrary
and unknown distribution over ∆ = CH({a1, . . . ,ak}), and

5This assumption is similar to the richness assumption made in
the standard case, where we assume that there is enough “entropy”
between the two views of the samples such that even in the non-
noisy case the subspace can be uniquely determined by taking the
nullspace of X1 −X2.

taking x̂ = x + N (0, σ2In). Can we learn ai’s within er-
ror of ε using polynomially many samples? Note that when
D is only supported on the corners of ∆, this problem re-
duces to learning mixture of Gaussians, for which there is a
wealth of literature on estimating Gaussian means and mix-
ture weights [12, 16, 17]. It would be interesting to see under
what regimes ai (and not necessarily the mixture weights)
can be learned when D is an arbitrary distribution over ∆.

F.3 General function f(·)

Consider the general model described in Section 2, where
fi(x) = f(vi ·x) for an unknown strictly increasing function
f : R+ → [0, 1] such that f(0) = 0. We describe how
variations of the techniques discussed up to now can extend
to this more general setting.

For ease of exposition, consider the non-noisy case. Since
f is a strictly increasing function, f(vi · x1) = f(vi · x2)
if and only if vi · x1 = vi · x2. Therefore, we can recover
span(v1, . . . ,vk) by the same approach as in Phase 1 of Al-
gorithm 1. Although, by definition of pseudoinverse matrices,
the projection of x is still represented by x =

∑
i(vi · x)ai,

this is not necessarily a convex combination of ai’s anymore.
This is due to the fact that vi · x can add up to values larger
than 1 depending on x. However, x is still a non-negative
combination of ai’s. Moreover, ai’s are linearly independent,
so ai cannot be expressed by a nontrivial non-negative com-
bination of other samples. Therefore, for all i, ai/‖ai‖ can
be recovered by taking the extreme rays of the convex cone
of the projected samples. So, we can recover v1, . . . ,vk, by
taking the psuedoinverse of ai/‖ai‖ and re-normalizing the
outcome such that ‖vi‖2 = 1. When samples are perturbed
by noise, a similar argument that also takes into account the
smoothness of f proves similar results.

It would be interesting to see whether a more general class
of similarity functions, such as kernels, can be also learned
in this context.

G Proof of Theorem F.1 — Lower Bound

For ease of exposition assume that n is a multiple of k. Fur-
thermore, in this proof we adopt the notion (xi,x

′
i) to repre-

sent the two views of the ith sample. For any vector u ∈ Rn
and i ∈ [k], we use (u)i to denote the ith n

k -dimensional
block of u, i.e., coordinates u(i−1)nk+1, . . . , uink .

Consider the n
k -dimensional vector uj , such that uj` = 1

if ` = 2j − 1 or 2j, and uj` = 0, otherwise. And con-
sider n

k -dimensional vectors zj and z′j , such that zj` = −1
if ` = 2j − 1 and zj` = 1 otherwise, and z′j` = −1 if
` = 2j and z′j` = 1 otherwise. Consider a setting where
vi is restricted to the set of candidate Ci = {vji | (vji )i =

uj/
√

2 and (vji )i′ = 0 for i′ 6= i}. In other words, the `th

coordinate of vji is 1/
√

2 if ` = (i − 1)nk + 2j − 1 or
(i−1)nk+2j, else 0. Furthermore, consider instances (xji ,x

′j
i )

such that (xji )i = zj/
√

2 and (x′ji )i = z′j/
√

2 and for all



i′ 6= i, (xji )i′ = (x′ji )i′ = 0. In other words,

xji =
1√
2

(0, . . . , 0, 1, . . . , 1,

(i−1)nk+2j−1,(i−1)nk+2j︷ ︸︸ ︷
1,−1 , 1, . . . , 1, 0, . . . , 0),

x′ji =
1√
2

(0, . . . , 0, 1, . . . , 1,−1, 1 , 1, . . . , 1, 0, . . . , 0),

vji =
1√
2

(0, . . . , 0, 0, . . . , 0, 1, 1 , 0, . . . , 0,︸ ︷︷ ︸
ith block

0, . . . , 0).

First note that, for any i, i′ ∈ [k] and any j, j′ ∈ [ n2k ],
vji · x

j′

i′ = vji · x
′j′
i′ . That is, the two views of all instances

are consistent with each other with respect to all candidate
vectors. Furthermore, for any i and i′ such that i 6= i′, for
all j, j′, vji · x

j′

i′ = 0. Therefore, for any observed sample
(xji ,x

′j
i ), the sample should be purely of type i.

For a given i, consider all the samples (xji ,x
′j
i ) that are

observed by the algorithm. Note that vji · x
j
i = vji · x

′j
i = 0.

And for all j′ 6= j, vj
′

i · x
j
i = vj

′

i · x
′j
i = 1. Therefore, ob-

serving (xji ,x
′j
i ) only rules out vji as a candidate, while this

sample is consistent with candidates vj
′

i for j′ 6= j. There-
fore, even after observing ≤ n

2k − 2 samples of this types, at
least 2 possible choices for vi remain valid. Moreover, the
distance between any two vji ,v

j′

i ∈ Ci is
√

2. Therefore,
n
2k − 1 samples are needed to learn vi to an accuracy better
than
√

2/2.
Note that consistency of the data with vi′ is not affected

by the samples of type xji that are observed by the algorithms
when i′ 6= i. So, Ω(k nk ) = Ω(n) samples are required to
approximate all vi’s to an accuracy better than

√
2/2.
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