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- https://github.com/Microsoft/Trill

- FASTER: fast key-value store for resilient state management
- https://github.com/Microsoft/FASTER

+ CRA: powerful distributed runtime for dataflow graphs
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- Ambrosia: author highly robust applications & microservices easily
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Trill

Streaming engine for the cloud & edge

ek

Badrish Chandramouli, Jonathan Goldstein, James Terwilliger, Mike Barnett, Yinan Li, O
Peter Freiling, Zhong Chen, and others
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Requirements for “one engine”

- Performance

Scenarios
- High throughput: critical for large offline datasets
- Low latency & overhead: Important for real time monitoring ¢ FORItor
telemetry &
. . _ raise alerts
- Fabric & language integration .+ correlate real-
- Cloud app/service acts as driver, uses engine as library _ time with logs
- Need rich data-types, integrate custom logic seamlessly * develop initial
monitoring
query
: Query model * back-test over

. _ historical logs
- Need to support real-time and offline data, temporal and .+ offline analysis

relational queries, interactive queries (BI) with early
results
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Trill: Fast Streaming Analytics Library

. Performance

- 2-4 orders of magnitude faster than traditional SPEs A
- For relational, comparable to best columnar DBMS Real-Time._

o i Dashboard
- User-controlled latency specification
- explicit latency vs. throughput tradeoff

+ Fabric -

- Fabric & language integration

- Built as high-level language (HLL) library component
- Works with arbitrary HLL data-types & libraries

—————r”

° Query m Odel Interactive Query Authoring
- Extended LINQ syntax based on temporal + patterns
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- Use and contribute ) Microsoft / Tril
- Open source at https://github.com/Microsoft/Trill ©Owatch~ | 57 HUnstar 881  ¥Fork 69
- Library binaries available on NuGet.org

- Features

- .NET core - works on edge, cloud, Windows, Linux, ...
- Pattern detection, signal processing, extensibility endpoints
- Trill + CRA - Quill for multi-node scan-based analytics

- Trill + Ambrosia = real-time query pipelines
- Trill + FASTER - externalize operator state, in progress (covered next)

- Research Papers

- Trill paper (VLDB 2015), Trill article (IEEE Data Engg. Bulletin 2016), Quill (VLDB 2016), Signal
Processing (SIGMOD 2017), Stream Sorting (ICDE 2018), ...




FASTER

Embedded key-value store for state
management

eE
o

Badrish Chandramouli, Donald Kossmann, Guna Prasaad, James Hunter, Justin Levandoski,
Mike Barnett, Peter Freiling, James Terwilliger, and others
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- State management is a hard problem
- State consists of independent objects — devices, users, ads
- State does not fit in memory - problem for edge & multi-tenant as well
- Point ops with lots of updates — e.g., update per-device average CPU reading
- State needs to be recoverable

Temporal Locality

- Search engine maintains per-user
stats over last week

- Billions of users “alive”

- Only millions actively surfing at
given instant of time

Devices, Clients,
Dashboardes, ...

Apps, Services, .
Streaming

Pipelines,
Analytics, ... .
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What is FASTER

- Latch-free concurrent multi-core hash key-value store

- Designed for high performance and scalability across threads (shared memory)
- Supports data larger than main memory + recovery
- Shapes the (changing) hot working set in memory = integrated cache

- Performance: up to 200 million ops/sec tor YCSB variants

- One Intel Xeon machine, two sockets, 72 threads
- Exceeds throughput of pure in-memory systems when working set fits in memory

- FASTER Interface

- Read, Blind Update
- Atomic read-modify-write (RMW) - for running aggs (like sum), partial field updates



Scalability with # Threads

- When current working set “happens to fit" in memory
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System Architecture

Threads Hash Index  Hybrid Record Log
head
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ol oF DY
2 5] " | Disk
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tail

- Technical Innovations
- Indexing: Concurrent hash index (see paper)
- Record Storage: “Hybrid Log” record allocator
- Threading: Epoch Protection Framework with Trigger Actions (see paper)



Hybrid Log Allocator T —
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- Divide memory into three regions

- Stable (on disk) = Read-Copy-Update (RCU)
- Mutable (in memory) = In-Place Update (IPU)
- Read-only (in memory) - Read-Copy-Update (RCU)
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Hybrid Log Allocator
- Basic RMW Algorithm

< Head Offset

Issue async IO request

< ReadOnly Offset

Copy to tail, CAS-update hash index

< Infinity

Update in-place

New Record

Add to tail, update hash table
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- Removes append-only log
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Status — https://aka.ms/FASTER

- Open sourced August 2018 (github.com/Microsoft/FASTER)

+ NuGet package available as well, C# and C+ + versions of code

.l Microsoft / FASTER

® Watch~v 172 W Unstar 3,276 ¥ Fork 209

- Reached front page of Hackernews twice

- Papers: SIGMOD 2018 (core system), VLDB 2018 (demo), SIGMOD 2019
(recovery)

- Integrating FASTER as state store of Trill



Talk Summary

- We have recently open sourced several research projects

- Trill: proven streaming engine for real-time and offline analytics
- https://github.com/Microsoft/Trill

- FASTER: fast key-value store for resilient state management
- https://github.com/Microsoft/FASTER

- CRA: powerful distributed runtime for dataflow graphs
- https://github.com/Microsoft/CRA

- Ambrosia: author highly robust applications & microservices easily
- https://github.com/Microsoft/Ambrosia

- Invite everyone to use, contribute, and perform follow-u

- Talk to us for more details, go to GitHub for docs & guic

— Covered Today

D research
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Democratizing Data
Preparation for Al

Jiannan Wang

Simon Fraser University




SFU DB/DM Group

History

> Over 30 years of research experience in database and data mining

> Wrote a Data Mining Textbook widely used in the world

> Invented many famous data mining algorithms (e.g., FP-Growth, DBScan, Prefixspan)

- s Mining frequent patterns without candidate generation 7978 2000

> g &y 0,, :
e e W ," \ J Han, J Pei, Y Yin
%}' :" A "Q'.; ACM sigmod record 29 (2), 1-12

b
\,. - oy
P o

Prefixspan: Mining sequential patterns efficiently by prefix- 2662 2001
VRl o»- '0‘ 4 projected pattern growth
r}{“‘ J Pei, J Han, B Mortazavi-Asl, H Pinto, Q Chen, U Dayal, MC Hsu
DATA MINING

A density-based algorithm for discovering clusters in large 12578 1996

spatial databases with noise.
M Ester, HP Kriegel, J Sander, X Xu
Kdd 96 (34), 226-231

NWDS ANNUAL MEETING 2019



SFU DB/DM Group

Research Areas: Machine Learning, Data Science, and . oaon count Facuty
o » Camegie Meilon University 17.7 KX
Big Data Systems

» Univ. of lllinois at Urbana-Champaign O 14.9 1
» Stanford University O 130 15
» Georgia Institute of Technology O 115 23

Research Strengths: (loud Databases,
Crowdsourced Data Management, Data Cleaning and Integration,
Data Security and Privacy, Fraud Detection, Interpretable Machine
Learning, Precision Medicine, Recommender Systems

» University of Michigan 11.5 14
» Massachusetts Institute of Technology @ 10.3 18
» Cornell University O 102 24
» Purdue University O 8.8 13

W O N OB OB DN -

> Pennsylvania State University O 8.7 8
) University of California - Los Angeles

» University of Massachusetts Amherst O

Ranked l 3th in dutubuses und dﬂtu mining in Nonh » University of lllinois at Chicago
America (source: csrankings.org) 3_» Simon Fraser Universit

» University of Maryland - College Park O
5 P University of Waterioo 9
6 P Duke University O

6 P University of California - Santa Barbara

-

» University of California - Santa Cruz
g » University of Wisconsin - Madison Q
0 > Ohio State University O

-~

~

d
HE N O N B " O O ¢

{ » ¢ ~ » University of California - Riverside O

™ M b
By MI’3 v A » University of California - San Diego O
7 | e N » University at Buffalo

Ke Wang Martin Ester Jian Pei Jiannan Wang Tianzheng Wang
(Joined in 2000) (Joined in 2001) (Joined in 2004) (Joined in 2016) (Joined Fall 2018)

(=] N

— — — — — — — 1

NWDS ANNUAL MEETING 2019 3




Democratizing Al




Democratizing Al

Computing

Algorithms

Training Data

2019-02-08



Democratizing Al

webservices™

C O m P Utl n g A amazon

Google Cloud Platform

Algorithms

Training Data
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| AZLIre W webservices”
Yt S Google Cloud Platform

B Microsoft

Algorithms CNTK PYT6RCH

Tensor
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Computing 4 .. amazon )

web services™

Google Cloud Platform

® B Microsoft .{;-<;:~;.
Algorlthms CNTK PYTSRCH l‘

Tensor

QD &
Training Data & Bigcorila TR,SAQTA &

snorkel
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Democratizing Al

Computing 4 .. amazon )
RAZUTE J webservices”
- R Google Cloud Platform

B Microsoft Ny
Algorithms (CNTK eymrch B

Tensor

Training Data The Bottleneck

NWDS ANNUAL MEETING 2019
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What is Data Prep?

Data
Preparation

Data Lake




Why is Data Prep so hard?

Data Discovery
Data Profiling

Data Extraction
Data Normalization
Data Enrichment
Data Transformation
Data Filtering

Data Provenance
Data Labeling
Error Detection
Schema Matching
Deduplication
Outlier Detection
Imputation

Data Lake

Inspired by the conversation with Dr. Phil Bernstein at CIDR 2017




New Opportunities for DB Community

Focus on reducing data scientists’ time
> Ease of Use

> Extensibility

> Composability
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New Opportunities for DB Community

Focus on reducing data scientists’ time
> Ease of Use

> Extensibility
o (ompOSObimy

Focus on using advanced ML technologies
> Automated Machine Learning
> Meta Learning (a.k.a. Learning to Learn)

NWDS ANNUAL MEETING 2019



Recent Progress

Dee PEer [sIGMOD 2018 (Demo), SIGMOD 2019]
> Reduce data enrichment time

AQP++ si6mop 2018]
> Reduce exploratory data analysis time

NWDS ANNUAL MEETING 2019



Recent Progress

TARS (vios 2019]
> Reduce data labeling time




A Promising Solution

Distance/Weak Supervision

Label Noise

Crowdsourcing

Domain Expert

Human Cost

Label Noise vs. Human Cost Trade-off

NWDS ANNUAL MEETING 2019 10



Cleaning Noisy Label

Existing Work ™
> No Cleaning
> Machine-based Cleaning

* Frénay and Verleysen: Classification in the Presence of Label Noise: A Survey. IEEE Trans. Neural Netw. Learning Syst. 2014
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Cleaning Noisy Label

Existing Work”
> No Cleaning
> Machine-based Cleaning

Our Solution
> Oracle-based Cleaning

* Frénay and Verleysen: Classification in the Presence of Label Noise: A Survey. IEEE Trans. Neural Netw. Learning Syst. 2014

NWDS ANNUAL MEETING 2019



TA RS [named after an intelligent robot in the movie interstellar]

Label Cleaning Advisor for

Crowdsourced Noisy Labels

Mohamad Dolatshah  Mathew Teoh Jiannan Wang Jian Pei

Dolatshah et al. Cleaning Crowdsourced Labels Using Oracles For Statistical Classification. PVLDB 2019

NWDS ANNUAL MEETING 2019
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Two Pieces of Advice

Advice 1. Model Evaluation

(1) Model

(2) Noisy Test Data

How accurate is
a model?

2
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Two Pieces of Advice

Advice 1. Model Evaluation

=B
How accurate is (1) Model
[ a model? l‘ (2) Noisy Test Data
s

Advice 2. Cleaning Strategy

P
e
. (1) Learning Algorithm
[ Which label shouldl @ (2 Noity Trining Darc

be cleaned?

——————————————————————————
uml

F———

<instances, label;>

L— - - - - . =<

NWDS ANNUAL MEETING 2019 13
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Take-away Messages

DB community should play an important role
in democratizing data preparation for Al

We build TARS, a label cleaning advisor to
reduce data labeling time for Al

Poster 1: Extracting Highlights from Recorded Live Videos (Changho) 48
Poster 2: Explaining ML-embedded SQL Queries (Weiyuan) |

2019-02-08 NWDS ANNUAL MEETING 2019
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/ Overview

* Influence Discovery in Graphs
* Algorithms Scalability

. ¢ Influence Maximization
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* Influence Discovery in Graph
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0 30 2 343 4 328 7 129 9 252
9 258
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Scalability

Fair comparison:
* Same graph
* Max graph size on the same machine

Tests of eleven different IM algorithms by Arora et
al.

A. Arora, S. Galhotra, and S. Ranu. Debunking the
myths of influence maximization: An in-depth
benchmarking study. In Proceedings of the 43rd
ACM SIGMOD International Conference on
Management of Data, pages 651-666, 2017.
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Influence Maximization




/ Previous Work

 Kempe, Kleinberg, and Tardos, 2003:

- Independent Cascade (IC) model of influence propagation.

- Greedy algorithm for finding the best seed set for a given & (number
of seeds).

- Monte Carlo simulations, randomized selection of edges, and
averaging over coverage.

* Borgs, Brautbar, Chayes, and Lucier, 2014:
— Reverse Influence Sampling: randomized sketching of the transposed

graph.
— Theoretical guarantees: approximation factor of (1—1/e—¢), for any € >
0, with 60% confidence.




Influence Maximization (IM)

/
]

i

L]

* Node Influence — the number of graph nodes reachable from
a given node under a certain model.

* Information propagation 1s a process of spreading
information from node to node using edges.

 IM Problem: find a given number of seed nodes, such that
the information would spread far and wide. Class NP.

The graph 1s probabilistic, and the result of influence
maximization 1s an approximation to optimal. Class P.

Our approach:

* Data Structures for small memory footprint




Data Structures for Efficient Computation of Influence
Maximization

Reverse Influence Sampling (RIS) idea:

- find the nodes that would influence a randomly selected node;

- do it multiple times;

- i1f a node appears often as influencer, it 1s a good candidate for a seed.
Our implementation:

* Webgraph format for the input graph.

Instead of list of lists, we use flat arrays and boolean arrays (bitset).

Java 8 parallel streams and lambda expressions.

Lazy Greedy technique.

4,000

300
3,000
200
2,000
100
1,000
0 0
2 R 8 16 32 64 128 2 R 8 16 32 64 128
(a) Total Time (sec) (b) Seeds Time (sec)

Figure 1: Processing time for cnr-2000; k=10, varying £.

Comparison to DIM



Webgraph format for storing intermediate results

node ID
00l
sketch numbers il
0, 43, 240, 329, 432, 1000 43 | O, ...

G

® & » 'g ® & »
240, 329, 1000 =
= 3

g 201 0. liyl, e
)}
>
® & » (Vs

0, 240, 1784, 2567, 2568

n-11 1,12, 13, 248, 329, 765, 1087, 1589

Left: hypergraph as Borgs et al. described in RIS.
Right: hypergraph as built by NoSingles.

sk-1 | 1,i, 248, 329, |, 1589




NoSingles: a Space-Efficient Algorithm for Influence
Maximization

Idea: Do not store sketches containing only one node.
NS hypergraph and node count array are stored on disk.

Dataset min max | median HROGE
sketches
uk100K 1| 2925 1 91%
cnr2000 1 794 1 96 %
eu2005 1 858 1 90%
ljounal2008 1 | 78018 1 90%
arabic2005 1 | 20708 1 93%

Table 6.4: Sketch Cardinality Statistics (p = 0.01).




NoSingles: a Space-Efficient Algorithm for Influence
Maximization

CPU=Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz, running OS
CentOS, with RAM=1TB; 48 logical cores.

102

10° 1 —@— DSSA
| s
10 10
—@— DIM ~
8 101 e QD. 100
3 <P
§ 0 8 10-1
(% 10 %
1071 107
= 1073
1 5 10 25 50 0.35 5 10 15 20
Wp=0.1 Hypergraph weight R, billions

(1p=0.1

Comparison to two leading IM algorithms, DIM and D-SSA,
shows three orders of magnitude savings in required main memory.




NoSingles: a Space-Efficient Algorithm for Influence

Maximization

NoSingles can successfully run on a consumer-grade laptop for large
graphs.

Borgs’ et al. formula from Theorem 3.1

Dataset n m € P k
arabic2005 | 22.7M | 063B | 0.2 | 0.001 | 5

Table 6: Parameters.

R sk, total | sk, saved | H size, edges
64T 25B 363 M 2.7B

Table 7: Intermediate results.

H space | H time | Seedstime | accuracy | confidence
1 GB 90.5 hrs 136.5 sec 0.43 0.6

Table 8: Results.




CutTheTail: a Space-Efficient Heuristic Algorithm for Influence
Maximization

Idea
CutTheTaill: Do not store sketches containing only nodes with low out-degree.
CutTheTail2: Do not store short sketches.

Dataset n m type
WordAsn |10.6K 72K association, directed
Caida 65.5K |106.7K social, directed
FB 4K | 176K social, undirected
EnronD 69K | 275K e-mails, directed
Enron 36.7TK| 368K e-mails, undirected
Deezer 54.6K| 996K social, undirected
DBLP2010 |326 K| 1.6 M |collaboration, undirected
UKI100K 100 K 3 M web, directed
CNR2000 (326 K| 3.2 M web, directed
DBLP2011 | 986K | 6.7M |collaboration, undirected
Arabic2005| 23M| 640M web, directed

Table 1: Test datasets ordered by m.

Confidence test: log(n) runs, for (1 — 1/n) confidence.

Statistics on saved sketches: CTT2 can save only 0.01% sketches.
Monte Carlo simulation of seeds quality: TopDegree varies from 33%
of NS spread to 100% of NS spread, but never better than NS.




Conclusion

¥
(]

* Choice of Data Structure proved to be
instrumental in raising the scalability of graph
analytics.

* Focus on space complexity allowed to design
and implement smart algorithms processing
large graphs on a consumer-grade laptop.




Integrity Constraints Revisited: From
Exact to Approximate Implication

Batya Kenig Dan Suciu
University of Washington




Problem Statement (Informal)

* Fix a single relation instance R.

 Integrity Constraints: FDs and MVDs only
— Hard: either R =T or R ¥T.
— Soft: R satisfies T to some degree.

» Relaxing exact implications:
— Suppose 2 =1 holds for hard constraints.

— If the constraints in 2 hold to a large extent, to what extent
does 17?7

« Lots of applications.

— Mining of approximate integrity constraints in a DB instance (Chu et
al. 2014, Giannela and Robsertson 2004, Kruse and Naumann 2018)

— Data cleaning (llyas and Chu 2015)
— Learning structure of Probabilistic Graphical Models
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» Key Concepts & ldeas

« Main Results
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« Main Results




Conditional Independence Statements

* We consider discrete probability distributions.

XIS a set of random variables.
e AB,C,... are subsets of X.

« ALB
 ALB
« ALB

C & P(AB|C)=P(A|C)P(BI|C).
C Is saturated it X=AuBUC.
C is marginal it C=0.

« 2 is aset of Cl statements, 7 is a single Cl statement.

* An important concept in probabilistic modeling and
reasoning.




Definition: Probabilistic Cl Implication Problem

Let X be a set of Cl statements and let T be a Cl statement.
We say that X implies z, denoted X & t, if every probability
distribution that satisfies the Cl statements in X also satisfies
the Cl statement 7.
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Let X be a set of Cl statements and let T be a Cl statement.
We say that X implies z, denoted X & t, if every probability
distribution that satisfies the Cl statements in X also satisfies
the CI statement .

The semi-graphoid axioms, Pearl 1988

ALl Q|C Triviality
A1B|C->B1A|C Symmetry

A1 BD|C - A 1D|C Decomposition
A1B|ICDANA1D|C—> A1BD|C Contraction

A1 BD|C - A 1B|CD Weak Union




Definition: Probabilistic Cl Implication Problem

Let X be a set of Cl statements and let T be a Cl statement.
We say that X implies z, denoted X E t, if every probability
distribution that satisfies the Cl statements in X also satisfies
the Cl statement .

The semi-graphoid axioms, Pearl 1988

ALl Q|C Triviality

A1 B|C->B1A|C Symmetry

A1 BD|C - A 1D|C Decomposition
A1B|CDANA1D|C - A1BD|C Contraction

A L BD|C - A LB|CD Weak Union

Theorem (Geiger+Pearl 1993)

Axioms are (1) Sound, and (2) Complete for Saturated and Marginal Cls.
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» R satisfies the FD A=>B if Vt,t, € R, t;.A=t,, A= 1,.B=t,.B




Review: FD and MVD

Functional Dependency (FD)
R satisfies the FD A=>B if vt,t, € R, t,.A=t,, A= 1,.B=t,.B

(Embedded) Multivalued Dependency:
» R satisfies the EMVD A= (B|C) if I1pgc(R)=1155(R) ™11 5-(R)
MVD: A - Bis an EMVD A - (BIC) where ABC=all attrs

A | B | C
1 1 1
1 1 2
1 2 1
1 2 2
2 2 2

A->(B|C)




Review: FD and MVD

Functional Dependency (FD)

. R satisfies the FD A>B if vt t, € R, t,. A=t,.A = t,.B=t,.B

(Embedded) Multivalued Dependency:

» R satisfies the EMVD A= (B|C) if I1pgc(R)=15g(R) ™11 5c(R)
« MVD: A - Bisan EMVD A - (B|C) where ABC=all attrs

Implication:
* Armstrong’s axioms, Beeri’'s algorithm

A | B | C
1 1 1
1 1 2
1 2 1
1 2 2
2 2 2

A->(B|C)
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Between Integrity Constraints and Cls

The probability space of the support of R, where each tuple teR is
sampled with probability 1/N.




Between Integrity Constraints and Cls

The probability space of the support of R, where each tuple teR is
sampled with probability 1/,

Fix R, and its empirical distribution.
« A->»Biff BLC|A where ABC=all vars.

e Fails for EMVD
¢  @-»BJ|C, but 2(BLC)

A

; 1
p(C =1) =%/

b€ =1|B=1) =1/, 1

1

1

2

1/5
175
115
1/5
1/5

NN =N~ 0
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Review: Information Theory

« X =r.v. with n outcomes; its entropy Is:
H(X) = = XL, pjlogp;

* The conditional entropy is:
H(Y|X) = H(XY) — H(X)

 The conditional mutual information is:
(XY |Z2)=H(XZ2)+H(YZ) — H(XYZ) — H(Z)




Soft Constraints

+ For Cls: XLY|Z &I(X:Y|2)=0.

« We will use I(X;Y|Z) to quantity the degree of
independence of X, Y given Z.

11




Soft Constraints

« For Cls: XLY|Z I(X;Y|2)=0.

« We will use I(X;Y|Z) to quantity the degree of
independence of X, Y given Z.

Theorem (Lee 1987)

FDs X—Y iff H(Y[X)=0
MVDs X — Y|Z iff I(Z;Y|X)=0

11




Known Impossibility Results

 Implication problem for EMVDs is undecidable
(Herrmann 2000)

 Implication problem for conditional independence
is not finitely axiomatizable (Studeny 1990)

12




Outline

» Key Concepts & ldeas

« Main Results
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The Relaxation Problem

Fix a set of Cls 2={0+,..., om}, and a Cl 1&2.

Assume™: 2 ET
Problem: find a bound on 7 in terms of 2.

Relaxation: 1= Aj0; where Az O

Unit relaxation: 1< Zi Oj

* e.g. using Armstrong’s axioms, Beeri’'s algorithm, or semi-graphoid axioms




FDs Admit Unit Relaxation

The following are equivalent:
e Xi2 Yy ... XMm2D>YMEX>Y
o H(Y|X) < H(Y,|X,) + ... + H(Ym|Xm)

Example: AB>C,AD2>E,CE->F £ ABD=>F
Therefore this is a valid information-theoretic inequality:

H(FIABD) < H(C|AB) + H(EJAD) + H(F|CE)




CI’s Do Not Admit Relaxation!

Theorem (Kaced&Romashchenko 2013)

(CLDJA), (CLDIB), (ALB), (BLC|D)  CLD
However, for any 4, ,..., A4 2 0 there exists a distribution s.t.
I(C;D) > 2,{(C;D|A)+ A,I(C;D|B)+ A5l(A;B)+ A41(B;C|D).




CI’s Do Not Admit Relaxation!

Theorem (Kaced&Romashchenko 2013)

(CLDJA), (CLD|B), (ALB), (BLC|ID)  C LD
However, for any 4, ,..., A4 2 0 there exists a distribution s.t.
I(C;D) > A4,(C;D|A)+ 1,1(C;D|B)+ A5l(A;B)+ A,1(B;C|D).

However, we can relax “in the [imit”

If the exact implication 2kt holds, then for any €>0 there
exist A;20 such that:

< Z Ajo; +eH(all-variables)
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Two Cls XLY | Z and ALB | C are disjoint if at least one of the following
isnon-empty: (1) XNC2)YNC((I3)ZNA (4) ZNB.
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Two Cls XLY | Z and ALB | C are disjoint if at least one of the following
Isnon-empty: (1) XNC2)YNCB)ZNA (4) ZN B.

Note: All semi-graphoid axioms are disjoint.

If 2 is a set of disjoint CIs, and 1 is saturated, then the
implication 21 (by the Shannon inequalites) admits unit
relaxation: 1< Zi O;.




Saturated Cls

Two Cls XLY | Z and ALB | C are disjoint if at least one of the following
Isnon-empty: (1) XNC2)YNC(@EB)ZNA (4) ZNB.

Note: All semi-graphoid axioms are disjoint.

If 2 is a set of disjoint CIs, and 1 is saturated, then the
implication 21 (by the Shannon inequalites) admits unit
relaxation: 1< Zi O;.

Example: Contraction Axiom in semi-graphoids:
XLYZ & XLWI|YZ B XLYW|Z
Relaxes to:

IOGYW | 2) < 1(X;Y|2) + [(X;W)YZ) /] in fact, equality



Conclusions

 [he connection between constraints and
information theory has been known for a long
time.

* [he relaxation problem appears to be new.

» (reat practical importance: real data satisfies
constraints only approximatively, need to relax.

» Open problems: bound on the coetfficients A, in
various settings.
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Automating Machine Learning Model
Building with Clinical Big Data

Gang Luo

Department of Biomedical Informatics and
Medical Education

University of Washington
luogang@uw.edu




Challenges of Using Machine Learning
for Clinical Predictive Modeling

* Requires many labor-intensive manual
iterations and special computing
expertise to select among complex
algorithms and hyper-parameter values

* Most machine learning models give no
explanation of prediction results

— Explanation is essential for a learning
healthcare system




Challenge 1 — Efficient and Automatic
Model Selection

« Automatic selection methods for algorithms
and hyper-parameter values have been
developed

—to help individuals with little computing
expertise perform machine learning

— but existing methods cannot efficiently handle
clinical big data

— Search can take several days on a data set
with a moderate number of rows and attributes

— Search time is daunting on large data sets

3




Challenge 1 — Cont.

* To leverage clinical big data, automated
approaches appealing to healthcare
researchers are needed for selecting
algorithms and hyper-parameter values

— Completely automatic
— Efficient




Challenge 2: Explaining Prediction
Results

« Explanation is essential for clinicians to
— Trust prediction results
— Determine appropriate, tailored interventions

* £.g., provide transportation for patients
who live far from their physicians and
have difficulty accessing care

— Defend their decisions in court if sued for
medical negligence

— Formulate new theories or hypotheses for
biomedical research

5




Challenge 2 — Cont.

* Most machine learning models give no
explanation of prediction results

— Most models are complex

* Prediction accuracy and giving explanation
of prediction results are frequently two

conflicting goals
* Need to achieve both goals simultaneously

— Explain prediction results without sacrificing
prediction accuracy




Outline

* Qur approach to address the challenges
[HISS'15, HISS'16, HISS17, JMIR-RP’'15, JMIR-RP’17]

——p  — Efflcient and automatic model selection




Current Bayesian Optimization Approach
Test multiple combinations of algorithms and
hyper-parameter values;

Build a regression model R to predict a
combination’s performance;

While time permits {
Use R to find a promising combination;
Evaluate the combination’s performance;
Update R;

}

Return the combination with the best performance;

8




Integrity Constraints Revisited: From
Exact to Approximate Implication

Batya Kenig Dan Suciu
University of Washington




Main Ideas

* Major obstacle: A long time is needed to
examine a combination of an algorithm and
hyper-parameter values on the entire data set

— E.g., it takes two days on a modern computer to
train a champion ensemble model once on 10K
patients with 133 independent variables

— The entire space of algorithms and hyper-
parameter values is extremely large
 Solution: Perform progressive sampling,
filtering, and fine-tuning to quickly narrow the
search space




Main Ideas — Cont.

» Use progressive sampling to generate
a sequence of random samples of the
data set, one nested within another

|
|
test sample fround 1| round 2 | round 3

training sample

10




Main Ideas — Cont.

« Conduct inexpensive tests on small samples
of the data set to eliminate unpromising
algorithms and identify unpromising
combinations of hyper-parameter values as
early and as much as possible

* Devote more computational resources to
fine-tuning promising algorithms and
combinations of hyper-parameter values on
larger samples of the data set

11




Main Ideas — Cont.

* The search process is repeated for one
Oor more rounds

* As the sample of the data set expands,

----
s * o
@ .

training \ / search

samples % .57 wih,S F 0 Fspace

* |n the last round, use (a large part of)
the entire data set to find an effective
combination of an algorithm and hyper-

parameter values

12




Preliminary Results

« Compared to the state of the art Auto-
WEKA automatic selection method on

— 27 prominent machine learning benchmark
data sets

— A single computer

* On 27 data sets, on average our method

— Reduces search time by 28 fold

— Reduces the classification/prediction error
rate by 11%

13




Outline

* Qur approach to address the challenges

—p — Automatically explain prediction results and
suggest tailored interventions




Main Ideas

* A model achieving high accuracy Is usually

complex and gives no explanation of
prediction results

» Challenge: Need to achieve high prediction
accuracy as well as explain prediction results

» Key idea: Separate prediction and
explanation by using two models concurrently

— The first model makes predictions and targets
maximizing accuracy

— The second model is rule-based

» Used to explain the first model’s results rather
than make predictions

15




Main Ideas — Cont.

* The rules used in the second model
are mined directly from historical data

« Use one or more rules to explain the
prediction result for a patient

» Suggest tailored interventions based
on the reasons listed in the rules

16




Some Results

» Test case: Predicting type 2 diabetes
diagnosis within the next year

* Electronic medical record data of 10K
patients

« Can explain prediction results for 87%
of patients who were correctly predicted
by a champion machine learning model

to have type 2 diabetes diagnosis within
the next year

{ ¥




An Example Rule

* The patient had prescriptions of angiotensin-
converting-enzyme (ACE) inhibitor in the past
three years AND the patient’'s maximum body
mass index recorded In the past three years

Is 235 — the patient will have type 2 diabetes
diagnosis within the next year

— ACE inhibitor is used mainly for treating
hypertension and congestive heart failure

— Obesity, hypertension, and congestive heart
fallure are known to correlate with type 2 diabetes

* Example intervention: Enroll the patient in a
weight loss program

18
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Generating Application-specific
In-memory Databases

Cong Yan Alvin Cheung

University of Washington



Database Application With Object-oriented
Programming Interfaces

= Developed using object-oriented languages

= Java, Python, Ruby, ...

= Object-relational Mapping (ORM) framework

= Hibernate, Django, Rails

= Example: web applications




Performance Issues




Performance Issues

Discourse (forum) 22k
Lobsters (forum) 1.9k
Gitlab (collaboration) 49k
Redmine (collaboration) 3k

Spree (E-commerce) 17k
ROR Ecommerce 1.7k
Fulcrum (task mgmt) 697
Tracks (task mgmt) 3.5k
Diaspora (social network) 18k
Onebody (social network) 1.2k
Openstreetmap (map) 8k

Fallingfruit (map) 1.1k

Profiling result from 12 open-source web apps:




Performance Issues

Discourse (forum) 22k
Lobsters (forum) 1.9k
Gitlab (collaboration) 49k
Redmine (collaboration) 3k

Spree (E-commerce) 17k
ROR Ecommerce 1.7k
Fulcrum (task mgmt) 697
Tracks (task mgmt) 3.5k
Diaspora (social network) 18k
Onebody (social network) 1.2k
Openstreetmap (map) 8k

Fallingfruit (map) 1.1k

Profiling result from 12 open-source web apps:

* 0.1-0.9G of data, 3.3 pages >2sec

* Most slow pages spend >80% on

querying data




Why?

= Nested data model
= Predicate involving associated objects

= Program-generated predicate




Chestnut

= Generate app-specific in-memory DB
= Customize data layout given a workload and a memory budget, minimizing the overall

query time

= Specific for database apps using object-oriented programming interface, solves
the issues by:

= Using non-relational storage model
« Extending index syntax

= Synthesis-based plan enumeration




|. Nested Data Model

« A mismatch between how the app access data and how data is stored.
» slow data conversion

= Example: a chatting app, showing top channels and activities, as well as users for each activity
Class Channel:

has many: activities => Activity

Class Activity:
has_one: user => User
string type

Class User:




l. Nested Data Model

= A mismatch between how the app access data and how data is stored
= slow data conversion

Channel.includes(activities, includes(user)).order(id).limit(50)




[. Nested Data Model

= A mismatch between how the app access data and how data is stored
» slow data conversion

Channel.includes(activities, includes(user)).order(id).limit(50)

SELECT * FROM channel ORDER BY id LIMIT 50;
SELECT * FROM activity WHERE channel id IN (..);
SELECT * FROM user WHERE id IN (..);
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l. Nested Data Model

= A mismatch between how the app access data and how data is stored
» slow data conversion

Channel.includes(activities, includes(user)).order(id).limit(50)

SELECT * FROM channel ORDER BY id LIMIT 50;
SELECT * FROM activity WHERE channel id IN (..);
SELECT * FROM user WHERE id IN (..);
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l. Nested Data Model

= A mismatch between how the app access data and how data is stored
» slow data conversion

Channel.includes(activities, includes(user)).order(id).limit(50)

SELECT * FROM channel ORDER BY id LIMIT 50;
SELECT * FROM activity WHERE channel id IN (..);
SELECT * FROM user WHERE id IN (..);
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|. Nested Data Model

= A mismatch between how the app access data and how data is stored
» slow data conversion

Channel.includes(activities, includes(user)).order(id).limit(50)

SELECT * FROM channel ORDER BY id LIMIT 50;
SELECT * FROM activity WHERE channel id IN (..);
SELECT * FROM user WHERE id IN (..);
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|. Nested Data Model

= A mismatch between how the app access data and how data is stored
= slow data conversion

Channel.includes(activities, includes(user)).order(id).limit(50)

SELECT * FROM channel ORDER BY id LIMIT 50;
SELECT * FROM activity WHERE channel id IN (..);
SELECT * FROM user WHERE id IN (..);
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|. Nested Data Model

= A mismatch between how the app access data and how data is stored
= slow data conversion

Channel.includes(activities, includes(user)).order(id).limit(50)

SELECT * FROM channel ORDER BY id LIMIT 50;
SELECT * FROM activity WHERE channel id IN (..);
SELECT * FROM user WHERE id IN (..);
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|. Nested Data Model

= A mismatch between how the app access data and how data is stored
= slow data conversion

Channel.includes(activities, includes(user)).order(id).limit(50)

SELECT * FROM channel ORDER BY id LIMIT 590;
SELECT * FROM activity WHERE channel id IN (..);
SELECT * FROM user WHERE id IN (..);
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[. Nested Data Model

= A mismatch between how the app access data and how data is stored
= slow data conversion

Channel.includes(activities, includes(user)).order(id).limit(50)

SELECT * FROM channel ORDER BY id LIMIT 50;
SELECT * FROM activity WHERE channel id IN (..);
SELECT * FROM user WHERE id IN (..);
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[. Nested Data Model

= A mismatch between how the app access data and how data is stored
* slow data conversion

Channel.includes(activities, includes(user)).order(id).limit(50)

SELECT * FROM channel ORDER BY id LIMIT 50;
SELECT * FROM activity WHERE channel id IN (..);
SELECT * FROM user WHERE id IN (..);
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Chestnut: Using Non-relational Storage Model

= Storing data as array of objects and nested objects, and return objects
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Chestnut: Using Non-relational Storage Model

= Storing data as array of objects and nested objects, and return objects
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Chestnut: Using Non-relational Storage Model

= Storing data as array of objects and nested objects, and return objects
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Chestnut: Using Non-relational Storage Model

= Storing data as array of objects and nested objects, and return objects

(CI )
{Al IAS J
U2
> - < Data conversion: C++ object -> Ruby object
Ca A2
1.5 sec
- y

2.3 sec 15x speedup!




2. Query Predicate Involving Associated Objects

= Partial index supported by relational databases

Class Channel: Channel.where(status=‘active’) .order (id)
has many: activities => Activity
string status

Class Activity: index: channel(id, status=‘active’)
has one: user => User
string type

Class User:




2. Query Predicate Involving Associated Objects

= Partial index not supported by relational databases

Channel .where(

Ltass Channets =~ . exists(activities, type=‘msg’))
has_many: activities => Activity order(id)

string status

i + P
Class Activity: index: ?:

has one: user => User
string type

Class User:




Chestnut: Extending Index Syntax

= Such partial index is considered by Chestnut

Channel .where(

Liass Chanpels =~ . exists(activities, type=‘msg’))
has_many: activities => Activity order (id)

string status

index:
Class Activity: channel(id, exists(activities, type=‘msg’))
has one: user => User
string type

Class User:




Chestnut: Extending Index Syntax

= Allow associated object’s field to appear in keys and predicates

index:
channel(id, exists(activities, type=‘msg’))

sorted_array: channel(activities.id)

Ca2 Cl C2 C4




J. Program-generated Query Predicate

= Predicates are generated by chained function calls, often containing
overlapping or redundant predicates.
= E.g., a webpage showing ‘join’ or ‘leave’ (and non-'msg’) activities created or
updated recently




J. Program-generated Query Predicate

= Predicates are generated by chained function calls, often containing
overlapping or redundant predicates.
= E.g., a webpage showing ‘join’ or ‘leave’ (and non-'msg’) activities created or
updated recently

SELECT * FROM activity WHERE type!=‘msg’ AND (type=‘join’ or
type=°‘leave’) AND (created>? or updated>?)




J. Program-generated Query Predicate

= Predicates are generated by chained function calls, often containing
overlapping or redundant predicates.

= E.g., a webpage showing ‘join’ or ‘leave’ (and non-'msg’) activities created or
updated recently

SELECT * FROM activity WHERE type!=‘msg’ AND (type=‘join’ or
type=°‘leave’) AND (created>? or updated>?)

index1l: activity(type, created)
index2: activity(type, updated)
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J. Program-generated Query Predicate e e v
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SELECT * FROM activity WHERE type!=‘msg’ AND (type=‘join’ or
type=“leave’) AND (created>? or updated>?)
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SELECT * FROM activity WHERE type!=‘msg’ AND (type=‘join’ or
type=‘leave’) AND (created>? or updated>?)
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SELECT * FROM activity WHERE type!=‘msg’ AND (type=‘join’ or
type=‘leave’) AND (created>? or updated>?) Seq scan: 2.6 sec




J. Program-generated Query Predicate i .cver oo
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/AIAZASM

SELECT * FROM activity WHERE type!=‘msg’ AND (type=‘join’ or
type=“leave’) AND (created>? or updated>?)

Seq scan: 2.6 sec

SELECT * FROM activity WHERE type in (‘join’, ‘leave’) AND
(created>? or updated>?)
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=

SELECT * FROM activity WHERE type!=‘msg’ AND (type=‘join’ or
type=‘leave’) AND (created>? or updated>?)

Seq scan: 2.6 sec

SELECT * FROM activity WHERE type in (‘join’, ‘leave’) AND
(created>? or updated>?)
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SELECT * FROM activity WHERE type!=‘msg’ AND (type=‘join’ or
type=“leave’) AND (created>? or updated>?)

Seq scan: 2.6 sec

SELECT * FROM activity WHERE type in (‘join’, ‘leave’) AND
(created>? or updated>?)

Use index: 0.5 sec

)



Chestnut: Synthesis-based Plan Enumeration

= Rules are not enough to handle all cases!




Chestnut: Synthesis-based Plan Enumeration

= Rules are not enough to handle all cases!

r=indexl.scan((‘join’,2018-01-01), (‘msg’, «)) J

= Enumerate plans u

= From small-size plans to larger-size ]

rl=index1l.scan((‘join’,2018-01-01), (‘join’, «))
r2=index2.scan((‘leave’,2018-01-01), (‘leave’, «))

| r=distinct(union(rl, r2, r3, r4))

1)



Chestnut: Synthesis-based Plan Enumeration

= Rules are not enough to handle all cases!

r=indexl.scan((‘join’,2018-01-01), (‘msg’, «)) J

= Enumerate plans |‘l

= From small-size plans to larger-size ]

) ; ; rl=index1l.scan((‘join’,2018-01-01), (‘join’, «))
Verify each plan against query r2=index2.scan(( ‘leave’,2018-01-01), (‘leave’, «))

= Symbolic execution

1 r=distinct(union(rl, r2, r3, r4))

1)



Chestnut: Synthesis-based Plan Enumeration

= Rules are not enough to handle all cases!

- Enumerate plans |_lr=index1.scan((‘join’,2618-01-01), (‘msg’, «)) J

* From small-size plans to larger-size 1

) ; ; rl=indexl.scan((‘join’,2018-01-01), (‘join’, «))
Verify each plan against query r2=index2.scan(( ‘leave’,2018-01-01), (‘leave’, «))

= Symbolic execution u

r=distinct(union(rl, r2, r3, r4))

= Slower than existing query optimizer, but sometimes can find better plans

()



Chestnut: Synthesis-based Plan Enumeration

= Rules are not enough to handle all cases!

— ]
- Enumerate plans |_l r=indexl.scan((‘join’,2018-01-01), (‘msg’, « x]

= From small-size plans to larger-size 1

) , ; rl=indexl.scan((‘join’,2018-01-01), (‘join’, «))
Verify each plan against query r2=index2.scan(( ‘leave’,2018-01-01), (‘leave’, «))

= Symbolic execution :

1

r=distinct(union(rl, r2, r3, r4)) /

= Slower than existing query optimizer, but sometimes can find better plans

1)
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Constraint:

. Each query plan uses some data structures

. The used data structures is within mem budget
Goal:

minimize ), query time
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Evaluation

= 3 open-source popular web applications built with Rails
« kandan: Hipchat-like chatting app

« redmine: GitHub-like project management

« lobsters: Hackernews-like forum app

= Compare against:
* Original setting with MySQL (in-memory)
* PostgreSQL + automatic indexer (in-memory)
= Hyper + automatic indexer

= Chestnut




Evaluation

= 3 open-source popular web applications built with Rails

relative time to original

24.5s 76.1s 10.5s

100% -

80% -

60% -

40% -

20% -

0% -

- [ original -
B postgres
E= hyper
Bl chestnut

kandan lobsters redmine

(average query time with the same memory)
shaded area: convert relational data into objects

Chestnut running time:
e kandan: lmin
* redmine: 10min

* Jlobsters: 54min




Conclusion

= Chestnut generates in-memory app-specific database

= Customize data layout given a workload and a memory budget, optimizing the overall
query performance

= Uses non-relational storage model, storing data as objects and nested objects
= Extends index syntax, allowing associated object’s field in keys and predicates
= Synthesis-based plan enumeration, enumerate plans and verify each plan

= Achieve significant speedup in real-world web apps

= >4 .8x avg speedup compared to using state-of-the-art in-memory databases




Evaluation

= 3 open-source popular web applications built with Rails

relative time to original

24.5s 76.1s 10.5s

100% -

80% -

60% -

40% -
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- 1 original .
B postgres
= hyper
Bl chestnut

//gé.: 7

kandan lobsters redmine

(average query time with the same memory)
shaded area: convert relational data into objects

Chestnut running time:
e kandan: lmin
* redmine: 10min

 Jobsters: 54min
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SELECT * FROM activity WHERE type!=‘msg’ AND (type=‘join’ or

type=‘leave’) AND (created>? or updated>?) Seq scan: 2.6 sec

SELECT * FROM activity WHERE type in (‘join’, ‘leave’) AND
(created>? or updated>?)

Use index: 0.5 sec

>5x speedup!



