
Elastic Sheet-Defined Functions: Generalising
Spreadsheet Functions to Variable-Size Input Arrays∗

Matt McCutchen
†

Massachusetts Institute of Technology

Cambridge, US

matt@mattmccutchen.net

Judith Borghouts
†

University College London

London, UK

judith.borghouts.14@ucl.ac.uk

Andrew D. Gordon

Microsoft Research

Cambridge, UK

University of Edinburgh

Edinburgh, UK

adg@microsoft.com

Simon Peyton Jones

Microsoft Research

Cambridge, UK

simonpj@microsoft.com

Advait Sarkar

Microsoft Research

Cambridge, UK

advait@microsoft.com

Abstract
Sheet-defined functions (SDFs) bring modularity and abstrac-

tion to the world of spreadsheets. Alas, users naturally write

SDFs that work over fixed-size arrays, which limits their

re-usability. We describe a principled approach to general-
ising such functions to become elastic SDFs that work over

inputs of arbitrary size, including a principal-generalisation

theorem and empirical evaluation through a user study.

1 Introduction
Suppose we want to use a spreadsheet to compute the av-

erage of the numeric cells
1
in A1:A10. We might do so like

this, using a simple textual notation for the spreadsheet grid,

described in Section 2:

B1 = SUM(A1:A10); B2 = COUNT(A1:A10); B3 = B1/B2

Rather than repeat this logic in many places, it would be

better to define it once, and call it in many places.With this in

mind, Peyton Jones et al. [14] propose that a function can be

defined by an ordinary worksheet with specially-identified

input and output cells. These sheet-defined function (SDFs)

are explored and implemented in Sestoft’s book [19]. In our

textual notation we might write

function AVERAGE(A1:A10) returns B3 {
B1 = SUM(A1:A10); B2 = COUNT(A1:A10); B3 = B1/B2 }

But there is a problem: this function only works on vectors of

length 10, unlike the built-in AVERAGE which works on vec-

tors of arbitrary size. We would like to generalise AVERAGE,
by replacing the fixed 10 by a length variable α , thus making

an elastic SDF:
∗
Draft as of November 27, 2018; see https://aka.ms/calcintel for the latest
version. © 2018 Microsoft.

†
This work was done while these authors were working at Microsoft

Research.

1
I.e., ignoring cells that are blank or that contain strings or booleans. Note

that SUM and COUNT both do this. We temporarily ignore the fact that

many spreadsheet tools have a built-in AVERAGE function that does this.

function AVERAGE⟨α⟩(A1:A{α }) returns B3 {
B1 = SUM(A1:A{α }); B2 = COUNT(A1:A{α }); B3 = B1/B2 }

This simple example is representative of a large class of

problems that the user might want to solve by first defining

a function that manipulates individual elements of fixed-size

input arrays (because that is easy in spreadsheets), and then

somehow generalising it to work on inputs of arbitrary size.

The core contribution of this paper is an algorithm to perform
this generalisation step. Our specific contributions are these:

• A recent paper [18] proposes a simple textual notation

for spreadsheet programs (Section 2). We develop this

idea further, by introducing new notation for corner-
size ranges, and for sheet-defined functions (SDFs).

• We generalise the SDF notation so that it can describe

elastic SDFs, which work on inputs of varying size

(Section 3), and give our new notation a precise seman-

tics (Appendix A) using so-called tiles. We also discuss

practical execution mechanisms in Appendix B.

• Our goal is to find a unique principal generalisation
of the original SDF. We begin by specifying what it

means for one generalisation to be “more general than”

another, and identifying a series of obstacles to the

very existence of a principal generalisation (Section 4).

• In Section 5 we show that every (suitable) SDF does

indeed enjoy a principal generalisation. Better still,

we give an algorithm that finds it, and prove the al-

gorithm correct. The algorithm is parameterised over

the generalisation system (Section 5.4) which allows

us to readily explore a variety of tradeoffs between

expressiveness and complexity.

• The ultimate goal of programming language research

is to make human beings more productive. So in Sec-

tion 6 we describe a user study in which we asked

20 participants to write array-processing SDFs, either

using elastic SDFs or by the method of storing input

1

https://aka.ms/calcintel

M. McCutchen et al.

and output arrays in single cells (so-called arrays-in-

cells [5]). A key finding is that users perceived a sig-

nificantly lower cognitive workload for elastic SDFs,

versus SDFs with arrays-in-cells.

Spreadsheets have a vastly larger user base than mainstream

programming languages, but are seldom studied by program-

ming language researchers. This paper is one of only a hand-

ful to apply the formal arsenal of the programming language

community to spreadsheets, by giving a textual notation for

spreadsheets, a formal semantics, a generalisation ordering,

and a principal generalisation theorem. The technical details

of elastic SDFs are subtle, but the task is hard: generalising

a single, concrete program to a size-polymorphic one, not

just with heuristics, but in a provably most-general way.

From the point of view of the user, however, things are very

simple: you can build a spreadsheet using familiar element-

wise formulae and copy/paste, capture that computation as

a reusable function (exemplified on inputs of fixed size), and

have it reliably and automatically generalised to work on

inputs of arbitrary size. That is a valuable prize.

2 A textual notation for tiles and SDFs
The focus of this paper is on the data and computational

aspects of spreadsheets, rather than on user interface. In this

section we borrow a recently introduced textual notation for

describing the data and computations of a spreadsheet grid –

the Calculation View [18] of the spreadsheet. The complete

Calculation View language as used in this paper is given in

Figure 1 for reference.

Nothing in this paper is vendor-specific; our generalisa-

tion technique relies only on the structure of the spreadsheet

grid, and the copy/paste behaviour of absolute and relative

references, features that are present in essentially all spread-

sheets, and that we describe next.

2.1 Range assignments, formulas, and values
Figure 2 shows a spreadsheet that computes, in H7, the total
cost of purchasing the items in F4:F6, after accounting for

VAT, whose rate is held in G2. In Calculation View form, the

part of the spreadsheet in the red box is written thus (ignor-

ing text labels, which are not involved in the computation):

F4 = 20; F5 = 30; F6 = 35; G2 = 20%

G4:G6 = F4 ∗ G2
H4:H6 = F4 + G4
H7 = SUM(H4::{3,1})

Each cell contains a value computed by the formula in the

cell. A value is a number, boolean, string, error value, or array

of values; the exact details are not relevant to this paper.

The Calculation View form of this sheet fragment con-

sists of a set of range assignments (note that a range may be

a single cell), which can be written in any order, and can

appear on successive lines or on a single line separated by

semicolons. Each range assignment is of form t r = F , where

t is a tile name (usually omitted in examples), r is a range,
and F is a formula.

Ranges r are already standard in spreadsheets. (For a com-

prehensive introduction to spreadsheet notation and seman-

tics, see Sestoft’s authoritative book [19].) Referring to Fig-

ure 1, a range r can be denoted by:

• A single cell address a, such as H7. In this paper, we

use only the so-called A1 notation where the cell is

identified by a column name and a row number.

• A rectangular range denoted by two cell addresses for

the upper-left and lower-right corners, such as G4:G6.
We call this corner-corner notation2.

• A rectangular range denoted by a cell address and

a size, written thus: H4::{3,1}. This corner-size nota-
tion is not present in typical spreadsheet tools, but

turns out to be very convenient for our purposes. The

size {nr ,nc} in braces gives the number of rows and

columns in the range, respectively
3
. So H4::{3,1} means

precisely the same as H4:H6.

Formulas F are also standard in spreadsheets, and again

Figure 1 shows our syntax. A formula can refer to a range

using a range reference ρ, such as F4 or G2. (The tile names

ti in our abstract syntax ρt1, ...,tn are automatically deduced

annotations that are omitted in concrete examples.) Range

references differ from ranges because they can be relative (e.g.
B7) or absolute (e.g. B7), a choice that can be made indepen-

dently for each axis of the reference (e.g. B$7 or $B7). During
copy/paste, relative references are updated to reflect their

new location, while absolute references remain unchanged.

The relative/absolute distinction makes a difference only dur-

ing copy/paste; during formula evaluation it is completely

ignored.

A range reference in corner-size form can always be ex-

pressed in corner-corner form; for example, H$4::{3,1} means

precisely the same asH$4:H$6. In the other direction, a corner-
corner range reference cannot always be expressed in corner-

size form. For example consider B2:B$6; the copy-paste be-
haviour of this reference is different to, say, B2::{5,1}.
The range on the left-hand side of a range assignment is

called a tile; tiles must not overlap, so that each cell is defined

only once. A range assignment t r = F means “put formula

F into the top left-hand corner of r , and then use copy/paste

to assign a formula to the other cells in r”. So in our example

G4:G6 = F4 ∗ G2

2
Conventional spreadsheets treat a “back to front” range like G5:G4 as

identical to G4:G5. This implicit reversal makes it impossible to represent

an empty range, something that seems absolutely necessary as we move

to size-polymorphic functions. In our work we do no implicit reversal; a

range G5:G4 is empty, while G6:G4 is simply ill-formed.

3
Generally, spreadsheets use row,column ordering (e.g. in R1C1 notation,

or array indexing) but A1 notation has always been backwards, putting the

column first.

2

Elastic SDFs

Length variable α , β (if P is a piece of syntax, let vars(P) be the set of variables occurring in P)
A1-style column name N ::= A | . . . | Z | AA | AB | . . .
Elastic A1-style column name N ::= N | {N + α }
Elastic axis position m ::=m | {m + α } (m ∈ Z+)
Address (column, row) a ::= Nm

Span size l ::= l | {l + α } (l ∈ Z≥0)
Range r ::= a | a1 : a2 | a :: {l1, l2}
A1-style absolute/relative marker µ ::= $ | ‘’
Cell reference θ ::= µ1Nµ2m

Range reference ρ ::= θ | θ1 : θ2 | θ :: {l1, l2}
Annotated range reference ρ̃ ::= ρt1, ...,tn

Constant c (either string or number)

Formula F ::= ρ̃ | c | f (F1, . . . , Fn) (t tile name; c constant; f function name)

Range assignment A ::= t r = F
Sheet fragment S ::= A1, . . . ,An

SDF definition F ::= function f (r1, . . ., rk) returns r { S } (vars(r1, . . . , rk , r ,S) = ∅, no t annotations)
Labelled SDF definition ˆF ::= function f (t1 r1, . . ., tk rk) returns r

t ′
1
, ...,t ′j { S } (vars(r1, . . . , rk , r ,S) = ∅)

Elastic SDF definition F̃ ::= function f ⟨α1, . . . ,αn⟩(t1 r1, . . ., tk rk) returns r t
′
1
, ...,t ′j {S}

Figure 1. Syntax

Definition
of SHOP

=SHOP(N4:N9,N3)

Figure 2. A spreadsheet containing the body of the SHOP SDF

and two calls to it, one with a different input size than the original.

the cell G4 gets the original formula F4 ∗ G2, while G6 will
get the formula F6 ∗ G2, as adjusted by copy/paste. The

general rule is that when a formula is copy/pasted from cell C
to D, its relative references are adjusted by the offset between
C and D, while its absolute references are unchanged. The
advantage of our range-assignment notation, compared to

copy/paste in the grid, is that it makes explicit that the entire

range shares a single master formula.

2.2 Sheet-defined functions
Next, we extend our Calculation View notation to cover

sheet-defined functions (Figure 1). For example, we can ab-

stract the re-usable computational content of the sheet frag-

ment in Section 2.1 as an SDF, like this:

function SHOP(F4::{3,1}, G2) returns H7 {
G4::{3,1} = F4 ∗ G2
H4::{3,1} = F4 + G4
H7 = SUM(H4::{3,1}) }

The spreadsheet in Figure 2 contains the body of the SDF as

well as two calls to it, the second of which requires elasticity

in order to work correctly.

In general, an SDF definition F consists of a function name,

a list of input ranges, an output range, and a set of range

assignments that make up the body. The body tiles of an SDF

are the left-hand sides of its range assignments; the input
tiles are the SDF’s input ranges. Each body tile has a single

formula, namely the right-hand side of the range assignment.

The order in which the body tiles are written is immaterial.

The semantics of a call F(e1,e2) to a sheet-defined function
F is to evaluate the arguments to values v1 and v2, gener-
ate a fresh temporary spreadsheet containing the range as-

signments in F’s body, initialise the input ranges with the

argument values v1 and v2, calculate the value of each cell

on the sheet (respecting dependencies), and return the value

of the output range while discarding the temporary sheet.

Unlike conventional languages, where the parameters of the

function are (arbitrary) names given to the input values, in

our language the input ranges specify the cell(s) in which

the arguments to the function are placed; the output range

specifies the cell(s) whose computed value is the result of

the function. In our example, the first argument to SHOP is

placed in F4::{3,1}, while the second is placed in G2.
For the sake of simplicity, we only attempt to generalise

SDFs that are tame, meaning they satisfy the properties:

Static The range references that appear in a formula

identify all the cells that are needed to evaluate the

formula. In Excel the call INDIRECT("A2" & "3") first

3

M. McCutchen et al.

computes the string "A23", and then treats it as a cell

reference A23, so any use of INDIRECT makes a for-

mula non-static. The function OFFSET is similar; but

functions like INDEX and VLOOKUP are fine.

Closed Each range reference in the body of the SDF,

evaluated in each cell of the tile in which it appears,

results in a range of non-negative height and width,

and every cell in this range is inside one of the tiles of

the SDF. Likewise, the output range has non-negative

height and width, and every cell in it is inside one of

the tiles of the SDF. For example, consider the tile

F4::{3,1} = SUM(H4:J4)

When copy-pasted into F5 the formula SUM(H4:J4) be-
comes SUM(H5:J5) and similarly for F6. Each cell in

each of these ranges must be defined by some tile of

the SDF.

Non-introspective No occurrence of functions like ROW
or COLUMN, that implicitly inspect the location of the

formula in which they appear.

Non-degenerate Each tile has positive height andwidth,

and each range reference evaluates to a range of posi-

tive height and width for at least one cell of the calling

tile. These technical restrictions make our proofs sim-

pler by avoiding corner cases, and we know of no

useful functions that are thereby excluded.

2.3 Tiles and dependencies
The point of generalisation is to elasticise some of the tiles

of the SDF. To do so, it is helpful to name each tile, and to

make explicit the tiles on to which each reference points,

producing a labelled SDF like this:

function SHOP(t1 F4::{3,1}, t2 G2) returns H7t5 {
t3 G4::{3,1} = F4t1 ∗ G2t2

t4 H4::{3,1} = F4t1 + G4t3

t5 H7 = SUM(H4::{3,1}t4) }

We have given a distinct name, t1, t2, . . . to each tile, includ-

ing the input tiles. For each reference in the right-hand sides,

and in the returns, we have made explicit the tile(s) to which

that reference points, using a superscript – these are the

target tiles of the reference. A reference points to a target

tile t if evaluating the reference would read a cell from tile

t . For example, the reference G4t3 in the formula for tile t4
is labelled with target tile t3, because evaluating G4 would
require the value of cell G4 which is in tile t3.

The calling tile of a reference is the tile in whose formula

that reference appears; for example, the calling tile of the

reference G2t2 is t3.
In the SHOP example, each reference has a unique target

tile, but in general, the label may be a finite set of target tiles.
For example, suppose the final line of SHOP was instead

t5 H7 = SUM(G4::{3,2}t3,t4)

In this (contrived) example, the reference G4::{3,2} covers
both tiles t3 and t4, and must be so labelled. We show a more

realistic example in Section 5.4.

We do not expect that users will write, or even see, these

labelled definitions. Rather, labelling the original SDF with a

fresh name for each tile, and then computing the unique set

of target tiles for each reference, is the first, purely automatic

step in our generalisation process.

3 Elastic SDFs
The main focus of the paper is the task of generalising an

SDF F to an appropriate elastic SDF F̃. We divide the process

into three steps:

1. Labelling. Construct the labelled form
ˆF of F (which

is unique up to renaming of tiles), as described in Sec-

tion 2.3. Because we restrict to static SDFs (Section 2.2),

this step is straightforward, and we do not discuss it

in detail.

2. Generalisation.Generalise the labelled SDF to an elastic
SDF F̃. This step is our main technical contribution,

and is described in Sections 4 and 5.

3. Code generation. Transform the elastic SDF to exe-

cutable form, which can be done in a variety of ways

(Section 3.4).

3.1 Generalisation by example
We begin with an example to illustrate the process. Suppose

we start with the SHOP SDF introduced in Section 2.2. Step 1

is to annotate it with tiles, as described in Section 2.3, thus:

function SHOP(t1 F4::{3,1}, t2 G2) returns H7t5 {
t3 G4::{3,1} = F4t1 ∗ G2t2

t4 H4::{3,1} = F4t1 + G4t3

t5 H7 = SUM(H4::{3,1}t4) }

Next, in Step 2 we generalise this definition, to become an

elastic SDF, thus:

function SHOP⟨α⟩(t1 F4::{α ,1}, t2 G2) returns H7t5 {
t3 G4::{α ,1} = F4t1 ∗ G2t2

t4 H4::{α ,1} = F4t1 + G4t3

t5 H7 = SUM(H4::{α ,1}t4) }

We have introduced a length variable, α , which stands for

the length of the input vector. A length variable can take any

non-negative integer value. The size of the input range is

{α ,1}, and the intermediate ranges rooted at G4 and H4 share
this same size. (If for some reason we needed the ranges to

be nonempty, we would just set their size to {α+1,1}.) The

idea is, of course, that if we instantiate α to 3, we recover

exactly the labelled SDF that we started with. Notice that

the tile labels are unaffected by generalisation.

For Step 3, we discuss what this elastic SDF means (its

semantics) in Section 3.3, and how it might be executed in

Section 3.4.

4

Elastic SDFs

3.2 Syntax of elastic SDFs
As we have seen, elasticity requires us to generalise spread-

sheet notation by allowing cell coordinates to be computed

based on the function’s length variables. The full syntax is

given in Figure 1. We generalize span sizes l , column names

N , and row numbersm, to include the possibility of adding

a single length variable (enclosed in curly braces).
4

In the SHOP example, in tile H{4+α } = SUM(H4::{α ,1}), the
left-hand side shows an elastic row number H{4+α }, and a

range reference with an elastic size H4::{α ,1}. We elide the

curly braces when the coordinate is just a constant, or when

it appears as a span size. So we write H4::{α ,1}, not H4::{{α },1}.

3.3 Semantics of elastic SDFs
An elastic SDF is the central concept of the paper, so it needs

a direct execution semantics. At first this looks straightfor-

ward: for example, to evaluate a call SHOP(e1, e2), using the
elastic SDF resulting from Step 2 in Section 3.1:

• evaluate e1 and e2 to values v1 and v2;
• instantiate the body of SHOP with α equal to the num-

ber of rows in v1;
• compute the value of the return range using ordinary

spreadsheet semantics.

But there is a tiresome problem: if α > 3, then the ranges of

tiles t4 and t5 overlap.
From a semantic point of view we can easily solve this

problem, by using the tile set that labels each reference. For

example, during evaluation, when dereferencing H7t5 (in

the returns position), we choose the value computed in H7
by tile t5, ignoring any value for H7 by tile t4, using the

label attached to the reference H7t5 to disambiguate which

defining tile is intended. This semantics is easy to formalise,

and we do so in Appendix A.

Not every syntactically-correct elastic SDF, as defined in

Section 2.2, is well defined according to this semantics. Two

main things can go wrong.

First, to be fully defined and unambiguous, the semantics

requires that when evaluating a reference, there should be a
unique tile among the target-tile set labelling the reference that
defines the referenced cell, not zero (undefined) and not more

than one (ambiguous). For the undefined case, consider this

bogus SDF:

function BOGUS_SHOP⟨α⟩(t1 F4::{α ,1}, t2 G2) returns H{4+α } {
t3 G4::{α ,1} = F4t1 ∗ G2t2

t4 H4::{3,1} = F4t1 + G4t3 /∗ NB: Bogus! ∗/

4
We could allow adding a linear combination of length variables, but such

combinations will never occur in the principal regular generalisation of an

SDF as defined later, so we disallow them to save a little bit of worry about

whether all the intervening definitions (e.g., determinability) make sense

with linear combinations. The alert reader will notice that our choice leads

to some range references that are grammatical in corner-corner notation but

not corner-size notation and vice versa, but these range references will fail

to be unambiguous, and thus their existence in the language is unimportant.

t5 H{4+α } = SUM(H4::{α ,1}t4) }

The trouble is that tile t4 does not resize with its inputs t1
and t3. Consequently, if α < 3, the formula for t4 tries to read
F6t1 , but t1 does not define F6. Similarly, if α > 3, the same

happens when the formula in t5 tries to dereference H7t4 .
In these cases, the uniqueness property fails because no

target tile contains the referenced cell. But it can also happen

that too many target tiles contain the cell. For the ambiguous

case, consider the tile from the end of Section 2.3:

t5 H7 = SUM(G4::{3,2}t3,t4)

When evaluating the reference G4::{3,2}t3,t4 , for every cell

in the range G4::{3,2}, say G6, there should be a unique tile

among t3, t4 that defines G6 – and there is, namely t3. Simi-

larlyH5 is in that range, so it too should be defined by exactly
one of the tiles t3, t4 – in this case t4.
Second, to have a well-defined semantics, an elastic SDF

should not mention length variables that are not fixed by its

inputs. For example:

function NONDET⟨α , β⟩(A1::{α ,1}) returns B1 {
C1::{β ,1} = ...

B1 = SUM(C1::{β ,1}) }

Here β is not determined by the size of any of the input

parameters, so it is hard to see how to execute the SDF.

These considerations motivate our definition of what it

means for an elastic SDF to be well-defined:

Definition 3.1 (Well-defined elastic SDF). An elastic SDF

F̃ is well-defined if

1. It is unambiguous, meaning that for every assignment

of values to the length variables:

a. All tiles have non-negative height and width,

b. No two tiles in the target-tile set of the same refer-

ence overlap.

c. For every labelled range reference ρ̃ = ρt1, ...,tk ap-

pearing in a calling tile tc of F̃, and with respect to

every cell in tc , the reference ρ̃ evaluates to a range

of non-negative height and width that is covered by

the tiles t1, . . . , tk .
2. It is determinable: all its length variables are uniquely

determined by the sizes of its arguments.

3.4 Executing elastic SDFs
Our semantics says what a well-defined elastic SDF means.
We can use this semantics directly as a basis for execution,

but doing so requires some extensions to a standard spread-

sheet interpreter. An alternative is instead to translate the

elastic SDF into a form that is more amenable to direct execu-

tion. This translation is not the main focus of the paper, but

we sketch three alternatives in Appendix B: using multiple

worksheets, using coordinate arithmetic to avoid tile over-

laps, or using array-level operations instead of element-level

5

M. McCutchen et al.

ones. Here, for example, is the second of these alternatives,

using overlap avoidance:

function SHOP⟨α⟩(F4::{α ,1}, G2) returns H{4+α } {
G4::{α ,1} = F4 ∗ G2
H4::{α ,1} = F4 + G4
H{4+α } = SUM(H4::{α ,1}) }

We compute the result in cell H{4+α }, which moves (as α
increases) to avoid overlap with the preceding tile.

4 Principal and regular generalisations
As soon as we begin to speak of “generalising” an SDF, it is

natural to ask whether there may be many possible general-

isations and, if so, how we decide which one to pick. This

question arises classically in type systems, where one typi-

cally proceeds as follows. First, one says what it means for a

term to have a type. Next, one defines a generalisation order

between types. Finally, one shows that every (typeable) term

has a principal, or most-general, type; and gives an algorithm

to find it. We will proceed analogously here:

1. We have already specified what it means for an elastic

SDF F̃ to be well-defined (that is, both unambiguous
and determinable, see Section 3.3).

2. We give a generalisation ordering between elastic SDFs,

and say what it means for F̃ to be a generalisation of

a labelled SDF
ˆF (Section 4.1).

3. We give examples of SDFs that have no principal well-

defined generalisation (Sections 4.3-4.5). These exam-

ples motivate a new concept of a regular generalisation
(Section 4.6).

4. We prove that every labelled SDF has a principal regu-

lar generalisation and give an algorithm to find it.

5. We show that the principal regular generalisation is

unambiguous, but in obscure cases might not be de-

terminable; Section 4.2 discusses what to do in this

case.

Notice that only step (4) discusses the generalisation algo-

rithm; the others are entirely free of algorithmic considera-

tions.

4.1 The generalisation ordering
We start with Step (2). Recall that we have a labelled SDF ˆF,
and we seek its principal generalisation, an elastic SDF F̃ (see

Figure 1). An elastic SDF is still labelled, but it enjoys some

length parameters α . So a labelled SDF is just a degenerate

elastic SDF with no length parameters.

As usual with generalisation orderings, we need to define

the relevant kind of substitution, which is a length substitu-
tion, shown in the top part of Figure 3. A length substitution

maps each length variable α to either a constant length l or
an expression β + l , where l is a non-negative integer and β
is a length variable.

Elastic SDF generalisation ordering (Section 4.1)

Length substitution ϕ ::= ϵ | ϕ,α 7→ l
| ϕ,α 7→ β + l (l ∈ Z≥0)

Constraint solving (Section 5.2)

Delta variable α̂ , ˆβ

Delta constant
ˆl ∈ Z

Constraint Q ::= α̂ = ˆβ | α̂ = 0 | α̂ + ˆl1 ≥ ˆl2
Intermediate subst θ ::= ϵ | θ , α̂ 7→ ˆβ | θ , α̂ 7→ 0

Delta substitution Θ ::= ϵ | Θ, α̂ 7→ 0 | Θ, α̂ 7→ α + ˆl

Figure 3. Constraints and substitutions

Definition 4.1 (More general than). An elastic SDF F̃1 is

more general than (or, equivalently, a generalisation of) F̃2

if there exists a length substitution that converts F̃1 to F̃2

(ignoring the length variable declarations themselves).

For example, ND3 in Section 4.2 below is more general than

ND1, as witnessed by the length substitution {α 7→ α , β 7→
3}.

Proposition 4.2. If F̃ is a well-defined generalisation of ˆF,
then F̃ is semantically equivalent to ˆF on inputs of the original
size.

It would be lovely if every SDF had a most general (princi-

pal) well-defined generalisation. But it doesn’t: due to several

problems that we describe in the following subsections, there

may be multiple incomparable ways to generalise an SDF to

make a perfectly well-defined elastic SDF. So, when asked

to generalise an SDF, which of these incomparable gener-

alisations should the generalisation algorithm choose? We

explain our approach in Section 4.6.

4.2 Problem 1: under-constrained sizes
It is possible that the original SDF has a body tile whose size

is not constrained to match that of any input tile. In this case

there may be multiple well-defined generalisations that set

the size of that tile in different ways. For example:

function ND0(t1 A1::{3,1}) returns C1t3 {
t2 B1::{3,1} = 1

t3 C1 = SUM(B1::{3,1}t2) } /∗ 3 ∗/

This SDF has the following well-defined generalisations:

function ND1⟨α⟩(t1 A1::{α ,1}) returns C1t3 {
t2 B1::{3,1} = 1

t3 C1 = SUM(B1::{3,1}t2) } /∗ Always 3 ∗/

function ND2⟨α⟩(t1 A1::{α ,1}) returns C1t3 {
t2 B1::{α ,1} = 1

t3 C1 = SUM(B1::{α ,1}t2) } /∗ Equal to the length of the input ∗/

Neither is more general than the other, yet both specialise to

the original function when α = 3. Which do we want? Our

solution is to drop the requirement that the generalisation be

6

Elastic SDFs

determinable, so that we can get this generalisation, which

is principal (but not executable, since β is not determined):

function ND3⟨α , β⟩(t1 A1::{α ,1}) returns C1t3 {
t2 B1::{β ,1} = 1

t3 C1 = SUM(B1::{β ,1}t2) } /∗ Value depends on β! ∗/

Now, in the rare cases where the principal generalisation is

not determinable, we simply set the non-determined length

variables to their initial values (that is, the value used in the

original function written by the user) and perhaps issue a

warning. That procedure will result in the first of the gener-

alisations above. This procedure is simple and well-defined,

and is only needed in unusual (contrived) cases.

4.3 Problem 2: arbitrary locations
The next problem is that tiles may be positioned in different

ways as a function of the length variables, as long as the

initial values of the variables give the initial positions. For

instance, in the SHOP example, we could gratuitously make

the column of the output cell depend on α :

function SHOP⟨α⟩(t1 F4::{α ,1}, t2 G2) returns {E+α }7t5 {
t3 G4::{α ,1} = F4t1 ∗ G2t2

t4 H4::{α ,1} = F4t1 + G4t3

t5 {E+α }7 = SUM(H4::{α ,1}t4) }

Neither the above nor the generalisation in Section 3.1 can

be converted into the other by a substitution for α .
Arbitrary re-location of tiles in the elastic SDF is of no

interest; it is a bit like α-renaming the binders of a lambda-

term. The simplest way to stop this nonsense is to require

that the upper-left corner of each tile of the elastic SDF be

constant; that is, mention no length variables.
5
Tile t5 above

violates this because its top-left corner is at {E+α }7.

4.4 Problem 3: generalising size-1 axes
Suppose we were to generalise a tile of height 1 to variable

height α . We may then have a choice to interpret a reference

to it as aggregating it or mapping over it, both of which are

among the most common kinds of computation that we want

to support. For example, this SDF:

function G(t1 A1) returns B1t2 {
t2 B1 = COUNT(A1t1) } /∗ Always returns 1 ∗/

has the following possible incomparable generalisations:

function G⟨α⟩(t1 A1::{α ,1}) returns B1t2 {
t2 B1 = COUNT(A1::{α ,1}t1) } /∗ Returns length of the input ∗/

function G⟨α⟩(t1 A1::{α ,1}) returns B1::{α ,1}t2 {
t2 B1::{α ,1} = COUNT(A1t1) } /∗ Returns vector of ones ∗/

Our solution is to ban generalisation of a height of 1 to

variable height, and similarly for width 1. This seems entirely

reasonable: if the user wants an SDF to be generalised to an

5
After generalisation is complete, one possible execution scheme might

re-introduce length variables in the top-left corner to avoid overlaps – see

Appendix B.

array of arbitrary size, she should write an example SDF that

has an array of at least size 2, not size 1.

4.5 Problem 4: patterns of computation
The last problem is the trickiest: there may be multiple well-

defined ways to elasticise the same reference. For example,

the following SDF:

function F(t1 A1::{2,1}) returns B1::{2,1}t2 { t2 B1::{2,1} = A1t1 }

has the following incomparable generalisations
6
:

function F⟨α⟩(t1 A1::{α ,1}) returns B1::{α ,1}t2 {
t2 B1::{α ,1} = A1t1 } /∗ Returns the entire input ∗/

function F⟨α⟩(t1 A1::{α + 2,1}) returns B1::{2,1}t2 {
t2 B1::{2,1} = A1t1 } /∗ Returns first two elements of input ∗/

function F⟨α⟩(t1 A1::{α + 2,1}) returns B1::{2,1}t2 {
t2 B1::{2,1} = A{α+1}t1 } /∗ Returns last two elements of input ∗/

The latter two generalisations are clearly a bit ad-hoc, be-

cause they pick two elements out of a variable-height input

array, so the first is probably the generalisation that the user

intended — but how should we formalise that intuition? We

do so by saying (in Definition 4.4 below) that every refer-

ence should be well-behaved, and exploring various possible

definitions for “well-behaved”.

4.6 Regularity
It is no good choosing at random among incomparable gen-

eralisations. We recover principality like this:

• We solve the first problem (Section 4.2) as described in

that section, by finding a principal generalisation that

may not be determinable, and making it determinable

afterwards.

• We solve the next two problems (Sections 4.3 and 4.4)

by restricting the set of generalisations among which

we choose, to the semi-regular ones (defined shortly).

• We solve the final problem (Section 4.5) by further

restricting the generalisations we consider to those

in which every range reference is well-behaved. The
definition of “well-behaved” will somehow express

common computational patterns in a predictable way.

Rather than define well-behavedness once and for all

here, we instead parameterise our generalisation algo-

rithm, and its proof of principality, over this choice.

This enables us to explore a variety of choices for well-

behavedness: we present two in this paper, but others

are possible.

The following definitions make the above outline precise.

Definition 4.3 (Semi-regular generalisation). An elastic SDF

F̃ is a semi-regular generalisation of a labelled SDF
ˆF if it

satisfies the following conditions:

1. F̃ is a generalisation of
ˆF.

6
Even assuming that we adopt the choice in Section 4.4 and refrain from

generalising the size-1 columns of the ranges.

7

M. McCutchen et al.

2. Every tile of F̃ has non-negative height and width for

every assignment of values to the length variables.

3. The upper-left corner of each tile of F̃ is constant

(Section 4.3).

4. Every tile of non-constant height in F̃ has height at

least 2 in
ˆF, and likewise for the width (Section 4.4).

Definition 4.4 (Regular generalisation). An elastic SDF F̃
is a regular generalisation of a labelled SDF

ˆF if it is a semi-

regular generalisation of
ˆF and each range reference ρ̃ in F̃

is well-behaved (Section 4.5).

Definition 4.5 (Principal regular generalisation). An elastic

SDF F̃∗
is the principal regular generalisation of

ˆF if it is a

regular generalisation of
ˆF and is more general than every

other regular generalisation of
ˆF.7

5 Elasticity inference
Next, we turn our attention to the task of finding the princi-

pal regular generalisation of an SDF. Our approach is quite

conventional: first generate constraints, and then find their

principal solution. Obviously, some of the constraints de-

pend on the definition of well-behaved references. Thus we

define:

Definition 5.1 (Generalisation system). A generalisation
system consists of:

• A class of supported SDFs, a subset of labelled SDFs as

defined in Sections 2.2 and 2.3;

• A predicate for well-behaved range references in sup-

ported SDFs; and

• A constraint generator that takes a range reference in
the “master” elastic SDF F̃0 (defined below) generated

from a supported SDF and returns a set of constraints.

Given a generalisation system, the elasticity inference algo-

rithm is as follows:

1. Convert all tile ranges of
ˆF to corner-size notation and

all range references to corner-corner notation (expand-

ing single cell references to pairs of identical corners).

2. Generate a “master” elastic version F̃0 of
ˆF by adding

a fresh delta variable α̂ to the height and width of

each tile, and to each row or column reference. Setting

all the delta variables to zero recovers the original

function
ˆF. Unlike length variables, delta variables

can potentially take negative values. (Thus F̃0 is not

truly an elastic SDF.)

3. Generate a set of constraints on the delta variables, in

the syntax given in Figure 3, as follows:

7
The principal regular generalisation will only ever be unique up to renam-

ing of length variables and addition and removal of unused length variables

(because regularity does not require determinability), but we ignore these

technicalities and refer to it as if it were unique.

a. For each tile, if the height was 1 in
ˆF, then constrain

the height delta variable equal to 0
8
; otherwise con-

strain the height to be non-negative. Do likewise

with the width.

b. Call the generalisation system’s constraint generator

on each range reference ρ̃ in F̃0.

4. Find the principal solution of the constraints, a delta

substitutionΘ∗
that maps every delta variable either to

zero or to α+ˆl where α is a length variable (Section 5.2).

5. Apply Θ∗
to F̃0 to produce the principal regular gen-

eralisation F̃∗
of

ˆF.

5.1 Elasticity inference by example
We illustrate this sequence of steps using the SHOP SDF

introduced in Section 2.2 and the simplified generalisation

system of Appendix C:

1.
ˆF after the initial conversions:

function SHOP(t1 F4::{3,1}, t2 G2::{1,1}) returns H7:H7t5 {
t3 G4::{3,1} = F4:F4t1 ∗ G2:G2t2

t4 H4::{3,1} = F4:F4t1 + G4:G4t3

t5 H7::{1,1} = SUM(H4:H6t4) }

2. Here is the master elastic version F̃0 (to reduce clutter,

we have omitted the delta variables for the columns

since nothing interesting happens there):

function SHOP(t1 F4::{3+α̂1,1}, t2 G2::{1+α̂2,1})
returns H{7+α̂3}:H{7+α̂4}t5 {

t3 G4::{3+α̂5,1} = F{4+α̂6}:F{4+α̂7}t1 ∗ G{2+α̂8}:G{2+α̂9}t2

t4 H4::{3+α̂10,1} = F{4+α̂11}:F{4+α̂12}t1 + G{4+α̂13}:G{4+α̂14}t3

t5 H7::{1+α̂15,1} = SUM(H{4+α̂16}:H{6+α̂17}t4) }

Note that we elasticise only the size of each tile (on the

LHS), not its position, to respect item 3 of Definition 4.3.

3. Generate constraints. Here we show F̃0 again, with

each constraint attached to the part of F̃0 it was gener-

ated from and marked with the step of the constraint

generation procedure (Appendix C.2) that generated

it. Unmarked constraints are from step 3a of the main

algorithm.

function SHOP(t1 F4::{3+α̂1,1}[3+α̂1≥0]
, t2 G2::{1+α̂2,1}[α̂2=0]

)

returns H{7+α̂3}:H{7+α̂4}t5 [(c) α̂15=α̂3=α̂4=0]
{

t3 G4::{3+α̂5,1}[3+α̂5≥0]

= F{4+α̂6}:F{4+α̂7}t1 [(a) α̂1=α̂5, α̂6=α̂7=0]

∗ G{2+α̂8}:G{2+α̂9}t2 [(c) α̂2=α̂8=α̂9=0]

t4 H4::{3+α̂10,1}[3+α̂10≥0]

= F{4+α̂11}:F{4+α̂12}t1 [(a) α̂1=α̂10, α̂11=α̂12=0]

+ G{4+α̂13}:G{4+α̂14}t3 [(a) α̂5=α̂10, α̂13=α̂14=0]

t5 H7::{1+α̂15,1}[α̂15=0]

8
One might ask, why add a height delta variable only to immediately con-

strain it to zero? Ensuring that every tile has a height delta variable makes

the system-specific constraint generators slightly easier to state, e.g., in step

1 in Section C.2.

8

Elastic SDFs

= SUM(H{4+α̂16}:H{6+α̂17}t4 [(b) α̂16=0, α̂17=α̂10]
) }

4. Solving the constraints yields the delta substitution

{α̂1, α̂5, α̂10, α̂17} 7→ α − 3, and all other delta variables

are zero.

5. The result of applying this substitution to F̃0 is the

elastic SDF shown in Section 3.1 (Step 2).

5.2 Constraint solving
The business of the constraint solver is to find the principal

(i.e. most general, up to renaming) substitution that solves

the constraints. The syntax of constraints and substitutions

is given in Figure 3.

The solution to a set of constraints is a delta substitution,
which maps each delta variable to zero (meaning that the co-

ordinate is inelastic) or to α + ˆl (meaning that the coordinate

has elastic variable α); see Figure 3. A delta substitution Θ
satisfies a constraint if applying Θ to both sides of the con-

straint makes the constraint true, remembering that length

variables α are non-negative. For example α̂ 7→ α+3 satisfies
α̂ ≥ 3.

A delta substitution Θ1 is more general than Θ2 iff there is

a length substitution ϕ such that Θ2 = ϕ ◦ Θ1. It is easy to

compute the most general solution of a set of constraints:

1. Eliminate all the equality constraints. Gather all the
equality constraints α̂ = ˆβ and α̂ = 0 into an interme-
diate substitution θ (Figure 3). That leaves only lower-

bound constraints.

2. Simplify lower bounds. Apply θ to the lower bound

constraints, normalise them to the form α̂ ≥ ˆl , and
combine all the constraints on each individual variable

by taking the maximum of its lower bounds. Now we

have a single constraint α̂ ≥ ˆl for each delta variable

α̂ .
3. Replace delta variables with length variables. For each

constraint α̂ ≥ ˆl , invent a fresh length variable α and

compose θ with α̂ 7→ α + ˆl .

The generalisation systems that we consider will have the

property that every delta variable has a lower-bound con-

straint, and hence the third step eliminates all delta variables

in favour of length variables. Hence the result is a delta sub-

stitution Θ, with only length variables in its range (Figure 3).

5.3 Proof of principality
In this section we prove that our elasticity inference algo-

rithm indeed finds the principal regular generalisation of a

labelled SDF
ˆF. Here is the key theorem:

Theorem 5.2 (Principal regular generalisation). In a sound
generalisation system, every supported SDF ˆF has a princi-
pal regular generalisation F̃∗, F̃∗ is unambiguous, and the
algorithm given at the start of Section 5 finds it.

Proof. See Appendix D. □

Since the constraint generation algorithm and the defini-

tion of regularity are both parameterised over the generali-

sation system, the theorem is predicated on the soundness
of the generalisation system (see Definition 5.1). Soundness

captures the properties that the generalisation system must

have to prove the principality theorem.

Definition 5.3 (Sound generalisation system). A generali-

sation system is sound if the following properties hold for

every supported SDF
ˆF with “master” elastic SDF F̃0:

1. Every regular generalisation of
ˆF is unambiguous (Def-

inition 3.1).

2. No constraint requires α̂ > 0, for any delta-variable α̂ .

3. For every range reference ρ̃ in F̃0 and for each row or

column reference, denoted by χ , in ρ̃, the constraints
generated for ρ̃ include an equality constraint of the

delta variable of the row or column reference χ to

either 0 or a height or width delta variable of a tile.

4. For every delta substitution Θ′
, if the elastic SDF F̃′ =

Θ′(F̃0) is a semi-regular generalisation of
ˆF, then for

each reference ρ̃ in F̃0, Θ
′
satisfies the constraints gen-

erated for ρ̃ if and only if the reference ρ̃ ′ correspond-

ing to ρ̃ in F̃′
is well-behaved.

Property 1 is required because we are only interested in

unambiguous generalisations. Property 2 ensures that the

constraints allow setting all the delta-variables to zero; we

need that possibility to guarantee that the solution F̃∗
is

actually a generalisation of
ˆF. Together with Step 3(a) of

the inference algorithm in Section 5, Property 3 ensures that

every delta-variable is either constrained to zero, or has a

non-positive lower bound. This property of the generated

constraints is required by step (3) the constraint solver (Sec-

tion 5.2), which eliminates the delta-variables.

Finally, property 4 says that the constraint generator pre-

cisely characterises the well-behavedness of references. Ob-

serve that in step 2 of the elasticity inference algorithm we

added enough delta variables that any semi-regular generali-

sation F̃′
of

ˆF is the result of applying some delta substitution
Θ′

to F̃0, so that Θ′(F̃0) = F̃′
. Why? Because the only parts

of F̃ that can differ from
ˆF are tile sizes and row and column

references (not tile upper-left corners by semi-regularity

condition 3). Property 4 then implies that Θ′
satisfies the

reference well-behavedness constraints if and only if F̃′
is

regular.

Proposition 5.4. In a sound generalisation system, every
supported SDF ˆF is a regular generalisation of itself.

Proof. See Appendix D. □

What this proposition means is that we can expect a general-

isation system to degrade gracefully: the elasticity algorithm

cannot fail to produce a principal generalisation. At worst it

9

M. McCutchen et al.

will make inelastic some part that one might hope would be

generalised, with the worst case being F̃∗ = ˆF itself.

As mentioned before, F̃∗
may fail to be determinable,

in which case we recommend setting all non-determinable

length variables to their initial values.

5.4 The generalisation system
Our elasticity algorithm is parameterised over the generali-
sation system (Definition 5.1). Principality is guaranteed (by

Theorem 5.2) for any generalisation system that is sound

(Definition 5.3).

We have studied two generalisation systems. Space pre-

cludes giving the details here, but to summarise

• The simple generalisation system (Appendix C) han-

dles SDFs in which each reference has only one target

tile. This is enough for the SHOP example.

• The full generalisation system (Appendix E) handles a

richer class of SDFs, but in exchange it is more com-

plicated.

The extra expressiveness of the full system is important in

practice. For example, here is a function that computes the

post-transaction balances of a bank account with interest

compounded daily:

/∗ COMPOUND(start date, opening balance,

interest rate, transactions)

transactions is a 2-column array of (date, amount) pairs ∗/

function COMPOUND(ts A3, to F3, tr F1, tx A4::{7,2})
returns F4::{7,1}t4 {

t1 C4::{7,1} = A4tx − A3ts ,tx /∗ Interval between transactions ∗/

t2 D4::{7,1} = POWER(1+F1tr , C4t1) /∗ Interest multiplier ∗/

t3 E4::{7,1} = F3to,t4 ∗ D4t2 /∗ New balance after interest ∗/

t4 F4::{7,1} = E4t3 + B4tx } /∗ Final balance ∗/

The function takes (as its last argument) a 2-column array of

transactions. It computes each new balance by adding a suit-

able interest payment (which depends on the date interval)

and the transaction amount, and returns an array of the post-

transaction balances. We have carefully placed the start date

in A3 immediately above the column of transaction dates

in A4:A10, so that we can uniformly compute the intervals

during which interest accrues. Now consider the reference

to A3 in the definition of t1. When computed in cell C4, the
reference A3 points to the start date input tile ts ; but when
computed in cell C5, the A3 has become A4 (via copy/paste),
and hence points to the date on the first transaction, in tile

tx . So this reference to A3 has two target tiles, ts and tx , and
is therefore labelled with both, making it a non-basic SDF.

Fortunately, our full generalisation system, described in

Appendix E, handles arbitrary tame SDFs, and still enjoys

principal generalisations.

6 User Study
How would users write SDFs for variable-length inputs, if

elastic SDFswere unavailable? Themost plausible alternative

is to write the SDF using array-at-a-time operations, rather

than element-wise operations. This approach is described,

with a user study, by Blackwell et al. [5]. There is already

limited support for arrays-at-a-time operations in various

spreadsheet packages
9
.

We therefore ask: is the programming-by-example ap-

proach of elastic SDFs better for spreadsheet end users, when

compared to defining variable-length input SDFs using arrays-

as-a-time operations? Concretely, we designed a user study

to investigate the following:

• RQ1: Does the use of elastic SDFs versus array pro-

gramming affect the cognitive load experienced by

users in writing SDFs?

• RQ2: Does the use of elastic SDFs versus array pro-

gramming affect the subjective user experience?

• RQ3: Are any observed differences affected by users’

programming expertise?

6.1 Prototype of SDFs for User Study
We adapted an existing research prototype of sheet-defined

functions written as an add-in for Microsoft Excel. The proto-

type already supports lambda-abstractions, and we extended

it to support arrays-in-cells and provided functions for ma-

nipulating arrays, as outlined in Appendix B.3.

To support elastic SDFs, we added a check-box for the user

to indicate that an SDF should be elastic. If so, we generalise

the given SDF to an elastic SDF, which is then implemented

as a concrete SDF by the lazy array translation described in

Appendix B.3.

6.2 Participants and tasks
We had twenty participants (seven female) aged 18-35 (mean

24), an adequate sample for preliminary field research in

human-computer interaction [7].

We developed tasks that were representative of real-world

spreadsheet tasks, to maintain external validity. We achieved

this by adapting real spreadsheets that we had previously

gathered from participants of a different study, in which we

had interviewed users who had shared and explained the use

and structure of these spreadsheets. We adapted the sheets

into tasks by removing personally identifiable information

and intellectual property, and then designating a part of the

sheet to be converted into an SDF and reused elsewhere. For

each task, the participant was presented with a spreadsheet

partially filled with fictional data, a brief description of what

9https://support.office.com/en-us/article/Dynamic-arrays-and-spilled-
array-behavior-205c6b06-03ba-4151-89a1-87a7eb36e531
https://support.google.com/docs/answer/3093275?hl=en
Last accessed: November 27, 2018

10

https://support.office.com/en-us/article/Dynamic-arrays-and-spilled- array-behavior-205c6b06-03ba-4151-89a1-87a7eb36e531
https://support.office.com/en-us/article/Dynamic-arrays-and-spilled- array-behavior-205c6b06-03ba-4151-89a1-87a7eb36e531
https://support.google.com/docs/answer/3093275?hl=en

Elastic SDFs

the sheet was to be used for, and a description of what the

participant had to calculate.

Appendix F includes additional details of our user study

tasks and participants.

6.3 Protocol
Prior to the study, participants watched a 10-minute instruc-

tional video that explained how to create SDFs, how to use

elastic SDFs, and our array notation, with step-by-step ex-

amples. A study session consisted of two parts, one in which

the participant used elastic SDFs, and one in which they used

arrays to define SDFs. In each part, a practice task was per-

formed followed by three task trials. The order of conditions

was counterbalanced to avoid order effects: one group of par-

ticipants used arrays in the first part, and the second group of

participants used elastic SDFs in the first part. After each part,

participants completed a questionnaire to measure their per-

ceived workload. We used the NASA Task Load Index (TLX)

questionnaire, a commonly used tool in user-centred design

research, which enables users to self-assess their workload

during a task [13]. The questionnaire consists of six sub-

scales: mental demand, physical demand, temporal demand,

performance, effort and frustration. The user is asked to rate

their subjective workload on each scale, which ranges from

5 (low workload) to 100 (high workload) on a 20-point scale.

These ratings can be averaged to yield the overall cognitive

load. After the second part, participants were interviewed

on their overall experience. The study lasted approximately

two hours on average.

6.4 Results
A mixed analysis of variance (ANOVA) was used to analyse

the TLX scores. The ANOVA is a statistical model used to

analyse any differences in mean score among groups. A sig-

nificance level (α) of 0.05 was used; we interpreted p-values

lower than this to mean that the observed difference was

unlikely due to chance.

Participants perceived a significantly lower workload for

elastic SDFs (Figure 4a) (M = 37.46, SD = 14.24) than arrays

(M = 52.25, SD = 14.80), F(1, 18)
10
= 10.22, p < 0.01. There was

no significant difference between the group starting with

arrays (M = 47.92, SD = 15.08) and the group starting with

elastic SDFs (M = 41.79, SD = 17.02), F(1,18) = 1.93, p= 0.2.

This implies that there was no ordering effect of SDF version

on cognitive load. There was also no significant interaction

effect between SDF version and order, F(1,18) = 1.31, p= 0.3.

This lack of interaction means that both groups associated

elastic SDFs with a lower workload. However, the effect of

SDF version on workload was slightly greater if users started

10
The numbers in brackets indicate the degrees of freedom and are calcu-

lated from the number of groups and number of participants of the study.

These are used to assess how large the F value needs to be in order to reject

the hypothesis that mean scores of different groups are equal. For a more

extensive explanation of ANOVA results and notation, see Field [9].

(a) Arrays vs elastic SDFs (b) Programming expertise

Figure 4. Boxplots showing differences in cognitive load

scores between groups. (a) Cognitive load was lower with

elastic SDFs than with arrays. (b) Cognitive load was not

significantly affected by programming expertise.

the study with elastic SDFs, suggesting that participants

perceived a larger difference in workload between arrays

and elastic SDFs if they started with elastic SDFs.

Due to bugs in our research prototype, there were occa-

sional delays in response to user interactions, and instances

where Excel needed to be restarted. Due to this limitation,

we were unable to draw a statistical comparison of task com-

pletion times between elastic SDFs and array programming.

Average task completion times for tasks unaffected by tech-

nical interruptions are described here to give some insight

on the timing advantage of elastic SDFs, but this comparison

is not statistically formal. When participants used arrays,

the average task completion time was 13 minutes and 34

seconds (814 seconds). Using elastic SDFs, the average task

completion time was 7 minutes and 48 seconds (468 seconds).

During the study, we observed that this large improvement

in the time required with elastic SDFs can be attributed sim-

ply to the fact that participants spent longer to formulate

logic in terms of array combinators.

We asked participants to rate their programming expe-

rience on a scale from 1 to 4, with 1 being ‘little to no ex-

perience’, 2 ‘some experience, still a beginner’, 3 ‘extensive

experience, some expertise’ and 4 being ‘very experienced,

high expertise’. They also stated how many years of pro-

gramming experience they had. We divided our participants

into ‘low’ and ‘high’ expertise groups. Low expertise partic-

ipants classified themselves as a beginner and/or had less

than two years of experience. Seven participants fell into the

low expertise group, 13 in the high expertise group. We did

not observe significant differences in cognitive load between

11

M. McCutchen et al.

low (M = 43.33, SD = 10.51) and high (M = 46.71, SD = 8.61)

expertise programmers, F(1,18) = 2.20, p = 0.16 (see Figure 4b).

There was also no interaction effect between SDF version or

programming experience, F(1,18) = 0.09, p = 0.77, implying

that the observed differences in cognitive load between elas-

tic SDFs vs array programming were not affected by users’

programming experience. This suggests that elastic SDFs

offer similar cognitive benefits to novice / low-expertise as

well as high-expertise programmers.

In the interview, participants were positive about SDFs

and could see them being applied to their own work in which

custom calculations often have to be re-used. Arrays were

found useful in reducing the manual effort required to re-

peat a simple, built-in function for a large range of cells. For

example, when participants had to do a multiplication for

each row in the sheet, instead of having to enter a formula

for the first row, and then drag-fill the formula down the

range of rows, they only needed to enter the function once if

these rows were held in one cell as an array, and the function

was automatically populated for all values held in that ar-

ray. However, when authoring and invoking complex SDFs,

participants preferred ranges to arrays, because they were

familiar with passing ranges as arguments into built-in func-

tions. Similarly, participants commented that they preferred

elastic SDFs over arrays because the use of ranges was more

similar to their typical use of formulas.

Participants liked that the implementation details of SDFs

are hidden when the SDF is invoked, but they also wanted to

have the option to see further details (i.e., a trace) at invoca-

tion sites. Participants wanted to understand how the func-

tion behaved with different types of input, debugging, and to

inspect intermediate results. Furthermore, some participants

desired control over which arguments to make elastic, as

not all elasticisable arguments might necessarily make sense

to elasticise at the domain level, for example when dealing

with a contract or time period with a fixed length.

In summary: the study found that elastic sheet-defined

functions can successfully enable end users to define func-

tions that accept variable-length input, without having to

write array combinators. We also observed qualitatively that

sheet-defined functions can be a valuable tool in spreadsheet

users’ work. To address our research questions:

• RQ1: Elastic SDFs offered reduced cognitive load, and

potentially lower authoring time, compared to array

programming.

• RQ2: Participants found arrays useful and transparent

when mapping a single formula to a range, but pre-

ferred elastic SDFs for calculations involving complex

array combinators, as well as because it allowed the

use of familiar range notation.

• RQ3: The observed differences were not affected by

users’ programming expertise, suggesting similar ben-

efits to low-expertise as well as high-expertise pro-

grammers.

7 Related work
Generalising an SDF is an example of program synthesis,
where the task is to synthesise a program from some specifi-

cation of what the program should do; see [12] for a recent

survey. The specification is often partial; a popular choice is

to allow the user to supply a set of input/output examples.

The field is a very active one and, like our work, is mostly

focused on the needs of non-expert end users rather than pro-

fessional programmers. However, our work seems unusual:

rather than use input/output examples, or program skeletons,

we directly generalise a single concrete program to one that

handles a broader variety of inputs, and we offer provable

guarantees that the result is not just any generalisation but

the most general one possible.

Sheet-defined functions originated in Forms [1] and have

been implemented in various other research systems since

then. Sestoft’s comprehensive monograph on spreadsheet

technology [19] describes an implementation of sheet-defined

functions with first-class arrays (e.g., an array can be the

value of a cell) and compilation to the .NET intermediate lan-

guage. He does not consider synthesis of SDFs by example.

Various spreadsheet tools let a user define a computation

on input of one size and have a mechanism to modify the

computation to take input of a different size, but the mech-

anism has to be invoked manually by the user, and while a

user can of course copy a computation, there is no means of

sharing logic so that computations on different input sizes

can be updated together. The most rudimentary mechanism

is drag-filling of formulas, which has to be performed once

for each group of contiguous aligned tiles in the computa-

tion. (Indeed, drag-filling is the typical means by which a

user would build an SDF for a certain fixed input size before

making the SDF elastic.) Excel also has support for “tables”

with a homogeneous formula in each column; adding rows

to a table does the equivalent of a drag-fill of the column

formulas, and a syntax is provided to reference an entire

column of a table for aggregation.

Abraham and Erwig describe spreadsheet “templates” in

the ViTSL language [8]. Like an elastic SDF, a ViTSL tem-

plate describes patterns of repeating formulas and can be

specialised to any desired number of repetitions, but there

are no means of reusing the same template multiple times

within a single spreadsheet. Also, the feature sets differ. A

ViTSL template can have a group of rows or columns that

repeats (“ABABAB”) but cannot specify that two separate

groups have the same number of repetitions (“AAA BBB”),

while the reverse is true of an elastic SDF. In many cases, a

sheet designed in one of those ways can be converted to an

12

Elastic SDFs

equivalent sheet designed the other way, though the attrac-

tiveness of the designs to a user may differ. As far as we can

tell from the formalisation, ViTSL does not support offset

references, which is a major limitation compared to elastic

SDFs. Similarly, Paine’s ‘Model Master’ language [17] offers

a textual notation for describing spreadsheet computations,

but its presentation in terms of array formulae and separa-

tion from the grid (requiring the use of an auxiliary ‘layout’

file) make it more suitable for use by expert programmers,

rather than non-expert end users. It does not support SDFs.

Tabula [16] and Object Spreadsheets [15] are structured

spreadsheet tools that let a user construct a computation

that applies to variable-size input by writing element-wise

formulas and then reuse the computation on several inputs

of different sizes by introducing an outer level of structural

repetition around it. However, they do not support extracting

such a computation from an existing unstructured spread-

sheet, nor (currently) packaging such a computation as a

function that can be called from anywhere. Furthermore,

offset references are awkward to express in these tools.

Although the work of Peyton Jones et al. [14] was in-

formed by HCI theories of usability [3, 11], our work appears

to be the first report of a study of sheet-defined functions

with actual users.

Acknowledgements. We thank Joe McDaid, Claudio Russo,

and Neil Toronto for developing the Excel SDF add-in that

we adapted for this study. We thank Nada Amin, Tom Ellis,

Martin Erwig, Andrey Mokhov, Monal Narasimhamurthy,

Lionel Parreaux, Sruti Srinivasa Ragavan, Peter Sestoft, Dim-

itrios Vytiniotis, and JackWilliams, for very helpful feedback

on a draft of this paper.

13

M. McCutchen et al.

References
[1] Allen Ambler. Forms: Expanding the visualness of sheet languages.

In 1987 Workshop on Visual Languages, pages 105–117. Tryck-Center
Linkoping, 1987.

[2] Laura Beckwith, Derek Inman, Kyle Rector, and Margaret Burnett. On

to the real world: Gender and self-efficacy in excel. In Visual Languages
and Human-Centric Computing, 2007. VL/HCC 2007. IEEE Symposium
on, pages 119–126. IEEE, 2007.

[3] Alan F Blackwell. First steps in programming: A rationale for attention

investment models. In Human Centric Computing Languages and
Environments, 2002. Proceedings. IEEE 2002 Symposia on, pages 2–10.
IEEE, 2002.

[4] Alan F. Blackwell. End-User Developers - What Are They Like? In

New Perspectives in End-User Development, pages 121–135. Springer
International Publishing, Cham, 2017. doi: 10.1007/978-3-319-60291-

2_6. URL http://link.springer.com/10.1007/978-3-319-60291-2{_}6.
[5] Alan F Blackwell, Margaret M Burnett, and Simon Peyton Jones. Cham-

pagne prototyping: A research technique for early evaluation of com-

plex end-user programming systems. In Visual Languages and Human
Centric Computing, 2004 IEEE Symposium on, pages 47–54. IEEE, 2004.

[6] Robert P Bostrom, Lorne Olfman, and Maung K Sein. The Importance

of Learning Style in End-User Training. MIS Quarterly, 14(1):101, mar

1990. ISSN 02767783. doi: 10.2307/249313. URL https://www.jstor.org/
stable/249313?origin=crossref.

[7] Kelly Caine. Local standards for sample size at CHI. In Proceedings
of the 2016 CHI Conference on Human Factors in Computing Systems,
pages 981–992. ACM, 2016.

[8] Martin Erwig, Robin Abraham, Steve Kollmansberger, and Irene Coop-

erstein. Gencel: a program generator for correct spreadsheets. Journal
of Functional Programming, 16(3):293–325, 2006.

[9] Andy Field. Discovering Statistics Using IBM SPSS Statistics. Sage

Publications Ltd., 4th edition, 2013. ISBN 1446249182, 9781446249185.

[10] Chittibabu Govindarajulu. End users: who are they? Communications
of the ACM, 46(9):152–159, 2003.

[11] Thomas R. G. Green and Marian Petre. Usability analysis of visual pro-

gramming environments: a ‘cognitive dimensions’ framework. Journal
of Visual Languages & Computing, 7(2):131–174, 1996.

[12] S. Gulwani, O. Polozov, and R Singh. Program synthesis. Foundations
and Trends in Programmign Languages, 4.

[13] Sandra G Hart and Lowell E Staveland. Development of NASA-TLX

(Task Load Index): Results of empirical and theoretical research. Hu-
man mental workload, 1(3):139–183, 1988.

[14] Simon Peyton Jones, Alan Blackwell, and Margaret Burnett. A user-

centred approach to functions in Excel. In Proceedings of the Eighth
ACM SIGPLAN International Conference on Functional Programming,
ICFP ’03, pages 165–176, New York, NY, USA, 2003. ACM. ISBN 1-

58113-756-7. doi: 10.1145/944705.944721. URL http://doi.acm.org/10.
1145/944705.944721.

[15] Matt McCutchen, Shachar Itzhaky, and Daniel Jackson. Object Spread-

sheets: A new computational model for end-user development of data-

centric web applications. In Proceedings of the 2016 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Program-
ming and Software, Onward! 2016, pages 112–127, New York, NY, USA,

2016. ACM. ISBN 978-1-4503-4076-2. doi: 10.1145/2986012.2986018.

URL http://doi.acm.org/10.1145/2986012.2986018.
[16] Jorge Mendes and João Saraiva. Tabula: A language to model spread-

sheet tables. CoRR, abs/1707.02833, 2017. URL http://arxiv.org/abs/
1707.02833.

[17] Jocelyn Paine. Ensuring spreadsheet integrity with model master.

arXiv preprint arXiv:0801.3690, 2008.
[18] Advait Sarkar, Andrew D. Gordon, Neil Toronto, and Simon Pey-

ton Jones. Calculation view: multiple-representation editing in

spreadsheets. In 2018 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), pages 85–93, Oct 2018. doi:

10.1109/VLHCC.2018.8506584.

[19] Peter Sestoft. Spreadsheet Implementation Technology: Basics and Ex-
tensions. The MIT Press, 2014.

[20] Peter Sestoft and Jens Zeilund Sørensen. Sheet-defined functions:

implementation and initial evaluation. In International Symposium on
End User Development, pages 88–103. Springer, 2013.

14

http://link.springer.com/10.1007/978-3-319-60291-2{_}6
https://www.jstor.org/stable/249313?origin=crossref
https://www.jstor.org/stable/249313?origin=crossref
http://doi.acm.org/10.1145/944705.944721
http://doi.acm.org/10.1145/944705.944721
http://doi.acm.org/10.1145/2986012.2986018
http://arxiv.org/abs/1707.02833
http://arxiv.org/abs/1707.02833

Elastic SDFs

A Semantics of SDFs and Elastic SDFs
In this section, we describe a formal semantics for a core

spreadsheet language that includes SDFs and elastic SDFs.

Its full abstract syntax is in Figure 1.

As in many spreadsheet systems, each populated cell is

associated with a formula, whose value may be either a literal

string or a number. (Every literal is also a formula, so we

represent a cell holding a literal c by associating the cell with
the formula c .)
The grammar of values, V , is given as follows:

V ::= c | {c1,1, . . . , c1,n ; . . . ; cm,1, . . . , cm,n}
The value {c1,1, . . . , c1,n ; . . . ; cm,1, . . . , cm,n} is an [m × n]

2D array, withm ≥ 0 rows and n ≥ 0 columns.

Although our prototype implementation—the basis of our

user study—supports arrays-in-cells, we do not do so in our

semantics. In common with many spreadsheet systems, our

semantics supports arrays that arise as intermediate values

in formulas (such as arguments or results of function calls),

but whole arrays may not be stored in cells.

A.1 Preliminary Definitions
As mentioned in Figure 1, if P is a piece of syntax, we write

vars(P) for the set of variables occurring in P . For example,

vars(COUNT(A1:A{α })) = {α }. We say a phrase P is inelastic
to mean that vars(P) = ∅.
As we describe in Section 2.1, any (inelastic) range a ::

{l1, l2} or range reference θ :: {l1, l2} in corner-size form can

be turned into corner-corner form. Moreover, any singleton

range a or range reference θ is equivalent to corner-corner

form a : a or θ : θ .
Hence, in our semantics we need only consider inelastic

ranges and range references that are in corner-corner syntax.

r ::= a1 : a2

θ ::= θ1 : θ2

To represent the actual argument values to an SDF, we

introduce a notion of binding, ranged over by B,

B ::= t r = V

where t is a tile name, r is an inelastic range, andV is a value.

Our semantics of formulas is with respect to a context

that represents the current spreadsheet together with any

argument bindings. Let a context γ be a pair (S,B1 . . .Bn),
where S is an inelastic sheet fragment S, n ≥ 0, and each

Bi is a binding.

Given tile name t , inelastic address a, and context γ , let
lookup(t ,a,γ) be either the value or formula specified by:

• If t r = F is one of the range assignments in γ , and
address a falls within the range r and F ′

is the outcome

of drag-filling the formula F from the top-left of r to
address a, then lookup(t ,a,γ) = F ′

.

• If t r = c is one of the bindings inγ , and range r = a : a,
then lookup(t ,a,γ) = c .

• If t r = {c1,1, . . . , c1,n ; . . . ; cm,1, . . . , cm,n} is one of the
bindings in γ , and address a falls at position (i, j) in
range r of size [m × n], then lookup(t ,a,γ) = ci, j .

We need the the t parameter to uniquely dereference range

references in the semantics of elastic SDFs.

A.2 Semantics of Formulas
We define the value [[F]]γ of the inelastic formula F given

context γ as follows:

[[(µ1Nµ2m : µ ′
1
Nµ ′

2
m)t1, ...,tn]]γ

= c if i ∈ 1..n and

either lookup(ti ,Nm,γ) = c
or lookup(ti ,Nm,γ) = F ′

and [[F ′]]γ = c
[[(θ1 : θ2)t1, ...,tn]]γ
= {c1,1, . . . , c1,n ; . . . ; cm,1, . . . , cm,n}

where θ1 : θ2 has size [m × n] withm × n , 1

and each ci, j = [[(θi, j : θi, j)t1, ...,tn]]γ
where each θi, j targets position (i, j) in θ1 : θ2

[[c]]γ = c
[[f (F1, . . . , Fn)]]γ = [[f]]([[F1]]γ , . . . , [[Fn]]γ)

These recursive equations amount to a denotational se-

mantics of formulas. The semantics is undefined in circum-

stances where a spreadsheet would return an error value,

or if there is a cycle between a formula and its own value

in the grid. We do not formally treat errors or cycles in our

semantics, but it would be a standard application of domain

theory, for example.

The first equation applies to a singleton range reference

µ1Nµ2m : µ ′
1
Nµ ′

2
m that targets the cell with addressNm. The

equation can only return a constant c : if lookup(ti ,Nm,γ) =
F ′

and [[F ′]]γ = V whereV is an array, the value is undefined.

As said earlier, we allow constants but not arrays to be held

in cells.

The second equation applies to a non-singleton range and

returns an array of constants, each of which is computed

using a recursive call to compute a singleton range.

The third equation defines the semantics of a constant

formula to be the constant itself.

The fourth equation defines the meaning of a call to a

function f . If f is a function with arity k , we assume [[f]] is
a function from k-tuples of values to values to represent the

semantics of f . We assume suitable definitions of [[f]] for
each builtin function. For example, for the division operator,

the meaning [[/]] is a function that given (c1, c2) returns c1/c2
if both values are numbers and c2 , 0; otherwise it returns a

suitable error string.

In the next two subsections, we define [[f]] when f is an

SDF or an elastic SDF, to complete our semantics.

A.3 Semantics of SDFs
Consider an inelastic (labelled) SDF f :

15

M. McCutchen et al.

function f (t1 r1, . . ., tk rk) returns r
t ′
1
, ...,t ′j { S }

Its meaning [[f]] is a function from k-tuples of values to
values given as follows:

[[f]] = λ(V1, . . . ,Vk).[[r t
′
1
, ...,t ′j]](S,B1 . . .Bk)

where each Bi = (ti ri = Vi)

A.4 Semantics of Elastic SDFs
Consider an elastic SDF f :

function f ⟨α1, . . . ,αn⟩(t1 r1, . . ., tk rk) returns r t
′
1
, ...,t ′j { S }

To give the semantics, we need a substitution operator

on syntax, that turns length variables into specific numbers.

If ϕ = (α1 = l1, . . . ,αn = ln) is a substitution of actual

lengths li for length variables, we write ϕ(P) for the outcome

of substituting the length li for each occurrence of length

variable αi in P . If vars(P) ⊆ {α1, . . . ,αn} we have that

vars(ϕ(P)) = ∅, that is, that ϕ(P) is inelastic.
The meaning [[f]] of the elastic SDF is the function:

[[f]] = λ(V1, . . . ,Vk).[[ϕ(r)t
′
1
, ...,t ′j]](ϕ(S),B1 . . .Bk)

where each Bi = (ti (ϕ(ri)) = Vi)
for some ϕ = (α1 = l1, . . . ,αn = ln)
where size of ϕ(ri) equals size of Vi for each i

In the final constraint, we refer to the sizes of inelastic
ranges ϕ(ri) and valuesVi . Let the size [m×n] of an inelastic

range consist of the numberm of rows and the number n of

rows. The size of an [m × n] array is simply [m × n], and the

size of a constant is [1×1]. Our assumption in Section 3.3 that

a well-defined elastic SDF is determinable implies that the

final constraint uniquely determines the length li assigned
to each variable αi by ϕ.

For example, consider the following elastic SDF

function AVERAGE⟨α⟩(t1 A1:A{α }) returns B3t4 { S }

where the sheet fragment S is the following:

t2 B1 = SUM(A1:A{α }t1);
t3 B2 = COUNT(A1:A{α }t1);
t4 B3 = B1t1 /B2t2

Then its meaning [[AVERAGE]] is the following:
λ(V1).[[ϕ(B3)t4]](ϕ(S),B1)
where B1 = (t1 (ϕ(A1:A{α })) = V1)
for some ϕ = (α = l)
where size of ϕ(A1:A{α }) equals size of V1

B Translation of elastic SDFs to executable
form

In Section 3.3 we sketched the semantics of an elastic SDF,

but doing so relied on an execution model that uses the

target-tile label on each reference to disambiguate references.

One could imagine an implementation based directly on this

model, but in this section we sketch several alternative routes

for execution. A detailed description and evaluation of these

implementation strategies is beyond the scope of this paper.

Our purpose here is to reassure the reader that elastic SDFs

can be implemented efficiently, and to provide background

on the prototype used in our user study.

Given that implementation techniques exist for SDFs [19],

the key new challenge for elastic SDFs is to avoid overlap

between tiles when instantiating the length variables. Indeed,

we define:

Definition B.1 (Overlap-free elastic SDF). An elastic SDF

F̃ is overlap-free if no two of its tiles overlap for any length

variable assignment.

B.1 Use multiple worksheets to avoid tile overlaps
One way to make an elastic SDF overlap-free is to use multi-

ple worksheets. Indeed, if the SDF is basic (each reference

has exactly one target tile), then the translation is easy: we

simply place each tile on a separate worksheet. For example,

here is a translation of our SHOP SDF, using the standard “!”

notation for worksheet references:

function SHOP⟨α⟩(S1!F4::{α ,1}, S2!G2) returns S5!H7 {
S3!G4::{α ,1} = S1!F4 ∗ S2!G2
S4!H4::{α ,1} = S1!F4 + S3!G4
S5!H7 = SUM(S4!H4::{α ,1}) /∗ No overlap because tiles are

on separate sheets S4, S5 ∗/

}

If F̃ is not basic, we can use a slightly more complex process:

move each tile to a separate worksheet, then for each labelled

range reference ρ̃ = ρt1, ...,tk , generate a worksheet that

copies t1, . . . , tk from their respective worksheets (remember,

they never collide because F̃ is well-defined) and update ρ
to refer to this worksheet.

B.2 Move tiles to avoid overlap
Another approach is to move tiles within the single work-

sheet so they do not collide. Compared to using multiple

worksheets, this approach has the advantage that the trans-

formed SDF bears a greater resemblance to the original in

case the user needs to view it for debugging, although other

approaches to debugging elastic SDFs may be better yet.

Here is the SHOP example again:

function SHOP⟨α⟩(F4::{α ,1}, G2) returns H{4+α } {
G4::{α ,1} = F4 ∗ G2
H4::{α ,1} = F4 + G4
H{4+α } = SUM(H4::{α ,1}) /∗ No overlap because H{4+α }

moves down as α increases ∗/

}

By anchoring the final tile at H{4+α }, rather than H7 as before,
it will move downwards as α increases, avoiding the overlap

with the tile anchored atH4. This transformation is nontrivial

in general, and is described in Appendix G. In general, it

produces an extended elastic SDF in which the upper-left

16

Elastic SDFs

corner of a tile may involve a linear combination of length

variables, which is not allowed by the grammar of Figure 1.

The specific algorithm we choose is rather naive but gives

adequate results at least on simple examples.

B.3 Transform to an SDF that uses an array to
represent each tile

The two previous approaches transform an elastic SDF into

another that is constructed so that overlaps cannot occur:

these elastic SDFs can be interpreted according to a simpli-

fied form of the semantics of Section 3.3 without references

needing to track tiles.

Given a spreadsheet interpreter that supports arrays-in-

cells [5], our third approach is to transform an elastic SDF to

an (ordinary) SDF, where we replace each tile with an array

in its top-left corner. For example, in the SHOP function, the

input vector (of whatever size) can land wholesale in F4, the
intermediates (of whatever size) can land in G4 and H4, and
no collision arises:

function SHOP(F4, G2) returns H7 {
/∗ F4 is an array, so the operator ∗ lifts over its elements ∗/

G4 = F4 ∗ G2
/∗ F4 and G4 are arrays, so operator + lifts over both ∗/

H4 = F4 + G4
H7 = SUM(H4) /∗ H4 is an array; SUM adds up its elements ∗/

}

Not apparent in this definition is the expectation that the

first parameter is a vector and the second is a scalar, but

spreadsheets are typically dynamically typed.

The implicit lifting of operators like (+) over arrays (a stan-

dard feature of spreadsheets) makes the transformed SHOP

function seem particularly simple, but this may not be so

for non-basic SDFs. Here is an attempt to write COMPOUND
using arrays-as-cell-values.

function COMPOUND(A3, F3, F1, A4) returns F4 {
C4 = COLUMN(A4, 1) − SHIFT_DOWN(A3, COLUMN(A4, 1))
D4 = POWER(1+F1, C4)
E4 = SHIFT_DOWN(F3, F4) ∗ D4 /∗ BUT array E4 depends on F4 ∗/

F4 = E4 + COLUMN(A4,2) /∗ and F4 depends on E4 ∗/

}

While a reference that targets a single tile simply becomes

a reference to the corresponding array, a reference that tar-

gets multiple tiles becomes a specially constructed array.

For instance, the reference A3ts ,tx in the original code be-

comes the array SHIFT_DOWN(A3, COLUMN(A4, 1)), where
the function COLUMN extracts the first column of the two-

column array A4, and the function SHIFT_DOWN inserts the

element A3 at the front of the resulting array while dropping
its last element. Similarly, the reference F3to,t4 becomes the

array SHIFT_DOWN(F3, F4).

Unfortunately, we arrive at a cyclic dependency between

arrays E4 and F4: each depends on the other. There is a de-

pendence between items in columns E and F in the original

example, but since the items are in separate cells, the spread-

sheet interpreter can select a raster-scan schedule without

any cycles. By placing these columns within arrays, the in-

terpreter is forced to evaluate one or the other column first,

leading to a loop.

To solve this problem, the interpreter in our prototype uses

a lazy array to represent each tile. Each lazy array consists of

an array of thunks, each a memoized argumentless lambda

(lambdas being an experimental feature in our prototype).

We obtain a uniform translation of elastic SDFs that gave no

problems on functions authored by our users.

As an alternative to lazy arrays, we can introduce array-

processing functions that capture particular schedules such

as raster scan, as illustrated by the following (correct) version

of COMPOUND:

function COMPOUND(A3, F3, F1, A4) returns F4 {
C4 = COLUMN(A4, 1) − SHIFT_DOWN(A3, COLUMN(A4, 1))
D4 = POWER(1+F1, C4)
F4 = VSCAN2(D4, COLUMN(A4, 2), F3,

LAMBDA(bal, int, amt, bal ∗ int + amt))
}

The function VSCAN2 runs down two arrays in parallel,

with an accumulator, and we used a lambda-expression too.

We conjecture that a large class of elastic SDFs can be ef-

ficiently implemented by transformation to concrete SDFs

using arrays-as-cell-values, with appeal to implicit lifting

and to explicit array-functions like COLUMN and VSCAN2.
Moreover, we believe that the manual use of these techniques

represents the best solution, using previously known spread-

sheet technology, to the problem of writing SDFs that act on

variable-sized arrays. The point of our user study is to test

elastic SDFs versus this alternative technology with a group

of spreadsheet users.

Can we automatically transform an elastic SDF to use

array-processing functions? We believe so, as long as it has

a simple schedule that we can identify, but leave the details

to future work.

C A simplified generalisation system
In this section, we present a simplified SDF generalisation

system with just enough features to handle the SHOP exam-

ple. The simplified system supports all basic SDFs, defined
as follows:

Definition C.1 (Basic SDF). A tame SDF is basic if it has
the property that, once it is correctly labelled, the target-tile

set on each reference is a singleton.

In the simplified system, well-behaved references are re-

stricted to three simple, common kinds (defined in Section C.1)

that just suffice for the SHOP example. In contrast, the full

17

M. McCutchen et al.

system, described in Appendix E, supports all tame SDFs (not

only basic ones) and allows more kinds of references. Every

generalisation of a basic SDF that is regular according to

the simplified system is regular according to the full system,

but not vice versa. Thus, for certain basic SDFs, while the

simplified system produces a generalisation that is principal

according to its own definition of regularity, the full system

produces a more general elastic SDF.

C.1 Well-behaved references
In Section 4.5 we saw the need for a well-behavedness con-

dition that entails unambiguity, captures common patterns

of computation, and excludes other possible incomparable

generalisations. This section defines that condition.

First we need to introduce some new concepts to analyse

the structure of references. Although a range is normally

given by a pair of corners and columns are normally denoted

by letters, it’s more useful for us to think of it as an inter-

section of a row span and a column span, each with two

endpoints that are numeric axis positions (m in Figure 1), so

that we can treat the row and column axes symmetrically.

For example, the range F4:G6 is the intersection of the row

span 4:6 and the column span 6:7. Likewise, a range reference

is an intersection of a row span reference and a column span

reference, each of which has two axis position references that
may be absolute or relative.

Below, we recall the abstract syntax for an elastic axis

position from Figure 1, and define the syntax for an elastic

axis position reference:

Axis position m ∈ Z+
Elastic axis position m ::=m | {m + α }
Elastic axis position reference χ ::= µm

An (inelastic) axis position reference χ is an elastic axis

position where in fact vars(χ) = ∅, so that χ has form µm.

By the coordinate of an axis position reference, we mean

the underlying number (or elastic expression) without regard

to whether the reference is absolute or relative.

Since each range reference in a basic SDF has only one

target tile, for a generalisation to be unambiguous, we just

need to ensure that its row span reference stays inside the

row span of the target tile and the endpoints do not flip

to produce a negative height, and likewise for the column

span reference. To make it as obvious as possible that these

properties hold in the simplified system, we stick to three

simple kinds of span references that appear in the SHOP

example. In the full system, showing that well-behavedness

implies unambiguity requires a bit more case analysis.

Definition C.2 (Stable and superstable references). A row

reference χ appearing in the formula of a calling tile tc in an

elastic SDF is stable if χ is absolute, or tc is vertically inelastic,
or both; it is superstable if it is absolute or the height of tc is
1. The analogous definitions apply to column references.

Intuitively:

• A stable row reference points to a fixed number of

different target rows, independent of the values of any

length variables, when evaluated across all caller rows.

• A superstable row reference points to a single target

row.

• An unstable row reference points to an arbitrary num-

ber of target rows depending on the (variable) height

of tc .

Definition C.3 (Well-behaved reference in the simplified

system). A range reference ρ̃ appearing in a basic elastic

SDF F̃ is well-behaved if it satisfies the following conditions:

1. Let tc be the calling tile and tt be the (single) target
tile of ρ̃. Let χ

1
: χ

2
be the row span reference of ρ̃.

Then χ
1
: χ

2
is of one of the following three kinds:

• Inelastic: The height of tt is a constant, χ 1 and χ
2
are

both stable, and their coordinates are both constant.

• Lockstep: The heights of tc and tt are the same non-

constant expression, χ
1
= χ

2
, χ

1
is relative, and χ

1

points to the top row of tt when evaluated at the

top row of tc . (By “points to”, we mean for all values

of length variables, not just in
ˆF. In this case, that

means the coordinate of χ
1
must be constant.)

• Whole: The height of tt is non-constant, χ 1 and χ
2

are superstable, χ
1
points to the top row of tt , and

χ
2
points to the bottom row of tt .

2. The analogous condition for the column span reference

of ρ̃.

Examples of all three kinds of span references appear in the

elastic version of SHOP shown in Section 3.1:

• All the column span references are of the Inelastic

kind, as are the row span references that are part of

the references G2 in the formula for t3 and H7 in the

returns clause. The $2 is stable because it is absolute,

and the H7 in the returns clause is implicitly treated as

absolute, while all the other references that are end-

points of Inelastic spans are stable because the calling

tile has size 1 on the relevant axis.

• The row span reference in SUM(H4::{α ,1}), which is

SUM(H4:H{3+α }) in corner-corner notation, is of the

Whole kind; the row references are superstable be-

cause the calling tile t5 has height 1.
• The remaining row span references are of the Lockstep

kind.

C.2 Constraint generation
Given a span reference σ in the “master” elastic SDF F̃0, how

can we generate a conjunction of constraints on a delta sub-

stitution Θ that is equivalent to the disjunction of Θ(σ) being
of the allowed kinds of span references (Inelastic, Lockstep,

or Whole)? The secret is that we can rule out at least one of

Lockstep and Whole just by looking at F̃0: Whole requires

18

Elastic SDFs

that the endpoints of σ be superstable, while Lockstep re-

quires that they not be. Furthermore, the kinds are such that

if we rule out Whole but not Lockstep, we’re able to generate

a set of constraints equivalent to Θ(σ) being Lockstep or
Inelastic; likewise, if we rule out Lockstep but not Whole, we

can generate a set of constraints equivalent to Θ(σ) being
Whole or Inelastic. (If we rule out both Lockstep and Whole,

it’s easy to generate constraints equivalent to Θ(σ) being
Inelastic.) Thus, based on F̃0, we can always generate a set

of constraints equivalent to the disjunction of the kinds that

we haven’t ruled out.

Based on this insight, the constraint generation procedure

for a range reference ρ̃ in F̃0 is as follows:

1. Let tt and tc be the target tile and calling tile of ρ̃, let
χ
1
: χ

2
be its row span reference, let χ1 : χ2 be the

original row span reference in
ˆF, let α̂t and α̂c be the

height delta variables of tt and tc , let α̂1 and α̂2 be

the delta variables of χ
1
and χ

2
, and try the following

cases in order:

a. (Lockstep) If χ1 = χ2, χ1 is relative, and tt and tc have
the same initial height (at least 2), then we anticipate

this span reference is Lockstep, but it may turn out

to be Inelastic. Constrain α̂t = α̂c and α̂1 = α̂2 = 0.

b. (Whole)Otherwise, if the initial height of tt is at least
2, χ1 and χ2 are both superstable, χ1 points to the

top row of tt in ˆF, and χ2 points to the bottom row

of tt in ˆF, then we anticipate this span reference is

Whole, but it may turn out to be Inelastic. Constrain

α̂1 = 0 and α̂2 = α̂t .
c. (Inelastic) Otherwise, this span reference is Inelastic.

Constrain α̂t = α̂1 = α̂2 = 0. In addition, if either

χ1 or χ2 is relative, then constrain α̂c = 0 to ensure

that χ
1
and χ

2
will be stable.

2. Follow the analogue of step (1) for the column axis.

An example of the output of this procedure was given in

Section 5.1 (Step 3).

C.3 Soundness of the simplified system
We can now prove:

Theorem C.4. The simplified generalisation system is sound.

Proof. An exercise in case analysis. More detail is in Appen-

dix D. □

Corollary C.5. In the simplified generalisation system, every
basic SDF ˆF has a principal regular generalisation F̃∗, F̃∗ is
unambiguous, and the algorithm of Section 5 finds F̃∗.

An interesting property of the simplified system (which

does not hold in the full system) is the following:

Proposition C.6. In the principal regular generalisation F̃∗

of a basic SDF ˆF, the height and width of every tile is either

a constant or a length variable, not a length variable plus a
constant.

Proof. See Appendix D. □

D Proofs deferred from the main text
Theorem 5.2 (Principal regular generalisation). In a sound
generalisation system, every supported SDF ˆF has a princi-
pal regular generalisation F̃∗, F̃∗ is unambiguous, and the
algorithm given at the start of Section 5 finds it.

Proof. First we need to show that every delta variable that

survives step (1) of constraint solving has a lower bound, as

required by the constraint solving algorithm. This is true for

tile height and width delta variables by step 3a of the high-

level algorithm, and it is true for row and column reference

delta variables by soundness property 3.

Let F̃∗ = Θ∗(F̃0) be the elastic SDF found by the algorithm.

Since Θ∗
satisfies the tile size constraints, it’s easy to show

that F̃∗
satisfies conditions (2)–(4) for semi-regularity. Next

we claim that F̃∗
is a generalisation of

ˆF. It is clear that F̃0 can

be specialised to
ˆF by setting all delta variables to 0. This is

still true of θ (F̃0) after we eliminate the equality constraints.

All lower bounds placed on delta variables are nonpositive,

both in the tile size constraints and in the reference regularity

constraints by soundness property 2, so each delta variable α̂

that remains at this point has a nonpositive lower bound
ˆl and

is replaced by α + ˆl , with a different α for each such α̂ . So the

length substitution that maps each α to the corresponding −ˆl
(which is non-negative) specialises F̃∗

to
ˆF, which completes

the proof that F̃∗
is a semi-regular generalisation of

ˆF. Since
Θ∗

satisfies the constraints generated for every reference,

every reference in F̃∗
is well-behaved by soundness property

4. Thus F̃∗
is a regular generalisation of

ˆF.
To show that F̃∗

is the principal regular generalisation

of
ˆF, it remains to show that it is more general than every

other regular generalisation F̃′
of

ˆF. As observed above,

F̃′ = Θ′(F̃0) for some delta substitutionΘ′
. Since F̃′

satisfies

conditions (2)–(4) for semi-regularity, it’s easy to show that

Θ′
satisfies the tile size constraints. Since all references in

F̃′
are well-behaved, Θ′

satisfies the reference regularity

constraints by soundness property 4. Thus Θ′
satisfies all

the constraints. Since Θ∗
is the most general solution to the

constraints, there exists a length substitution ϕ such that

Θ′ = ϕ ◦ Θ∗
. Then we have ϕ(F̃∗) = ϕ(Θ∗(F̃0)) = Θ′(F̃0) =

F̃′
, so F̃∗

is more general than F̃′
.

Finally, by soundness property 1, F̃∗
is unambiguous. □

Proposition 5.4. In a sound generalisation system, every
supported SDF ˆF is a regular generalisation of itself.

Proof. As we observed in the proof of Theorem 5.2, all lower

bounds on delta variables are nonpositive, so it’s easy to see

19

M. McCutchen et al.

that the delta substitutionΘ that maps every delta variable to

0 satisfies all constraints of the allowed forms. By reasoning

similar to that in Theorem 5.2, Θ(F̃0) satisfies all the condi-
tions to be a regular generalisation of

ˆF. But Θ(F̃0) = ˆF. □

Theorem C.4. The simplified generalisation system is sound.

Proof. Soundness property 1: Let F̃′
be a regular generalisa-

tion of
ˆF. Regularity already requires that all tiles of F̃′

have

non-negative height and width for every length variable as-

signment. Since each reference ρ̃ in F̃′
has only one target

tile, there is no possibility of overlap between two target

tiles of the same reference. It remains to show that for every

length variable assignment and with respect to every cell in

the specialisation of the calling tile tc , ρ̃ evaluates to a range

r of non-negative height and width that is covered by the

target tile tt . We show that r has non-negative height and
its row span is contained in the row span of tt ; the argument

for the column axis is analogous. Let σ = χ
1
: χ

2
be the row

span reference of ρ̃.

• If σ is of the Inelastic kind, then χ
1
and χ

2
are stable

and tt is fixed at its height in
ˆF. Either χ

1
and χ

2
are

both absolute (in which case σ always evaluates to the

same row span it did in
ˆF) or tc is fixed at its height in

ˆF (in which case, for each caller row, σ evaluates to the

same row span as it did for the same caller row in
ˆF).

Either way, since
ˆF is closed, it follows that for every

caller row, σ evaluates to a row span of non-negative

height that is contained in the row span of tt .
• If σ is of the Lockstep kind, then for every length

variable assignment, tt and tc have the same height,

and σ evaluated from the ith row of tc points to the ith
row of tt , which is indeed a row span of non-negative

height that is contained in the row span of tt .
• If σ is of theWhole kind, then for every length variable

assignment, σ evaluates to the whole row span of tt ,
which has non-negative height and is contained in

itself.

Soundness properties 2 and 3: Clear for each kind of well-

behaved reference.

Soundness property 4: First we prove that if Θ′
satisfies

the constraints generated for ρ̃, then ρ̃ ′ is well-behaved. Let
σ ′ = χ ′

1
: χ ′

2
be the row span reference of ρ̃ ′; the argument

for the column span reference is analogous. Let tt , tc , χ1, χ2,
α̂t , α̂c , α̂1, and α̂2 be defined as in the constraint generator.

• If the algorithm anticipated the Lockstep kind and tt
was ultimately inferred to be vertically inelastic, then

we know that tc and tt have the same height in
ˆF,

χ1 = χ2, and χ1 is relative. In order for tt to be the

only target tile of χ1, χ1 must have pointed to the top

row of tt in ˆF. We generated constraints α̂t = α̂c and
α̂1 = α̂2 = 0, so it follows that the heights of tc and tt
in F̃′

are the same non-constant expression, χ ′
1
= χ ′

2
,

χ ′
1
is relative, and χ ′

1
points to the top row of tt when

evaluated at the top row of tc . Thus σ
′
indeed satisfies

the conditions of the Lockstep kind.

• If the algorithm anticipated the Lockstep kind but tt
was ultimately inferred to be vertically inelastic, then

our constraint α̂t = α̂c ensures that tc is vertically

inelastic and this χ ′
1
and χ ′

2
are stable. Furthermore,

our constraint α̂1 = α̂2 = 0 ensures that the coordi-

nates of χ ′
1
and χ ′

2
are constant. Thus σ ′

satisfies the

requirements of the Inelastic kind.

• The proof for the remaining cases is similar in spirit.

Now we prove the converse: if ρ̃ ′ is well behaved, then
Θ′

satisfies the constraints generated for ρ̃. Once again, we
consider the row span reference σ ′ = χ ′

1
: χ ′

2
; the argument

for the column span reference is analogous. Let tt , tc , χ1, χ2,
α̂t , α̂c , α̂1, and α̂2 be defined as in the constraint generator.

• If the algorithm anticipated the Lockstep kind, it would

constrain α̂t = α̂c and α̂1 = α̂2 = 0. In this case, we

know that χ1 and χ2 are not superstable, so σ
′
cannot

be of theWhole kind. If σ ′
is of the Lockstep kind, then

the heights of tt and tc must be the same expression in

F̃′
, so α̂t = α̂c is satisfied. Furthermore, χ ′

1
points to

the top row of tt (which is constant) when evaluated at

the top row of tc for all values of length variables, so χ
′
1

must be constant and can only be equal to χ1 since F̃′

is a generalisation of
ˆF, so α̂1 = 0 is satisfied. Finally,

χ ′
1
= χ ′

2
, so α̂1 = α̂2 is satisfied. If on the other hand σ ′

is of the Inelastic kind, then tt has constant height in

F̃′
, and χ ′

1
must be stable despite it being relative, so

tc must have constant height. Furthermore, χ ′
1
and χ ′

2

have constant coordinates. Since F̃′
is a generalisation

of
ˆF, all these constants must be the same constants

as in
ˆF. Thus Θ′

sets α̂t = α̂c = α̂1 = α̂2 = 0, and the

constraints α̂t = α̂c and α̂1 = α̂2 = 0 are satisfied.

• The proof for the remaining cases is similar in spirit.

□

Proposition C.6. In the principal regular generalisation F̃∗

of a basic SDF ˆF, the height and width of every tile is either
a constant or a length variable, not a length variable plus a
constant.

Proof. Let t1, . . . , tk be a maximal set of tiles whose height

delta variables α̂1, . . . , α̂k are constrained equal to one an-

other but are not constrained equal to zero. Then we know

t1, . . . , tk all have the same initial height (call it h), which is

at least 2, so constraint generation step (1) would generate a

constraint h + α̂i ≥ 0 for every i . Suppose α̂1 is the variable
that gets kept by constraint solving step (1). Then constraint

solving step (2) will determine that the lower bound of α̂1 is
−h, and step (3) will replace α̂1 with α1 − h. Thus, the height

of each ti , which was h + α̂i in F̃0, will simplify to just α1.
As usual, the argument is the same for widths. □

20

Elastic SDFs

E Full generalisation system
In this section, we describe an extension of the simplified

generalisation system to support more interesting SDFs, in-

cluding those having range references with multiple target

tiles. Our motivating example is the COMPOUND SDF of

Section 5.4. The elastic SDF that we want is:

function COMPOUND⟨α⟩(ts A3, to F3, tr F1, tx A4::{α ,2})
returns F4::{α ,1}t4 {

t1 C4::{α ,1} = A4tx − A3ts ,tx

t2 D4::{α ,1} = POWER(1+F1tr , C4t1)
t3 E4::{α ,1} = F3to,t4 ∗ D4t2

t4 F4::{α ,1} = E4t5 + B4tx

}

In general, our main goal is to allow relative references

with an upward offset between tiles of similar height, whether

or not the tiles start at the same row. So for example, if r 1 and
r 2 are tiles of size {α , 1} (or possibly the same tile) and r 1 con-
tains a relative reference to r 2, then it may be the case that

the second row of r 1 points to the first row of r 2, the third
row of r 1 to the second row of r 2, and so forth. Of course, the
first row of r 1 needs somewhere to point; it must point to a

separate, vertically inelastic tile located immediately above

r 2, like tiles ts and to in the COMPOUND example. Analo-

gous remarks apply to leftward offsets. We do not support

downward and rightward offsets because supporting offsets

in both directions on the same axis would complicate the al-

gorithm for little benefit. Computations with downward and

rightward offsets are rare outside recreational contexts (e.g.,

cellular automata), and in some cases they can be expressed

in our system by using an absolute reference to the entire

target tile and then using the INDEX function to extract the

desired element.

The regularity condition that the upper-left corner of each

tile be constant makes it possible to position an inelastic tile

immediately above or to the left of an elastic tile to fulfill

a reference with an upward or leftward offset but does not

make it possible to position an inelastic tile below or to the

right of an elastic tile to support a downward or rightward

offset, because in the latter case, the upper-left corner of the

inelastic tile would depend on the size of the elastic tile.

In addition to adding support for upward and leftward off-

sets (which goes hand in hand with allowing references with

multiple target tiles), we’d like to add support for cumulative

aggregation. For example, we’d like to generalise:

function CUMSUM(t1 A1::{3,1}) returns B1::{3,1}t2 {
t2 B1::{3,1} = SUM(A$1:A1t1) }

to:

function CUMSUM⟨α⟩(t1 A1::{α ,1}) returns B1::{α ,1}t2 {
t2 B1::{α ,1} = SUM(A$1:A1t1) }

To do so, we move beyond the three kinds of span references

in the simplified system and allow each endpoint of a span

reference to independently fall into one of four kinds: In-

elastic, Lockstep, Start, and End. The row reference in the

formula for t2 has one Start endpoint and one Lockstep end-

point.

In the simplified system, the only kind of row span ref-

erence that could contain an unstable row reference was

Lockstep, and it required that the heights of the caller and

target tiles be exactly the same expression. How much more

flexible can our Lockstep kind be and still ensure that every

tame SDF has a principal regular generalisation? For exam-

ple, consider an SDF that generates a list iteratively and has

a special formula for the first element:

function SUM2(t1 A1::{3,1}) returns B3t3 {
t2 B1 = A1t1

t3 B2::{2,1} = B1t2,t3 + A2t1

}

(Of course, a better design in this case would be to initialise

the sum to 0 and then use a consistent formula, but it’s

unclear to us whether such a transformation will always

be natural to users in more complex cases.) We’d like the

following generalisation:

function SUM2⟨α⟩(t1 A1::{α+1,1}) returns B{α+1}t3 {
t2 B1 = A1t1

t3 B2::{α ,1} = B1t2,t3 + A2t1

}

in which the formula for t3 has an unstable reference to t1,
even though their heights differ by 1. We find that in general,

we can allow the heights of the caller and target tiles to differ

by a constant and still have a principal regular generalisation.

E.1 Well behaved references
Having decided to allow the caller and target heights of a

lockstep reference to differ by a constant, we can proceed

to the definition of a well behaved reference. First we need

some auxiliary definitions to deal with the multiple target

tiles. The overall target range of a reference ρ̂ in the original

SDF
ˆF is the range of all cells read by ρ̂ with respect to any

caller cell. It can be computed as the range from the upper-

left corner of ρ̂ evaluated at the upper-left corner of the caller
to the lower-right corner of ρ̂ evaluated at the lower-right

corner of the caller. (Since we assume the original SDF is

tame, it follows that all of these cells are actually read.) A

target tile of ρ̂ is vertically final if it overlaps the last row of

the overall target range and horizontally final if it overlaps
the last column. When we are discussing an elastic SDF F̃ as

a potential generalisation of
ˆF, a target tile of a reference ρ̃ is

said to be vertically or horizontally final if the corresponding

target tile of the corresponding reference in
ˆF is. (Trying to

determine overlap in the elastic SDF would be more complex

because it could depend on the values of length variables.)

Definition E.1 (Well behaved reference in the full system).
A range reference ρ̃ appearing in the formula of a caller tile

21

M. McCutchen et al.

tc in an elastic SDF F̃ is well behaved if it is well behaved on

both axes. We give the definition for the row axis; the one

for the column axis is analogous. ρ̃ is well behaved on the

row axis if it satisfies the following conditions:

1. Every vertically non-final target tile has constant height.

2. Every vertically final target tile tt stands in one of

the following relationships to each of the two row

references χ in ρ̃:
• Inelastic: The height of tt is constant, χ is stable, and

its coordinate is constant.

• Lockstep: The heights of tc and tt are non-constant
but their difference is a constant, and χ is relative

with a constant coordinate.

• Start: The height of tt is non-constant, and χ is super-

stable and points at a constant non-negative offset

above the top row of tt . Furthermore, if χ is the bot-

tom endpoint of ρ̃ and the offset is zero, then the

height of tt includes a positive constant.
• End: The height of tt is non-constant, and χ is super-

stable and points to the bottom row of tt . Further-
more, if χ is the top endpoint of ρ̃, then the height

of tt includes a positive constant.
Furthermore, if χ

1
: χ

2
is the row span reference of ρ̃,

then the pair of relationships of χ
1
and χ

2
to tt must

not be (Lockstep, Start) or (End, Lockstep).
11

E.2 Constraint generation
As in the simplified system, constraint generation is based

on the insight that for a given row or column reference χ

that is part of a range reference ρ̃ in F̃0, and a given target

tile tt of ρ̃, we can narrow the possible relationships of χ

to tt in any regular generalisation of
ˆF to Inelastic and at

most one other, based on whether χ is relative, the height

of the caller tile, and where χ points in relation to tt in ˆF.
The constraint generation procedure in detail, for a range

reference ρ̃ in F̃0:

1. Constrain the height delta variable of each vertically

non-final target tile of ρ̃ equal to 0.

2. For each vertically final target tile tt of ρ̃ and each

of the two row references χ that appears in ρ̃, let α̂t
and α̂c be the height delta variables of tt and tc , let α̂
be the delta variable of χ , and try the cases below in

order. However, if the pair of cases for the two row

references in relation to the same target tile tt would
be either (Lockstep, Start) or (End, Lockstep) in that

order, then use (Inelastic, Inelastic) instead.

a. (Lockstep) If χ is relative and the initial heights of

tt and tc are at least 2, then we anticipate that the

11
If these pairs of relationships occurred, then χ

1
: χ

2
would evaluate to

a negative height for most rows of tc when tc and tt increase in height.

These pairs could otherwise occur in a corner case if tc and tt both have

initial height exactly 2, while (End, Start) is ruled out by the non-degeneracy

condition.

relationship of χ to tt is Lockstep, but it may turn

out to be Inelastic. Constrain α̂t = α̂c and α̂ = 0.

b. (Start) Otherwise, if the initial height of tt is at least
2, χ is superstable, and the corresponding χ points

at or above the top row of tt in ˆF, then we anticipate

the relationship is Start, but it may turn out to be

Inelastic. Perform the following steps:

• Constrain α̂ = 0.

• If χ points exactly to the top row of tt and χ rep-

resents the bottom of ρ̃, then constrain the height

of tt to be at least 1.

c. (End) Otherwise, if the initial height of tt is at least
2, χ is superstable, and the corresponding χ points

to the bottom row of tt in
ˆF, then we anticipate

the relationship is End, but it may turn out to be

Inelastic. Perform the following steps:

• Constrain α̂ = α̂t .
• If χ represents the top of ρ̃, then constrain the

height of tt to be at least 1.

d. (Inelastic) Otherwise, the relationship must be In-

elastic. Constrain α̂t = α̂ = 0. In addition, if χ is

relative, then constrain α̂c = 0 to ensure that χ will

be stable.

3. Follow the analogues of steps (1) and (2) for the column

axis.

E.3 Soundness of the full system
Theorem E.2. The full generalisation system is sound.

Proof. Same idea as in the simplified system, just more cases.

□

From which it follows that:

Corollary E.3. In the full generalisation system, every tame
labelled SDF ˆF has a principal regular generalisation F̃∗, F̃∗

is unambiguous, and the algorithm of Section 5 finds F̃∗.

F Additional Description of User Study
F.1 Participants
We had twenty participants (seven female) aged 18-35 (mean

24), an adequate sample for preliminary field research in

human-computer interaction [7]. They were students in Sta-

tistical Science, Mathematics, Management, Computer Sci-

ence and related disciplines. Ten participants also had indus-

try experience working with spreadsheets. Participants were

recruited through convenience sampling via email, and were

selected based on their responses to a screening question-

naire which asked them to self-assess their spreadsheet and

programming experience. To qualify, participants needed to

be familiar with using formulas and ranges in spreadsheets.

All participants had some to high (self-assessed) expertise

with spreadsheets, and some to high (self-assessed) program-

ming expertise. Participants were reimbursed with a £40

voucher after completing the study.

22

Elastic SDFs

F.2 Tasks
Participants were given six spreadsheet tasks. Shortened

versions of the task descriptions are included below. The

solutions of Task 1 and 6 are included to illustrate how SDFs

were made using elastic SDFs and array programming.

1. Claiming expenses.

You have recently come back from a business trip,
and now want to claim back the expenses you made.
The spreadsheet shows all the expenses incurred for
this trip. For each expense, it shows the maximum
amount you are allowed to claim back, and the ac-
tual costs you incurred. If your actual costs are lower
than the maximum amount, you can claim back
your actual costs, however if your actual costs ex-
ceed the maximum amount, you are only allowed to
claim back the maximum amount. Calculate how
much money you spent that you cannot claim back.
That is, if of all these expenses you can claim back
£1,000, but you have spent £1,230 in total, there is
£230 which you cannot claim back.

Figure 5 shows a spreadsheet that computes, in E17, the
total amount of money that cannot be claimed back,

after calculating for each expense how much can be

claimed back in E6:E15. In Calculation View form, the

elastic SDF is written as the following.

function EXPENSES(t1 C6::{α ,1}, t2 D6::{α ,1}) returns E17t4 {
t3 E6::{α ,1} = IF(D6t2<C6t1 , D6t2 , C6t1)
t4 E17 = SUM(D6::{α ,1}t2) − SUM(E6::{α ,1}t3)
}

This example needs only the simplified generalization

system of Section C.

The array SDF is similar and written as:

function ARRAY_EXPENSES(C6, D6) returns E17 {
E6 = IF(D6<C6, D6, C6)
E17 = SUM(D6) − SUM(E6)
}

2. Salary payment.

You are the manager of a school and oversee the
hours that all employees have worked, to calculate
how much they should be paid. The spreadsheet
shows a timesheet, with a row for each employee,
and their hourly rate, and their worked hours. Cal-
culate how much salary should be paid in total, to
all employees. Hint: To calculate the salary of one
employee, sum up his/her hours and multiply this
by their specific hourly rate.

3. Bank loan.

You are working at a bank, and are considering to
extend a loan in US dollars to a client over a fixed
time period. The spreadsheet shows the amount you
plan to lend in US dollars, the expected exchange
rates for each month, and the expected interest rates

for each month. Calculate your total expected costs
over the time period.

4. Worked hours.

You use a spreadsheet to keep track of how many
hours you should work per day each month, and
how many hours you have actually worked. The
spreadsheet shows, for each month: howmany hours
you have been paid and thus how many hours you
should work for the whole month, how many hours
you have worked each day so far, and how many
working days you have left in the month. Use the
amount of days left in the month that you have to
work to calculate how many hours you should work
per day on average for the rest of the month.

5. Weekend hours.

You are the manager of a school and oversee the
hours that all employees have worked, to calculate
how much they should be paid. The spreadsheet
shows a timesheet, with a row for each employee and
their worked hours. In a previous task, you worked
out how much they should be paid. However, a new
rule has come into place that employees should be
paid more when they have worked on the weekend;
therefore, you now want to know how many of the
worked hours in the timesheet were on a weekend
day. Calculate the total number of worked hours in
the weekend.

6. Expected profit.

You are the producer of water bottles, and want to
estimate your expected profit over several quarters.
The spreadsheet shows: a price per bottle, which is
expected to change each quarter depending on in-
flation rate; expected sales, which is the number of
bottles you are expected to sell each quarter; expected
inflation rate per quarter;, and a fixed production
cost that is the same regardless of how many water
bottles you sell, but is expected to change each quar-
ter depending on inflation rate. Calculate your total
expected profit.

Figure 6 shows a spreadsheet that computes, in C12,
the total expected profit. The solution for the elastic

SDF and array SDF is given in Calculation View form

below. Note: HSCAN is the horizontal analog of VSCAN
and was provided to the participants:

function HSCAN ⟨α⟩ (A2,B1::{1, α },f) returns B2::{1, α } {
B2::{1, α } = f(A2,B1)
}

The elastic SDF is written as:

function PROFIT(t1 C4::{1,α }, t2 C6::{1,α } , t3 B7, t4 B8)
returns C12t8 {

t5 C7::{1,α } = B7t3,t5 ∗ (1 + C4t1)
t6 C8::{1,α } = B8t4,t6 ∗ (1 + C4t1)
t7 C9::{1,α } = (C6t2 ∗ C7t5) − C8t6

23

M. McCutchen et al.

Figure 5. A spreadsheet containing the definition of the EXPENSES SDF.

t8 C12 = SUM(C9::{1,α }t7)
}

This example needs the full generalization system of

Appendix E.

The array SDF is written as:

function ARRAY_PROFIT(C4,C6, B7, B8) returns C12 {
C7 = HSCAN(LAMBDA(X,Y,X∗1+Y), B7, C4)
C8 = HSCAN(LAMBDA(X,Y,X∗1+Y), B8, C4)
C9 = (C6 ∗ C7) − C8
C12 = SUM(C9)
}

F.3 A note on empirical evaluation
Our study was designed in accordance with the SIGPLAN

Empirical Evaluation Guidelines
12
. Our hypotheses and re-

sults (‘claims’) are clearly stated. We chose our experimental

alternative (array-based programming) for its external va-

lidity; this is the most plausible current alternative, already

implemented to varying degrees in commercial spreadsheet

packages. The tasks we set our participants (i.e., ‘bench-

marks’) were carefully designed to be representative of real-

world tasks, by adapting real spreadsheets. Our sample size

was informed by standards for sample size in HCI [7], our sta-

tistical tests were similarly chosen and we report the distribu-

tion of results (Figure 4). TLX and task time are widely-used

metrics. Our experimental design is detailed in Section 6.3,

and we have taken care to present our results clearly in

Section 6.4.

We also adopt practices standard in HCI evaluation not

explicitly covered by the guidelines. For example, we coun-

terbalance
13
the tasks, thus mitigating order and learning

12http://sigplan.org/Resources/EmpiricalEvaluation/. Last accessed: Novem-

ber 27, 2018

13http://www.unc.edu/courses/2008spring/psyc/270/001/
counterbalancing.html. Last accessed: November 27, 2018

effects. Although we did not achieve equal gender represen-

tation in our sample, women were not significantly under-

represented, which was important to account for known

gender differences in spreadsheet self-efficacy [2].

F.4 Motivation for sheet-defined functions
The benefits of sheet-defined functions have been articu-

lated by Peyton Jones et al. [14] and Sestoft et al. [20]. This

simplest of abstractions stands to make spreadsheets more

readable and maintainable. In cognitive dimensions terms

[11], replacing long, complex formulae with SDF invocations

result in less verbosity, a better abstraction gradient, lower vis-
cosity and premature commitment, improvements in closeness
of mapping and secondary notation.
This is all well and good; however, it is also well-known

that the population of end-user programmers behaves very

differently to the population of professional programmers

[4]. End-user programmers value tools based on their utility

in the user’s domain [10], learning costs [6], and attention

investment requirements [3]. One might reasonably ask: de-

spite the clear advantages of sheet-defined functions, will
end users actually use them?

This question is orthogonal to the technical contribution

of this paper, which is an algorithm for generalising an SDF

written for fixed-length example inputs into one that works

for variable-length inputs. Our ‘elastic’ SDFs are significantly

easier to write than the current alternative, explicit array

programming, which we demonstrate through a user study.

Our contribution stands independently of whether or not

SDFs have the potential to be widely adopted. However, there

are reasons to believe that there is a significant latent demand

for SDFs:

• The current scripting platform for Excel allows users to

write custom functions in VBA. This feature is already

24

http://sigplan.org/Resources/EmpiricalEvaluation/
http://www.unc.edu/courses/2008spring/psyc/270/001/counterbalancing.html
http://www.unc.edu/courses/2008spring/psyc/270/001/counterbalancing.html

Elastic SDFs

Figure 6. A spreadsheet containing the definition of the PROFIT SDF.

immensely popular, with the query “Excel VBA” re-

trieving nearly 100,000 results on StackOverflow.
14
For

context: this is greater than the number of results for

7 out of the 20 most popular programming languages

(as ranked by the November 2018 Tiobe index
15
).

• Besides writing VBA scripts, users commonly extend

the function library available in Excel by installing

add-ins. For example, one add-in
16
that introduces a

number of functions to Excel is extremely popular,

with nearly 1 million users.

• Given that these user behaviours (writing VBA and

installing custom add-ins) require significant expertise

and attention investment (and in the case of add-ins,

usually a financial investment), the fact that such a

large user base engages in these activities at all indi-
cates a significant demand for custom functions. SDFs,

importantly, will require no additional expertise be-

yond understanding of the formula language, and so it

is not unreasonable to expect that the use of SDFs will

easily eclipse the use of VBA or proprietary add-ins.

G Moving tiles to avoid overlaps: details
In this Appendix, we describe the translation of an elastic

SDF F̃ to a overlap-free elastic SDF bymoving tiles. The basic

idea is simple (we position the tiles dynamically in terms of

the length variables to keep them from colliding when the

variables increase), but we have to deal with several special

cases. The stages of the algorithm (explained in detail in the

rest of this section) are:

1. Identify complexes of tiles that must remain together.

2. Ensure that the tiles within each individual complex

do not collide when length variables increase.

3. Move the complexes apart so they do not collide, and

update range references accordingly.

14https://stackoverflow.com/questions/tagged/excel+vba. Last ac-

cessed:November 27, 2018

15https://www.tiobe.com/tiobe-index/. Last accessed:November 27, 2018

16https://www.asap-utilities.com/asap-utilities-excel-tools-tip.php?tip=
259&utilities=97&lang=en_us. Last accessed:November 27, 2018

G.1 Identifying complexes
Two tiles in F̃ are linked if they both occur in the target-tile

set of some range reference ρ̃, meaning that we cannot move

the tiles to different locations unless we were to replace ρ̃
with a more complicated formula to read from both tiles,

which the present algorithm does not do. For example, in the

COMPOUND elastic SDF of Appendix E, tiles to and t4 are
linked by the reference F3to,t4 in the tile E4::{α ,1}. A complex
is a set of tiles that are transitively linked to one another. All

target tiles of a given range reference belong to the same

complex, so if we move a whole complex by a certain number

of rows and columns, we just need to offset all range refer-

ences to the complex by that number of rows and columns.

The first step of the translation is to identify complexes by

entering linked tiles in a union-find data structure.

G.2 Ensuring complexes are expandable
A complex is expandable if its tiles do not collide for any

values of the length variables. (It suffices to imagine setting

all length variables to ∞.) Given that we do not separate the

tiles of a complex, we need every complex to be expandable.

For typical elastic SDFs, all complexes will be expandable,

but in pathological cases, we may get a non-expandable com-

plex. In such a case, we remove all length variables involved

in the tile overlap from F̃ by setting them to their initial

values. Specifically, suppose that elastic tiles t1 and t2 with

ranges a1 :: {lR1, lC1} and a2 :: {lR2, lC2} collide if all length
variables are set to ∞. Two rectangles overlap if their row

spans overlap and their column spans overlap. We know

that t1 and t2 do not overlap in the original SDF
ˆF, so their

row spans must be disjoint or their column spans must be

disjoint (or both). If t1 and t2 are disjoint in rows but overlap

in columns in
ˆF, then we remove all length variables that

appear in lR1 and lR2, which will leave the tiles t1 and t2 in

F̃ with their initial row spans, which do not overlap. (This

change could also affect the column spans if the same vari-

able appeared in both a height and a width, although this

never occurs in a principal regular generalisation in the full

system.) Conversely, if t1 and t2 are disjoint in columns but

25

https://stackoverflow.com/questions/tagged/excel+vba
https://www.tiobe.com/tiobe-index/
https://www.asap-utilities.com/asap-utilities-excel-tools-tip.php?tip=259&utilities=97&lang=en_us
https://www.asap-utilities.com/asap-utilities-excel-tools-tip.php?tip=259&utilities=97&lang=en_us

M. McCutchen et al.

overlap in rows in
ˆF, then we remove all length variables

that appear in lC1 and lC2. If t1 and t2 are disjoint in both
rows and columns in

ˆF (e.g., elastic ranges B4 :: {1,α } and
D2 :: {β, 1}with initial values α = β = 2), then either change

would be sufficient to resolve the overlap, but for symmetry,

we perform both of them. In this case, after ensuring com-

plex expandability, we cannot claim to have the “principal

regular generalisation with expandable complexes”, but it’s

a pathological case anyway.

G.3 Positioning the complexes
Finally, we are ready to position the complexes dynamically

so they do not collide. In this section, we assume that elastic

coordinates x may contain positive linear combinations of

length variables, i.e., they are of the form {x+∑i uiαi }where
ui > 0.

Ifm andm′
are elastic axis positions, we say thatm is po-

tentially greater thanm′
if either the constant term or some

length variable coefficient ofm −m′
is greater than zero. We

say that elastic spansm1 :m2 andm
′
1
:m′

2
potentially overlap

ifm2 is potentially greater thanm′
1
− 1 andm′

2
is potentially

greater than m1 − 1. Finally, two elastic rectangles poten-
tially overlap if their row spans potentially overlap and their

column spans potentially overlap. (There are various cases

in which two elastic rectangles that potentially overlap do

not actually overlap for any length variable assignment, but

that’s OK.) The upper bound of a set of elastic coordinates is

an elastic coordinate that has the maximum of their constant

terms and the maximum of their coefficients for each length

variable, and the lower bound is defined analogously.

The positioning algorithm is as follows: Compute an elas-

tic bounding rectangle for each complex by taking upper and

lower bounds of the coordinates of the tiles of the complex.

Then do the following for each complex C, where complexes

are ordered according to the first occupied cell of each com-

plex and cell addresses are compared lexicographically:

1. Let Nm be the current upper left corner of C’s bound-
ing rectangle, and let S be the set of previously pro-

cessed complexes whose bounding rectangles poten-

tially overlap that of C. If S is empty, then positioning

of C is complete, otherwise continue.

2. Let SR be the set of complexes in S whose archetypal

row spans are disjoint from the archetypal row span of

C, and define SC analogously for columns. Let S ′ = S \
(SR ∪ SC); a complex may belong to S ′ if its archetypal
bounding rectangle overlaps that of C even though we

know that the actual tiles do not overlap.

3. Letm′
be the upper bound ofm and one more than the

bottom bounding edge of each complex in SR ∪S ′, and

let N
′
be the upper bound of N and one more than the

right bounding edge of each complex in SC ∪ S ′.

4. Move C so that its upper left corner is at N
′
m′

. It is

now disjoint from SR ∪ S ′ in rows and disjoint from

SC ∪ S ′ in columns, so it is disjoint from all complexes

in S , but it may collide with other complexes. Return

to step 1. (The process must terminate because after

C potentially overlaps a given previously processed

complex and is moved either down or to the right, C
is only moved further down or to the right, so it can

never potentially overlap the same complex again.)

Once all complexes have been positioned, we update all

range references to reflect the new locations of their respec-

tive complexes, andwe have the overlap-free extended elastic

SDF.

Proposition G.1. For every well-defined elastic SDF F̃, tile
movement produces a well-defined overlap-free extended elastic
SDF F̃of that is semantically equivalent to some well-defined
elastic SDF F̃′ of which F̃ is a generalisation.

(F̃′
is the elastic SDF that we have after making complexes

expandable.)

26

Elastic SDFs

Contents

Abstract 1

1 Introduction 1

2 A textual notation for tiles and SDFs 2

2.1 Range assignments, formulas, and values 2

2.2 Sheet-defined functions 3

2.3 Tiles and dependencies 4

3 Elastic SDFs 4

3.1 Generalisation by example 4

3.2 Syntax of elastic SDFs 5

3.3 Semantics of elastic SDFs 5

3.4 Executing elastic SDFs 5

4 Principal and regular generalisations 6

4.1 The generalisation ordering 6

4.2 Problem 1: under-constrained sizes 6

4.3 Problem 2: arbitrary locations 7

4.4 Problem 3: generalising size-1 axes 7

4.5 Problem 4: patterns of computation 7

4.6 Regularity 7

5 Elasticity inference 8

5.1 Elasticity inference by example 8

5.2 Constraint solving 9

5.3 Proof of principality 9

5.4 The generalisation system 10

6 User Study 10

6.1 Prototype of SDFs for User Study 10

6.2 Participants and tasks 10

6.3 Protocol 11

6.4 Results 11

7 Related work 12

References 14

A Semantics of SDFs and Elastic SDFs 15

A.1 Preliminary Definitions 15

A.2 Semantics of Formulas 15

A.3 Semantics of SDFs 15

A.4 Semantics of Elastic SDFs 16

B Translation of elastic SDFs to executable form 16

B.1 Use multiple worksheets to avoid tile

overlaps 16

B.2 Move tiles to avoid overlap 16

B.3 Transform to an SDF that uses an array to

represent each tile 17

C A simplified generalisation system 17

C.1 Well-behaved references 18

C.2 Constraint generation 18

C.3 Soundness of the simplified system 19

D Proofs deferred from the main text 19

E Full generalisation system 21

E.1 Well behaved references 21

E.2 Constraint generation 22

E.3 Soundness of the full system 22

F Additional Description of User Study 22

F.1 Participants 22

F.2 Tasks 23

F.3 A note on empirical evaluation 24

F.4 Motivation for sheet-defined functions 24

G Moving tiles to avoid overlaps: details 25

G.1 Identifying complexes 25

G.2 Ensuring complexes are expandable 25

G.3 Positioning the complexes 26

Contents 27

Received November 2018

27

	Abstract
	1 Introduction
	2 A textual notation for tiles and SDFs
	2.1 Range assignments, formulas, and values
	2.2 Sheet-defined functions
	2.3 Tiles and dependencies

	3 Elastic SDFs
	3.1 Generalisation by example
	3.2 Syntax of elastic SDFs
	3.3 Semantics of elastic SDFs
	3.4 Executing elastic SDFs

	4 Principal and regular generalisations
	4.1 The generalisation ordering
	4.2 Problem 1: under-constrained sizes
	4.3 Problem 2: arbitrary locations
	4.4 Problem 3: generalising size-1 axes
	4.5 Problem 4: patterns of computation
	4.6 Regularity

	5 Elasticity inference
	5.1 Elasticity inference by example
	5.2 Constraint solving
	5.3 Proof of principality
	5.4 The generalisation system

	6 User Study
	6.1 Prototype of SDFs for User Study
	6.2 Participants and tasks
	6.3 Protocol
	6.4 Results

	7 Related work
	References
	A Semantics of SDFs and Elastic SDFs
	A.1 Preliminary Definitions
	A.2 Semantics of Formulas
	A.3 Semantics of SDFs
	A.4 Semantics of Elastic SDFs

	B Translation of elastic SDFs to executable form
	B.1 Use multiple worksheets to avoid tile overlaps
	B.2 Move tiles to avoid overlap
	B.3 Transform to an SDF that uses an array to represent each tile

	C A simplified generalisation system
	C.1 Well-behaved references
	C.2 Constraint generation
	C.3 Soundness of the simplified system

	D Proofs deferred from the main text
	E Full generalisation system
	E.1 Well behaved references
	E.2 Constraint generation
	E.3 Soundness of the full system

	F Additional Description of User Study
	F.1 Participants
	F.2 Tasks
	F.3 A note on empirical evaluation
	F.4 Motivation for sheet-defined functions

	G Moving tiles to avoid overlaps: details
	G.1 Identifying complexes
	G.2 Ensuring complexes are expandable
	G.3 Positioning the complexes

	Contents

