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Automated Physical Design in the Cloud

= A continuous indexing framework to automatically select
and build indexes to reduce query execution time

= Closed-loop solution: success measured in terms real execution time instead of query
optimizer costs

= A hands-free solution: remove human intervention from the critical path of the loop

= More than index recommendation: workload extraction,

index implementation, validation, and monitoring

= Automatically Indexing Millions of Databases in Microsoft Azure SQL Database, Sudipto
Das, Miroslav Grbic, Igor |
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ity with reduced execution cost at low

ultiple executed plans of the same query

= Plan Stitch: Harnessing the Best of Many Plans, Bailu Ding, Sudipto Das, Wentao Wu,
and Et al.,, VLDB 2018



Improving OCC Through Transaction
Batching and Operation Reordering




Optimistic Concurrency Contro

= Read phase
= Validation phase
= Write phase
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s T2 Destined to Abort, Really?

= Conflicting concurrent transactions can potentially all
commit vvith an alternative Serlahzann order

Serialize T1 T2
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Transaction Reordering in OCC

= Optimistic concurrency control finalizes the
serialization order after transaction execution

= [ncorporate reordering throughout the life of a
transaction

= Batch transactions explicitly to open doors for
reordering

= Limit the scope of reordering with a batch
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Transaction and Operation Reordering

= Reordering transactions at clients

= Prior work on static transaction scheduling

= Reordering operations at storage

= Optimal strateqgy: Prioritize writes before reads to avoid stale reads

= Reordering transactions at validation

= How to create a serialization order with the least number of aborts from a batch
of transactions?



Transaction Reordering at Validation

= Given a batch of transactions B, construct subset
B’ € B, such that B’ is serializable and |B’] is
maximal among all B' € B

= The number of aborts is minimized within the batch if |B’| is maximal

» How to decide if B is serializable and how to
construct a serialization order?



Constructing a serialization order
g Dependency graph: the conflicts of transactions

= Example: A transaction T1 cannot be serialized after a transaction T2 if T2 updates an
item it reads. We have T2 -> T1.




Constructing the Maximal B’

= Given B and a dependency graph G(B), find the
maximal B" € B such that G(B") is acyclic

= Find the minimal V € B such that G(B \ V) is acyclic

«B'=B\V
» Feedback vertex set!
» But itis NP hard ..

= Greedy algorthms

= Strongly connected component (SCC) based
= Sort based: more efficient but less accurate




Policies for Alternative Performance Goals

= Minimize V: minimize the number of aborts
= Alternative goals

= Minimize tail latency
= Minimize the number of restarts
= Maximize monetary value

= Weighted feedback vertex set

= SCC and sort based greedy algorithms



Fvaluation: Write-Intensive Skewed YCSB
= Up to 2.2x improvement in throughput
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Fvaluation: Write-Intensive Skewed YCSB

= Up to 4x reduction in percentile latency
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Optimize for Tail Latency

= Up to 6.3x reduction in tail latency
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Conclusion

= Explicit batching opens doors for transaction anc

operation reordering in optimist concurrency control

Batching and reordering transactions improve

throughput and reduce tail latency

= Weighted reordering policies enable optimization for

alternative performance goals such as tail latency
and monetary value
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Rise of Big Data Systems

Hive Declarative query interface
Spark Cost-based query optimizer (CBO)
F I i n k SELECT Customer.cname, Item.iname

Calcite INNER JOIN Order

ON Customer.cid == Order.cid
- INNER JOIN Item
B I gQU e ry ON Item.iid == Order.iid

WHERE Item.iprice > 100

Bi g SQL AND Customer.cage < 18; - L
HDInsight
SCOPE Good plan => Good performance

Problem: CBO can make mistakes
Etc. esp. Cardinality Estimation




Rise of Big Data Systems

H ive The root of all evil, the Achilles Heel of query optimization,
is the estimation of the size of intermediate results, known

Spa rk as cardinalities. — [Guy Lohman, SIGMOD Blog 2014]
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Hope: Shared Cloud Infrastructures
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Hope: Shared Cloud Infrastructures
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Shared data processing

Massive volumes of query logs Centrally visible query workload



Cosmos: shared cloud infra at Microsoft

e SCOPE Workloads:

* Batch processing in a job service
* 100Ks jobs; 1000s users; EBs data; 100Ks nodes

e Cardinality estimation in SCOPE:
* 1 day’s log from Asimov
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Cosmos: shared cloud infra at Microsoft
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e Shared query subgraphs
e Can we learn cardinality models?




Learning Cardinality Model

e Strict: cache previously seen values Subgraph |Llogieal | Parameter | Data
e Low coverage Type Expression | Values Inputs

* Online feedback Strict Fixed Fixed Fixed

* General: Iearning d Single model General Variable Variable Variable
* Hard to featurize
* Hard to train
* Prediction latency
* Low accuracy

* Template: learning a model per subgraph template
=> No one-size-fits-all

Template  Fixed Variable Variable



Learned Cardinality Models

e Subgraph Template:
 Same logical subexpression
* Different physical implementation
* Different parameters and inputs

* Feature Selection

* Model Selection

 Generalized liner models due to their
interpretability

* More complex models, such as multi-
layer perceptron harder to train

=< >
el lein.
Filter . Filter -
Age < 18 Age}< 20
Order Order’

Customer Customer’
Name Description
JobName Name of the job containing the subgraph
NormJobName Normalize job name
InputCardinality Total cardinality of all inputs to the subgraph
Pow(InputCardinality, 2) | Square of InputCardinality
S grt(InputCardinality ) Square root of InputCardinality
Log(InputCardinality) Log of InputCardinality
AvgRowLength Average output row length
InputDataset Name of all input datasets to the subgraph
Parameters One or more parameters in the subgraph
Madel # Percentage Errer | Pearssa Correlation
Defaull Optineacs 1 2 198854 04l
Adpavemcrs Factie (L) | 1477481 K] 3
Linecar Regression * 11550 (9%
Newral Network I 275 9%
Potsson Regresaon | 0% (9%




Accuracy: 10-fold cross validation

Neural Network
Linear Regression
iIsson Regression
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Accuracy: 10-fold cross validation
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SCOPE

Poisson 1.5% 32%
Regression

Note: Neural network overfits due to small
observation and feature space per model



Applicability: %tage subgraphs having models

Varying Training Window
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Applicability: %tage subgraphs having models

Applicability (%)

Varying Training Window Sliding Test Window
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60 E 60 -
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0 0
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End-to-end Feedback Loop
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Trained offline over new batches of data
Large number of smaller, highly accurate models



End-to-end Feedback Loop
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End-to-end Feedback Loop
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Trained offline over new batches of data
Large number of smaller, highly accurate models



Performance

* Subset of hourly jobs from Asimov
* These queries process unstructured data, use SPJA operators, and a UDO
* Re-ran the queries over same production data, but with redirected output

B Default Optimizer
B With CardLearner

Queries



Performance

e Subset of hourly jobs from Asimov
* These queries process unstructured data, use SPJA operators, and a UDO

* Re-ran the queries over same production data, but with redirected output
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Performance

e Subset of hourly jobs from Asimov
* These queries process unstructured data, use SPJA operators, and a UDO

* Re-ran the queries over same production data, but with redirected output

1200

B Default Optimizer
B With CardLearner

7
e B Default Optimizer 12000

B With CardLearner

B Default Optimizer
B With CardLearner

Processing Time (s)
w <N ((e]
S 8 8
o o o
Number of Vertices

o

Queries Queries Queries



Avoiding Learning Bias

Actual:100 Actual:100 Actual:100

* Learning only what is seen

Estimated:75
Actual:75

Estimated:50
Actual:100

* Exploratory join ordering
* Actively try different join orders

* Pruning: discard plans with subexpressions that are more expensive than at
least one other plan

* Maximize new observations when comparing plans

* Execution strategies
 Static workload tuning
e Using sample data
* Leveraging recurring/overlapping jobs



Takeaways

* Big data systems increasingly use cost-based optimization

* Users cannot tune these systems in managed/serverless services
* Hard to achieve a one-size-fits-all query optimizer

* Instance optimized systems are more feasible

* Very promising results from SCOPE workloads:
* Could achieve very high accuracy
* Reasonably large applicability, could further apply exploration
* Performance gains, most significant being less resource consumption

* Learned cardinality models a step towards self-learning optimizers
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BigQuery

Why BigQuery ML?

Syntax

Iterative Gradient Descent
Closed Form Solution
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BigQuery

e (Google’s cloud-based SQL datawarehouse-as-a-service for

analytics:

Enterprise data
warehouse for
analytics

@ BigQuery EIRIS © ocowCusscus

Ry ——y Query editor

Resources + ADDDATA +

Convenience of e vep— T ————
standard SQL o bt e

b Bigquery-test-project-166321

» begquerytestdefault

v cloud training demos

v Ihrbigquery

v Deltedata2

o JOESER R T,

Query history C REFRESH

- WM W . W .

Personal history  Project Mstory

Fully managed and
serverless S| e~ | | - Fowee

Petabyte-scale

storage
and queries

[?) HIDE ENITOR

Encrypted, durable
and highly available

Real-time analytics on

streaming data

https://cloud.google.com/bigquery
& Google Cloud



BigQuery ML

e SQL analysts use databases to extract insights from their data.

> SELECT AVG (income) FROM census data GROUP BY state;

> SELECT cid, COUNT (*) FROM orders GROUP BY cid ORDER BY COUNT (*) DESC

e Give SQL analysts access to familiar math concepts, statistical
methods, and algorithms without learning new tools and languages.

&Y Google Cloud



BigQuery ML
e Democratizes ML for business customers.

o Experts in TensorFlow, scikit-learn, etc are rare.
o Expertsin SQL are far more common.

e Analyze large datasets without sampling.
o Scale to petabytes of data

e Avoids slow, cumbersome moving of data to/from of database.
o Learn ML models directly in BigQuery UL.

&Y Google Cloud



Existing Syntax:

Example 1:

CREATE PROCEDURE [dbo].[RxTrainLogitModel] (@trained model
varbinary(max) OUTPUT)

AS
BEGIN
EXEC sp execute external script @language = N'R',
@script = N'
## Create model
logitObj <- rxLogit (tipped ~ passenger count +
trip distance + trip time in secs + direct distance, data =
InputDataSet)
summary (logitObi)

## Serialize model

trained model <- as.raw(serialize(logitObj, NULL));
1

&Y Google Cloud

Example 2:

SELECT glm('warpbreaks dummy',
'glm model',
'breaks’',
'"ARRAY[1.0,"wool B","tension M", "tension H"]',
'family=poisson, link=log');

SELECT
w.ld,
glm predict(
coef,
ARRAY[1, "wool B", "tension M", "tension H"]::float8[],
'log') AS mu
FROM warpbreaks dummy w, glm model m



BigQuery ML Syntax
e Extension of standard SQL DDLs for creating models:

{CREATE MODEL | CREATE MODEL IF NOT EXISTS | CREATE OR REPLACE

MODEL}

model name

[OPTIONS (model option list)]
[AS query statement]

> CREATE MODEL income model

OPTIONS (model type=‘linear reg’)
AS SELECT state, Job, income as label FROM census data;

&) Google Cloud



BigQuery ML Syntax
e TVFs for prediction and other model operations:

ML.PREDICT (MODEL model name,
{TABLE table name | (query statement) })

> SELECT predicted income FROM ML.PREDICT (MODEL ‘income model’,
SELECT state, job FROM customer data);

ML.EVALUATE (MODEL model name

[, {TABLE table name | (query statement) }]
[, STRUCT (<T> AS threshold)])

£ Google Cloud



Iterative Gradient Descent (IGD)

e Findw such that:
XW=Yy
X : Training data (rows: training examples, cols: features)
w : Weights
y : Observations (income in our running example)

e Core learning algorithm is gradient descent.
o Minimizes the objective:

min,, Z, L(w'x, y) + 4,|Iw|[, + 2,(|lwll,)?

o Includes support for L1and L2 regularization.
&) Google Cloud



BigQuery ML Syntax
e TVFs for prediction and other model operations:

ML.PREDICT (MODEL model name,
{TABLE table name | (query statement) })

> SELECT predicted income FROM ML.PREDICT (MODEL ‘income model’,
SELECT state, job FROM customer data);

ML.EVALUATE (MODEL model name

[, {TABLE table name | (query statement) }]
[, STRUCT (<T> AS threshold)])

&Y Google Cloud



Iterative Gradient Descent (IGD)

e Find w such that:
XW=Yy
X : Training data (rows: training examples, cols: features)
w : Weights
y : Observations (income in our running example)

e Core learning algorithm is gradient descent.
o Minimizes the objective:

min,, Z, L(w'x, y) + 4,|Iwl[, + 2,(|lwl]],)?

o Includes support for L1and L2 regularization.
&) Google Cloud



Iterative Gradient Descent (IGD)

e Gradient descent implemented as sequence of pure SQL queries.

e Represents data and models as tables:

data model
state job Income l feature weight
NY nurse 65000 state:CA | +5.7
CA chef 55000 job:nurse | -3.5

e [Umar Syed, Sergei Vassilvitskii:
SQML: large-scale in-database machine learning with pure SQL. SoCC 2017: 659 ]

£Y Google Cloud




Iterative Gradient Descent (IGD)

e Each algorithm iteration issues SQL queries that join model to data,
update model, then write model back to disk.

model
table

data
table

# score examples
# with model
SELECT ... FROM
model JOIN data
GROUP BY example;

score
table

data
table

# compute gradient
# and update model
SELECT ... FROM
score JOIN data
GROUP BY feature;

new model
table

e Techniques from stats and ML fields to make the queries scale and

hide the complexity while achieving high accuracy..

&Y Google Cloud




Closed form solution

e Find w such that:
XW=Yy
X : Training data — m x n matrix (m >>n)
w: Weights — nx 1

y . Observations — mx 1

&Y Google Cloud



Closed Form Solution

e ML training Algorithms mainly focus on computational linear algebra and
optimizations.

e C(losed form solutions expressed in matrix and vector operations.

o Least square normal equation (linear regression)

w= (XTX+A)"1X1y

&Y Google Cloud



Closed Form Solution

e Why closed form solution is not preferred in most ML platforms?
o Load all of the training data X into memory for computing.
o Parallel computing of extra-large linear algebra.

m  Matrix multiplication
m Matrix Inversion

&Y Google Cloud



Closed Form Solution

e ML training Algorithms mainly focus on computational linear algebra and
optimizations.

e C(losed form solutions expressed in matrix and vector operations.

o Least square normal equation (linear regression)

w= (XTX+XI)"1X1y

&Y Google Cloud



Closed Form Solution

e Matrix are represented as table:
with schema <row:string, col:string, data:double>

e Matrix Multiplication is done via inner join.

SELECT

A.row AS row,

B.e¢ol. AS ecol,

SUM(A.value * B.value) AS value
F'ROM

A JOIN B

ON A.col = B.row
GROUP BY

£y Goo row, col;



Closed Form Solution

e Matrix Inversion
o Matrix size is N x N, with N number of features
m Single shard compute

o Symmetric Positive-Definite(SPD) Matrix

o Fast solver (using Cholesky decomposition)

&Y Google Cloud



When to use IGD vs closed form?

1. If total cardinalities of training features are more than 10000, IGD
strategy is used.

2. If there is overfitting issue, I,e., num of training examples is less
than 10x of total cardinality, IGD is used.

3. If11_regor warm_start is specified, IGD strategy is used.

4. Normal equation strategy is used for all other cases.
&Y Google Cloud



Conclusion

e SQL analysts want to extract insight from their data

e Pure SQL works for insights from historic data

e BQOML

O

O
O
O

Minimal ML knowledge

SQL syntax

Pure SQL implementation — Petabyte scale ML
In database execution

e Tryitfor free: https://cloud.google.com/bigquery

Acknowledgements: Thanks to the BigQuery team.

&Y Google Cloud



BigQuery Analytics Storage Storage

Pavan Edara, Mosha Pasumansky
Software Engineer, Google
02/08/2019
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Columnar Data Storage Format: Capacitor

message Document {
; Links. Backward
Docld: 10 r seusiond At Deilids | Docld  Name.Ur! Links Forward
Liaks optional group Links { value r d valuve r d
Forward: 20 .
: repeated intfd Backward; w0 00 MipliA |0 2 20 0 2 NULL |0 1
'°‘."d: :: repeated :nté&d Forwarxd; ) 20 0 0 htpdB |1 2 40 1 2 10 0 2
Forward: repaated group Name | rer ‘
m "”.t“ q:m m ' Uil ' ‘ 00 ] ‘ 2 m ‘ 2
m. x required string Code; htpiC 0 2 80 0 2
Coda: cn-:u.. optional string Country: )
Country: ‘us optional string Url; )} Name Code m’cﬂ-
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Name Backward: 30 WiL | ¢ 1 NULL | 1
Language Forward: 80 engb |1 2 gb 1 3
Code: ‘en-gb' Name WwiL [0 1 NULL |0 1]
Country: ‘gb’ Ugl: ‘heep://C*
- B T Quarter ProductiD  Price e Partial dictionary encoding
Q1 ] s (W W S N (. . e Quarter
of [ [ [euuws | [Gia s —_— e RLE
Q1 1 12| Q2. 301 L @83 | 4 128 | i
@ OO0 [9 (Q2. 301, 350) 2] e e Bloom Filters
o1 [1 (s = |3 es — e
= , 2 | [@.301.3) Ej + e Statistics
a2 & (04,151,600 | [2.304.1)] 8] OR
e e L8] ay | Oictionary e Row Reordering
o M B 3] a2 Eor  LanOLohosot] e Execution Pushdown
B Kl F 8 Qs Dal| [(Eosaas)
E B & [1] Q3 203 :
o iew o L4] LK) T304 | "128.03.01.01.Q1 |

https://cloud.google.com/blog/products/gcp/inside-capacitor-bigquerys-next-generation-columnar-storage-format
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Storage Optimizer

Table
s
Chunk 1 Chunk 2 Chunk 3
@T1 @T2 @T3
1 MB 100 kB 5 2 MB

Generation 0

Generation 1



Storage management

e Data layout
o Columns that are often queried together - placed close to each other
o Rows reordered to match query patterns
e File Encoding
o Replicated: Faster
o Reed Solomon: Smaller
e Block Sizes

o Larger: less overhead
o Smaller: more parallelism

e Storage Media

o SSD: faster
o HDD: less expensive
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Storage management

e Data layout
o Columns that are often queried together - placed close to each other
o Rows reordered to match query patterns
e File Encoding
o Replicated: Faster
o Reed Solomon: Smaller
e Block Sizes
o Larger: less overhead
o Smaller: more parallelism
e Storage Media

o SSD: faster
o HDD: less expensive
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Time Travel (FOR SYSTEM TIME AS OF)

[

Table 1

(e

Chunk 1
@T1

@ B
Chunk 2

@T2
3 7

\ _/
Colossus

==

Chunk 3
@T3

At T3: Read as of T2.5 uses Chunk 3
At T3: Read as of T1.5 uses Chunk 1



DML

| ]

a N O R 4 ™\

Chunk 1 Chunk 2 Chunk 3
@T1 @T2 @T3-T4
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UPDATE ... WHERE customerlD = “1234”




Streaming Ingestion
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UPDATE ... WHERE customerID = "1234"
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