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e [ntroduction

e Learning on IBM TrueNorth Chip
- DAC 2016 Best Paper Nomination

e Learning Structured Sparsity in Deep Neural Networks
- NIPS 2016

e TernGrad: Ternary Gradients to Reduce
Communication in Distributed Deep Learning

- NIPS 2017 (oral)
e OQur prospective




Rise and Decline of Neural Network

Convolutional Network Dark period Renaissance
(1980s) (1990s) (2006 ~ Present)
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Machine Learning in Academia

Journal articles mentioning NIPS registrations growth
“deep learning” or “deep 2015: 3755, 2016: 6000+
neural networks”

Total Registrations 3755
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Machine Learning in the Market

Technology cycle - from PC, to smartphone, to artificial intelligence?

“Pure Play” Share Price Performance
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Why is Deep Learning Hot Now?

Application Algorithm

Big Data ML Techniques Computation Power

i
MORE SPEED, MORE POWER
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Learning /

* Transistor density
doubles every 18mo

* Computation/kwh
doubles every 18mo

* Cost/Gigabyte in 1995:
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Numbers: 5 KB/record
Text: 500 KB /record
Image: 1000 KB /picture

Advances in algorithm
innovation, including

Audio: 5000 KB/song nelira nebwotss leadngitol | ¢1460.00
better accuracy in tralnmg

Video: 5,000,000 e * Cost/Gigabyte in 2015:
KB/movie $0.03




Our Works on Deep Learning

Application Algorithm

Big Data ML Techniques Computation Power
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Yo Learning
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| 4 ) %,  Learning Acceleration
Image Segmentation for earn.ng on IB_M
Self-driving TrueNorth Chip
Efficient Algorithms for
. DNN deployment on the ReRAM-based
aayersatididiacis Cloud and the Edge Neuromorphic

differential privacy Computing







IBM TrueNorth - Architecture

* 4,096 neurosynaptic cores

* 1 million neurons

256 million synapses

A 65mW real-time neurosynaptic
processor [1112]

oD D-
Spike-based 54 LS
communication é %4; %A--A . IE6 X 256
synaptic
/ D~ D16 crossbar
A network __D_C _B__
of cores (D- —D- —¢ —~_ Low-resolution
AAA-A ?%¢A ( integer weights

[1] A. S. Cassidy, etc, SC'14; (2] F. Akopyan, etc., TCAD ICS’'15



IBM TrueNorth - Learning & Deploying

Database

[1] S. K. Esser, etc., NIPS’'15 11



IBM TrueNorth - Learning & Deploying

Database

Raw
Pixels
v
KTea learning [1]\
in Caffe A network w/
(traditional floating-point

\_ CPUs/GPUs) ) weights

[1] S. K. Esser, etc,, NIPS'15 11



IBM TrueNorth - Learning & Deploying

Database

e )

Tea learning 1]
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(traditional
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A network w/
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/Tea deploying\
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w/ low resolution
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[1] S. K. Esser, etc., NIPS’15
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IBM TrueNorth - Learning & Deploying

Database

e &

Tea learning 1]
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> KTea deploying\
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[1] S. K. Esser, etc., NIPS'15
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Deploy a Network on TrueNorth

n D— * crossbar
— ] I .
oo s McCulloch-Pitts

: s o 1.
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spike . [ [ i ! — J . oo
A —— b AP SN Sy—. | - ’ r )

Z 0, reset y'=0; if <0
Traditional TrueNorth -
neuron model neuron model
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Deploy a Network on TrueNorth

w' synaptic
& n * crossbar
Z --..D_
g = 2 McCulloch-Pitts
—_— —
X g % neuron model:
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Deploy a Network on TrueNorth

connectivity probabilitiesp connectivity samples
\ ? '
x \

X | vLw'
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(a) Tea learning i (b) Tea deploying

Traditional floating- Binary/low integer

point precision precision sampled by
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Deploy a Network on TrueNorth

connectivity probabilitiesp | connectivity samples L / (7) (i) { o
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(a) Tea learning (b) Tea deploying
Traditional floating- Binary/low integer
point precision precision sampled by
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Deploy a Network on TrueNorth

connectivity probabilitiesp | connectivity samples PO / i) i) { }
| X \ | p.=w./c",c’ €c,,¢,
X . PR k ()
0.75 = =» 1E7 . ON! P(w =c )=p,
j ; _l_ ‘ < 7 !
Ly eEl = ON! P(w=0)=1-p
0.60- —» R 15 . -OFFl ¢ ..
7 \ e —l¥ 5
‘ ‘ % P(x,=1)=x
' . § >, " 7 - i
spike 1 spike \1 (,\,. = ()) =]- X;
probabilities 2 samples
T =03 & Z W \
(a) Tea learning (b) Tea deploying ’
-~ S : . i
Tradl.tlonal ﬂ.Oi:ltlng Bmér.y/low integer E{}. }: E{Z 'w 4 } "E {u
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Deploy a Network on TrueNorth

connectivity probabilities 5 connectivity samples oy A L)
X I_]x vLiw' i )
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222 . 4 n-1
Tradl.tlonal ﬂ.o.t:\tmg Binary/low integer | (s : E{Z Wx } Z E lu’ }F { X 1‘
point precision precision sampled by ' e
float-point probability - Z“" P AL g Z"-‘ R
MNIST Accuracy: i -
* 95.27% in Caffe
*  90.04% @1 NN copy & 1 spf in TrueNorth | ] i i
E{z'}=P( '20)=; I +erf( s
V4 V .

(NN - neural networks; spf - spikes per frame) 13



Deploy a Network on TrueNorth

connectivity probabilities p connectivity samples P = W’_/C(i) ,C( {C C }

' \ ; 0271
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Minimizing Deployment Variance

connectivity probabilitiesp | connectivity samples 1 |
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Deploy a Network on TrueNorth

connectivity probabilitiesp | connectivity samples — / i) i)
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*  90.04% @1 NN copy & 1 spf in TrueNorth | ] i i
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* 94.63% @16 NN copies & 1 spf in TrueNorth i 2 ‘ \;60'1_. |

(NN - neural networks; spf - spikes per frame) 13




Minimizing Deployment Variance

connectivity probabilitiesp | connectivity samples 1 |
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Minimizing Deployment Variance

connectivity probabilitiesp | connectivity samples 1 |
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S - T
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Minimizing Deployment Variance

Minimization target: E (W)=FE_(w)

6 @ 1 NN copy & 1 spf Data loss
qu Accu. = 90.04%
o A -
4
2, 107) !
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0 0.5 1
Di
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Baseline



Minimizing Deployment Variance

Minimization target: E(w)=E, (w) +4-L,(p)
@ 1 NN copy & 1 spf Data loss Probability regularization

6
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C .
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Minimizing Deployment Variance

Minimization target: E(w)=FE, (w) +4-L,(p)
@ 1 NN copy & 1 spf Data loss Probability regularization

0.75 &%

........

10° ,
105 Accu.=90.04% | ’Accu. :_92_.78%}
' m— —_— —
2 10, | | E,(p)=||[p-d-b|
I
g 107 : ¥ |~
7 107 : = 2l 1D,
I
* 10! :
1 . -
0 0.5 1! 0 0.5 1 = i &
pPi P; a=p=0.5
100 pumltniPodevslon 1 synapii devition 05 —
: 04 // 'r\'ariance;
|
|
|
|
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|
I
|
|
|
|
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Experiments
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Experiments
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Complexity of Deep Neural Networks

1.E+09 4 - 1E+13
1.E+08 -
1.E+07
1.E+06 -+ 1E+12
1.E+05
1.E+04 4

image

* parameter

1E+11

=
[—y
.
™
-*.
o~
-
'

FLOP in forwarding per

1.E+02 - : :
i | Parameters = weights = connections
1.E+01 |

1.LE+00 + , | | + 1E+10
AlexNet VggNet-19 GooglLeNet ResNets-152
Winners of ImageNet Challenge in recent years

Fewer parameters, fewer computation (FLOP: Floating Point Operation)

How to reduce the number of parameters in DNN so as to
reduce FLOP, meanwhile maintain the classification accuracy?




Non-structurally Sparse DNNs

e State-of-the-art methods to reduce the number of parameters

Sparsity: the ratio of zeros

Layer|] convl conv’ convi conv4 convd
Sparsity%o|  0.927 0.95 0.951 0.942 0.938
Theoretical speedup 2.61 1.14 16.12 12.42 10.77




Non-structurally Sparse DNNs

e State-of-the-art methods to reduce the number of parameters

— Connection pruning

Sparsity: the ratio of zeros

Layer] convl conv? convi conv4 convd
Sparsity%|  0.927 0.95 0.951 0.942 0.938
Theoretical speedup 2.61 1.14 16.12 12.42 10.77

AlexNet, S. Han, et al., NIPS 2015

Remained
Luycr Wcighls FLOP Act% \Veighls(/} FLOPY% * Remaining Parameters  *®Pruned Parameters
convl | 35K 21IM  88% 849 84 60M
conv2 | 307K 448M  52% 38% 33% _
conv3 | 885K  299M 37% 35% 18% "M
convd | 663K 224M  40% 37% 14% 30M
convd | 442K IS0M  34% 37% 14%
fcl 38M I5SM  36% 0% 3% 15M L;_n]
fc2 17M 34M  40% 0% 3% y -
fc3 4M 8M 100% 25% 10% 2
Total | 6IM 158  34% 1% 30% & (,o@%oo@%oo@hoo@% ¢ e




Theoretical Speedup # Practical Speedup

.g e g 1 E2Quadro K600
2 1 ‘ % EdTesla K40c
72 0.5 [H é CIGTX Titan

- “ : 2 =@~Sparsity

0 0

convl conv2 conv3 conv4 convs

Forwarding speedups of AlexNet on GPU platforms and the sparsity. Baseline is
GEMM of cuBLAS. The sparse matrixes are stored in the format of Compressed
Sparse Row (CSR) and accelerated by cuSPARSE.




Theoretical Speedup # Practical Speedup
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CIGTX Titan
=@=Sparsity
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=
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S Sparsity -

.0 i | m

convl conv2 conv3 conv4 convs

Forwarding speedups of AlexNet on GPU platforms and the sparsity. Baseline is
GEMM of cuBLAS. The sparse matrixes are stored in the format of Compressed
Sparse Row (CSR) and accelerated by cuSPARSE.
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memory
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Random
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Theoretical Speedup # Practical Speedup

e 1.5 PN o
.- ] / s l EQuadro K600
S 1 = £ EETesla K40c
7 s i CIGTX Titan

” | 2 =@=Sparsity

o L] m WIH 0

convl conv2 conv3 conv4 convs

Forwarding speedups of AlexNet on GPU platforms and the sparsity. Baseline is
GEMM of cuBLAS. The sparse matrixes are stored in the format of Compressed
Sparse Row (CSR) and accelerated by cuSPARSE.

Hardcoding nonzero weights in source
code in B. Liu, etc.,, CVPR 2015

Software customization

[rregular Poor No or
Random ca o
; memory cache trivial
sparsity :
access locality speedup

Hardware customization

Customizing an EIE chip accelerator for

compressed DNN in S. Han ISCA 2017 -




Theoretical Speedup = Practical Speedup

Example: Removing rows/columns in GEMM (row/column-wise sparsity)

feature map Non-structured sparsity
. conv2_1: weight sparsity (col:8.7% row:19.5% elem:94.6%)

i AN

Lowering

Structured sparsity
conv2 1: weight sparsity (col:75.2% row:21.9% elem:91.5%)

\4\?.?‘\1' & "i?.:'v
VVEIETIL (1ldalllx

feature matrix

R e
E &

Mo Wil
| Sl 1)

| £

L ] ]
e
Tt
e

GEMM P @i | SEEE U B G 1 E

, : : e 5.17X speedup
GEneral Matrix Matrix Multiplication

Higher speedup with

Regular

Structure Great

memory software or hardware

d sparsity speedup

customization

ACCESS




Structured Sparsity Regularization

e Group Lasso regularization in ML model
argmin{E(w)}:argmin{ED(w)Jr/lg -R‘q(w)}

HU Many groups will be zeros
argmm{ ( )} argmm{ (w)} Ry(w) = 3, |[w@|],,
sit: R ( )S 1, lw 9|, = \/ZL:(IQ)l (“( )>2
Example: ow1)=(
R ([w WJ{W \/W +W +\/?§179
oupl group 2

W M. Yuan, 2006



SSL: Structured Sparsity Learning

e Group Lasso regularization in DNNs:

L
E(W) = Ep(W)+X-R(W) +g- 3 Ry (W©)
=1

G C
Ry(w) = Zg:l Hw('])Hu

Learned structured sparsity is determined by the way of splitting groups

Penalize unimportant

filters and channels Learn filter shapes Learn the depth of layers
channel-wise Jf/ ” shortcut
B, » 5 = [ \—._ﬁ:ﬂ. .

X = e
I 4 = “shape-wise ‘
| ()
| ‘i ) | W :..z: s 3K | =

filter-wise / , ?;_:.: — - depth-wise # " -




Experiments - Penalizing unimportant filters and channels

LeNet on MNIST

Table 1: Results after penalizing unimportant filters and channels in LeNet

LeNet # Error  Filter#°  Channel #° FLOP® Speedup *
| (baseline) 0.9% 20—350 |—20 100%—100% 1.00x—1.00x
2 0.8% 5—19 |—4 25%—71.6% 1.64x—5.23 X
3 1.0% 3—12 |—3 15%—3.6% 1.99 x—7.44 x

\ -
*In the order of convl—conv2

LeNet 1 |

¥t

LeNet 2

convl filters (gray level 128 represents _zel;o)
T L ] O o L1
0 -

LeNet 3

A ™

LN

=il &

Fewer but more natural patterns

24




Experiments - Learning smaller filter shapes

Table 2: Results after learning filter shapes in LeNet

LeNet # Error  Filter size®  Channel # FLOP Speedup
| (baseline) 0.9% 25—3500 1—20 100%—100% 1.00x—1.00x
4 0.8% 21—41 |—2 8.4%—8.2% 2.33x—6.93 %
D 1.0% —14 |—1 1.4%—2.8%  5.19x—10.82x%

S . . g~ . . . . .
* The sizes of filters after removing zero shape fibers, in the order of conv/—conv2

Learned shapes
of conv1 filters: By n

LeNet 1 LeNet 4 LeNet 5

Learned shape of conv2 filters @ LeNet 5 3D 20x5x5 filters is regularized to 2D filters!

AN EEEN. AN EEEnEn

Smaller weight matrix

SSL can efficiently learn DNNs with smaller filters without accuracy loss 25




Experiments - Learning smaller dense weight matrix

Filter-wise sparsity = row-wise sparsity

: : . .- —> Smaller dense weight matrix
Shape-wise sparsity = column-wise sparsity

Table 3: Learning row-wise and column-wise sparsity of ConvNet on CIFAR-10

ConvNet# Error  Row sparsity ° Column sparsity ¥ Speedup *

1 (baseline) 17.9% 12.5%—-0%—-0% 0%—0%—0% 1.00x-1.00x-1.00x
2 17.9%  50.0%-28.1%-1.6% 0%-59.3%-35.1% 1.43x-3.05x-1.57 X
3 16.9%  31.3%—-0%—1.6% 0%—42.8%-9.8% 1.25x-2.01 x-1.18%

%in the order of convI—-conv2—conv3

1 0 o o = = o 2 s S o [

——] [F=1 = il T il E P B%S ~ = [ 3 3 P | B ~
5 O ¥ 5T s [
15 T e e 0 0 0 8 0 0 T s R 5 B R

Figure 5: Learned convl filters in ConvNet 1 (top), ConvNet 2 (middle) and ConvNet 3 (bottom)

SSL can efficiently learn DNNs with smaller but dense weight matrix which has good localit
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Experiments - AlexNet@ImageNet

Learning row-wise and column-wise sparsity:

-m ' N T LA T - r'Si g?"' e 3 WM T I -5 - T "R B N | T -1
t a3 BB RS i 22132 2 g | o |

PR

il ... - —— . e -——

}
|

Table 4: Sparsity and speedup of AlexNer on ILSVRC 2012

# Method Topl err. Statistics convl conv2 conv3d convd convs R —
sparsity 67.6% 924% 972% 96.6% 94.3% _ g .[1 ® SSL
| s 44.679% CPU x 080 291 484 38 276 NN g |
GPU x 025 052 138 104 136 o'~ |&
e m— R T — 7
O
7
I n

w

column sparsity  0.0% 63.2% 76.9% 84.7% 80.7% 4
a o row sparsity 0.4% 129% 40.6% 46.9% 0.0% ;
SSL 4 00% CPU x 1.05 337 627 973 493 3
GPU x 1.00 2.37 4.94 4.03 3.05
3  pruning[6] 42.80% sparsity 16.0% 62.0% 65.0% 63.0% 63.0% 2
sparsity 147% 762% 85.3% 81.5% 76.3%
4 £ 42.51% CPU x 0.34 0.99 1.30 1.10 0.93 1
GPU x 0.08 0.17 0.42 0.30 .32 '
0

>
-
column sparsity  0.00% 209% 39.7% 39.7% 24.6% O ‘ : . _ :
5 SSL 42.53% CPU x 1.00 1.27 1.64 1.68 1.32 ﬁ Quadro Tesla l::::n X;;n X;:m .\;:n \;?n
GPU x 1.00 1.25 1.63 1.72 1.36 - *

2% loss
Non-structured sparsity method even slows down in some layers

layer-wise 5.1X /3.1X on CPU/GPU with 29% accuracy loss
layer-wise 1.4X on both CPU and GPU w/o accuracy loss
Higher speedups than non-structured speedups

o ol

o
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Experiments - Regularizing the depth of DNNs

Experiments of ResNets on CIFAR-10

_ shortcut
K. He, CVPR2016 X

Baseline -
weight layer b
relu === A
weight layer identity ik . _’
.F(X) T X depth-wise /i “

ResNet-20/32: baseline with 20/32 layers # layers  error # layers  error
SSL-ResNet-#: Ours with # layers after ResNet 20 8.82% | 32 7.51%
learning depth of ResNet-20 SSL-ResNet | 14 8.54% | 18 7.40%

10 20
~9-SSL - - -ResNet-20 —ResNet-32|| 18/ [T]32x32 [ 16x16 8~8 -
B I 4
» S 14 :
E 3. 12 - |
o) - |gk |
™ S 6F
= 4
(2’._
12 14 16 18 20 12 14 16 18 20

SSL—-ResNet—# SSL-ResNet—#
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Distributed Deep Learning
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Distributed Deep Learning

When parallelism increase, communication is the bottleneck

, _—
. . Parameter Server W = W - 77AW
Synchronize weights

in parameter server [ )[ ]( }[ }[ ][ ][ )

Replicas

Data
Shards

DistBelief by Google
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TernGrad - distributed training with ternary gradients

Key ideas to reduce communication:

1. Randomly quantize gradients to only three levels (0, 1)

2. The expectations of quantized gradients equal original values
3. Exchange quantized gradients instead of floating weights

Algorithm 1 TernGrad: distributed SGD training using
ternary gradients.

Parameter Worker:i=1,....N

server 1 Input zfi), a part of a mini-batch of training samples z;
g \_ . 2 Compute gradients g\*’ under 2"
[ . ((] { 3 Ternarize gradients to g; Y = ternarize (g} l})
" U 4 Push ternary g, ’ to the server
3 Pull averaged gradients g; from the server
e Y L 6 Update parameters w4 < wy — 1 Gy
Server : (@)
Worker 1 | g 7 Average ternary gradients g;: = » . g, ' /N
W, — W, — T, , g \\
s g{, == f(f‘l"ll(l-'l"il("(g{,) = S5t S”]“ (gt) O b!.
Worker N
e . A
Worker 2 : sy st = max (abs (g¢))
Weir & We — G

{1)(”f.k = 1| gt) = |9tk|/ st
Pbie =0|g:) =1 — |gx|/ 5t
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TernGrad - Convergence

Mathematically guarantee the convergence of TernGrad

L. Bottou 1998

Assumption 1. C(w) has a single minimum w™ and gradient —V .,C(w) always points to w*, i.e.,

Ve > (), inf (w — w*)! VuC(w) > 0. (8)

Nw—w*||2>e

Convexity is a subset of Assumption 1, and we can easily find non-convex functions satisfying it.

° . . o . -+ 00 ‘ -+ 0O
Assumption 2. Learning rate vy, is positive and constrained as Y, 5 v < +ooand Y ") v =
+00, which ensures v decreases neither very fast nor very slow respectively.

We assume the gradient is bounded as

Assumption 3 (Gradient Bound). The gradient g is bounded as E {maxz(abs(g)) - ||g|[1} < A +
2 S
B ||lw — w*||", where A, B > 0 and || - ||, is £, norm.

Theorem 1. When online learning systems update as wiyy = wi — v (8¢ - s2gn (ge) o by)
using stochastic ternary gradients, they converge almost surely toward minimum w*, i.e.,
P (lim;_y 100 wy = w*) = 1.
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TernGrad - Gradients Histograms

conyv A
x"/ \x

\A : . . - 4"3‘ ‘ A Acl\
" )
% i
| . 44 A \
(a) original (b) clipped (c) ternary (d) final

Figure 2: Histograms of (a) original floating gradients, (b) clipped gradients, (c) ternary gradients
and (d) final averaged gradients. Visualization by TensorBoard. The DNN is AlexNet distributed on
two workers, and vertical axis is the training iteration. Top row visualizes the third convolutional
layer and bottom one visualizes the first fully-connected layer.
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TernGrad - AlexNet

(a) Top-1 accuracy vs iteration (b) Training loss vs iteration
7““0 8
()“()u -, e\
—’_‘,;___Q--ac-~--/_\—-——~'>-———-n \
50% e o M\
e . g AN --=-haseline
10% . --a--baseline ‘ '
ternerad
ok ) terngrad 4 \ =
SU0% J ; . \
. l, 5 L‘~
2“".(0 J 2 ‘\\
/ \.-—"'"‘-—-..____.____.____4..___.
l“(’in ’, l

0% @ |

0 50000 100000 150000 0 50000 100000 150000

Table 2: Accuracy comparison for AlexNet.

base LR  mini-batch size workers iterations gradients weight decay DR! top-1 top-5

floating 0.0005 05 5733% 80.56%
0.01 256 2 370K TernGrad 0.0005 0.2 57.61% 80.47%
TernGrad-noclip * 0.0005 0.2 54.63% 78.16%
floating 0.0005 0.5 5732% 80.73%

2 2 E
— — : R TernGrad 00005 02 57.28% 80.23%
- floating 0.0005 0.5 56.62% 80.28%

: g y)

Dkt N ; P TernGrad 0.0005 02 57.54% 80.25%

I DR: dropout ratio, the ratio of dropped neurons. * TernGrad without gradient clipping.




TernGrad - GoogLeNet

Table 3: Accuracy comparison for GoogLeNet.

base LR mini-batch size workers 1terations gradients weightdecay DR top-5

floating 4e-5 0.2 88.30%
0.04 128 2 000K rrnGrad S 0.08 86.77%
floating 4e-5 0.2 87.82%
0.08 256 4 300K 7ornGrad le-5 0.08 85.96%
0.10 512 2 300K floating 4e-5 0.2 89.00%

TernGrad 2e-5 0.08 86.47%
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TernGrad - Speedup

A performance model to evaluate the speed distributed training.

Training throughput on GPU cluster with
Ethernet and PCI switch

100000

240000

= AlexNet FP32 AlexNet TernGrad
GooglLeNet FP32 GooglLeNet TernGrad
goooo ™ VggNet-A FP32 VggNet-A TernGrad 200000
1 4000
8 160000
£ 60000 | 3000 ?
n wn
D Q
& | 2000 120000
£ | £
= 40000 | ' =
Bkals I | 80000
0 l g . I i » 1 I | < I -
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\r /,J 40000
o e i ] | 1. K. )
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# of GPUs
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Training throughput on GPU cluster with
InfiniBand and NVLink

u AlexNet FP32 AlexNet TemGrad
m GooglLeNet FP32 GooglLeNet TernGrad
m VggNet-A FP32 VggNet-A TernGrad
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e
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Figure 5: Training throughput on two different GPUs clusters: (a) 128-node GPU cluster with
1Gbps Ethernet, each node has 4 NVIDIA GTX 1080 GPUs and one PCI switch; (b) 128-node GPU
cluster with 100 Gbps InfiniBand network connections, each node has 4 NVIDIA Tesla P100 GPUs
connected via NVLink. Mini-batch size per GPU of AlexNet, GoogLeNet and VggNet-A 1s 128, 64

and 32, respectively




This is not the end ...

Jd Our 1-level quantization method (ASP-DAC'17 and
DAC’16) is included in the latest PDK of IBM
TrueNorth Chip.

d Our structural pruning technique (NIPS'16)
 |s supported by the library of Intel Nervana Neural
Network Processors.
* |s adopted by Intel's newest NLP accelerator
(ICLR18).
* is adopted by SF-Technology, achieving 2X
performance improvement in their datacenter.

Jd Our TenGrad technique (NIPS'17) is supported by
Facebook Caffe2 and HP parameter server product
for distributed learning.




Our Perspective
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Al is going mainstream, showing potential on both the cloud

and edge, however, is limited by infrastructure

Future AI w111 be more user trlendly,

more automatic, more cost efficient

among all the metrics of an Al system
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Experiments - Learning smaller filter shapes

Table 2: Results after learning filter shapes in LeNet

LeNet # Error  Filter size®  Channel # FLOP Speedup
| (baseline) 0.9% 25—3500 1—20 100%—100% 1.00x—1.00x
4 0.8% 21—41 |—2 8.4%—8.2% 2.33x—6.93 x
S 1.0% 7—14 |—1 1.49%—2.8%  5.19x—10.82x

S . ~ g~ . . . . .
* The sizes of filters after removing zero shape fibers, in the order of conv/—conv2

Learned shapes
of conv1 filters: By n

LeNet 1 LeNet 4 LeNet 5

Learned shape of conv2 filters @ LeNet 5 3D 20x5x5 filters is regularized to 2D filters!
“i Smaller weight matrix

SSL can efficiently learn DNNs with smaller filters without accuracy loss 25



