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Abstract

Sheet-defined functions (SDFs) bring modularity and abstrac-
tion to the world of spreadsheets. Alas, users naturally write
SDFs that work over fixed-size arrays, which limits their
re-usability. We describe a principled approach to general-
ising such functions to become elastic SDFs that work over
inputs of arbitrary size, including a principal-generalisation
theorem and empirical evaluation through a user study.

1 Introduction

Suppose we want to use a spreadsheet to compute the av-
erage of the numeric cells' in A1:A10. We might do so like
this, using a simple textual notation for the spreadsheet grid,
described in Section 2:

B1=SUM(AT:A10); B2 = COUNT( A1:A10 ); B3 = B1/B2

Rather than repeat this logic in many places, it would be
better to define it once, and call it in many places. With this in
mind, Peyton Jones et al. [14] propose that a function can be
defined by an ordinary worksheet with specially-identified
input and output cells. These sheet-defined function (SDFs)
are explored and implemented in Sestoft’s book [19]. In our
textual notation we might write

function AVERAGE( A1:A10 ) returns B3 {
B1=SUM(AT:AT0); B2 = COUNT( AT:A10 ); B3 = B1/B2}

But there is a problem: this function only works on vectors of
length 10, unlike the built-in AVERAGE which works on vec-
tors of arbitrary size. We would like to generalise AVERAGE,
by replacing the fixed 10 by a length variable , thus making
an elastic SDF:

“Draft as of November 27, 2018; see https://aka.ms/calcintel for the latest
version. © 2018 Microsoft.

TThis work was done while these authors were working at Microsoft
Research.

!Te., ignoring cells that are blank or that contain strings or booleans. Note
that SUM and COUNT both do this. We temporarily ignore the fact that
many spreadsheet tools have a built-in AVERAGE function that does this.

judith.borghouts.14@ucl.ac.uk

University of Edinburgh
Edinburgh, UK
adg@microsoft.com

Advait Sarkar
Microsoft Research
Cambridge, UK
advait@microsoft.com

function AVERAGE(a)( AT:A{a} ) returns B3 {
B1=SUM(AT:A{a}); B2 = COUNT( AT:Afa} ); B3 = B1/B2}

This simple example is representative of a large class of
problems that the user might want to solve by first defining
a function that manipulates individual elements of fixed-size
input arrays (because that is easy in spreadsheets), and then
somehow generalising it to work on inputs of arbitrary size.
The core contribution of this paper is an algorithm to perform
this generalisation step. Our specific contributions are these:

e A recent paper [18] proposes a simple textual notation
for spreadsheet programs (Section 2). We develop this
idea further, by introducing new notation for corner-
size ranges, and for sheet-defined functions (SDFs).

e We generalise the SDF notation so that it can describe
elastic SDFs, which work on inputs of varying size
(Section 3), and give our new notation a precise seman-
tics (Appendix A) using so-called tiles. We also discuss
practical execution mechanisms in Appendix B.

e Our goal is to find a unique principal generalisation
of the original SDF. We begin by specifying what it
means for one generalisation to be “more general than”
another, and identifying a series of obstacles to the
very existence of a principal generalisation (Section 4).

e In Section 5 we show that every (suitable) SDF does
indeed enjoy a principal generalisation. Better still,
we give an algorithm that finds it, and prove the al-
gorithm correct. The algorithm is parameterised over
the generalisation system (Section 5.4) which allows
us to readily explore a variety of tradeoffs between
expressiveness and complexity.

e The ultimate goal of programming language research
is to make human beings more productive. So in Sec-
tion 6 we describe a user study in which we asked
20 participants to write array-processing SDFs, either
using elastic SDFs or by the method of storing input
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and output arrays in single cells (so-called arrays-in-
cells [5]). A key finding is that users perceived a sig-
nificantly lower cognitive workload for elastic SDFs,
versus SDFs with arrays-in-cells.

Spreadsheets have a vastly larger user base than mainstream
programming languages, but are seldom studied by program-
ming language researchers. This paper is one of only a hand-
ful to apply the formal arsenal of the programming language
community to spreadsheets, by giving a textual notation for
spreadsheets, a formal semantics, a generalisation ordering,
and a principal generalisation theorem. The technical details
of elastic SDFs are subtle, but the task is hard: generalising
a single, concrete program to a size-polymorphic one, not
just with heuristics, but in a provably most-general way.
From the point of view of the user, however, things are very
simple: you can build a spreadsheet using familiar element-
wise formulae and copy/paste, capture that computation as
a reusable function (exemplified on inputs of fixed size), and
have it reliably and automatically generalised to work on
inputs of arbitrary size. That is a valuable prize.

2 A textual notation for tiles and SDFs

The focus of this paper is on the data and computational
aspects of spreadsheets, rather than on user interface. In this
section we borrow a recently introduced textual notation for
describing the data and computations of a spreadsheet grid -
the Calculation View [18] of the spreadsheet. The complete
Calculation View language as used in this paper is given in
Figure 1 for reference.

Nothing in this paper is vendor-specific; our generalisa-
tion technique relies only on the structure of the spreadsheet
grid, and the copy/paste behaviour of absolute and relative
references, features that are present in essentially all spread-
sheets, and that we describe next.

2.1 Range assignments, formulas, and values

Figure 2 shows a spreadsheet that computes, in H7, the total
cost of purchasing the items in F4:F6, after accounting for
VAT, whose rate is held in G2. In Calculation View form, the
part of the spreadsheet in the red box is written thus (ignor-
ing text labels, which are not involved in the computation):

F4 = 20; F5 = 30; F6 = 35; G2 = 20%
G4:G6 = F4 « $G$2

H4:H6 = F4 + G4

H7 =SUM(H4:{3,1})

Each cell contains a value computed by the formula in the
cell. A value is a number, boolean, string, error value, or array
of values; the exact details are not relevant to this paper.
The Calculation View form of this sheet fragment con-
sists of a set of range assignments (note that a range may be
a single cell), which can be written in any order, and can
appear on successive lines or on a single line separated by
semicolons. Each range assignment is of form ¢ r = F, where
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t is a tile name (usually omitted in examples), r is a range,
and F is a formula.

Ranges r are already standard in spreadsheets. (For a com-
prehensive introduction to spreadsheet notation and seman-
tics, see Sestoft’s authoritative book [19].) Referring to Fig-
ure 1, a range r can be denoted by:

o A single cell address a, such as H7. In this paper, we
use only the so-called A1 notation where the cell is
identified by a column name and a row number.

e A rectangular range denoted by two cell addresses for
the upper-left and lower-right corners, such as G4:Gé.
We call this corner-corner notation?.

e A rectangular range denoted by a cell address and
a size, written thus: H4:{3,1}. This corner-size nota-
tion is not present in typical spreadsheet tools, but
turns out to be very convenient for our purposes. The
size {nr, nc} in braces gives the number of rows and
columns in the range, respectively®. So H4::{3,1} means
precisely the same as H4:He.

Formulas F are also standard in spreadsheets, and again
Figure 1 shows our syntax. A formula can refer to a range
using a range reference p, such as F4 or $G$2. (The tile names
t; in our abstract syntax p’i>--~» are automatically deduced
annotations that are omitted in concrete examples.) Range
references differ from ranges because they can be relative (e.g.
B7) or absolute (e.g. $B$7), a choice that can be made indepen-
dently for each axis of the reference (e.g. B$7 or $B7). During
copy/paste, relative references are updated to reflect their
new location, while absolute references remain unchanged.
The relative/absolute distinction makes a difference only dur-
ing copy/paste; during formula evaluation it is completely
ignored.

A range reference in corner-size form can always be ex-
pressed in corner-corner form; for example, H$4::{3,1} means
precisely the same as H$4:H$6. In the other direction, a corner-
corner range reference cannot always be expressed in corner-
size form. For example consider B2:B$6; the copy-paste be-
haviour of this reference is different to, say, B2::{5,1}.

The range on the left-hand side of a range assignment is
called a tile; tiles must not overlap, so that each cell is defined
only once. A range assignment ¢ r = F means “put formula
F into the top left-hand corner of r, and then use copy/paste
to assign a formula to the other cells in ”. So in our example

G4:G6 = F4 « $G$2

2 Conventional spreadsheets treat a “back to front” range like G5:G4 as
identical to G4:G5. This implicit reversal makes it impossible to represent
an empty range, something that seems absolutely necessary as we move
to size-polymorphic functions. In our work we do no implicit reversal; a
range G5:G4 is empty, while G6:G4 is simply ill-formed.

3Generally, spreadsheets use row,column ordering (e.g. in R1C1 notation,
or array indexing) but AT notation has always been backwards, putting the
column first.
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Length variable a, p (if P is a piece of syntax, let vars(P) be the set of variables occurring in P)
Al-style column name Nu=A|...|Z|AA|AB|...
Elastic Al-style column name N:=N|{N+a}
Elastic axis position mao=m|{m+a} (meZ")
Address (column, row) a:=Nm
Span size lo=1{l+a} (€229
Range ru=alai:a;|ax{l,l)
Al-style absolute/relative marker p:=$|°
Cell reference 0 ::= iy Nyym
Range reference pu=010,:6,]0: {1, 15}
Annotated range reference p u= plioin
Constant ¢ (either string or number)
Formula Fu=p|c| f(F,...,F,) (ttile name; c constant; f function name)
Range assignment Auw=tr=F
Sheet fragment S:=A,...,A,
SDF definition F == function f(ry, ..., r¢) returns r { S } (vars(ry,...,rk,r,S) = 0, no t annotations)
Labelled SDF definition F ::= function f(ty r1, .. ., b 1) returns pliesty {S} (vars(ri,...,re,7,.8)=0)
Elastic SDF definition F ::= function flar,...,an)(t1 11, - . ., bk Tg) returns rliot) {S}
Figure 1. Syntax
A :IE e I e :jithvegela:les The spreadsheet in Figure 2 contains the body of the SDF as
3 |Fruit  Pretex Tax  Posttax |  Txrate % var 17% well as two calls to it, the second of which requires elasticity
Slomgs [ 8l o | ceem | 3 oo | in order to work correctly.
& [Banana 35 7 42| Juice 30 Tomatoes 20 In general, an SDF definition ¥ consists of a function name,
7 [Total [ 102  Total 936  Mushrooms 25 K X
s Definition Kidneybeans 20 a list of input ranges, an output range, and a set of range
‘Bc| of SHOP e |E32§| assignments that make up the body. The body tiles of an SDF
=SHOP(N4:N9,N3) are the left-hand sides of its range assignments; the input
tiles are the SDF’s input ranges. Each body tile has a single
Figure 2. A spreadsheet containing the body of the SHOP SDF formula, namely the right-hand side of the range assignment.
and two calls to it, one with a different input size than the original. The order in which the body tiles are written is immaterial.
The semantics of a call F(e1,e2) to a sheet-defined function
the cell G4 gets the original formula F4 » $G$2, while Gé will F is to evaluate the arguments to values v1 and v2, gener-
get the formula F6 « $G$2, as adjusted by copy/paste. The ate a fresh temporary spreadsheet containing the range as-
general rule is that when a formula is copy/pasted from cell C signments in F’s body, initialise the input ranges with the
to D, its relative references are adjusted by the offset between argument values v1 and v2, calculate the value of each cell
C and D, while its absolute references are unchanged. The on the sheet (respecting dependencies), and return the value
advantage of our range-assignment notation, compared to of the output range while discarding the temporary sheet.
copy/paste in the grid, is that it makes explicit that the entire Unlike conventional languages, where the parameters of the
range shares a single master formula. function are (arbitrary) names given to the input values, in
our language the input ranges specify the cell(s) in which
2.2 Sheet-defined functions the arguments to the function are placed; the output range
Next, we extend our Calculation View notation to cover specifies the cell(s) whose computed value is the result of
sheet-defined functions (Figure 1). For example, we can ab- the function. In our example, the first argument to SHOP is
stract the re-usable computational content of the sheet frag- placed in F4:{3,1}, while the second is placed in G2.
ment in Section 2.1 as an SDF, like this: For the sake of simplicity, we only attempt to generalise

SDFs that are tame, meaning they satisfy the properties:
function SHOP( F4:{3,1}, G2 ) returns H7 { & Hhey Y ptop

G4:{3,1} = F4 « $G$2
H4:{3,1} = F4 + G4
H7 = SUM(H4::{3,1}) }

Static The range references that appear in a formula
identify all the cells that are needed to evaluate the
formula. In Excel the call INDIRECT( "A2" & "3" ) first



computes the string "A23", and then treats it as a cell
reference A23, so any use of INDIRECT makes a for-
mula non-static. The function OFFSET is similar; but
functions like INDEX and VLOOKUP are fine.

Closed Each range reference in the body of the SDF,
evaluated in each cell of the tile in which it appears,
results in a range of non-negative height and width,
and every cell in this range is inside one of the tiles of
the SDF. Likewise, the output range has non-negative
height and width, and every cell in it is inside one of
the tiles of the SDF. For example, consider the tile

F4:{3,1} = SUM(H4:)4)

When copy-pasted into F5 the formula SUM(H4:)4) be-
comes SUM(H5:J5) and similarly for F6. Each cell in
each of these ranges must be defined by some tile of
the SDF.

Non-introspective No occurrence of functions like ROW
or COLUMN, that implicitly inspect the location of the
formula in which they appear.

Non-degenerate Each tile has positive height and width,
and each range reference evaluates to a range of posi-
tive height and width for at least one cell of the calling
tile. These technical restrictions make our proofs sim-
pler by avoiding corner cases, and we know of no
useful functions that are thereby excluded.

2.3 Tiles and dependencies

The point of generalisation is to elasticise some of the tiles
of the SDF. To do so, it is helpful to name each tile, and to
make explicit the tiles on to which each reference points,
producing a labelled SDF like this:

function SHOP( t; F4:{3,1}, to G2 ) returns H7% {
t3 G4::{3,1} = F4%1 « $G$2%2
ty H4:{3,1} = F4f1 + G4Ps
ts H7 = SUM(H4::{3,1}4) }

We have given a distinct name, 4, 3, . . . to each tile, includ-
ing the input tiles. For each reference in the right-hand sides,
and in the returns, we have made explicit the tile(s) to which
that reference points, using a superscript — these are the
target tiles of the reference. A reference points to a target
tile ¢ if evaluating the reference would read a cell from tile
t. For example, the reference G4% in the formula for tile #,
is labelled with target tile t3, because evaluating G4 would
require the value of cell G4 which is in tile ;.

The calling tile of a reference is the tile in whose formula
that reference appears; for example, the calling tile of the
reference $G$2% is ts.

In the SHOP example, each reference has a unique target
tile, but in general, the label may be a finite set of target tiles.
For example, suppose the final line of SHOP was instead

ts H7 = SUM(G4:{3,2}!3-14)
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In this (contrived) example, the reference G4:{3,2} covers
both tiles t; and ¢4, and must be so labelled. We show a more
realistic example in Section 5.4.

We do not expect that users will write, or even see, these
labelled definitions. Rather, labelling the original SDF with a
fresh name for each tile, and then computing the unique set
of target tiles for each reference, is the first, purely automatic
step in our generalisation process.

3 Elastic SDFs

The main focus of the paper is the task of generalising an
SDF ¥ to an appropriate elastic SDF ¥. We divide the process
into three steps:

1. Labelling. Construct the labelled form F of F (which
is unique up to renaming of tiles), as described in Sec-
tion 2.3. Because we restrict to static SDFs (Section 2.2),
this step is straightforward, and we do not discuss it
in detail.

2. Generalisation. Generalise the labelled SDF to an elastic
SDF ¥. This step is our main technical contribution,
and is described in Sections 4 and 5.

3. Code generation. Transform the elastic SDF to exe-
cutable form, which can be done in a variety of ways
(Section 3.4).

3.1 Generalisation by example

We begin with an example to illustrate the process. Suppose
we start with the SHOP SDF introduced in Section 2.2. Step 1
is to annotate it with tiles, as described in Section 2.3, thus:

function SHOP( t; F4:{3,1}, t; G2 ) returns H7% {
t3 G4:{3,1} = F4"1 « $Gg2%
tg H4:{3,1} = F4f1 + G4®s
ts H7 = SUM(H4::{3,1}%) }

Next, in Step 2 we generalise this definition, to become an
elastic SDF, thus:

function SHOP{a)( t; F4:{a,1}, t, G2) returns H7% {
t5 G4:{a,1} = F4h « $G$22
ty Ha:{a,1} = F4l + G453
ts H7 = SUM(H4:{a,1}4) }

We have introduced a length variable, o, which stands for
the length of the input vector. A length variable can take any
non-negative integer value. The size of the input range is
{a.,1}, and the intermediate ranges rooted at G4 and H4 share
this same size. (If for some reason we needed the ranges to
be nonempty, we would just set their size to {a+1,1}.) The
idea is, of course, that if we instantiate « to 3, we recover
exactly the labelled SDF that we started with. Notice that
the tile labels are unaffected by generalisation.

For Step 3, we discuss what this elastic SDF means (its
semantics) in Section 3.3, and how it might be executed in
Section 3.4.
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3.2 Syntax of elastic SDFs

As we have seen, elasticity requires us to generalise spread-
sheet notation by allowing cell coordinates to be computed
based on the function’s length variables. The full syntax is
given in Figure 1. We generalize span sizes I, column names
N, and row numbers m, to include the possibility of adding
a single length variable (enclosed in curly braces).*

In the SHOP example, in tile H{4+a} = SUM(H4::{a,1}), the
left-hand side shows an elastic row number H{4+a}, and a
range reference with an elastic size H4:{a,1}. We elide the
curly braces when the coordinate is just a constant, or when
it appears as a span size. So we write H4::{a,1}, not H4:{{a},1}.

3.3 Semantics of elastic SDFs

An elastic SDF is the central concept of the paper, so it needs
a direct execution semantics. At first this looks straightfor-
ward: for example, to evaluate a call SHOP(e1, e2 ), using the
elastic SDF resulting from Step 2 in Section 3.1:

e evaluate e1 and e2 to values v1 and v2;

e instantiate the body of SHOP with « equal to the num-
ber of rows in v1;

e compute the value of the return range using ordinary
spreadsheet semantics.

But there is a tiresome problem: if « > 3, then the ranges of
tiles t4 and ts5 overlap.

From a semantic point of view we can easily solve this
problem, by using the tile set that labels each reference. For
example, during evaluation, when dereferencing H7% (in
the returns position), we choose the value computed in H7
by tile ts5, ignoring any value for H7 by tile t4, using the
label attached to the reference H7% to disambiguate which
defining tile is intended. This semantics is easy to formalise,
and we do so in Appendix A.

Not every syntactically-correct elastic SDF, as defined in
Section 2.2, is well defined according to this semantics. Two
main things can go wrong.

First, to be fully defined and unambiguous, the semantics
requires that when evaluating a reference, there should be a
unique tile among the target-tile set labelling the reference that
defines the referenced cell, not zero (undefined) and not more
than one (ambiguous). For the undefined case, consider this
bogus SDF:

function BOGUS_SHOP(a)( t; F4:{a,1}, t2 G2) returns H{4+a} {
t3 Ga:{a,1} = F4l « $G$2%
ty H4:{3,1} = F4h1 + G4bs /« NB: Bogus! «/
4We could allow adding a linear combination of length variables, but such
combinations will never occur in the principal regular generalisation of an
SDF as defined later, so we disallow them to save a little bit of worry about
whether all the intervening definitions (e.g., determinability) make sense
with linear combinations. The alert reader will notice that our choice leads
to some range references that are grammatical in corner-corner notation but
not corner-size notation and vice versa, but these range references will fail
to be unambiguous, and thus their existence in the language is unimportant.

ts H{d+a} = SUM(H4:{a,1}%) }

The trouble is that tile t; does not resize with its inputs t;
and 5. Consequently, if & < 3, the formula for #, tries to read
F6't, but t; does not define F6. Similarly, if @ > 3, the same
happens when the formula in 5 tries to dereference H7%.

In these cases, the uniqueness property fails because no
target tile contains the referenced cell. But it can also happen
that too many target tiles contain the cell. For the ambiguous
case, consider the tile from the end of Section 2.3:

t5 H7 = SUM(G4::{3,2}!3- 1)

When evaluating the reference G4::{3,2}'%, for every cell
in the range G4::{3,2}, say G6, there should be a unique tile
among f3, t; that defines G6 — and there is, namely ¢;. Simi-
larly H5 is in that range, so it too should be defined by exactly
one of the tiles t3, t; — in this case t4.

Second, to have a well-defined semantics, an elastic SDF
should not mention length variables that are not fixed by its
inputs. For example:

function NONDET(a, f)( Al:{a,1} ) returns B1 {

Ci:{p,1} = ...
B1=SUM(C1:{8,1}) }

Here f is not determined by the size of any of the input
parameters, so it is hard to see how to execute the SDF.

These considerations motivate our definition of what it
means for an elastic SDF to be well-defined:

Definition 3.1 (Well-defined elastic SDF). An elastic SDF
F is well-defined if

1. It is unambiguous, meaning that for every assignment
of values to the length variables:

a. All tiles have non-negative height and width,

b. No two tiles in the target-tile set of the same refer-
ence overlap.

c. For every labelled range reference p = p’--~’ ap-
pearing in a calling tile ¢, of F, and with respect to
every cell in ., the reference p evaluates to a range
of non-negative height and width that is covered by
the tiles t, . . ., tx.

2. It is determinable: all its length variables are uniquely
determined by the sizes of its arguments.

3.4 Executing elastic SDFs

Our semantics says what a well-defined elastic SDF means.
We can use this semantics directly as a basis for execution,
but doing so requires some extensions to a standard spread-
sheet interpreter. An alternative is instead to translate the
elastic SDF into a form that is more amenable to direct execu-
tion. This translation is not the main focus of the paper, but
we sketch three alternatives in Appendix B: using multiple
worksheets, using coordinate arithmetic to avoid tile over-
laps, or using array-level operations instead of element-level



ones. Here, for example, is the second of these alternatives,
using overlap avoidance:

function SHOP{a)( F4::{a,1}, G2) returns H{4+a} {
Ga:{a,1} = F4 « $G$2
H4:{a,1} = F4 + G4
H{4+a} = SUM(H4::{a,1}) }

We compute the result in cell H{4+a}, which moves (as «
increases) to avoid overlap with the preceding tile.

4 Principal and regular generalisations

As soon as we begin to speak of “generalising” an SDF, it is
natural to ask whether there may be many possible general-
isations and, if so, how we decide which one to pick. This
question arises classically in type systems, where one typi-
cally proceeds as follows. First, one says what it means for a
term to have a type. Next, one defines a generalisation order
between types. Finally, one shows that every (typeable) term
has a principal, or most-general, type; and gives an algorithm
to find it. We will proceed analogously here:

1. We have already specified what it means for an elastic
SDF ¥ to be well-defined (that is, both unambiguous
and determinable, see Section 3.3).

2. We give a generalisation ordering between elastic SDFs,
and say what it means for Ftobea generalisation of
a labelled SDF 7A7(Section 4.1).

3. We give examples of SDFs that have no principal well-
defined generalisation (Sections 4.3-4.5). These exam-
ples motivate a new concept of a regular generalisation
(Section 4.6).

4. We prove that every labelled SDF has a principal regu-
lar generalisation and give an algorithm to find it.

5. We show that the principal regular generalisation is
unambiguous, but in obscure cases might not be de-
terminable; Section 4.2 discusses what to do in this
case.

Notice that only step (4) discusses the generalisation algo-
rithm; the others are entirely free of algorithmic considera-
tions.

4.1 The generalisation ordering

We start with Step (2). Recall that we have a labelled SDF F,
and we seek its principal generalisation, an elastic SDF %(see
Figure 1). An elastic SDF is still labelled, but it enjoys some
length parameters a. So a labelled SDF is just a degenerate
elastic SDF with no length parameters.

As usual with generalisation orderings, we need to define
the relevant kind of substitution, which is a length substitu-
tion, shown in the top part of Figure 3. A length substitution
maps each length variable a to either a constant length [ or
an expression f + [, where [ is a non-negative integer and
is a length variable.
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Elastic SDF generalisation ordering (Section 4.1)
Length substitution ¢ == € | d,a 1
| gpa—> p+1 (1€Z>)

Constraint solving (Section 5.2)

Delta variable a, B
Delta constant leZ
Constraint = |la=0]|a+hL =20

Q == a
Intermediate subst 0 = ¢ | ,a— f | 6,4 0
O == ¢ —

Delta substitution

Figure 3. Constraints and substitutions

Definition 4.1 (More general than). An elastic SDF %1 is
more general than (or, equivalently, a generalisation of) %
if there exists a length substitution that converts %1 to %2
(ignoring the length variable declarations themselves).

For example, ND3 in Section 4.2 below is more general than
ND1, as witnessed by the length substitution {a — «, f

3}.

Proposition 4.2. If7~: is a well-defined generalisation of?i’,

then ¥ is semantically equivalent to ¥ on inputs of the original
size.

It would be lovely if every SDF had a most general (princi-
pal) well-defined generalisation. But it doesn’t: due to several
problems that we describe in the following subsections, there
may be multiple incomparable ways to generalise an SDF to
make a perfectly well-defined elastic SDF. So, when asked
to generalise an SDF, which of these incomparable gener-
alisations should the generalisation algorithm choose? We
explain our approach in Section 4.6.

4.2 Problem 1: under-constrained sizes

It is possible that the original SDF has a body tile whose size
is not constrained to match that of any input tile. In this case
there may be multiple well-defined generalisations that set
the size of that tile in different ways. For example:

function NDO(t; A1::{3,1}) returns C1% {
t; B1:{3,1} =1
t3 C1=SUM(B1:{3,1}22) } /+ 3 +/

This SDF has the following well-defined generalisations:

function ND1{a)(t; Al:{a,1}) returns C1% {
1y B1:{3,1} =1
t; C1= SUM(B1::{3,1}%2)} [+ Always 3 «/
function ND2(a)(t; Al:{a,1}) returns C1% {
ty Blu{a,1} =1
t3 C1= SUM(B1:{a,1}2) } /+ Equal to the length of the input =/

Neither is more general than the other, yet both specialise to
the original function when « = 3. Which do we want? Our
solution is to drop the requirement that the generalisation be
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determinable, so that we can get this generalisation, which
is principal (but not executable, since f is not determined):

function ND3(a, B)(t; Al:{a,1}) returns C1% {
t2 B1:{p,1} =1
t3 C1 = SUM(B1:{8,1}*2) } /« Value depends on f! +/

Now, in the rare cases where the principal generalisation is
not determinable, we simply set the non-determined length
variables to their initial values (that is, the value used in the
original function written by the user) and perhaps issue a
warning. That procedure will result in the first of the gener-
alisations above. This procedure is simple and well-defined,
and is only needed in unusual (contrived) cases.

4.3 Problem 2: arbitrary locations

The next problem is that tiles may be positioned in different
ways as a function of the length variables, as long as the
initial values of the variables give the initial positions. For
instance, in the SHOP example, we could gratuitously make
the column of the output cell depend on a:

function SHOP(a)( t; F4:{a,1}, to G2) returns {E+a}7% {
t3 G4:{a,1} = F4lt « $G$2%
ty Ha:{a,1} = Falt + G4B
ts {E+a}7 = SUM(H4::{a,1}%) }

Neither the above nor the generalisation in Section 3.1 can
be converted into the other by a substitution for «.

Arbitrary re-location of tiles in the elastic SDF is of no
interest; it is a bit like a-renaming the binders of a lambda-
term. The simplest way to stop this nonsense is to require
that the upper-left corner of each tile of the elastic SDF be
constant; that is, mention no length variables.’ Tile t5 above
violates this because its top-left corner is at {E+a}7.

4.4 Problem 3: generalising size-1 axes

Suppose we were to generalise a tile of height 1 to variable
height a. We may then have a choice to interpret a reference
to it as aggregating it or mapping over it, both of which are
among the most common kinds of computation that we want
to support. For example, this SDF:

function G(t; A1) returns B1% {
to B1= COUNT(A11)} /« Always returns 1 «/

has the following possible incomparable generalisations:

function G{a)(t; Al:{a,1}) returns B1% {

tp B1= COUNT(A1:{a,1}') } /« Returns length of the input +/
function G{a)(t; Al:{a,1}) returns B1:{a,1}% {

to B1:{a,1} = COUNT(A11) } /« Returns vector of ones =/

Our solution is to ban generalisation of a height of 1 to
variable height, and similarly for width 1. This seems entirely
reasonable: if the user wants an SDF to be generalised to an

5 After generalisation is complete, one possible execution scheme might
re-introduce length variables in the top-left corner to avoid overlaps - see
Appendix B.

array of arbitrary size, she should write an example SDF that
has an array of at least size 2, not size 1.

4.5 Problem 4: patterns of computation

The last problem is the trickiest: there may be multiple well-
defined ways to elasticise the same reference. For example,
the following SDF:

function F(t; A1::{2,1}) returns B1:{2,1}%2 { t, B1:{2,1} = A1%1}
has the following incomparable generalisations®:

function F(a)(t; Al:{a,1}) returns B1:{a,1}%2 {

ty B1:{a,1} = A1%1} /« Returns the entire input «/
function F{a)(t; Al:{a + 2,1}) returns B1::{2,1}%2 {

ts B1:{2,1} = A1%1} /x Returns first two elements of input «/
function F(a)(t; Al:{a + 2,1}) returns B1:{2,1}2 {

ty B1:{2,1} = A{a+1}"1 } /« Returns last two elements of input »/

The latter two generalisations are clearly a bit ad-hoc, be-
cause they pick two elements out of a variable-height input
array, so the first is probably the generalisation that the user
intended — but how should we formalise that intuition? We
do so by saying (in Definition 4.4 below) that every refer-
ence should be well-behaved, and exploring various possible
definitions for “well-behaved”.

4.6 Regularity

It is no good choosing at random among incomparable gen-
eralisations. We recover principality like this:

e We solve the first problem (Section 4.2) as described in
that section, by finding a principal generalisation that
may not be determinable, and making it determinable
afterwards.

We solve the next two problems (Sections 4.3 and 4.4)
by restricting the set of generalisations among which
we choose, to the semi-regular ones (defined shortly).
We solve the final problem (Section 4.5) by further
restricting the generalisations we consider to those
in which every range reference is well-behaved. The
definition of “well-behaved” will somehow express
common computational patterns in a predictable way.
Rather than define well-behavedness once and for all
here, we instead parameterise our generalisation algo-
rithm, and its proof of principality, over this choice.
This enables us to explore a variety of choices for well-
behavedness: we present two in this paper, but others
are possible.

The following definitions make the above outline precise.

Definition 4.3 (Semi-regular generalisation). An elastic SDF
F is a semi-regular generalisation of a labelled SDF 7 if it
satisfies the following conditions:

1. Fisa generalisation of 7.

¢ Even assuming that we adopt the choice in Section 4.4 and refrain from
generalising the size-1 columns of the ranges.



2. Every tile of F has non-negative height and width for
every assignment of values to the length variables.

3. The upper-left corner of each tile of F is constant
(Section 4.3).

4. Every tile of non-constant height in F has height at
least 2 in 7, and likewise for the width (Section 4.4).

Definition 4.4 (Regular generalisation). An elastic SDF F
is a regular generalisation of a labelled SDF ¥ if it is a semi-

regular generalisation of F and each range reference p in F
is well-behaved (Section 4.5).

Definition 4.5 (Principal regular generalisation). An elastic
SDF 7~ is the principal regular generalisation of Fifitisa
regular generalisation of # and is more general than every
other regular generalisation of F7

5 Elasticity inference

Next, we turn our attention to the task of finding the princi-
pal regular generalisation of an SDF. Our approach is quite
conventional: first generate constraints, and then find their
principal solution. Obviously, some of the constraints de-
pend on the definition of well-behaved references. Thus we

define:

Definition 5.1 (Generalisation system). A generalisation
system consists of:

e A class of supported SDFs, a subset of labelled SDFs as
defined in Sections 2.2 and 2.3;

o A predicate for well-behaved range references in sup-
ported SDFs; and

o A constraint generator that takes a range reference in
the “master” elastic SDF %, (defined below) generated
from a supported SDF and returns a set of constraints.

Given a generalisation system, the elasticity inference algo-
rithm is as follows:

1. Convert all tile ranges of # to corner-size notation and
all range references to corner-corner notation (expand-
ing single cell references to pairs of identical corners).

2. Generate a “master” elastic version % of 7A7by adding
a fresh delta variable & to the height and width of
each tile, and to each row or column reference. Setting
all the delta variables to zero recovers the original
function 9;7 Unlike length variables, delta variables
can potentially take negative values. (Thus % is not
truly an elastic SDF.)

3. Generate a set of constraints on the delta variables, in
the syntax given in Figure 3, as follows:

"The principal regular generalisation will only ever be unique up to renam-
ing of length variables and addition and removal of unused length variables
(because regularity does not require determinability), but we ignore these
technicalities and refer to it as if it were unique.
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a. For each tile, if the height was 1 in 7} then constrain
the height delta variable equal to 0%; otherwise con-
strain the height to be non-negative. Do likewise
with the width.

b. Call the generalisation system’s constraint generator
on each range reference p in %.

4. Find the principal solution of the constraints, a delta
substitution ©* that maps every delta variable either to
zeroorto a+] where ¢ is a length variable (Section 5.2).

5. Apply ©* to %0 to produce the principal regular gen-
eralisation 7 of 7.

5.1 Elasticity inference by example

We illustrate this sequence of steps using the SHOP SDF
introduced in Section 2.2 and the simplified generalisation
system of Appendix C:

1. F after the initial conversions:

function SHOP( t; F4:{3,1}, to G2:{1,1}) returns H7:H7% {
t3 G4:{3,1} = F4:F4h « $G$2:$G$2%
ty H4:{3,1} = FA:F4h + G4:G4B
ts H7:{1,1} = SUM(H4:He6%) }

2. Here is the master elastic version 7~'B (to reduce clutter,
we have omitted the delta variables for the columns
since nothing interesting happens there):

function SHOP( t; F4::{3+a1,1}, t2 G2:{1+d2,1})
returns H{7+ds}:H{7+d4}" {
t3 G4::{3+ds5,1} = Fld+dg):F{d+ar} « $G${2+ds}:$C${2+d9}2
ta Ha4:{3+d10,1} = F{4+0A(11}:F{4+(i’12}t1 + G{4+0?13}:G{4+0?14}t3
ts H7:{1+d15,1} = SUM(H{4+O?16}:H{6+(5(17}t4) }

Note that we elasticise only the size of each tile (on the
LHS), not its position, to respect item 3 of Definition 4.3.

3. Generate constraints. Here we show ¥, again, with
each constraint attached to the part of Fo it was gener-
ated from and marked with the step of the constraint
generation procedure (Appendix C.2) that generated
it. Unmarked constraints are from step 3a of the main
algorithm.

function SHOP( t; F4:{3+d,1}37 41201 1y G2:{1+45,1)19270])
returns H{7+as}:H{7+d,}?5 () d1s=ds=a:=0] ¢
t3 G4::{3+d5,l}[3+d520]
_ F{4+0A(6}:F{4+0A(7}t1 [(@) @1=ds, dg=a7=0]
» $G${2+ds}:$CH{2+do) 2 () d2=da=do=0]
ta H4::{3+0?10,1}[3“5‘“’ZOJ
= F{d+a1 iF{d+dqp)h (@) di=do. dn=d12=0]
+ Gla+dna}:Glardyg)s 1@ ds=do da=aii=0]
ts H7:{1+d15,1} %1501

80ne might ask, why add a height delta variable only to immediately con-
strain it to zero? Ensuring that every tile has a height delta variable makes
the system-specific constraint generators slightly easier to state, e.g., in step
1 in Section C.2.
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= SUM(H{4+d16}:H{6+d17) 14 [(P) @16=0.di7=duoly 1

4. Solving the constraints yields the delta substitution
{a1, &s, &9, 17} — a — 3, and all other delta variables
are zero. _

5. The result of applying this substitution to % is the
elastic SDF shown in Section 3.1 (Step 2).

5.2 Constraint solving

The business of the constraint solver is to find the principal
(i.e. most general, up to renaming) substitution that solves
the constraints. The syntax of constraints and substitutions
is given in Figure 3.

The solution to a set of constraints is a delta substitution,
which maps each delta variable to zero (meaning that the co-
ordinate is inelastic) or to a + ] (meaning that the coordinate
has elastic variable a); see Figure 3. A delta substitution ©
satisfies a constraint if applying © to both sides of the con-
straint makes the constraint true, remembering that length
variables « are non-negative. For example & — « +3 satisfies
a > 3.

A delta substitution ©, is more general than © iff there is
a length substitution ¢ such that ®; = ¢ o ©;. It is easy to
compute the most general solution of a set of constraints:

1. Eliminate all the equality constraints. Gather all the
equality constraints @ = ﬁ and @ = 0 into an interme-
diate substitution 0 (Figure 3). That leaves only lower-
bound constraints.

2. Simplify lower bounds. Apply 0 to the lower bound
constraints, normalise them to the form ¢ > i, and
combine all the constraints on each individual variable
by taking the maximum of its lower bounds. Now we
have a single constraint ¢ > [ for each delta variable
a.

3. Replace delta variables with length variables. For each
constraint & > [, invent a fresh length variable @ and
compose 0 with @ — o + I.

The generalisation systems that we consider will have the
property that every delta variable has a lower-bound con-
straint, and hence the third step eliminates all delta variables
in favour of length variables. Hence the result is a delta sub-
stitution ©, with only length variables in its range (Figure 3).

5.3 Proof of principality

In this section we prove that our elasticity inference algo-
rithm indeed finds the principal regular generalisation of a
labelled SDF ¥ . Here is the key theorem:

Theorem 5.2 (Principal regular generalisation). In a sound
generalisation system, every supported SDF ¥ has a princi-

pal regular generalisation ¥, ¥~ is unambiguous, and the
algorithm given at the start of Section 5 finds it.

Proof. See Appendix D. O

Since the constraint generation algorithm and the defini-
tion of regularity are both parameterised over the generali-
sation system, the theorem is predicated on the soundness
of the generalisation system (see Definition 5.1). Soundness
captures the properties that the generalisation system must
have to prove the principality theorem.

Definition 5.3 (Sound generalisation system). A generali-
sation system is sound if the following properties hold for

every supported SDF F with “master” elastic SDF %;:

1. Every regular generalisation of ¥ is unambiguous (Def-
inition 3.1).

2. No constraint requires @ > 0, for any delta-variable &.

3. For every range reference p in %, and for each row or
column reference, denoted by , in p, the constraints
generated for p include an equality constraint of the
delta variable of the row or column reference y to
either 0 or a height or width delta variable of a tile.

4. For every delta substitution @’, if the elastic SDF ¥’ =
©’(F) is a semi-regular generalisation of ¥, then for
each reference p in %, ©’ satisfies the constraints gen-
erated for p if and only if the reference p’ correspond-
ing to p in ¥’ is well-behaved.

Property 1 is required because we are only interested in
unambiguous generalisations. Property 2 ensures that the
constraints allow setting all the delta-variables to zero; we
need that possibility to guarantee that the solution ¥~ is
actually a generalisation of ¥ Together with Step 3(a) of
the inference algorithm in Section 5, Property 3 ensures that
every delta-variable is either constrained to zero, or has a
non-positive lower bound. This property of the generated
constraints is required by step (3) the constraint solver (Sec-
tion 5.2), which eliminates the delta-variables.

Finally, property 4 says that the constraint generator pre-
cisely characterises the well-behavedness of references. Ob-
serve that in step 2 of the elasticity inference algorithm we
added enough delta variables that any semi-regular generali-
sation 7 of Fis the result of f applying some delta substitution
@’ to F, so that ©'(F) = F. Why? Because the only parts
of F that can differ from ¥ are tile sizes and row and column
references (not tile upper-left corners by semi-regularity
condition 3). Property 4 then implies that ©’ satisfies the
reference well-behavedness constraints if and only if 77 is
regular.

Proposition 5.4. In a sound generalisation system, every
supported SDF F is a regular generalisation of itself.

Proof. See Appendix D. O

What this proposition means is that we can expect a general-
isation system to degrade gracefully: the elasticity algorithm
cannot fail to produce a principal generalisation. At worst it



will make inelastic some part that one might hope would be
generalised, with the worst case being F* = F itself.

As mentioned before, %* may fail to be determinable,
in which case we recommend setting all non-determinable
length variables to their initial values.

5.4 The generalisation system

Our elasticity algorithm is parameterised over the generali-
sation system (Definition 5.1). Principality is guaranteed (by
Theorem 5.2) for any generalisation system that is sound
(Definition 5.3).

We have studied two generalisation systems. Space pre-
cludes giving the details here, but to summarise

e The simple generalisation system (Appendix C) han-
dles SDFs in which each reference has only one target
tile. This is enough for the SHOP example.

o The full generalisation system (Appendix E) handles a
richer class of SDFs, but in exchange it is more com-
plicated.

The extra expressiveness of the full system is important in
practice. For example, here is a function that computes the
post-transaction balances of a bank account with interest
compounded daily:

/» COMPOUND( start date, opening balance,
interest rate, transactions )
transactions is a 2-column array of (date, amount) pairs =/
function COMPOUND( ts A3, to F3, tr F1, tx Ad4::{7,2})
returns F4:{7,1}% {
t1 C4:{7,1} = A4'x — A3%Ix /. Interval between transactions +/
to D4:{7,1} = POWER(1+$F$1%r, C4%1) /« Interest multiplier «/
t3 E4:{7,1} = F3%o: 4 « D42/« New balance after interest «/
ty F4:{7,1} = E4% + B4’x } /- Final balance +/

The function takes (as its last argument) a 2-column array of
transactions. It computes each new balance by adding a suit-
able interest payment (which depends on the date interval)
and the transaction amount, and returns an array of the post-
transaction balances. We have carefully placed the start date
in A3 immediately above the column of transaction dates
in A4:A10, so that we can uniformly compute the intervals
during which interest accrues. Now consider the reference
to A3 in the definition of t;. When computed in cell C4, the
reference A3 points to the start date input tile t; but when
computed in cell C5, the A3 has become A4 (via copy/paste),
and hence points to the date on the first transaction, in tile
tx. So this reference to A3 has two target tiles, ¢; and ¢, and
is therefore labelled with both, making it a non-basic SDF.

Fortunately, our full generalisation system, described in
Appendix E, handles arbitrary tame SDFs, and still enjoys
principal generalisations.
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6 User Study

How would users write SDFs for variable-length inputs, if
elastic SDFs were unavailable? The most plausible alternative
is to write the SDF using array-at-a-time operations, rather
than element-wise operations. This approach is described,
with a user study, by Blackwell et al. [5]. There is already
limited support for arrays-at-a-time operations in various
spreadsheet packages’.

We therefore ask: is the programming-by-example ap-
proach of elastic SDFs better for spreadsheet end users, when
compared to defining variable-length input SDFs using arrays-
as-a-time operations? Concretely, we designed a user study
to investigate the following:

e RQ1: Does the use of elastic SDFs versus array pro-
gramming affect the cognitive load experienced by
users in writing SDFs?

e RQ2: Does the use of elastic SDFs versus array pro-
gramming affect the subjective user experience?

e RQ3: Are any observed differences affected by users’
programming expertise?

6.1 Prototype of SDFs for User Study

We adapted an existing research prototype of sheet-defined
functions written as an add-in for Microsoft Excel. The proto-
type already supports lambda-abstractions, and we extended
it to support arrays-in-cells and provided functions for ma-
nipulating arrays, as outlined in Appendix B.3.

To support elastic SDFs, we added a check-box for the user
to indicate that an SDF should be elastic. If so, we generalise
the given SDF to an elastic SDF, which is then implemented
as a concrete SDF by the lazy array translation described in
Appendix B.3.

6.2 Participants and tasks

We had twenty participants (seven female) aged 18-35 (mean
24), an adequate sample for preliminary field research in
human-computer interaction [7].

We developed tasks that were representative of real-world
spreadsheet tasks, to maintain external validity. We achieved
this by adapting real spreadsheets that we had previously
gathered from participants of a different study, in which we
had interviewed users who had shared and explained the use
and structure of these spreadsheets. We adapted the sheets
into tasks by removing personally identifiable information
and intellectual property, and then designating a part of the
sheet to be converted into an SDF and reused elsewhere. For
each task, the participant was presented with a spreadsheet
partially filled with fictional data, a brief description of what

?https://support.office.com/en-us/article/Dynamic-arrays-and-spilled-
array-behavior-205c6b06-03ba-4151-89a1-87a7eb36e531
https://support.google.com/docs/answer/3093275?hl=en

Last accessed: November 27, 2018


https://support.office.com/en-us/article/Dynamic-arrays-and-spilled- array-behavior-205c6b06-03ba-4151-89a1-87a7eb36e531
https://support.office.com/en-us/article/Dynamic-arrays-and-spilled- array-behavior-205c6b06-03ba-4151-89a1-87a7eb36e531
https://support.google.com/docs/answer/3093275?hl=en

Elastic SDFs

the sheet was to be used for, and a description of what the
participant had to calculate.

Appendix F includes additional details of our user study
tasks and participants.

6.3 Protocol

Prior to the study, participants watched a 10-minute instruc-
tional video that explained how to create SDFs, how to use
elastic SDFs, and our array notation, with step-by-step ex-
amples. A study session consisted of two parts, one in which
the participant used elastic SDFs, and one in which they used
arrays to define SDFs. In each part, a practice task was per-
formed followed by three task trials. The order of conditions
was counterbalanced to avoid order effects: one group of par-
ticipants used arrays in the first part, and the second group of
participants used elastic SDFs in the first part. After each part,
participants completed a questionnaire to measure their per-
ceived workload. We used the NASA Task Load Index (TLX)
questionnaire, a commonly used tool in user-centred design
research, which enables users to self-assess their workload
during a task [13]. The questionnaire consists of six sub-
scales: mental demand, physical demand, temporal demand,
performance, effort and frustration. The user is asked to rate
their subjective workload on each scale, which ranges from
5 (low workload) to 100 (high workload) on a 20-point scale.
These ratings can be averaged to yield the overall cognitive
load. After the second part, participants were interviewed
on their overall experience. The study lasted approximately
two hours on average.

6.4 Results

A mixed analysis of variance (ANOVA) was used to analyse
the TLX scores. The ANOVA is a statistical model used to
analyse any differences in mean score among groups. A sig-
nificance level () of 0.05 was used; we interpreted p-values
lower than this to mean that the observed difference was
unlikely due to chance.

Participants perceived a significantly lower workload for
elastic SDFs (Figure 4a) (M = 37.46, SD = 14.24) than arrays
(M = 52.25, SD = 14.80), F(1, 18)1° = 10.22, p < 0.01. There was
no significant difference between the group starting with
arrays (M = 47.92, SD = 15.08) and the group starting with
elastic SDFs (M = 41.79, SD = 17.02), F(1,18) = 1.93, p= 0.2.
This implies that there was no ordering effect of SDF version
on cognitive load. There was also no significant interaction
effect between SDF version and order, F(1,18) = 1.31, p= 0.3.
This lack of interaction means that both groups associated
elastic SDFs with a lower workload. However, the effect of
SDF version on workload was slightly greater if users started

19The numbers in brackets indicate the degrees of freedom and are calcu-
lated from the number of groups and number of participants of the study.
These are used to assess how large the F value needs to be in order to reject
the hypothesis that mean scores of different groups are equal. For a more
extensive explanation of ANOVA results and notation, see Field [9].

11

100 100
90 90
80 80
70 70

Q Q

3 o | g o

<

3 5o X 3 50

5 a0 5 a0

s X s

30 . 30

20 20
10 10
0 0

Arrays Elastic Low High

(a) Arrays vs elastic SDFs (b) Programming expertise

Figure 4. Boxplots showing differences in cognitive load
scores between groups. (a) Cognitive load was lower with
elastic SDFs than with arrays. (b) Cognitive load was not
significantly affected by programming expertise.

the study with elastic SDFs, suggesting that participants
perceived a larger difference in workload between arrays
and elastic SDFs if they started with elastic SDFs.

Due to bugs in our research prototype, there were occa-
sional delays in response to user interactions, and instances
where Excel needed to be restarted. Due to this limitation,
we were unable to draw a statistical comparison of task com-
pletion times between elastic SDFs and array programming,.
Average task completion times for tasks unaffected by tech-
nical interruptions are described here to give some insight
on the timing advantage of elastic SDFs, but this comparison
is not statistically formal. When participants used arrays,
the average task completion time was 13 minutes and 34
seconds (814 seconds). Using elastic SDFs, the average task
completion time was 7 minutes and 48 seconds (468 seconds).
During the study, we observed that this large improvement
in the time required with elastic SDFs can be attributed sim-
ply to the fact that participants spent longer to formulate
logic in terms of array combinators.

We asked participants to rate their programming expe-
rience on a scale from 1 to 4, with 1 being ‘little to no ex-
perience’, 2 ‘some experience, still a beginner’, 3 ‘extensive
experience, some expertise’ and 4 being ‘very experienced,
high expertise’. They also stated how many years of pro-
gramming experience they had. We divided our participants
into ‘low’ and ‘high’ expertise groups. Low expertise partic-
ipants classified themselves as a beginner and/or had less
than two years of experience. Seven participants fell into the
low expertise group, 13 in the high expertise group. We did
not observe significant differences in cognitive load between



low (M = 43.33, SD = 10.51) and high (M = 46.71, SD = 8.61)
expertise programmers, F(1,18) = 2.20, p = 0.16 (see Figure 4b).
There was also no interaction effect between SDF version or
programming experience, F(1,18) = 0.09, p = 0.77, implying
that the observed differences in cognitive load between elas-
tic SDFs vs array programming were not affected by users’
programming experience. This suggests that elastic SDFs
offer similar cognitive benefits to novice / low-expertise as
well as high-expertise programmers.

In the interview, participants were positive about SDFs
and could see them being applied to their own work in which
custom calculations often have to be re-used. Arrays were
found useful in reducing the manual effort required to re-
peat a simple, built-in function for a large range of cells. For
example, when participants had to do a multiplication for
each row in the sheet, instead of having to enter a formula
for the first row, and then drag-fill the formula down the
range of rows, they only needed to enter the function once if
these rows were held in one cell as an array, and the function
was automatically populated for all values held in that ar-
ray. However, when authoring and invoking complex SDFs,
participants preferred ranges to arrays, because they were
familiar with passing ranges as arguments into built-in func-
tions. Similarly, participants commented that they preferred
elastic SDFs over arrays because the use of ranges was more
similar to their typical use of formulas.

Participants liked that the implementation details of SDFs
are hidden when the SDF is invoked, but they also wanted to
have the option to see further details (i.e., a trace) at invoca-
tion sites. Participants wanted to understand how the func-
tion behaved with different types of input, debugging, and to
inspect intermediate results. Furthermore, some participants
desired control over which arguments to make elastic, as
not all elasticisable arguments might necessarily make sense
to elasticise at the domain level, for example when dealing
with a contract or time period with a fixed length.

In summary: the study found that elastic sheet-defined
functions can successfully enable end users to define func-
tions that accept variable-length input, without having to
write array combinators. We also observed qualitatively that
sheet-defined functions can be a valuable tool in spreadsheet
users’ work. To address our research questions:

e RQ1: Elastic SDFs offered reduced cognitive load, and
potentially lower authoring time, compared to array
programming.

e RQ2: Participants found arrays useful and transparent
when mapping a single formula to a range, but pre-
ferred elastic SDFs for calculations involving complex
array combinators, as well as because it allowed the
use of familiar range notation.

12

M. McCutchen et al.

e RQ3: The observed differences were not affected by
users’ programming expertise, suggesting similar ben-
efits to low-expertise as well as high-expertise pro-
grammers.

7 Related work

Generalising an SDF is an example of program synthesis,
where the task is to synthesise a program from some specifi-
cation of what the program should do; see [12] for a recent
survey. The specification is often partial; a popular choice is
to allow the user to supply a set of input/output examples.
The field is a very active one and, like our work, is mostly
focused on the needs of non-expert end users rather than pro-
fessional programmers. However, our work seems unusual:
rather than use input/output examples, or program skeletons,
we directly generalise a single concrete program to one that
handles a broader variety of inputs, and we offer provable
guarantees that the result is not just any generalisation but
the most general one possible.

Sheet-defined functions originated in Forms [1] and have
been implemented in various other research systems since
then. Sestoft’s comprehensive monograph on spreadsheet
technology [19] describes an implementation of sheet-defined
functions with first-class arrays (e.g., an array can be the
value of a cell) and compilation to the .NET intermediate lan-
guage. He does not consider synthesis of SDFs by example.

Various spreadsheet tools let a user define a computation
on input of one size and have a mechanism to modify the
computation to take input of a different size, but the mech-
anism has to be invoked manually by the user, and while a
user can of course copy a computation, there is no means of
sharing logic so that computations on different input sizes
can be updated together. The most rudimentary mechanism
is drag-filling of formulas, which has to be performed once
for each group of contiguous aligned tiles in the computa-
tion. (Indeed, drag-filling is the typical means by which a
user would build an SDF for a certain fixed input size before
making the SDF elastic.) Excel also has support for “tables”
with a homogeneous formula in each column; adding rows
to a table does the equivalent of a drag-fill of the column
formulas, and a syntax is provided to reference an entire
column of a table for aggregation.

Abraham and Erwig describe spreadsheet “templates” in
the ViTSL language [8]. Like an elastic SDF, a ViTSL tem-
plate describes patterns of repeating formulas and can be
specialised to any desired number of repetitions, but there
are no means of reusing the same template multiple times
within a single spreadsheet. Also, the feature sets differ. A
ViTSL template can have a group of rows or columns that
repeats (“ABABAB”) but cannot specify that two separate
groups have the same number of repetitions (“AAA BBB”),
while the reverse is true of an elastic SDF. In many cases, a
sheet designed in one of those ways can be converted to an
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equivalent sheet designed the other way, though the attrac-
tiveness of the designs to a user may differ. As far as we can
tell from the formalisation, ViTSL does not support offset
references, which is a major limitation compared to elastic
SDFs. Similarly, Paine’s ‘Model Master’ language [17] offers
a textual notation for describing spreadsheet computations,
but its presentation in terms of array formulae and separa-
tion from the grid (requiring the use of an auxiliary ‘layout’
file) make it more suitable for use by expert programmers,
rather than non-expert end users. It does not support SDFs.

Tabula [16] and Object Spreadsheets [15] are structured
spreadsheet tools that let a user construct a computation
that applies to variable-size input by writing element-wise
formulas and then reuse the computation on several inputs
of different sizes by introducing an outer level of structural
repetition around it. However, they do not support extracting
such a computation from an existing unstructured spread-
sheet, nor (currently) packaging such a computation as a
function that can be called from anywhere. Furthermore,
offset references are awkward to express in these tools.

Although the work of Peyton Jones et al. [14] was in-
formed by HCI theories of usability 3, 11], our work appears
to be the first report of a study of sheet-defined functions
with actual users.
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Elastic SDFs

A Semantics of SDFs and Elastic SDFs

In this section, we describe a formal semantics for a core
spreadsheet language that includes SDFs and elastic SDFs.
Its full abstract syntax is in Figure 1.

As in many spreadsheet systems, each populated cell is
associated with a formula, whose value may be either a literal
string or a number. (Every literal is also a formula, so we
represent a cell holding a literal ¢ by associating the cell with
the formula c.)

The grammar of values, V, is given as follows:

VZZ=C| {01,1,.. -,cm,n}

The value {c1,1,...,C1,n; - - Cm.n}isan [mXxn]
2D array, with m > 0 rows and n > 0 columns.

Although our prototype implementation—the basis of our
user study—supports arrays-in-cells, we do not do so in our
semantics. In common with many spreadsheet systems, our
semantics supports arrays that arise as intermediate values
in formulas (such as arguments or results of function calls),
but whole arrays may not be stored in cells.

-scl,nZ---;cm,l,“

~;cm,1’--

A.1 Preliminary Definitions

As mentioned in Figure 1, if P is a piece of syntax, we write
vars(P) for the set of variables occurring in P. For example,
vars( COUNT(AT:A{a}) ) = {a}. We say a phrase P is inelastic
to mean that vars(P) = 0.

As we describe in Section 2.1, any (inelastic) range a :
{Zl, 72} or range reference 0 :: {Zl, Zz} in corner-size form can
be turned into corner-corner form. Moreover, any singleton
range a or range reference 6 is equivalent to corner-corner
forma:aor:0.

Hence, in our semantics we need only consider inelastic
ranges and range references that are in corner-corner syntax.

rou= ap:ap
6 == 91 : 92

To represent the actual argument values to an SDF, we
introduce a notion of binding, ranged over by 8,

Biu=tr=V

where t is a tile name, r is an inelastic range, and V is a value.

Our semantics of formulas is with respect to a context
that represents the current spreadsheet together with any
argument bindings. Let a context y be a pair (S, B; ... By),
where § is an inelastic sheet fragment S, n > 0, and each
8, is a binding.

Given tile name ¢, inelastic address a, and context y, let
lookup(t, a, y) be either the value or formula specified by:

e If t r = F is one of the range assignments in y, and
address a falls within the range r and F’ is the outcome
of drag-filling the formula F from the top-left of r to
address a, then lookup(t, a,y) = F'.

e Iftr = cisone of the bindings in y, and ranger = a : q,
then lookup(t,a,y) = c.
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o Iftr={ci1,...,CLn;-- ., Cm,n} is one of the
bindings in y, and address a falls at position (i, j) in
range r of size [m X n], then lookup(t,a,y) = ¢; ;.

5Cm1s -

We need the the ¢ parameter to uniquely dereference range
references in the semantics of elastic SDFs.

A.2 Semantics of Formulas

We define the value [F]ly of the inelastic formula F given
context y as follows:

[(u1Npom : @i Nuym)t---t]y
= cifiel.nand
either lookup(t;, Nm, y) = ¢
or lookup(t;, Nm,y) = F' and [F']ly = c

[0 = 02)" Ty

= {cl,la“-,cl,n;” -3cm,n}
where 0; : 0, has size [m X n] withm X n # 1
and each ¢; j = [(0; : 0; )"~y
where each 6; ; targets position (i, j) in 6; : 0,

felly =¢
[f(Fr,.. . E)lly = [F I F Dy, - - .. [Fadly)

These recursive equations amount to a denotational se-
mantics of formulas. The semantics is undefined in circum-
stances where a spreadsheet would return an error value,
or if there is a cycle between a formula and its own value
in the grid. We do not formally treat errors or cycles in our
semantics, but it would be a standard application of domain
theory, for example.

The first equation applies to a singleton range reference
1N pom : i Np;m that targets the cell with address Nm. The
equation can only return a constant c: if lookup(¢;, Nm, y) =
F” and [F']ly = V where V is an array, the value is undefined.
As said earlier, we allow constants but not arrays to be held
in cells.

The second equation applies to a non-singleton range and
returns an array of constants, each of which is computed
using a recursive call to compute a singleton range.

The third equation defines the semantics of a constant
formula to be the constant itself.

The fourth equation defines the meaning of a call to a
function f. If f is a function with arity k, we assume [ f] is
a function from k-tuples of values to values to represent the
semantics of f. We assume suitable definitions of [ f]] for
each builtin function. For example, for the division operator,
the meaning [[/] is a function that given (cy, ¢z) returns ¢1 /c;
if both values are numbers and ¢, # 0; otherwise it returns a
suitable error string.

In the next two subsections, we define [ f]] when f is an
SDF or an elastic SDF, to complete our semantics.

-;cm,l,”

A.3 Semantics of SDFs
Consider an inelastic (labelled) SDF f:



function f(t; 1, ..., tg 1) returns plieet {S}

Its meaning [[ f]) is a function from k-tuples of values to
values given as follows:

VO (S, By L By
where each B; = (t; r; = V;)

[f1 = A,.

A.4 Semantics of Elastic SDFs
Consider an elastic SDF f:

function f{a1,...,an)(t1 11, ..., tx 1x) returns plioeet) {S}

To give the semantics, we need a substitution operator
on syntax, that turns length variables into specific numbers.
Ifp = (a; = Iy,...,an = I,) is a substitution of actual
lengths I; for length variables, we write ¢(P) for the outcome
of substituting the length /; for each occurrence of length
variable «; in P. If vars(P) C {ay,...,a,} we have that
vars(§(P)) = 0, that is, that ¢(P) is inelastic.

The meaning [[ f] of the elastic SDF is the function:

LF1 = AV VOGO I1(H(S). By ... Br)
where each B; = (t; (#(r;)) = Vi)
for some ¢ = (ay = ly,...,an =1p)
where size of ¢(r;) equals size of V; for each i

In the final constraint, we refer to the sizes of inelastic
ranges @(r;) and values V;. Let the size [m X n] of an inelastic
range consist of the number m of rows and the number n of
rows. The size of an [m X n] array is simply [m X n], and the
size of a constant is [1X 1]. Our assumption in Section 3.3 that
a well-defined elastic SDF is determinable implies that the
final constraint uniquely determines the length I; assigned
to each variable a; by ¢.

For example, consider the following elastic SDF

function AVERAGE(a)( t; AT:A{a} ) returns B3% { S}
where the sheet fragment S is the following:

to B1= SUM( AT:Afa}! );

t3 B2 = COUNT( AT:A{a}");

ty B3 = B111/B2%

Then its meaning [[AVERAGE] is the following:

AV).[¢(B3)"($(S), B1)
where 8, = (t; ((Al:A{a})) = V1)

for some ¢ = (@ = 1)
where size of ¢p(A1:A{a}) equals size of V;

B Translation of elastic SDFs to executable
form

In Section 3.3 we sketched the semantics of an elastic SDF,
but doing so relied on an execution model that uses the
target-tile label on each reference to disambiguate references.
One could imagine an implementation based directly on this
model, but in this section we sketch several alternative routes
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for execution. A detailed description and evaluation of these
implementation strategies is beyond the scope of this paper.
Our purpose here is to reassure the reader that elastic SDFs
can be implemented efficiently, and to provide background
on the prototype used in our user study.

Given that implementation techniques exist for SDFs [19],
the key new challenge for elastic SDFs is to avoid overlap
between tiles when instantiating the length variables. Indeed,
we define:

Definition B.1 (Overlap-free elastic SDF). An elastic SDF
F is overlap-free if no two of its tiles overlap for any length
variable assignment.

B.1 Use multiple worksheets to avoid tile overlaps

One way to make an elastic SDF overlap-free is to use multi-
ple worksheets. Indeed, if the SDF is basic (each reference
has exactly one target tile), then the translation is easy: we
simply place each tile on a separate worksheet. For example,
here is a translation of our SHOP SDF, using the standard “!”
notation for worksheet references:

function SHOP(a)( S1!F4::{a,1}, S2!G2 ) returns S5!H7 {
S3!Ga:{a, 1} = S1!F4 + S2!1$G$2
Sq'H4:{a,1} = S1!F4 + S31G4
S5!H7 = SUM(S4!H4::{a,1}) /+ No overlap because tiles are
on separate sheets Sy, S5 */

}

If ¥ is not basic, we can use a slightly more complex process:
move each tile to a separate worksheet, then for each labelled
range reference p = p'">'¥, generate a worksheet that
copies ty, . . ., tx from their respective worksheets (remember,
they never collide because 7 is well-defined) and update p
to refer to this worksheet.

B.2 Move tiles to avoid overlap

Another approach is to move tiles within the single work-
sheet so they do not collide. Compared to using multiple
worksheets, this approach has the advantage that the trans-
formed SDF bears a greater resemblance to the original in
case the user needs to view it for debugging, although other
approaches to debugging elastic SDFs may be better yet.
Here is the SHOP example again:

function SHOP{a)( F4:{a,1}, G2 ) returns H{4+a} {
G4:{a,1} = F4 « $G$2
H4:{a,1} = F4 + G4
H{4+a} = SUM(H4::{a,1}) /« No overlap because H{4+a}
moves down as @ increases */

}

By anchoring the final tile at H{4+a}, rather than H7 as before,
it will move downwards as « increases, avoiding the overlap
with the tile anchored at H4. This transformation is nontrivial
in general, and is described in Appendix G. In general, it
produces an extended elastic SDF in which the upper-left
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corner of a tile may involve a linear combination of length Unfortunately, we arrive at a cyclic dependency between
variables, which is not allowed by the grammar of Figure 1. arrays E4 and F4: each depends on the other. There is a de-
The specific algorithm we choose is rather naive but gives pendence between items in columns E and F in the original
adequate results at least on simple examples. example, but since the items are in separate cells, the spread-
sheet interpreter can select a raster-scan schedule without

B.3 Transform to an SDF that uses an array to any cycles. By placing these columns within arrays, the in-
represent each tile terpreter is forced to evaluate one or the other column first,

leading to a loop.

To solve this problem, the interpreter in our prototype uses
a lazy array to represent each tile. Each lazy array consists of
an array of thunks, each a memoized argumentless lambda
(lambdas being an experimental feature in our prototype).
We obtain a uniform translation of elastic SDFs that gave no
problems on functions authored by our users.

As an alternative to lazy arrays, we can introduce array-
processing functions that capture particular schedules such
as raster scan, as illustrated by the following (correct) version

The two previous approaches transform an elastic SDF into
another that is constructed so that overlaps cannot occur:
these elastic SDFs can be interpreted according to a simpli-
fied form of the semantics of Section 3.3 without references
needing to track tiles.

Given a spreadsheet interpreter that supports arrays-in-
cells [5], our third approach is to transform an elastic SDF to
an (ordinary) SDF, where we replace each tile with an array
in its top-left corner. For example, in the SHOP function, the
input vector (of whatever size) can land wholesale in F4, the

intermediates (of whatever size) can land in G4 and H4, and of COMPOUND:
no collision arises: function COMPOUND( A3, F3, F1, A4) returns F4 {
C4 = COLUMN( A4, 1) — SHIFT_DOWN( A3, COLUMN( A4, 1))
function SHOP( F4, G2 ) returns H7 { D4 = POWER(1+$F$1, C4)
/+ F4 is an array, so the operator = lifts over its elements «/ F4 = VSCAN2( D4, COLUMN( A4, 2), F3,
G4 = F4 « $G$2 LAMBDA( bal, int, amt, bal  int + amt ) )
/+ F4 and G4 are arrays, so operator + lifts over both «/ }
H4 =F4 + G4 . .
H7 = SUM(H4) /» H4 is an array; SUM adds up its elements »/ The function VSCAN2 runs down two arrays in parallel,

with an accumulator, and we used a lambda-expression too.
We conjecture that a large class of elastic SDFs can be ef-
ficiently implemented by transformation to concrete SDFs
using arrays-as-cell-values, with appeal to implicit lifting
and to explicit array-functions like COLUMN and VSCAN2.
Moreover, we believe that the manual use of these techniques
represents the best solution, using previously known spread-
sheet technology, to the problem of writing SDFs that act on
variable-sized arrays. The point of our user study is to test
elastic SDFs versus this alternative technology with a group
of spreadsheet users.

}

Not apparent in this definition is the expectation that the
first parameter is a vector and the second is a scalar, but
spreadsheets are typically dynamically typed.

The implicit lifting of operators like (+) over arrays (a stan-
dard feature of spreadsheets) makes the transformed SHOP
function seem particularly simple, but this may not be so
for non-basic SDFs. Here is an attempt to write COMPOUND
using arrays-as-cell-values.

function COMPOUND( A3, F3, F1, A4 ) returns F4 { Can we automatically transform an elastic SDF to use
C4 = COLUMN( A4, 1) — SHIFT_DOWN( A3, COLUMN( A4, 1)) Aarray-processing functions? We believe so, as long as it has
D4 = POWER(1+$F$1, C4) a simple schedule that we can identify, but leave the details
E4 = SHIFT_DOWN( F3, F4)« D4 /» BUT array E4 depends on F4 »/t0 future work.
F4 = E4 + COLUMN(A4,2) /+ and F4 depends on E4 «/ . . . .
) C A simplified generalisation system
In this section, we present a simplified SDF generalisation
While a reference that targets a single tile simply becomes system with just enough features to handle the SHOP exam-
a reference to the corresponding array, a reference that tar- ple. The simplified system supports all basic SDFs, defined
gets multiple tiles becomes a specially constructed array. as follows:

For instance, the reference A3%:’x in the original code be-
comes the array SHIFT_DOWN( A3, COLUMN( A4, 1) ), where
the function COLUMN extracts the first column of the two-
column array A4, and the function SHIFT_DOWN inserts the

Definition C.1 (Basic SDF). A tame SDF is basic if it has
the property that, once it is correctly labelled, the target-tile
set on each reference is a singleton.

element A3 at the front of the resulting array while dropping In the simplified system, well-behaved references are re-
its last element. Similarly, the reference F3’>-** becomes the stricted to three simple, common kinds (defined in Section C.1)
array SHIFT_DOWN(F3, F4). that just suffice for the SHOP example. In contrast, the full
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system, described in Appendix E, supports all tame SDFs (not
only basic ones) and allows more kinds of references. Every
generalisation of a basic SDF that is regular according to
the simplified system is regular according to the full system,
but not vice versa. Thus, for certain basic SDFs, while the
simplified system produces a generalisation that is principal
according to its own definition of regularity, the full system
produces a more general elastic SDF.

C.1 Well-behaved references

In Section 4.5 we saw the need for a well-behavedness con-
dition that entails unambiguity, captures common patterns
of computation, and excludes other possible incomparable
generalisations. This section defines that condition.

First we need to introduce some new concepts to analyse
the structure of references. Although a range is normally
given by a pair of corners and columns are normally denoted
by letters, it’s more useful for us to think of it as an inter-
section of a row span and a column span, each with two
endpoints that are numeric axis positions (m in Figure 1), so
that we can treat the row and column axes symmetrically.
For example, the range F4:Go6 is the intersection of the row
span 4:6 and the column span 6:7. Likewise, a range reference
is an intersection of a row span reference and a column span
reference, each of which has two axis position references that
may be absolute or relative.

Below, we recall the abstract syntax for an elastic axis
position from Figure 1, and define the syntax for an elastic
axis position reference:

Axis position meZ*
Elastic axis position ma=m|{m+a}
Elastic axis position reference y == ym

An (inelastic) axis position reference y is an elastic axis
position where in fact vars(y) = 0, so that y has form pm.

By the coordinate of an axis position reference, we mean
the underlying number (or elastic expression) without regard
to whether the reference is absolute or relative.

Since each range reference in a basic SDF has only one
target tile, for a generalisation to be unambiguous, we just
need to ensure that its row span reference stays inside the
row span of the target tile and the endpoints do not flip
to produce a negative height, and likewise for the column
span reference. To make it as obvious as possible that these
properties hold in the simplified system, we stick to three
simple kinds of span references that appear in the SHOP
example. In the full system, showing that well-behavedness
implies unambiguity requires a bit more case analysis.

Definition C.2 (Stable and superstable references). A row
reference y appearing in the formula of a calling tile ¢, in an
elastic SDF is stable if y is absolute, or £, is vertically inelastic,
or both; it is superstable if it is absolute or the height of t. is
1. The analogous definitions apply to column references.

Intuitively:
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e A stable row reference points to a fixed number of
different target rows, independent of the values of any
length variables, when evaluated across all caller rows.

e A superstable row reference points to a single target
row.

e An unstable row reference points to an arbitrary num-
ber of target rows depending on the (variable) height
of t..

Definition C.3 (Well-behaved reference in the simplified
system). A range reference p appearing in a basic elastic
SDF ¥ is well-behaved if it satisfies the following conditions:

1. Let ¢, be the calling tile and ¢; be the (single) target
tile of p. Let ¥, : ¥, be the row span reference of p.
Then y; : ¥, is of one of the following three kinds:

e Inelastic: The height of t; is a constant, ), and )y, are
both stable, and their coordinates are both constant.

e Lockstep: The heights of t. and t; are the same non-
constant expression, y; = x,, x; is relative, and ),
points to the top row of t; when evaluated at the
top row of .. (By “points to”, we mean for all values
of length variables, not just in 71' In this case, that
means the coordinate of y; must be constant.)

o Whole: The height of t; is non-constant, y; and y,
are superstable, y; points to the top row of ¢;, and
X points to the bottom row of t;.

2. The analogous condition for the column span reference

of p.

Examples of all three kinds of span references appear in the
elastic version of SHOP shown in Section 3.1:

o All the column span references are of the Inelastic
kind, as are the row span references that are part of
the references $G$2 in the formula for #3 and H7 in the
returns clause. The $2 is stable because it is absolute,
and the H7 in the returns clause is implicitly treated as
absolute, while all the other references that are end-
points of Inelastic spans are stable because the calling
tile has size 1 on the relevant axis.

e The row span reference in SUM(H4:{a,1}), which is
SUM(H4:H{3+a}) in corner-corner notation, is of the
Whole kind; the row references are superstable be-
cause the calling tile ¢5 has height 1.

o The remaining row span references are of the Lockstep

kind.

C.2 Constraint generation

Given a span reference o in the “master” elastic SDF %, how
can we generate a conjunction of constraints on a delta sub-
stitution © that is equivalent to the disjunction of ©(c) being
of the allowed kinds of span references (Inelastic, Lockstep,
or Whole)? The secret is that we can rule out at least one of
Lockstep and Whole just by looking at %y: Whole requires
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that the endpoints of & be superstable, while Lockstep re-
quires that they not be. Furthermore, the kinds are such that
if we rule out Whole but not Lockstep, we’re able to generate
a set of constraints equivalent to ©(c) being Lockstep or
Inelastic; likewise, if we rule out Lockstep but not Whole, we
can generate a set of constraints equivalent to ©(c) being
Whole or Inelastic. (If we rule out both Lockstep and Whole,
it’s easy to generate constraints equivalent to ©(c) being
Inelastic.) Thus, based on ‘}%, we can always generate a set
of constraints equivalent to the disjunction of the kinds that
we haven’t ruled out.

Based on this insight, the constraint generation procedure
for a range reference p in % is as follows:

1. Let t; and ¢, be the target tile and calling tile of p, let
X1 @ X, be its row span reference, let y; : y2 be the
original row span reference in 7, let &, and d. be the
height delta variables of ¢, and ¢, let &; and @, be
the delta variables of y; and y,, and try the following
cases in order:

a. (Lockstep)If y1 = y2, x1isrelative, and t; and t, have
the same initial height (at least 2), then we anticipate
this span reference is Lockstep, but it may turn out
to be Inelastic. Constrain &; = @, and &; = @, = 0.

b. (Whole) Otherwise, if the initial height of ¢, is at least
2, y1 and y» are both superstable, y; points to the
top row of t; in F, and X2 points to the bottom row
of t; in 7} then we anticipate this span reference is
Whole, but it may turn out to be Inelastic. Constrain
a; = 0and ay = &;.

c. (Inelastic) Otherwise, this span reference is Inelastic.
Constrain @; = &; = &y = 0. In addition, if either
X1 0r x, is relative, then constrain &, = 0 to ensure
that y; and y, will be stable.

2. Follow the analogue of step (1) for the column axis.

An example of the output of this procedure was given in
Section 5.1 (Step 3).

C.3 Soundness of the simplified system

We can now prove:
Theorem C.4. The simplified generalisation system is sound.

Proof. An exercise in case analysis. More detail is in Appen-
dix D. O

Corollary C.5. In the simplified generalisation system, every
basic SDF  has a principal regular generalisation ¥ F,F is
unambiguous, and the algorithm of Section 5 finds F*.

An interesting property of the simplified system (which
does not hold in the full system) is the following:

Proposition C.6. In the principal regular generalisation F
of a basic SDF T, the height and width of every tile is either
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a constant or a length variable, not a length variable plus a
constant.

Proof. See Appendix D. O

D Proofs deferred from the main text

Theorem 5.2 (Principal regular generalisation). In a sound
generalisation system, every supported SDF ¥ has a princi-

pal regular generalisation ¥, ¥~ is unambiguous, and the
algorithm given at the start of Section 5 finds it.

Proof. First we need to show that every delta variable that
survives step (1) of constraint solving has a lower bound, as
required by the constraint solving algorithm. This is true for
tile height and width delta variables by step 3a of the high-
level algorithm, and it is true for row and column reference
delta variables by soundness property 3.

Let 7~ = ®*(7~'6) be the elastic SDF found by the algorithm.
Since O satisfies the tile size constraints, it’s easy to show
that 7* satisfies conditions (2)-(4) for semi- regularity. Next
we claim that 7~ is a generalisation of F.Itis clear that %, can
be specialised to 7"by setting all delta variables to 0. This is
still true of 0(‘%) after we eliminate the equality constraints.
All lower bounds placed on delta variables are nonpositive,
both in the tile size constraints and in the reference regularity
constraints by soundness property 2, so each delta variable &
that remains at this point has a nonpositive lower bound [ and
is replaced by a + I, with a different « for each such &. So the
length substitution that maps each « to the corresponding — i
(which is non-negative) specialises F* to 7, which completes
the proof that F* is a semi- regular generalisation of F. Since
O satisfies the constraints generated for every reference,
every reference in F* is well-behaved by soundness property
4. Thus ¥ is a regular generalisation of .

To show that ™ is the principal regular generalisation
of F, it remains to show that it is more general than every
other regular generalisation F of F. As observed above,
F = (¥o) for some delta substitution . Since F satisfies
conditions (2)—(4) for semi-regularity, it’s easy to show that
O’ satisfies the tile size constraints. Since all references in
%’ are well-behaved, ©’ satisfies the reference regularity
constraints by soundness property 4. Thus ©’ satisfies all
the constraints. Since ®* is the most general solution to the
constraints, there exists a length substitution ¢ such that
@' = ¢ 0 ©*. Then we have ¢(F*) = $(0*(F,)) = ©'(F) =
'%’, ) %‘ is more general than '%’

Finally, by soundness property 1, F* is unambiguous. O

Proposition 5.4. In a sound generalisation system, every
supported SDF F is a regular generalisation of itself.

Proof. As we observed in the proof of Theorem 5.2, all lower
bounds on delta variables are nonpositive, so it’s easy to see



that the delta substitution © that maps every delta variable to
0 satisfies all constraints of the allowed forms. By reasoning
similar to that in Theorem 5.2, @(%) satisfies all the condi-
tions to be a regular generalisation of F.But®(%) = F. O

Theorem C.4. The simplified generalisation system is sound.

Proof. Soundness property 1: Let F be a regular generalisa-
tion of #. Regularity already requires that all tiles of 7 have
non-negative height and width for every length variable as-
signment. Since each reference p in F has only one target
tile, there is no possibility of overlap between two target
tiles of the same reference. It remains to show that for every
length variable assignment and with respect to every cell in
the specialisation of the calling tile t., p evaluates to a range
r of non-negative height and width that is covered by the
target tile ;. We show that r has non-negative height and
its row span is contained in the row span of t;; the argument
for the column axis is analogous. Let ¢ =y, : x, be the row
span reference of p.

e If 7 is of the Inelastic kind, then y; and , are stable
and t, is fixed at its height in . Either X and y, are
both absolute (in which case & always evaluates to the
same row span it did in ¢) or t. is fixed at its height in
7A—~(in which case, for each caller row, o evaluates to the
same row span as it did for the same caller row in 7})
Either way, since Fis closed, it follows that for every
caller row, o evaluates to a row span of non-negative
height that is contained in the row span of ;.

e If 5 is of the Lockstep kind, then for every length
variable assignment, t; and t. have the same height,
and o evaluated from the ith row of ¢, points to the ith
row of t;, which is indeed a row span of non-negative
height that is contained in the row span of ;.

e If 7 is of the Whole kind, then for every length variable
assignment, o evaluates to the whole row span of ¢;,
which has non-negative height and is contained in
itself.

Soundness properties 2 and 3: Clear for each kind of well-
behaved reference.

Soundness property 4: First we prove that if ©” satisfies
the constraints generated for p, then p’ is well-behaved. Let
o’ =77 : X, be the row span reference of p’; the argument
for the column span reference is analogous. Let t;, t¢, x1, X2,
Ay, dc, A1, and @, be defined as in the constraint generator.

e If the algorithm anticipated the Lockstep kind and ¢,
was ultimately inferred to be vertically inelastic, then
we know that t. and t; have the same height in (}A-'
X1 = X2, and yj is relative. In order for t; to be the
only target tile of y;, y; must have pointed to the top
row of t; in F. We generated constraints &; = &, and
a; = &, = 0, so it follows that the heights of ¢, and t;
in %’ are the same non-constant expression, f; = f;,
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X1 is relative, and ¥} points to the top row of ¢, when
evaluated at the top row of t.. Thus &’ indeed satisfies
the conditions of the Lockstep kind.

e If the algorithm anticipated the Lockstep kind but ¢,
was ultimately inferred to be vertically inelastic, then
our constraint &; = &, ensures that ¢, is vertically
inelastic and this ] and Y} are stable. Furthermore,
our constraint &; = @ = 0 ensures that the coordi-
nates of ¥ and Yy, are constant. Thus ¢’ satisfies the
requirements of the Inelastic kind.

o The proof for the remaining cases is similar in spirit.

Now we prove the converse: if p’ is well behaved, then
©’ satisfies the constraints generated for p. Once again, we
consider the row span reference ¢’ = ¥ : x,; the argument
for the column span reference is analogous. Let ty, t., x1, X2,
ay, Ac, 41, and &, be defined as in the constraint generator.

o If the algorithm anticipated the Lockstep kind, it would
constrain &; = @, and @; = @ = 0. In this case, we
know that y; and y» are not superstable, so o’ cannot
be of the Whole kind. If 5 is of the Lockstep kind, then
the heights of ¢; and ¢, must be the same expression in
F7,s0 d; = &, is satisfied. Furthermore, 71 points to
the top row of t; (which is constant) when evaluated at
the top row of f. for all values of length variables, so ¥}
must be constant and can only be equal to y; since F
is a generalisation of 9?7, so @; = 0 is satisfied. Finally,
X1 = X2 80 &1 = & is satisfied. If on the other hand 5"
is of the Inelastic kind, then ¢; has constant height in
¥7, and ] must be stable despite it being relative, so
t. must have constant height. Furthermore, ¥} and
have constant coordinates. Since 7 is a generalisation
of 7?7, all these constants must be the same constants
asin F. Thus ©’ sets @; = &, = @&; = &3 = 0, and the
constraints &; = &, and @; = @, = 0 are satisfied.

e The proof for the remaining cases is similar in spirit.

]

Proposition C.6. In the principal regular generalisation F*
of a basic SDF F, the height and width of every tile is either
a constant or a length variable, not a length variable plus a
constant.

Proof. Let ty, ..., tx be a maximal set of tiles whose height
delta variables &1, . . ., dy are constrained equal to one an-
other but are not constrained equal to zero. Then we know
t1, ..., Ik all have the same initial height (call it &), which is
at least 2, so constraint generation step (1) would generate a
constraint h + &; > 0 for every i. Suppose & is the variable
that gets kept by constraint solving step (1). Then constraint
solving step (2) will determine that the lower bound of &; is
—h, and step (3) will replace @; with a; — h. Thus, the height
of each t;, which was h + @; in %0, will simplify to just ;.
As usual, the argument is the same for widths. O
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E Full generalisation system

In this section, we describe an extension of the simplified
generalisation system to support more interesting SDFs, in-
cluding those having range references with multiple target
tiles. Our motivating example is the COMPOUND SDF of
Section 5.4. The elastic SDF that we want is:

function COMPOUND({a)( ts A3, to F3, tr F1, tx Ad:{a,2})
returns F4::{a;,1}% {
t1 Ca:f{a,1} = A4lx — A3lstx
to D4:{a,1} = POWER(1+$F$1%, C4ft)
t3 Ed:fa,1} = F3lo-14 & D42
tq Fa:{a,1} = E4%5 + B4lx

}

In general, our main goal is to allow relative references
with an upward offset between tiles of similar height, whether
or not the tiles start at the same row. So for example, if 7; and
7, are tiles of size {«, 1} (or possibly the same tile) and r; con-
tains a relative reference to 7,, then it may be the case that
the second row of 71 points to the first row of 7,, the third
row of 7; to the second row of 7', and so forth. Of course, the
first row of 71 needs somewhere to point; it must point to a
separate, vertically inelastic tile located immediately above
72, like tiles t; and t, in the COMPOUND example. Analo-
gous remarks apply to leftward offsets. We do not support
downward and rightward offsets because supporting offsets
in both directions on the same axis would complicate the al-
gorithm for little benefit. Computations with downward and
rightward offsets are rare outside recreational contexts (e.g.,
cellular automata), and in some cases they can be expressed
in our system by using an absolute reference to the entire
target tile and then using the INDEX function to extract the
desired element.

The regularity condition that the upper-left corner of each
tile be constant makes it possible to position an inelastic tile
immediately above or to the left of an elastic tile to fulfill
a reference with an upward or leftward offset but does not
make it possible to position an inelastic tile below or to the
right of an elastic tile to support a downward or rightward
offset, because in the latter case, the upper-left corner of the
inelastic tile would depend on the size of the elastic tile.

In addition to adding support for upward and leftward off-
sets (which goes hand in hand with allowing references with
multiple target tiles), we’d like to add support for cumulative
aggregation. For example, we’d like to generalise:

function CUMSUM(t; A1::{3,1}) returns B1::{3,1}%2 {
to B1:{3,1} = SUM(A$1:A171) }

to:

function CUMSUM(a)(t; Al::{a,1}) returns B1:{a,1}%2 {
to B1:{a,1} = SUM(A$1:A1%1) }

To do so, we move beyond the three kinds of span references
in the simplified system and allow each endpoint of a span

reference to independently fall into one of four kinds: In-
elastic, Lockstep, Start, and End. The row reference in the
formula for #, has one Start endpoint and one Lockstep end-
point.

In the simplified system, the only kind of row span ref-
erence that could contain an unstable row reference was
Lockstep, and it required that the heights of the caller and
target tiles be exactly the same expression. How much more
flexible can our Lockstep kind be and still ensure that every
tame SDF has a principal regular generalisation? For exam-
ple, consider an SDF that generates a list iteratively and has
a special formula for the first element:

function SUM2(t; A1:{3,1}) returns B3 {
t; B1=A14
t3 B2:{2,1} = B1% 5 + A2h

}

(Of course, a better design in this case would be to initialise
the sum to 0 and then use a consistent formula, but it’s
unclear to us whether such a transformation will always
be natural to users in more complex cases.) We’d like the
following generalisation:

function SUM2(a)(t; Al:{a+1,1}) returns B{a+1}% {
ta B1=A1h
t3 B2:{a,1} = B1%2 5 + A211

}

in which the formula for #; has an unstable reference to ¢,
even though their heights differ by 1. We find that in general,
we can allow the heights of the caller and target tiles to differ
by a constant and still have a principal regular generalisation.

E.1 Well behaved references

Having decided to allow the caller and target heights of a
lockstep reference to differ by a constant, we can proceed
to the definition of a well behaved reference. First we need
some auxiliary definitions to deal with the multiple target
tiles. The overall target range of a reference p in the original
SDF ¥ is the range of all cells read by p with respect to any
caller cell. It can be computed as the range from the upper-
left corner of p evaluated at the upper-left corner of the caller
to the lower-right corner of p evaluated at the lower-right
corner of the caller. (Since we assume the original SDF is
tame, it follows that all of these cells are actually read.) A
target tile of p is vertically final if it overlaps the last row of
the overall target range and horizontally final if it overlaps
the last column. When we are discussing an elastic SDF ¥ as
a potential generalisation of F,a target tile of a reference p is
said to be vertically or horizontally final if the corresponding
target tile of the corresponding reference in Fis. (Trying to
determine overlap in the elastic SDF would be more complex
because it could depend on the values of length variables.)

Definition E.1 (Well behaved reference in the full system).
A range reference p appearing in the formula of a caller tile



t. in an elastic SDF ¥ is well behaved if it is well behaved on
both axes. We give the definition for the row axis; the one
for the column axis is analogous. p is well behaved on the
row axis if it satisfies the following conditions:

1. Every vertically non-final target tile has constant height.

2. Every vertically final target tile ¢, stands in one of
the following relationships to each of the two row
references y in p:

o Inelastic: The height of t; is constant, y is stable, and
its coordinate is constant.

o Lockstep: The heights of t. and t; are non-constant
but their difference is a constant, and Y is relative
with a constant coordinate.

o Start: The height of t; is non-constant, and  is super-
stable and points at a constant non-negative offset
above the top row of ¢,. Furthermore, if y is the bot-
tom endpoint of p and the offset is zero, then the
height of ¢, includes a positive constant.

o End: The height of t; is non-constant, and  is super-
stable and points to the bottom row of t;. Further-
more, if y is the top endpoint of p, then the height
of t; includes a positive constant.

Furthermore, if ), : y, is the row span reference of p,

then the pair of relationships of y; and y, to t; must

not be (Lockstep, Start) or (End, Lockstep).!!

E.2

As in the simplified system, constraint generation is based
on the insight that for a given row or column reference

Constraint generation

that is part of a range reference p in %, and a given target
tile ¢, of p, we can narrow the possible relationships of y
to t; in any regular generalisation of F to Inelastic and at
most one other, based on whether Yy is relative, the height
of the caller tile, and where y points in relation to ¢; in F.
The constraint generation procedure in detail, for a range
reference p in Fo:

1. Constrain the height delta variable of each vertically
non-final target tile of p equal to 0.

2. For each vertically final target tile ¢, of p and each
of the two row references y that appears in p, let d;
and d, be the height delta variables of t; and ¢, let &
be the delta variable of , and try the cases below in
order. However, if the pair of cases for the two row
references in relation to the same target tile t; would
be either (Lockstep, Start) or (End, Lockstep) in that
order, then use (Inelastic, Inelastic) instead.

a. (Lockstep) If ¥ is relative and the initial heights of
t; and t, are at least 2, then we anticipate that the

111f these pairs of relationships occurred, then Y, : ), would evaluate to
a negative height for most rows of ¢, when #. and #; increase in height.
These pairs could otherwise occur in a corner case if ¢, and ¢; both have
initial height exactly 2, while (End, Start) is ruled out by the non-degeneracy
condition.
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relationship of ¥ to ¢, is Lockstep, but it may turn
out to be Inelastic. Constrain &; = &, and & = 0.

b. (Start) Otherwise, if the initial height of ¢, is at least
2,y is superstable, and the corresponding y points
at or above the top row of t; in ¥, then we anticipate
the relationship is Start, but it may turn out to be
Inelastic. Perform the following steps:

e Constrain @ = 0.

o If y points exactly to the top row of t; and y rep-
resents the bottom of p, then constrain the height
of t; to be at least 1.

c. (End) Otherwise, if the initial height of t; is at least
2,y is superstable, and the corresponding y points
to the bottom row of t, in ¥, then we anticipate
the relationship is End, but it may turn out to be
Inelastic. Perform the following steps:

e Constrain & = @;.
e If ¥ represents the top of p, then constrain the
height of ¢, to be at least 1.

d. (Inelastic) Otherwise, the relationship must be In-
elastic. Constrain &; = & = 0. In addition, if  is
relative, then constrain &, = 0 to ensure that y will
be stable.

3. Follow the analogues of steps (1) and (2) for the column
axis.

E.3 Soundness of the full system

Theorem E.2. The full generalisation system is sound.

Proof. Same idea as in the simplified system, just more cases.
]

From which it follows that:

Corollary E.3. In the full generalisation system, every tame
labelled SDF F has a principal regular generalisation 7, 7
is unambiguous, and the algorithm of Section 5 finds ™.

F Additional Description of User Study
F.1 Participants

We had twenty participants (seven female) aged 18-35 (mean
24), an adequate sample for preliminary field research in
human-computer interaction [7]. They were students in Sta-
tistical Science, Mathematics, Management, Computer Sci-
ence and related disciplines. Ten participants also had indus-
try experience working with spreadsheets. Participants were
recruited through convenience sampling via email, and were
selected based on their responses to a screening question-
naire which asked them to self-assess their spreadsheet and
programming experience. To qualify, participants needed to
be familiar with using formulas and ranges in spreadsheets.
All participants had some to high (self-assessed) expertise
with spreadsheets, and some to high (self-assessed) program-
ming expertise. Participants were reimbursed with a £40
voucher after completing the study.
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F.2 Tasks for each month. Calculate your total expected costs

Participants were given six spreadsheet tasks. Shortened over the time period.
versions of the task descriptions are included below. The 4. Worked hours.
solutions of Task 1 and 6 are included to illustrate how SDFs You use a spreadsheet to keep track of how many

were made using elastic SDFs and array programming. hours you should work per day each month, and
how many hours you have actually worked. The

spreadsheet shows, for each month: how many hours
you have been paid and thus how many hours you
should work for the whole month, how many hours
you have worked each day so far, and how many
working days you have left in the month. Use the
amount of days left in the month that you have to
work to calculate how many hours you should work
per day on average for the rest of the month.
5. Weekend hours.

You are the manager of a school and oversee the
hours that all employees have worked, to calculate
how much they should be paid. The spreadsheet
shows a timesheet, with a row for each employee and
their worked hours. In a previous task, you worked
out how much they should be paid. However, a new
rule has come into place that employees should be
paid more when they have worked on the weekend;
therefore, you now want to know how many of the
worked hours in the timesheet were on a weekend
day. Calculate the total number of worked hours in

1. Claiming expenses.

You have recently come back from a business trip,
and now want to claim back the expenses you made.
The spreadsheet shows all the expenses incurred for
this trip. For each expense, it shows the maximum
amount you are allowed to claim back, and the ac-
tual costs you incurred. If your actual costs are lower
than the maximum amount, you can claim back
your actual costs, however if your actual costs ex-
ceed the maximum amount, you are only allowed to
claim back the maximum amount. Calculate how
much money you spent that you cannot claim back.
That is, if of all these expenses you can claim back
£1,000, but you have spent £1,230 in total, there is
£230 which you cannot claim back.

Figure 5 shows a spreadsheet that computes, in E17, the

total amount of money that cannot be claimed back,

after calculating for each expense how much can be

claimed back in E6:E15. In Calculation View form, the

elastic SDF is written as the following.

function EXPENSES( t; C6::{a,1}, tp D6:{a,1}) returns E17% { the weekend.

t3 E6:{a,1} = IF(D6%2<C6'1, D6%2, C6M1) 6. Expected profit.

ty E17 = SUM(D6:{a,1}%2) — SUM(E6::{a, 1}") You are the producer of water bottles, and want to
1 estimate your expected profit over several quarters.
This example needs only the simplified generalization The spreadsheet shows: a price per bottle, which is
system of Section C. expected to change each quarter depending on in-
The array SDF is similar and written as: flation rate; expected sales, which is the number of

bottles you are expected to sell each quarter; expected
inflation rate per quarter;, and a fixed production
cost that is the same regardless of how many water
bottles you sell, but is expected to change each quar-

function ARRAY_EXPENSES( C6, D6 ) returns E17 {
E6 = IF(D6<C6, D6, C6)
E17 = SUM(D6) — SUM(E6)

! ter depending on inflation rate. Calculate your total
2. Salary payment. expected profit.
You are the manager of a school and oversee the Figure 6 shows a spreadsheet that computes, in C12,
hours that all employees have worked, to calculate the total expected profit. The solution for the elastic
how much they should be paid. The spreadsheet SDF and array SDF is given in Calculation View form
shows a timesheet, with a row for each employee, below. Note: HSCAN is the horizontal analog of VSCAN
and their hourly rate, and their worked hours. Cal- and was provided to the participants:
culate how much salary should be paid in total, to function HSCAN (a) (A2,B1:{1, albf) returns B2::{1, a} {
all employees. Hint: To calculate the salary of one B2:{1, a} = f(A2,B1)
employee, sum up his/her hours and multiply this )
by their specific hourly rate.
3. Bank loan. The elastic SDF is written as:
You are working at a bank, and are considering to function PROFIT(t; C4:{1,a}, t, C6:{1,a}, t3 B7, t4 B8)
extend a loan in US dollars to a client over a fixed returns C12% {
time period. The spreadsheet shows the amount you ts C7:{l,a} = B7™5 « (1 + C4h)
plan to lend in US dollars, the expected exchange te C8:{l,a} = B8™ % « (1 + C4h)
rates for each month, and the expected interest rates t7 C9:{1,a} = (C6% +» C7% ) — C8lo
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B C D E
4 Maximum amount to claim Actual costs Amount to claim
5
6 Accommodation 210 210.00
7 | Registration fee 450 450.00
8 Rental car 120 100.00
9  Gas for Rental Car 50 50.00
10 |Parking fees 100 30.00
11 |Coffee 22 20.00
12 Breakfast 15 7.00
13 Phone call 47.25 47.25
14 |Reception 0 0.00
15 Dinner 27 27.00
16
17 Total amount you cannot claim back: | 100,00.|

Figure 5. A spreadsheet containing the definition of the EXPENSES SDF.

ts C12 = SUM(C9::{1,a}!7)
}

This example needs the full generalization system of
Appendix E.
The array SDF is written as:

function ARRAY_PROFIT( C4,Cé6, B7, B8 ) returns C12{
C7 = HSCAN(LAMBDA(X,Y,X+1+Y), B7, C4)
C8 = HSCAN(LAMBDA(X,Y,X»1+Y), B8, C4)
C9=(C6+C7)-C8
C12 = SUM(C9)

}

F.3 A note on empirical evaluation

Our study was designed in accordance with the SIGPLAN
Empirical Evaluation Guidelines'?. Our hypotheses and re-
sults (‘claims’) are clearly stated. We chose our experimental
alternative (array-based programming) for its external va-
lidity; this is the most plausible current alternative, already
implemented to varying degrees in commercial spreadsheet
packages. The tasks we set our participants (i.e., ‘bench-
marks’) were carefully designed to be representative of real-
world tasks, by adapting real spreadsheets. Our sample size
was informed by standards for sample size in HCI [7], our sta-
tistical tests were similarly chosen and we report the distribu-
tion of results (Figure 4). TLX and task time are widely-used
metrics. Our experimental design is detailed in Section 6.3,
and we have taken care to present our results clearly in
Section 6.4.

We also adopt practices standard in HCI evaluation not
explicitly covered by the guidelines. For example, we coun-
terbalance!? the tasks, thus mitigating order and learning

2http://sigplan.org/Resources/EmpiricalEvaluation/. Last accessed: Novem-
ber 27, 2018

Bhttp://www.unc.edu/courses/2008spring/psyc/270/001/
counterbalancing.html. Last accessed: November 27, 2018
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effects. Although we did not achieve equal gender represen-
tation in our sample, women were not significantly under-
represented, which was important to account for known
gender differences in spreadsheet self-efficacy [2].

F.4 Motivation for sheet-defined functions

The benefits of sheet-defined functions have been articu-
lated by Peyton Jones et al. [14] and Sestoft et al. [20]. This
simplest of abstractions stands to make spreadsheets more
readable and maintainable. In cognitive dimensions terms
[11], replacing long, complex formulae with SDF invocations
result in less verbosity, a better abstraction gradient, lower vis-
cosity and premature commitment, improvements in closeness
of mapping and secondary notation.

This is all well and good; however, it is also well-known
that the population of end-user programmers behaves very
differently to the population of professional programmers
[4]. End-user programmers value tools based on their utility
in the user’s domain [10], learning costs [6], and attention
investment requirements [3]. One might reasonably ask: de-
spite the clear advantages of sheet-defined functions, will
end users actually use them?

This question is orthogonal to the technical contribution
of this paper, which is an algorithm for generalising an SDF
written for fixed-length example inputs into one that works
for variable-length inputs. Our ‘elastic’ SDFs are significantly
easier to write than the current alternative, explicit array
programming, which we demonstrate through a user study.

Our contribution stands independently of whether or not
SDFs have the potential to be widely adopted. However, there
are reasons to believe that there is a significant latent demand
for SDFs:

o The current scripting platform for Excel allows users to
write custom functions in VBA. This feature is already


http://sigplan.org/Resources/EmpiricalEvaluation/
http://www.unc.edu/courses/2008spring/psyc/270/001/counterbalancing.html
http://www.unc.edu/courses/2008spring/psyc/270/001/counterbalancing.html
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A B c D E F G H ) K L M N
1 |EXPECTED PROFIT

2

3

4 |Quarterly

5 Pre inflation

& |Expected sales | 20] 20] 2] 25] 2] 25] 2] 25] 2] 25] 2] 25|
7 |Price per sold item £4 401 4020025 4.030075 4.04015 4.050251 4.060376 4.070527 4.080704 4.030905 4.101133 4.111385 4.121664
8 |Total production costs £15 150375 15.07509 15.11278 15.15056 15.13844 15.22641 15.26448 15.30264 15.34089 15.37925 15.4177 15.45624
9 Profit per quarter: 65.1625 65.32541 85.6391 85.85319 8606783 86283 96.4987 $6.71495 86.93174 87.14907 87.36694 87.58536

[P [ e
M= (e

Total profit: BBS.S??E_I

Figure 6. A spreadsheet containing the definition of the PROFIT SDF.

immensely popular, with the query “Excel VBA” re- G.1 Identifying complexes
trieving nearly 100,000 results on StackOverflow.'* For
context: this is greater than the number of results for
7 out of the 20 most popular programming languages
(as ranked by the November 2018 Tiobe index'5).

e Besides writing VBA scripts, users commonly extend

Two tiles in F are linked if they both occur in the target-tile
set of some range reference p, meaning that we cannot move
the tiles to different locations unless we were to replace p
with a more complicated formula to read from both tiles,
R ] i : - which the present algorithm does not do. For example, in the
the function library available in Excel by installing COMPOUND elastic SDF of Appendix E, tiles t, and t, are
add-ins. For examp le, one add—i'nw that introduces a linked by the reference F3%% in the tile E4:{a,1}. A complex
nl.lmber of func.tlf)ns to Excel is extremely popular, is a set of tiles that are transitively linked to one another. All
W%th nearly 1 million users. ) . target tiles of a given range reference belong to the same
o Given that these user behaviours (writing VBA and complex, so if we move a whole complex by a certain number
installing custom add-ins) require significant expertise of rows and columns, we just need to offset all range refer-
and attention investment (and in the case of add-ins, ences to the complex by that number of rows and columns.

ilsually a financial 1nve§tm;nt), the. f?l?t that su.ch a The first step of the translation is to identify complexes by
arge user b.ase engages in these activities .at all indi- entering linked tiles in a union-find data structure.
cates a significant demand for custom functions. SDFs,

importantly, will require no additional expertise be-
yond understanding of the formula language, and so it
is not unreasonable to expect that the use of SDFs will
easily eclipse the use of VBA or proprietary add-ins.

G.2 Ensuring complexes are expandable

A complex is expandable if its tiles do not collide for any
values of the length variables. (It suffices to imagine setting
all length variables to c0.) Given that we do not separate the
tiles of a complex, we need every complex to be expandable.

G Moving tiles to avoid overlaps: details For typical elastic SDFs, all complexes will be expandable,

In this Appendix, we describe the translation of an elastic but in pathological cases, we may get a non-expandable com-
SDF ¥ to a overlap-free elastic SDF by moving tiles. The basic plex. In such a case, we remove all length variables involved
idea is simple (we position the tiles dynamically in terms of in the tile overlap from %by setting them to their initial
the length variables to keep them from colliding when the values. Specifically, suppose that elastic tiles ¢; and t, with

variables increase), but we have to deal with several special
cases. The stages of the algorithm (explained in detail in the
rest of this section) are:

ranges aj :: {ZRl, lc1} and @y {Zszcz} collide if all length
variables are set to co. Two rectangles overlap if their row
spans overlap and their column spans overlap. We know

1. Identify complexes of tiles that must remain together. that t; and £, do not overlap in the original SDF , so their

2. Ensure that the tiles within each individual complex row spans must be disjoint or their column spans must be

do not collide when length variables increase. disjoint (or both). If t; and t, are disjoint in rows but overlap

3. Move the complexes apart so they do not collide, and in columns in ¥, then we remove all length variables that

update range references accordingly. appear in g, and Ig,, which will leave the tiles ¢; and t, in

- ¥ with their initial row spans, which do not overlap. (This

4https://stackoverflow.com/questions/tagged/excel+vba.  Last  ac- change could also affect the column spans if the same vari-
cessed:November 27, 2018 . . . .

Bhttps://www.tiobe.com/tiobe-index/. Last accessed:November 27, 2018 able appearec.i mn bqth a height and a Wld,th’ ?Ith.ough this

®https://www.asap- utilities.com/asap- utilities-excel-tools-tip.php?tip= never occurs m a pr1nc1pa1 reglﬂar generahsatlon in the full

259&utilities=97&lang=en_us. Last accessed:November 27, 2018 system.) Conversely, if t; and ¢, are disjoint in columns but
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overlap in rows in F, then we remove all length variables
that appear in 7c1 and 7cz~ If t; and t, are disjoint in both
rows and columns in & (e.g., elastic ranges B4 :: {1,a} and
D2 :: {f, 1} with initial values @ = § = 2), then either change
would be sufficient to resolve the overlap, but for symmetry,
we perform both of them. In this case, after ensuring com-
plex expandability, we cannot claim to have the “principal
regular generalisation with expandable complexes”, but it’s
a pathological case anyway.

G.3 Positioning the complexes

Finally, we are ready to position the complexes dynamically
so they do not collide. In this section, we assume that elastic
coordinates X may contain positive linear combinations of
length variables, i.e., they are of the form {x+}}; u;a; } where
u; > 0.

If m and m’ are elastic axis positions, we say that m is po-
tentially greater than m’ if either the constant term or some
length variable coefficient of m — m’ is greater than zero. We
say that elastic spans m; : m, and m; : m; potentially overlap
if m; is potentially greater than m] — 1 and m; is potentially
greater than m; — 1. Finally, two elastic rectangles poten-
tially overlap if their row spans potentially overlap and their
column spans potentially overlap. (There are various cases
in which two elastic rectangles that potentially overlap do
not actually overlap for any length variable assignment, but
that’s OK.) The upper bound of a set of elastic coordinates is
an elastic coordinate that has the maximum of their constant
terms and the maximum of their coefficients for each length
variable, and the lower bound is defined analogously.

The positioning algorithm is as follows: Compute an elas-
tic bounding rectangle for each complex by taking upper and
lower bounds of the coordinates of the tiles of the complex.
Then do the following for each complex C, where complexes
are ordered according to the first occupied cell of each com-
plex and cell addresses are compared lexicographically:

1. Let Nm be the current upper left corner of C’s bound-
ing rectangle, and let S be the set of previously pro-
cessed complexes whose bounding rectangles poten-
tially overlap that of C. If S is empty, then positioning
of C is complete, otherwise continue.

2. Let Sg be the set of complexes in S whose archetypal
row spans are disjoint from the archetypal row span of
C, and define Sc analogously for columns. Let $" = S\
(Sr U Sc¢); a complex may belong to S’ if its archetypal
bounding rectangle overlaps that of C even though we
know that the actual tiles do not overlap.

3. Let m’ be the upper bound of m and one more than the
bottom bounding edge of each complex in Sg US’, and
let N be the upper bound of N and one more than the
right bounding edge of each complex in Sc U §”.

4. Move C so that its upper left corner is at N'm' 1tis
now disjoint from Sg U S’ in rows and disjoint from
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Sc U S’ in columns, so it is disjoint from all complexes
in S, but it may collide with other complexes. Return
to step 1. (The process must terminate because after
C potentially overlaps a given previously processed
complex and is moved either down or to the right, C
is only moved further down or to the right, so it can
never potentially overlap the same complex again.)

Once all complexes have been positioned, we update all
range references to reflect the new locations of their respec-
tive complexes, and we have the overlap-free extended elastic
SDF.

Proposition G.1. For every well-defined elastic SDF F, tile
movement produces a well-defined overlap-free extended elastic
SDF For that is semantically equivalent to some well-defined

elastic SDF ¥/ of which Fisa generalisation.

(7~'" is the elastic SDF that we have after making complexes
expandable.)
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