Cutoff for product replacement on finite groups

Alex Zhai

Stanford University

Joint work with

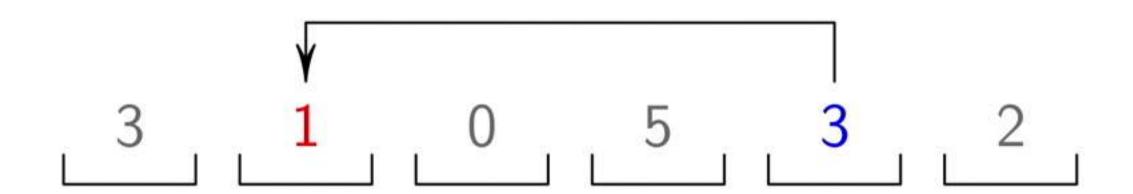
3

Yuval Peres Microsoft Research

Ryokichi Tanaka Tohoku University

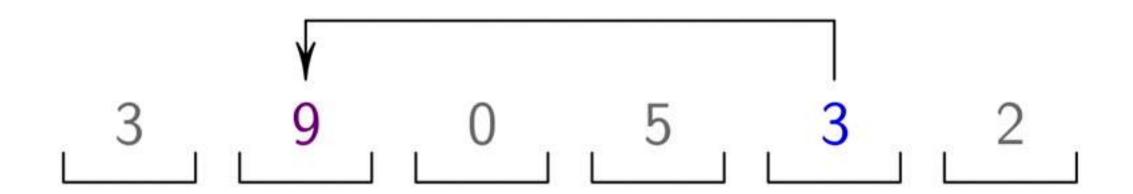
• Let G be a finite group, and consider an *n*-tuple of group elements (call this a **configuration**). For example, $G = \mathbb{Z}/11$ and n = 6.

- Let G be a finite group, and consider an *n*-tuple of group elements (call this a **configuration**). For example, $G = \mathbb{Z}/11$ and n = 6.
- We consider the **product replacement walk**: randomly pick two of the elements a and b, and replace a with a+b or a-b.



- Let G be a finite group, and consider an *n*-tuple of group elements (call this a **configuration**). For example, $G = \mathbb{Z}/11$ and n = 6.
- We consider the **product replacement walk**: randomly pick two of the elements a and b, and replace a with a+b or a-b.

• The process can be viewed as random walk on an undirected regular graph: each configuration can transition to/from 2n(n-1) other configurations (possibly with self-loops).

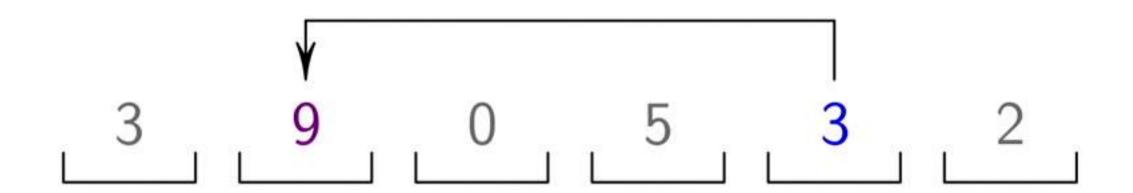


- Let G be a finite group, and consider an n-tuple of group elements (call this a configuration). For example, $G = \mathbb{Z}/11$ and n = 6.
- We consider the **product replacement walk**: randomly pick two of the elements a and b, and replace a with a+b or a-b.

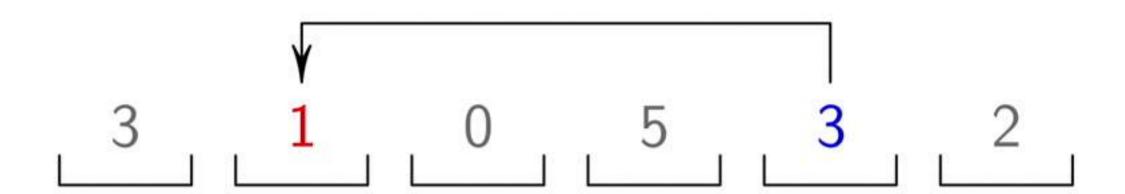
 The process can be viewed as random walk on an undirected regular graph: each configuration can transition to/from 2n(n − 1) other configurations (possibly with self-loops).

- The process can be viewed as random walk on an undirected regular graph: each configuration can transition to/from 2n(n-1) other configurations (possibly with self-loops).
- The graph is not connected, e.g. the subgroup generated by the elements remains invariant throughout the process.

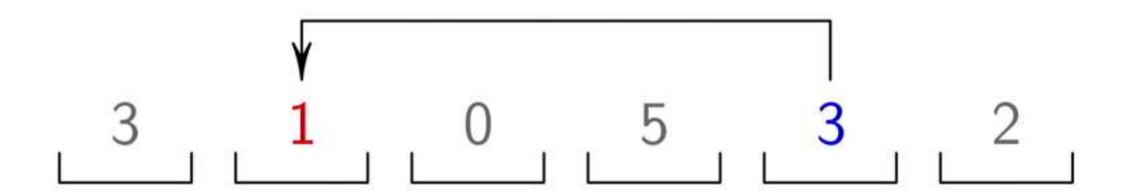
- The process can be viewed as random walk on an undirected regular graph: each configuration can transition to/from 2n(n − 1) other configurations (possibly with self-loops).
- The graph is not connected, e.g. the subgroup generated by the elements remains invariant throughout the process.
- We focus on "generating n-tuples", i.e. n-tuples that generate the whole group.

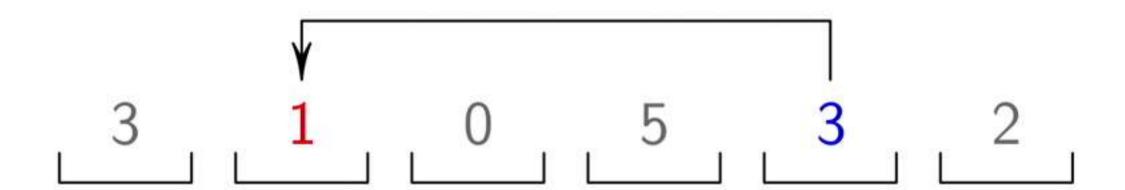


- Let G be a finite group, and consider an *n*-tuple of group elements (call this a **configuration**). For example, $G = \mathbb{Z}/11$ and n = 6.
- We consider the **product replacement walk**: randomly pick two of the elements a and b, and replace a with a+b or a-b.



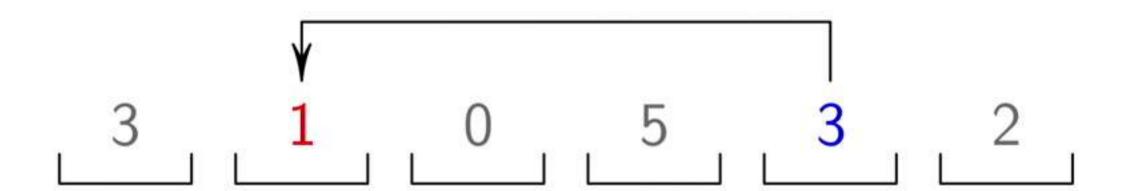
- The process can be viewed as random walk on an undirected regular graph: each configuration can transition to/from 2n(n - 1) other configurations (possibly with self-loops).
- The graph is not connected, e.g. the subgroup generated by the elements remains invariant throughout the process.
- We focus on "generating n-tuples", i.e. n-tuples that generate the whole group.
- As long as n is big enough (say $n \gg \log |G|$), any two generating n-tuples can reach each other by product replacement steps. Also, the vast majority of configurations are generating n-tuples.



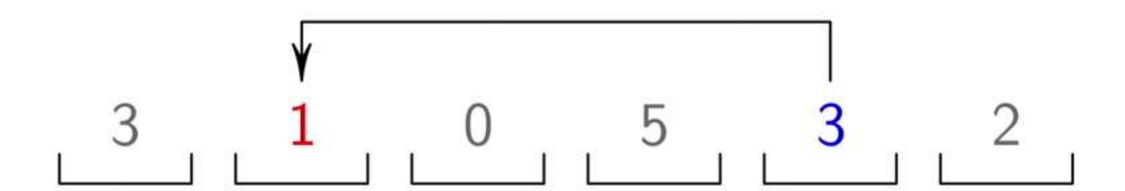


Product replacement walk is related to:

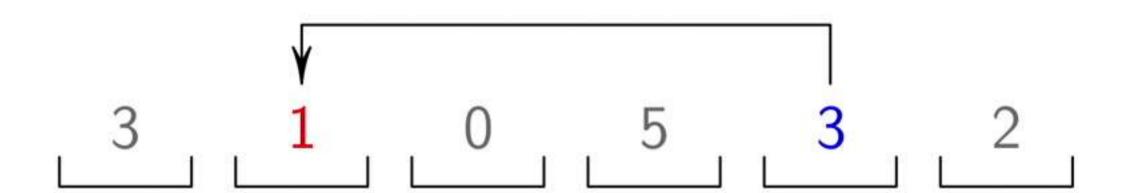
Sampling random group elements (product replacement algorithm)



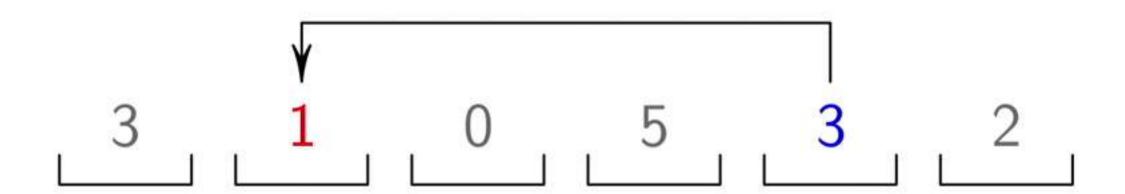
- Sampling random group elements (product replacement algorithm)
- Random walk on $SL_n(\mathbb{Z}/q)$



- Sampling random group elements (product replacement algorithm)
- Random walk on $SL_n(\mathbb{Z}/q)$
- Graph-restricted variants: instead of picking any two elements, only allow certain pairs



- Sampling random group elements (product replacement algorithm)
- Random walk on $SL_n(\mathbb{Z}/q)$
- Graph-restricted variants: instead of picking any two elements, only allow certain pairs
 - East model (graph = path)



- Sampling random group elements (product replacement algorithm)
- Random walk on $SL_n(\mathbb{Z}/q)$
- Graph-restricted variants: instead of picking any two elements, only allow certain pairs
 - East model (graph = path)
 - Higher-dimensional versions?

Mixing time

• Let $\sigma_0, \sigma_1, \sigma_2, \ldots$ be the sequence of configurations of the chain. (So σ_t is configuration at time t.)

Mixing time

- Let $\sigma_0, \sigma_1, \sigma_2, \ldots$ be the sequence of configurations of the chain. (So σ_t is configuration at time t.)
- Recall for $\epsilon \in (0,1)$ that the **mixing time** $t_{mix}(\epsilon)$ is the earliest time t such that

$$\|\mathbf{P}(\sigma_t \in \cdot) - \pi\|_{\mathrm{TV}} \leq \epsilon$$

where π is the stationary distribution.

• **Cutoff phenomenon**: refers to when the TV-distance from stationary rapidly drops from near 1 to near 0 within a short timescale.

Cutoff for product replacement

Theorem (Peres-Tanaka-Z.)

Let G be a fixed finite group, and consider the product replacement walk $(\sigma_t)_{t>0}$. Then, for any fixed $\epsilon > 0$,

$$\left(\frac{3}{2}-o(1)\right)n\log n \leq t_{\min}(1-\epsilon) \leq t_{\min}(\epsilon) \leq \left(\frac{3}{2}+o(1)\right)n\log n$$

as $n \to \infty$.

Cutoff for product replacement

Theorem (Peres-Tanaka-Z.)

Let G be a fixed finite group, and consider the product replacement walk $(\sigma_t)_{t\geq 0}$. Then, for any fixed $\epsilon > 0$,

$$\left(\frac{3}{2}-o(1)\right)n\log n \leq t_{\min}(1-\epsilon) \leq t_{\min}(\epsilon) \leq \left(\frac{3}{2}+o(1)\right)n\log n$$

as $n \to \infty$.

• Extends work of Ben-Hamou and Peres who showed this for $G = \mathbb{Z}/2$.

Cutoff for product replacement

Theorem (Peres-Tanaka-Z.)

Let G be a fixed finite group, and consider the product replacement walk $(\sigma_t)_{t>0}$. Then, for any fixed $\epsilon > 0$,

$$\left(\frac{3}{2}-o(1)\right)n\log n \leq t_{\min}(1-\epsilon) \leq t_{\min}(\epsilon) \leq \left(\frac{3}{2}+o(1)\right)n\log n$$

as $n \to \infty$.

- Extends work of Ben-Hamou and Peres who showed this for $G = \mathbb{Z}/2$.
- Diaconis and Saloff-Coste proved $t_{mix} = O(n^2 \log n)$ and conjectured $t_{mix} = O(n \log n)$.

Analysis of the mixing can be decomposed into three stages:

Analysis of the mixing can be decomposed into three stages:

 Initially, the elements in the configuration might be mostly constrained to some subgroup ("subgroup-confined" regime). It takes about n log n steps to escape the subgroup-confined regime.

Analysis of the mixing can be decomposed into three stages:

- Initially, the elements in the configuration might be mostly constrained to some subgroup ("subgroup-confined" regime). It takes about n log n steps to escape the subgroup-confined regime.
- Once outside the subgroup-confined regime, counts of elements can be approximated by a differential equation. After about $\frac{1}{2}n \log n$ steps, each group element appears with approximately equal frequency.

Analysis of the mixing can be decomposed into three stages:

- Initially, the elements in the configuration might be mostly constrained to some subgroup ("subgroup-confined" regime). It takes about n log n steps to escape the subgroup-confined regime.
- Once outside the subgroup-confined regime, counts of elements can be approximated by a differential equation. After about $\frac{1}{2}n \log n$ steps, each group element appears with approximately equal frequency.
- Even if group elements appear with roughly equal frequency, mixing is not guaranteed. A coupling argument for O(n) steps is needed to finish the proof.

Analysis of the mixing can be decomposed into three stages:

- Initially, the elements in the configuration might be mostly constrained to some subgroup ("subgroup-confined" regime). It takes about n log n steps to escape the subgroup-confined regime.
- Once outside the subgroup-confined regime, counts of elements can be approximated by a differential equation. After about $\frac{1}{2}n \log n$ steps, each group element appears with approximately equal frequency.
- Even if group elements appear with roughly equal frequency, mixing is not guaranteed. A coupling argument for O(n) steps is needed to finish the proof.

For simplicity, we'll focus on the case $G = \mathbb{Z}/q$ for a prime q.

Analysis of the mixing can be decomposed into three stages:

- Initially, the elements in the configuration might be mostly constrained to some subgroup ("subgroup-confined" regime). It takes about n log n steps to escape the subgroup-confined regime.
- Once outside the subgroup-confined regime, counts of elements can be approximated by a differential equation. After about $\frac{1}{2}n \log n$ steps, each group element appears with approximately equal frequency.
- Even if group elements appear with roughly equal frequency, mixing is not guaranteed. A coupling argument for O(n) steps is needed to finish the proof.

For simplicity, we'll focus on the case $G = \mathbb{Z}/q$ for a prime q. Also, we'll focus on the upper bound for mixing.

• Let's show we don't get stuck too long with more than, say, $\frac{2}{3}$ of our elements being zero (other subgroups can be handled similarly).

- Let's show we don't get stuck too long with more than, say, $\frac{2}{3}$ of our elements being zero (other subgroups can be handled similarly).
- Suppose k out of n elements are currently not zero.

- Let's show we don't get stuck too long with more than, say, $\frac{2}{3}$ of our elements being zero (other subgroups can be handled similarly).
- Suppose k out of n elements are currently not zero.
- Consider elements a and b picked for product replacement (so a becomes a + b or a − b):

- Let's show we don't get stuck too long with more than, say, $\frac{2}{3}$ of our elements being zero (other subgroups can be handled similarly).
- Suppose k out of n elements are currently not zero.
- Consider elements a and b picked for product replacement (so a becomes a + b or a − b):

$$\mathbf{P}(b=0) \approx 1 - rac{k}{n} \implies \# ext{ non-zero stays same}$$
 $\mathbf{P}(b \neq 0, a=0) \approx rac{k}{n} \left(1 - rac{k}{n}\right) \implies \# ext{ non-zero increases by 1}$
 $\mathbf{P}(b \neq 0, a \neq 0) \approx rac{k^2}{n^2} \implies \# ext{ non-zero stays same or decreases by 1}$

- Let's show we don't get stuck too long with more than, say, $\frac{2}{3}$ of our elements being zero (other subgroups can be handled similarly).
- Suppose k out of n elements are currently not zero.
- Consider elements a and b picked for product replacement (so a becomes a + b or a − b):

$$\mathbf{P}(b=0) pprox 1 - rac{k}{n} \implies \# ext{ non-zero stays same}$$
 $\mathbf{P}(b
eq 0, a=0) pprox rac{k}{n} \left(1 - rac{k}{n}
ight) \implies \# ext{ non-zero increases by 1}$
 $\mathbf{P}(b
eq 0, a
eq 0) pprox rac{k^2}{n^2} \implies \# ext{ non-zero stays same or decreases by 1}$

• Can analyze k as a birth-or-death process, reaches at least $\frac{n}{3}$ w.h.p. in about $n \log n$ steps.

Stage 2: Differential equation

• For each $a \in G$, let $N_a(\sigma) =$ number of a's that appear in σ .

Stage 2: Differential equation

• For each $a \in G$, let $N_a(\sigma) =$ number of a's that appear in σ . We'll first analyze how the $N_a(\sigma)$ behave over time.

Stage 2: Differential equation

- For each $a \in G$, let $N_a(\sigma) =$ number of a's that appear in σ . We'll first analyze how the $N_a(\sigma)$ behave over time.
- We have the difference equation

$$\mathbf{E} [N_{a}(\sigma_{t+1}) - N_{a}(\sigma_{t}) \mid \sigma_{t}] = -\frac{N_{a}(\sigma_{t})}{n} + \sum_{b \in G} \frac{N_{a-b}(\sigma_{t})N_{b}(\sigma_{t})}{2n(n-1)} + \sum_{b \in G} \frac{N_{a+b}(\sigma_{t})N_{b}(\sigma_{t})}{2n(n-1)}.$$

Stage 2: Differential equation

- For each $a \in G$, let $N_a(\sigma) =$ number of a's that appear in σ . We'll first analyze how the $N_a(\sigma)$ behave over time.
- We have the difference equation

$$\mathbf{E} [N_{a}(\sigma_{t+1}) - N_{a}(\sigma_{t}) \mid \sigma_{t}] = -\frac{N_{a}(\sigma_{t})}{n} + \sum_{b \in G} \frac{N_{a-b}(\sigma_{t})N_{b}(\sigma_{t})}{2n(n-1)} + \sum_{b \in G} \frac{N_{a+b}(\sigma_{t})N_{b}(\sigma_{t})}{2n(n-1)}.$$

• Think of $N_a(\sigma_t)$ as a function of a and t.

Stage 2: Differential equation

- For each $a \in G$, let $N_a(\sigma) =$ number of a's that appear in σ . We'll first analyze how the $N_a(\sigma)$ behave over time.
- We have the difference equation

$$\mathbf{E} [N_{a}(\sigma_{t+1}) - N_{a}(\sigma_{t}) \mid \sigma_{t}] = -\frac{N_{a}(\sigma_{t})}{n} + \sum_{b \in G} \frac{N_{a-b}(\sigma_{t})N_{b}(\sigma_{t})}{2n(n-1)} + \sum_{b \in G} \frac{N_{a+b}(\sigma_{t})N_{b}(\sigma_{t})}{2n(n-1)}.$$

• Think of $N_a(\sigma_t)$ as a function of a and t. Our equation approximates the differential equation (after appropriate rescaling)

$$\frac{\partial}{\partial t}N = -N + N * \left(\frac{N + N^{-}}{2}\right),$$

where $N^{-}(a, t) = N(-a, t)$.

 After taking the Fourier transform, convolution becomes multiplication.

- After taking the Fourier transform, convolution becomes multiplication.
- With (complex-valued) Fourier coefficients

$$x_k(t) = \frac{1}{n} \sum_{a \in \mathbb{Z}/q} N_a(\sigma_t) \cdot \omega^{-ka}, \qquad \omega = e^{\frac{2\pi i}{q}},$$

- After taking the Fourier transform, convolution becomes multiplication.
- With (complex-valued) Fourier coefficients

$$x_k(t) = \frac{1}{n} \sum_{a \in \mathbb{Z}/q} N_a(\sigma_t) \cdot \omega^{-ka}, \qquad \omega = e^{\frac{2\pi i}{q}},$$

we end up with the differential equation

$$\frac{\partial}{\partial t}x_k = -x_k + x_k \cdot \frac{x_k + \bar{x}_k}{2}.$$

- After taking the Fourier transform, convolution becomes multiplication.
- With (complex-valued) Fourier coefficients

$$x_k(t) = \frac{1}{n} \sum_{a \in \mathbb{Z}/q} N_a(\sigma_t) \cdot \omega^{-ka}, \qquad \omega = e^{\frac{2\pi i}{q}},$$

we end up with the differential equation

$$\frac{\partial}{\partial t}x_k = -x_k + x_k \cdot \frac{x_k + \bar{x}_k}{2}.$$

• Note that x_0 is always identically 1.

- After taking the Fourier transform, convolution becomes multiplication.
- With (complex-valued) Fourier coefficients

$$x_k(t) = \frac{1}{n} \sum_{a \in \mathbb{Z}/q} N_a(\sigma_t) \cdot \omega^{-ka}, \qquad \omega = e^{\frac{2\pi i}{q}},$$

we end up with the differential equation

$$\frac{\partial}{\partial t}x_k = -x_k + x_k \cdot \frac{x_k + \bar{x}_k}{2}.$$

• Note that x_0 is always identically 1. If $x_k \to 0$ for all $k \neq 0$, this means $N_a \to \frac{1}{|G|} n$.

$$\frac{\partial}{\partial t}x_k = -x_k + x_k \cdot \frac{x_k + \bar{x}_k}{2}$$

$$\frac{\partial}{\partial t}x_k = -x_k + x_k \cdot \frac{x_k + \bar{x}_k}{2}$$

• If we're outside the subgroup-confined regime, we can ensure that $\operatorname{Re} x_k < 1 - \delta$, where δ depends only on G

- After taking the Fourier transform, convolution becomes multiplication.
- With (complex-valued) Fourier coefficients

$$x_k(t) = \frac{1}{n} \sum_{a \in \mathbb{Z}/q} N_a(\sigma_t) \cdot \omega^{-ka}, \qquad \omega = e^{\frac{2\pi i}{q}},$$

we end up with the differential equation

$$\frac{\partial}{\partial t}x_k = -x_k + x_k \cdot \frac{x_k + \bar{x}_k}{2}.$$

• Note that x_0 is always identically 1. If $x_k \to 0$ for all $k \neq 0$, this means $N_a \to \frac{1}{|G|} n$.

$$\frac{\partial}{\partial t}x_k = -x_k + x_k \cdot \frac{x_k + \bar{x}_k}{2}$$

• If we're outside the subgroup-confined regime, we can ensure that $\operatorname{Re} x_k < 1 - \delta$, where δ depends only on G

$$\frac{\partial}{\partial t}x_k = -x_k + x_k \cdot \frac{x_k + \bar{x}_k}{2}$$

• If we're outside the subgroup-confined regime, we can ensure that $\operatorname{Re} x_k < 1 - \delta$, where δ depends only on G

$$\implies \frac{\partial}{\partial t} x_k \le -\delta x_k$$

 $\implies x_k$ decreases exponentially.

• When x_k is small, decay is exponential with constant approximately 1: $x_k(s+t) \approx e^{-t}x_k(s)$.

$$\frac{\partial}{\partial t}x_k = -x_k + x_k \cdot \frac{x_k + \bar{x}_k}{2}$$

• If we're outside the subgroup-confined regime, we can ensure that $\operatorname{Re} x_k < 1 - \delta$, where δ depends only on G

$$\implies \frac{\partial}{\partial t} x_k \le -\delta x_k$$

 $\implies x_k$ decreases exponentially.

- When x_k is small, decay is exponential with constant approximately 1: $x_k(s+t) \approx e^{-t}x_k(s)$.
- After about $\frac{1}{2}n\log n$ steps, the x_k are about $O(1/\sqrt{n})$, which corresponds to $N_a = \frac{n}{|G|} + O(\sqrt{n})$.

Stage 3: Bounding mixing time via coupling

 We've analyzed the convergence of the frequency counts; now let's return to mixing.

Stage 3: Bounding mixing time via coupling

- We've analyzed the convergence of the frequency counts; now let's return to mixing.
- Consider a stationary product replacement process σ'_t (i.e. the initial state is drawn uniformly among generating *n*-tuples).

Stage 3: Bounding mixing time via coupling

- We've analyzed the convergence of the frequency counts; now let's return to mixing.
- Consider a stationary product replacement process σ'_t (i.e. the initial state is drawn uniformly among generating *n*-tuples).
- Suffices to couple our process σ_t to σ_t' (with probability 1ϵ) within $\frac{3}{2}n\log n + O(n)$ steps.

• Let $N_{a,b}(t)$ denote the number of positions that were originally a in σ_0 and are now b in σ_t .

- Let $N_{a,b}(t)$ denote the number of positions that were originally a in σ_0 and are now b in σ_t .
- Similarly, let $N'_{a,b}(t)$ be the number of positions that were a in σ_0 and are now b in σ'_t . (Note that the initial value a is still considered with respect to σ_0 .)

- Let $N_{a,b}(t)$ denote the number of positions that were originally a in σ_0 and are now b in σ_t .
- Similarly, let $N'_{a,b}(t)$ be the number of positions that were a in σ_0 and are now b in σ'_t . (Note that the initial value a is still considered with respect to σ_0 .)
- By symmetry, it suffices to find a coupling where $N_{a,b} = N'_{a,b}$ for all $a,b \in G$.

- Let $N_{a,b}(t)$ denote the number of positions that were originally a in σ_0 and are now b in σ_t .
- Similarly, let $N'_{a,b}(t)$ be the number of positions that were a in σ_0 and are now b in σ'_t . (Note that the initial value a is still considered with respect to σ_0 .)
- By symmetry, it suffices to find a coupling where $N_{a,b} = N'_{a,b}$ for all $a,b \in G$.
- By similar argument to before, after $\frac{3}{2}n \log n$ steps we'll have something like

$$N_{a,b} pprox rac{n}{|G|^2} + O(\sqrt{n})$$

for all $a, b \in G$.

$$D = \sum_{a,b \in G} |N_{a,b} - N'_{a,b}|.$$

• Consider two configurations σ and σ' . Let

$$D = \sum_{a,b \in G} |N_{a,b} - N'_{a,b}|.$$

• Assume that we already have $N_{a,b} \approx \frac{n}{|G|^2} + O(\sqrt{n})$, and so $D = O(\sqrt{n})$. Goal is to couple until D = 0.

$$D = \sum_{a,b \in G} |N_{a,b} - N'_{a,b}|.$$

- Assume that we already have $N_{a,b} \approx \frac{n}{|G|^2} + O(\sqrt{n})$, and so $D = O(\sqrt{n})$. Goal is to couple until D = 0.
- Rough idea: suppose σ has more occurrences of g, while σ' has more occurrences of g'.

$$D = \sum_{a,b \in G} |N_{a,b} - N'_{a,b}|.$$

- Assume that we already have $N_{a,b} \approx \frac{n}{|G|^2} + O(\sqrt{n})$, and so $D = O(\sqrt{n})$. Goal is to couple until D = 0.
- Rough idea: suppose σ has more occurrences of g, while σ' has more occurrences of g'.
 - For product replacement, suppose we choose $(a, b) \rightarrow (a + b, a)$ for updating σ and $(a', b') \rightarrow (a' + b', b')$ for updating σ' .

$$D = \sum_{a,b \in G} |N_{a,b} - N'_{a,b}|.$$

- Assume that we already have $N_{a,b} \approx \frac{n}{|G|^2} + O(\sqrt{n})$, and so $D = O(\sqrt{n})$. Goal is to couple until D = 0.
- Rough idea: suppose σ has more occurrences of g, while σ' has more occurrences of g'.
 - For product replacement, suppose we choose $(a, b) \rightarrow (a + b, a)$ for updating σ and $(a', b') \rightarrow (a' + b', b')$ for updating σ' .
 - If it happens that a = g and a' = g', then we try to couple b and b' so that we always have b b' = g' g.

$$D = \sum_{a,b \in G} |N_{a,b} - N'_{a,b}|.$$

- Assume that we already have $N_{a,b} \approx \frac{n}{|G|^2} + O(\sqrt{n})$, and so $D = O(\sqrt{n})$. Goal is to couple until D = 0.
- Rough idea: suppose σ has more occurrences of g, while σ' has more occurrences of g'.
 - For product replacement, suppose we choose $(a, b) \rightarrow (a + b, a)$ for updating σ and $(a', b') \rightarrow (a' + b', b')$ for updating σ' .
 - If it happens that a = g and a' = g', then we try to couple b and b' so that we always have b b' = g' g.
 - This can be done (approximately) because b and b' are nearly uniformly distributed over G.

$$D = \sum_{a,b \in G} |N_{a,b} - N'_{a,b}|.$$

- Assume that we already have $N_{a,b} \approx \frac{n}{|G|^2} + O(\sqrt{n})$, and so $D = O(\sqrt{n})$. Goal is to couple until D = 0.
- Rough idea: suppose σ has more occurrences of g, while σ' has more occurrences of g'.
 - For product replacement, suppose we choose $(a, b) \rightarrow (a + b, a)$ for updating σ and $(a', b') \rightarrow (a' + b', b')$ for updating σ' .
 - If it happens that a = g and a' = g', then we try to couple b and b' so that we always have b b' = g' g.
 - This can be done (approximately) because b and b' are nearly uniformly distributed over G.
- If done carefully, can ensure that D has $\Omega(1)$ probability of either increasing or decreasing, and in expectation, it decreases. Simple random walk started at $O(\sqrt{n})$ is likely to hit 0 within O(n) steps.

• For $G = \mathbb{Z}/q$, what is optimal dependence on q?

- For $G = \mathbb{Z}/q$, what is optimal dependence on q?
- What is the mixing time of graph-restricted product replacement for other graphs (e.g. trees)?

- For $G = \mathbb{Z}/q$, what is optimal dependence on q?
- What is the mixing time of graph-restricted product replacement for other graphs (e.g. trees)?
- Can mixing time of graph-restricted product replacement be tightly bounded in terms of the structure of the graph?

- For $G = \mathbb{Z}/q$, what is optimal dependence on q?
- What is the mixing time of graph-restricted product replacement for other graphs (e.g. trees)?
- Can mixing time of graph-restricted product replacement be tightly bounded in terms of the structure of the graph?
- Thank you!

Cutoff for product replacement

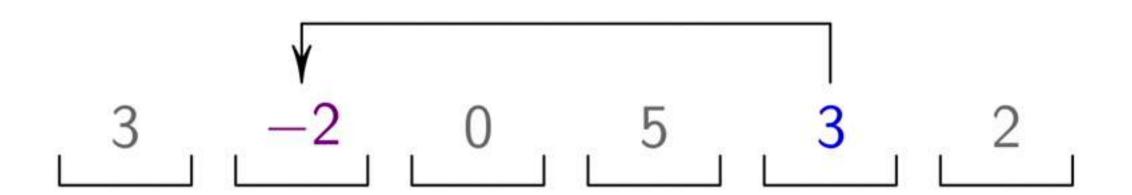
Theorem (Peres-Tanaka-Z.)

Let G be a fixed finite group, and consider the product replacement walk $(\sigma_t)_{t>0}$. Then, for any fixed $\epsilon > 0$,

$$\left(\frac{3}{2}-o(1)\right)n\log n \leq t_{\min}(1-\epsilon) \leq t_{\min}(\epsilon) \leq \left(\frac{3}{2}+o(1)\right)n\log n$$

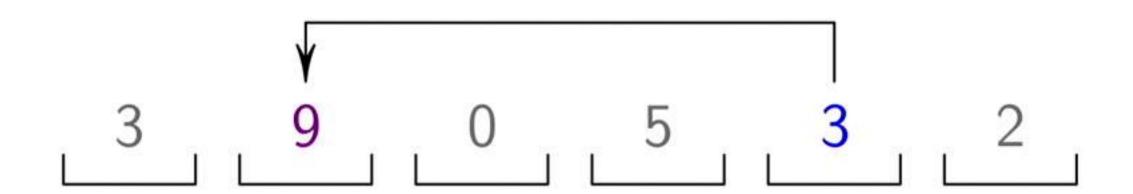
as $n \to \infty$.

Product replacement walk



- Let G be a finite group, and consider an n-tuple of group elements (call this a configuration). For example, $G = \mathbb{Z}/11$ and n = 6.
- We consider the **product replacement walk**: randomly pick two of the elements a and b, and replace a with a+b or a-b.

Product replacement walk



- Let G be a finite group, and consider an n-tuple of group elements (call this a configuration). For example, $G = \mathbb{Z}/11$ and n = 6.
- We consider the **product replacement walk**: randomly pick two of the elements a and b, and replace a with a + b or a b.