Improving OCC by Transaction
Batching and Reordering

Bailu Ding', Lucja Kot?, Johannes Gehrke’

'Microsoft Research, <Gramma Tech, Inc, *Microsoft Corporation

|= Microsoft

DMX Group Overview

s Flex
data

= Data manage

Dle resou

Ddse

ment, exploration and mining

'ce allocation mechanisms and policies for cloud

= Contact: Vivek Narassaya

= Self-service data preparation
» Contact: Yeye He

= Approximate query processing

= Contact: Surajit

= Actor-Oriented Databases (Orleans, link)

= Contact: Phil Bernstein

= Automated physical design in the cloua
= Contact: Sudipto Das, Bailu Ding

= And many more!

Automated Physical Design in the Cloud

= A continuous indexing framework to automatically select
and build indexes to reduce query execution time

= Closed-loop solution: success measured in terms real execution time instead of query
optimizer costs

= A hands-free solution: remove human intervention from the critical path of the loop

= More than index recommendation: workload extraction,

index implementation, validation, and monitoring

= Automatically Indexing Millions of Databases in Microsoft Azure SQL Database, Sudipto
Das, Miroslav Grbic, Igor |

= [mprove p

risk with m

an qua

ic, and Et al., SIGMOD 2019
ity with reduced execution cost at low

ultiple executed plans of the same query

= Plan Stitch: Harnessing the Best of Many Plans, Bailu Ding, Sudipto Das, Wentao Wu,
and Et al.,, VLDB 2018

Improving OCC Through Transaction
Batching and Operation Reordering

Optimistic Concurrency Contro

= Read phase
= Validation phase
= Write phase

Optimistic Concurrency Contro

» Read phase 3
« Validation phase ==
= Write phase

Read (Y) -> 20

Write (X) -> 30

T2
Read (X) -> 10

Read (Z) -> 50

| Write (Z) -> 40 \

Read Phase

Optimistic Concurrency Contro

» Read phase 3
» Validation phase ==

g
Write phase]
Read = 1()
Read -> 50
I Write (Z) -> 40 I

Read Phase

Serialize T1
Before T2

10 Commlt
20

Optimistic Concurrency Control

» Read phase 3
« Validation phase ==

= Write phase

erte X) > 30

Read 8 10

Read -> 50

I Write (Z) -> 40 I

Read Phase

Serialize T1
Before T2

10 Commlt
20

Optimistic Concurrency Contro

» Read phase 3
» Validation phase ===

Read =

20
Wr|te > 30
10
50

Read s

Read ->

| Write (Z) -> 40 I

Read Phase

Serialize T1
Before T2

10 Commnt
20

Stale read

Abort

s T2 Destined to Abort, Really?

I-*
—

Read (X) -> 10

Read (Y) -> 20

| Write (X) -> 30 |

Read (X) -> 10

-
N
II

Read (Z) -> 50

Write () -> 40

Serialize T1 ’_l‘1_ 1 | —Té—
Before T2 o

Commit Stale read
= [2]
B

s T2 Destined to Abort, Really?

1
Read (X) -> 10

Read (Y) -> 20

| Write (X) -> 30 |

Read (X) -> 10

-
N
I I

Read (Z) -> 50

Write (Z) -> 40

Serialize T1 El ‘ MR .‘
Before T2 ™ I
Commit Stale read

=
e
Serialize T2 _? M

Before T1

B B
X Commit Commit
= 2] =

s T2 Destined to Abort, Really?

= Conflicting concurrent transactions can potentially all
commit vvith an alternative Serlahzann order

Serialize T1 T2
10 Commlt Stale read
Read (Y) -> 20 20
Abort
Write (X) -> 30 |
T2 Serialize T2
Read (X) -> 10 Before T1

10
Read (Z) -> 50 Commlt Commut
20 20
Write (Z) -> 40

Transaction Reordering in OCC

= Optimistic concurrency control finalizes the
serialization order after transaction execution

= [ncorporate reordering throughout the life of a
transaction

= Batch transactions explicitly to open doors for
reordering

= Limit the scope of reordering with a batch

A Life of a Transaction

. =

Transaction Processing

Transaction Coordinators

- &

Read / write request Validation request queue

Batch and reorder R/'W Batch and reorder
operations transactions

-
Validatior

A (New) Lite of a (Batched and Reordered)
Transaction “

Transaction Processmg

Transaction Coordinators

Read / write request Validation request queue

Batch and reorder R/W Batch and reorder
operations transactions

-
Validatior

Transaction and Operation Reordering

= Reordering transactions at clients

= Prior work on static transaction scheduling

= Reordering operations at storage

= Optimal strateqgy: Prioritize writes before reads to avoid stale reads

= Reordering transactions at validation

= How to create a serialization order with the least number of aborts from a batch
of transactions?

Transaction Reordering at Validation

= Given a batch of transactions B, construct subset
B’ € B, such that B’ is serializable and |B’] is
maximal among all B' € B

= The number of aborts is minimized within the batch if |B’| is maximal

» How to decide if B is serializable and how to
construct a serialization order?

Constructing a serialization order
g Dependency graph: the conflicts of transactions

= Example: A transaction T1 cannot be serialized after a transaction T2 if T2 updates an
item it reads. We have T2 -> T1.

Constructing the Maximal B’

= Given B and a dependency graph G(B), find the
maximal B" € B such that G(B") is acyclic

= Find the minimal V € B such that G(B \ V) is acyclic

«B'=B\V
» Feedback vertex set!
» But itis NP hard ..

= Greedy algorthms

= Strongly connected component (SCC) based
= Sort based: more efficient but less accurate

Policies for Alternative Performance Goals

= Minimize V: minimize the number of aborts
= Alternative goals

= Minimize tail latency
= Minimize the number of restarts
= Maximize monetary value

= Weighted feedback vertex set

= SCC and sort based greedy algorithms

Fvaluation: Write-Intensive Skewed YCSB
= Up to 2.2x improvement in throughput

©-Reorder #:Silo #-Cicada “+TicToc
2
= . B — - -
~15
2
=]
(@)
=
I =
I._
0

4 8 12 16 20 24 28
Number of Threads

Fvaluation: Write-Intensive Skewed YCSB

= Up to 4x reduction in percentile latency

W Reorder I Silo Cicada TicToc
1200
g 1000
= 800 S
o 600 %
3 400 %
3200 %
0 a— — SSSSSS == &3

90% 95% 99%
Percentile Latency

Optimize for Tail Latency

= Up to 6.3x reduction in tail latency

W MinAbort #Z MinTailLatency

250
W
- 200
~150
>
< 100
50
0 — B vz
99.00% 99.90% 99.99% 100.00%
Percentile Latency

Latenc

Conclusion

= Explicit batching opens doors for transaction anc

operation reordering in optimist concurrency control

Batching and reordering transactions improve

throughput and reduce tail latency

= Weighted reordering policies enable optimization for

alternative performance goals such as tail latency
and monetary value

Towards a Learning Optimizer
for Shared Clouds™

Chenggang Wu, Alekh Jindal, Saeed Amizadeh, Hiren Patel,
Wangchao Le, Shi Qiao, Sriram Rao

February 8, 2019

*C. Wy, A. Jindal, S. Amizadeh, H. Patel, W. Le, S. Qiao, and S. Rao. Towards a Learning Optimizer for Shared Clouds. In PVLDB, 12(3): 210-222, 2018.

Rise of Big Data Systems

Hive Declarative query interface
Spark Cost-based query optimizer (CBO)
Flink

Calcite

BigQuery

Big SQL

HDInsight

SCOPE

Etc.

Rise of Big Data Systems

Hive Declarative query interface
Spark Cost-based query optimizer (CBO)

F l I n k SELECT Customer.cname, Item.iname
FROM Customer

Ca lCIte INNER JOIN Order

ON Customer.cid == Order.cid
INNER JOIN Item

B i gQU e ry ON Item.iid == Order.iid
WHERE Item.iprice > 100

B i g S QL AND Customer.cage < 18; -

HDInsight

SCOPE

Etc.

Rise of Big Data Systems

Hive Declarative query interface
Spark Cost-based query optimizer (CBO)
F I i n k SELECT Customer.cname, Item.iname

Calcite INNER JOIN Order

ON Customer.cid == Order.cid
- INNER JOIN Item
B I gQU e ry ON Item.iid == Order.iid

WHERE Item.iprice > 100

Bi g SQL AND Customer.cage < 18; - L
HDInsight
SCOPE Good plan => Good performance

Problem: CBO can make mistakes
Etc. esp. Cardinality Estimation

Rise of Big Data Systems

H ive The root of all evil, the Achilles Heel of query optimization,
is the estimation of the size of intermediate results, known

Spa rk as cardinalities. — [Guy Lohman, SIGMOD Blog 2014]

Flink
Calcite
BigQuery
Big SQL
HDInsight A
SCOPE s,
= (ol

Rise of Big Data Systems

Hive
Spark
Flink

cie TUNING!

BigQuery
. Collecting Statistics
Blg SQL Providing Query Hints

-+ DlnSIg ht Database Administration
SCOPE
EtC.

Rise of the Clouds

Hive
Spark
Flink
alcite

Collecting Statistics
Providing Query Hints
Database Administration

DATA

SYSTEM

Rise of the Clouds

ive MANAGED

Spark

SERVERLESS

ary

Collecting Statistics
Providing Query Hints
Database Administration

DATA

SYSTEM

Rise of the Clouds

Hive

MANAGED
SERVERLESS

DATA

SYSTEM

Rise of the Clouds

Hive

iy SELF
alcite

ory TUNING!
DATA

SYSTEM

Hope: Shared Cloud Infrastructures

DATA

SYSTEM

Shared data processing

Massive volumes of query logs

Hope: Shared Cloud Infrastructures

DATA

SYSTEM

Shared data processing

Massive volumes of query logs Centrally visible query workload

Cosmos: shared cloud infra at Microsoft

e SCOPE Workloads:

* Batch processing in a job service
* 100Ks jobs; 1000s users; EBs data; 100Ks nodes

e Cardinality estimation in SCOPE:
* 1 day’s log from Asimov

Cosmos: shared cloud infra at Microsoft

p—

e SCOPE Workloads:

* Batch processing in a job service g 08
» 100Ks jobs; 1000s users; EBs data; 100Ks nodes & °¢ |
5 04 | Under- | Over-
* Cardinality estimation in SCOPE: § | estimation | estimation
* 1day’s log from Asimov g -

0 |
* Lots of constants for best effort estimation 10*10°10%10™" 10° 10" 10® 10° 10* 10° 10°

. Estimate/Actual Cardinality Ratio
* Big data, unstructured Data, custom code

Cosmos: shared cloud infra at Microsoft

p—

e SCOPE Workloads:

* Batch processing in a job service g 08
« 100Ks jobs; 1000s users; EBs data; 100Ks nodes 3 ¢ |
5 04 | Under- i Over-
* Cardinality estimation in SCOPE: § | estimation | estimation
* 1day’s log from Asimov g =

0 |
e Lots of constants for best effort estimation 1010 10% 10" 10 10" 10% 10° 10* 10° 10°

. Estimate/Actual Cardinality Ratio
* Big data, unstructured Data, custom code

 Workload patterns
e Recurring jobs
e Shared query subgraphs

Cosmos: shared cloud infra at Microsoft

p—

e SCOPE Workloads:

* Batch processing in a job service g 08
* 100Ks jobs; 1000s users; EBs data; 100Ks nodes 3 °°|
S o4 | Under- i Over-
* Cardinality estimation in SCOPE: § | estimation estimation
* 1 day’s log from Asimov s 'O .
* Lots of constants for best effort estimation 10710710107 10° 10" 10% 10° 10% 10° 10°
* Big data, unstructured Data, custom code gy (RS ERS
* Workload patterns % @/\i 55
e Recurring jobs iz b me
e Shared query subgraphs e

Cosmos: shared cloud infra at Microsoft

p—

e SCOPE Workloads:

* Batch processing in a job service g 08
* 100Ks jobs; 1000s users; EBs data; 100Ks nodes & °¢|
S g4 | Under- | Over-
* Cardinality estimation in SCOPE: § | estimation estimation
* 1 day’s log from Asimov s '0 .
* Lots of constants for best effort estimation 107107107107 10° 10" 10% 10° 10% 10° 10°
* Big data, unstructured Data, custom code » SRR A
* Workload patterns = @/\i o
e Recurring jobs oz & mﬁ

e Shared query subgraphs
e Can we learn cardinality models?

Learning Cardinality Model

e Strict: cache previously seen values Subgraph |Llogieal | Parameter | Data
e Low coverage Type Expression | Values Inputs

* Online feedback Strict Fixed Fixed Fixed

* General: Iearning d Single model General Variable Variable Variable
* Hard to featurize
* Hard to train
* Prediction latency
* Low accuracy

* Template: learning a model per subgraph template
=> No one-size-fits-all

Template Fixed Variable Variable

Learned Cardinality Models

e Subgraph Template:
 Same logical subexpression
* Different physical implementation
* Different parameters and inputs

* Feature Selection

* Model Selection

 Generalized liner models due to their
interpretability

* More complex models, such as multi-
layer perceptron harder to train

=< >
el lein.
Filter . Filter -
Age < 18 Age}< 20
Order Order’

Customer Customer’
Name Description
JobName Name of the job containing the subgraph
NormJobName Normalize job name
InputCardinality Total cardinality of all inputs to the subgraph
Pow(InputCardinality, 2) | Square of InputCardinality
S grt(InputCardinality) Square root of InputCardinality
Log(InputCardinality) Log of InputCardinality
AvgRowLength Average output row length
InputDataset Name of all input datasets to the subgraph
Parameters One or more parameters in the subgraph
Madel # Percentage Errer | Pearssa Correlation
Defaull Optineacs 1 2 198854 04l
Adpavemcrs Factie (L) | 1477481 K] 3
Linecar Regression * 11550 (9%
Newral Network I 275 9%
Potsson Regresaon | 0% (9%

Accuracy: 10-fold cross validation

Neural Network
Linear Regression
iIsson Regression

¢

CO0000000
d O NN WPLhOIOONOODO© —

Fraction Subgraph Instances

0° 10%* 10% 10° 10° 10* 10° 10°
Estimated/Actual Cardinality Ratio

Accuracy: 10-fold cross validation

N

S 1 1 :

§ 09

@ 08

= 0.7 |

Q. 0.6 | Neural Network

5 05T inear Regression -
Q 04 Isson Regression ——
»w 03¢

e Q&

3 0.(1) :

m v wr ro—A A gy i) Lt aanl T | PREPTTIN
L 10° 10% 102 10° 10° 10* 10° 10°

Estimated/Actual Cardinality Ratio

75th 9Qth

Percentile | Percentile
Error Error

Default 74602% 5931418%
SCOPE

Poisson 1.5% 32%
Regression

Note: Neural network overfits due to small
observation and feature space per model

Applicability: %tage subgraphs having models

Varying Training Window

Applicability (%)

100 B Jobs
80 - B Subgraphs |
60 - . e ' :
40 — .
20

0

1-day 2-day 4-day 1-week 2-week 1-month
Train Duration

Applicability: %tage subgraphs having models

Applicability (%)

Varying Training Window Sliding Test Window

L W Jobs 100: - M Jobs

80 M Subgraphs X 80 - B Subgraphs

60 E 60 -
®

40 o 40
g

20 < 20

0 0
1-day 2-day 4-day 1-week 2-week 1-month 1-day 1-week 1-month

Train Duration Test Slide Duration

End-to-end Feedback Loop

Query

Cardinality

Models
A

(

-

Model
Server

\

/Model Lookup & Prediction

\

/

.

Parallel
Trainer

Workload |

Analyzer

/

& >

g’ Result

Compiled
_query DAGs estimated statistics & resources

statistics

4

End-to-end Feedback Loop

Query ;

Cardinality

Models

e

Model
Server

- J

f

&

>

Model Lookup & Prediction

a R : =
Parallel Workload =
. i - x : I
Trainer | | Analyzer | QO e |
Compiled Optimized plans & Execution graphs Actual runtime
e y @ -/ _queryDAGs estimated statistics & resources statistics

4

Trained offline over new batches of data
Large number of smaller, highly accurate models

End-to-end Feedback Loop

KModeI Lookup & Prediction\

Query
=l s ~ Result
4 .4
Annotation hints Cardinality
to the query Models
optimizer P . A B o N ™
Model Parallel Workload 8%@ %% Sty =l
N 3 ‘Gl C7— ? Sl
Server | | Trainer | | Analyzer = e
Compiled Optimized plans & Execution graphs Actual runtime
S p 9 B / _query DAGs estimated statistics & resources statistics ~/

Trained offline over new batches of data
Large number of smaller, highly accurate models

End-to-end Feedback Loop

Annotation hints
to the query
optimizer

Query

—

Cardinality

Models
| |

Vs

o

Model
Server

\

j

Easy to featurize with low overhead

Accurate and easy to understand

Parallel Workload
Trainer | | Analyzer |

\ Yy & 4

/Model Lookup & Prediction\

f_..'p-'

Scheduler

A_.-.?'

~ Result
-

£

Compiled

_ query DAGs

g
\ \
==

™

estimated statistics & resources

.......

P

statistics

J

Trained offline over new batches of data
Large number of smaller, highly accurate models

Performance

* Subset of hourly jobs from Asimov
* These queries process unstructured data, use SPJA operators, and a UDO
* Re-ran the queries over same production data, but with redirected output

B Default Optimizer
B With CardLearner

Queries

Performance

e Subset of hourly jobs from Asimov
* These queries process unstructured data, use SPJA operators, and a UDO

* Re-ran the queries over same production data, but with redirected output

700 e
B Default Optimizer Lo B Default Optimizer

B With CardLearner

B With CardLearner

Processing Time (s)
w N [{o]
S 8 8
o o o

o

Queries Queries

Performance

e Subset of hourly jobs from Asimov
* These queries process unstructured data, use SPJA operators, and a UDO

* Re-ran the queries over same production data, but with redirected output

1200

B Default Optimizer
B With CardLearner

7
e B Default Optimizer 12000

B With CardLearner

B Default Optimizer
B With CardLearner

Processing Time (s)
w <N ((e]
S 8 8
o o o
Number of Vertices

o

Queries Queries Queries

Avoiding Learning Bias

Actual:100 Actual:100 Actual:100

* Learning only what is seen

Estimated:75
Actual:75

Estimated:50
Actual:100

* Exploratory join ordering
* Actively try different join orders

* Pruning: discard plans with subexpressions that are more expensive than at
least one other plan

* Maximize new observations when comparing plans

* Execution strategies
 Static workload tuning
e Using sample data
* Leveraging recurring/overlapping jobs

Takeaways

* Big data systems increasingly use cost-based optimization

* Users cannot tune these systems in managed/serverless services
* Hard to achieve a one-size-fits-all query optimizer

* Instance optimized systems are more feasible

* Very promising results from SCOPE workloads:
* Could achieve very high accuracy
* Reasonably large applicability, could further apply exploration
* Performance gains, most significant being less resource consumption

* Learned cardinality models a step towards self-learning optimizers

Machine Learning in Google
BigQuery

Amir Hormati (hormati@google.com)

Google Cloud

Agenda

BigQuery

Why BigQuery ML?

Syntax

Iterative Gradient Descent
Closed Form Solution

Questions

&Y Google Cloud

BigQuery

e (Google’s cloud-based SQL datawarehouse-as-a-service for

analytics:

Enterprise data
warehouse for
analytics

@ BigQuery EIRIS © ocowCusscus

Ry ——y Query editor

Resources + ADDDATA +

Convenience of e vep— T ————
standard SQL o bt e

b Bigquery-test-project-166321

» begquerytestdefault

v cloud training demos

v Ihrbigquery

v Deltedata2

o JOESER R T,

Query history C REFRESH

- WM W . W .

Personal history Project Mstory

Fully managed and
serverless S| e~ | | - Fowee

Petabyte-scale

storage
and queries

[?) HIDE ENITOR

Encrypted, durable
and highly available

Real-time analytics on

streaming data

https://cloud.google.com/bigquery
& Google Cloud

BigQuery ML

e SQL analysts use databases to extract insights from their data.

> SELECT AVG (income) FROM census data GROUP BY state;

> SELECT cid, COUNT (*) FROM orders GROUP BY cid ORDER BY COUNT (*) DESC

e Give SQL analysts access to familiar math concepts, statistical
methods, and algorithms without learning new tools and languages.

&Y Google Cloud

BigQuery ML
e Democratizes ML for business customers.

o Experts in TensorFlow, scikit-learn, etc are rare.
o Expertsin SQL are far more common.

e Analyze large datasets without sampling.
o Scale to petabytes of data

e Avoids slow, cumbersome moving of data to/from of database.
o Learn ML models directly in BigQuery UL.

&Y Google Cloud

Existing Syntax:

Example 1:

CREATE PROCEDURE [dbo].[RxTrainLogitModel] (@trained model
varbinary(max) OUTPUT)

AS
BEGIN
EXEC sp execute external script @language = N'R',
@script = N'
Create model
logitObj <- rxLogit (tipped ~ passenger count +
trip distance + trip time in secs + direct distance, data =
InputDataSet)
summary (logitObi)

Serialize model

trained model <- as.raw(serialize(logitObj, NULL));
1

&Y Google Cloud

Example 2:

SELECT glm('warpbreaks dummy',
'glm model',
'breaks’',
'"ARRAY[1.0,"wool B","tension M", "tension H"]',
'family=poisson, link=log');

SELECT
w.ld,
glm predict(
coef,
ARRAY[1, "wool B", "tension M", "tension H"]::float8[],
'log') AS mu
FROM warpbreaks dummy w, glm model m

BigQuery ML Syntax
e Extension of standard SQL DDLs for creating models:

{CREATE MODEL | CREATE MODEL IF NOT EXISTS | CREATE OR REPLACE

MODEL}

model name

[OPTIONS (model option list)]
[AS query statement]

> CREATE MODEL income model

OPTIONS (model type=‘linear reg’)
AS SELECT state, Job, income as label FROM census data;

&) Google Cloud

BigQuery ML Syntax
e TVFs for prediction and other model operations:

ML.PREDICT (MODEL model name,
{TABLE table name | (query statement) })

> SELECT predicted income FROM ML.PREDICT (MODEL ‘income model’,
SELECT state, job FROM customer data);

ML.EVALUATE (MODEL model name

[, {TABLE table name | (query statement) }]
[, STRUCT (<T> AS threshold)])

£ Google Cloud

Iterative Gradient Descent (IGD)

e Findw such that:
XW=Yy
X : Training data (rows: training examples, cols: features)
w : Weights
y : Observations (income in our running example)

e Core learning algorithm is gradient descent.
o Minimizes the objective:

min,, Z, L(w'x, y) + 4,|Iw|[, + 2,(|lwll,)?

o Includes support for L1and L2 regularization.
&) Google Cloud

BigQuery ML Syntax
e TVFs for prediction and other model operations:

ML.PREDICT (MODEL model name,
{TABLE table name | (query statement) })

> SELECT predicted income FROM ML.PREDICT (MODEL ‘income model’,
SELECT state, job FROM customer data);

ML.EVALUATE (MODEL model name

[, {TABLE table name | (query statement) }]
[, STRUCT (<T> AS threshold)])

&Y Google Cloud

Iterative Gradient Descent (IGD)

e Find w such that:
XW=Yy
X : Training data (rows: training examples, cols: features)
w : Weights
y : Observations (income in our running example)

e Core learning algorithm is gradient descent.
o Minimizes the objective:

min,, Z, L(w'x, y) + 4,|Iwl[, + 2,(|lwl]],)?

o Includes support for L1and L2 regularization.
&) Google Cloud

Iterative Gradient Descent (IGD)

e Gradient descent implemented as sequence of pure SQL queries.

e Represents data and models as tables:

data model
state job Income l feature weight
NY nurse 65000 state:CA | +5.7
CA chef 55000 job:nurse | -3.5

e [Umar Syed, Sergei Vassilvitskii:
SQML: large-scale in-database machine learning with pure SQL. SoCC 2017: 659]

£Y Google Cloud

Iterative Gradient Descent (IGD)

e Each algorithm iteration issues SQL queries that join model to data,
update model, then write model back to disk.

model
table

data
table

score examples
with model
SELECT ... FROM
model JOIN data
GROUP BY example;

score
table

data
table

compute gradient
and update model
SELECT ... FROM
score JOIN data
GROUP BY feature;

new model
table

e Techniques from stats and ML fields to make the queries scale and

hide the complexity while achieving high accuracy..

&Y Google Cloud

Closed form solution

e Find w such that:
XW=Yy
X : Training data — m x n matrix (m >>n)
w: Weights — nx 1

y . Observations — mx 1

&Y Google Cloud

Closed Form Solution

e ML training Algorithms mainly focus on computational linear algebra and
optimizations.

e C(losed form solutions expressed in matrix and vector operations.

o Least square normal equation (linear regression)

w= (XTX+A)"1X1y

&Y Google Cloud

Closed Form Solution

e Why closed form solution is not preferred in most ML platforms?
o Load all of the training data X into memory for computing.
o Parallel computing of extra-large linear algebra.

m Matrix multiplication
m Matrix Inversion

&Y Google Cloud

Closed Form Solution

e ML training Algorithms mainly focus on computational linear algebra and
optimizations.

e C(losed form solutions expressed in matrix and vector operations.

o Least square normal equation (linear regression)

w= (XTX+XI)"1X1y

&Y Google Cloud

Closed Form Solution

e Matrix are represented as table:
with schema <row:string, col:string, data:double>

e Matrix Multiplication is done via inner join.

SELECT

A.row AS row,

B.e¢ol. AS ecol,

SUM(A.value * B.value) AS value
F'ROM

A JOIN B

ON A.col = B.row
GROUP BY

£y Goo row, col;

Closed Form Solution

e Matrix Inversion
o Matrix size is N x N, with N number of features
m Single shard compute

o Symmetric Positive-Definite(SPD) Matrix

o Fast solver (using Cholesky decomposition)

&Y Google Cloud

When to use IGD vs closed form?

1. If total cardinalities of training features are more than 10000, IGD
strategy is used.

2. If there is overfitting issue, I,e., num of training examples is less
than 10x of total cardinality, IGD is used.

3. If11_regor warm_start is specified, IGD strategy is used.

4. Normal equation strategy is used for all other cases.
&Y Google Cloud

Conclusion

e SQL analysts want to extract insight from their data

e Pure SQL works for insights from historic data

e BQOML

O

O
O
O

Minimal ML knowledge

SQL syntax

Pure SQL implementation — Petabyte scale ML
In database execution

e Tryitfor free: https://cloud.google.com/bigquery

Acknowledgements: Thanks to the BigQuery team.

&Y Google Cloud

BigQuery Analytics Storage Storage

Pavan Edara, Mosha Pasumansky
Software Engineer, Google
02/08/2019

Google Cloud

Columnar Data Storage Format: Capacitor

message Document {
; Links. Backward
Docld: 10 r seusiond At Deilids | Docld Name.Ur! Links Forward
Liaks optional group Links { value r d valuve r d
Forward: 20 .
: repeated intfd Backward; w0 00 MipliA |0 2 20 0 2 NULL |0 1
'°‘."d: :: repeated :nté&d Forwarxd;) 20 0 0 htpdB |1 2 40 1 2 10 0 2
Forward: repaated group Name | rer ‘
m "”.t“ q:m m ' Uil ' ‘ 00] ‘ 2 m ‘ 2
m. x required string Code; htpiC 0 2 80 0 2
Coda: cn-:u.. optional string Country:)
Country: ‘us optional string Url;)} Name Code m’cﬂ-
Language
Coda: ‘en’ m
Url: ‘http://A" Decld: 20 r, enus |0 2 us 10 3
Url: 'http://B* Backward: 10 - |22 r'.k'v" 2 2
Name Backward: 30 WiL | ¢ 1 NULL | 1
Language Forward: 80 engb |1 2 gb 1 3
Code: ‘en-gb' Name WwiL [0 1 NULL |0 1]
Country: ‘gb’ Ugl: ‘heep://C*
- B T Quarter ProductiD Price e Partial dictionary encoding
Q1] s (W W S N (. . e Quarter
of [[[euuws | [Gia s —_— e RLE
Q1 1 12| Q2. 301 L @83 | 4 128 | i
@ OO0 [9 (Q2. 301, 350) 2] e e Bloom Filters
o1 [1 (s = |3 es — e
= , 2 | [@.301.3) Ej + e Statistics
a2 & (04,151,600 | [2.304.1)] 8] OR
e e L8] ay | Oictionary e Row Reordering
o M B 3] a2 Eor LanOLohosot] e Execution Pushdown
B Kl F 8 Qs Dal| [(Eosaas)
E B & [1] Q3 203 :
o iew o L4] LK) T304 | "128.03.01.01.Q1 |

https://cloud.google.com/blog/products/gcp/inside-capacitor-bigquerys-next-generation-columnar-storage-format

Data replication

Zone C

Region X

G

Off-region
s

Physical Metadata

[

Table 1

Y

olossus

ot

\

Storage Optimizer

Table
s
Chunk 1 Chunk 2 Chunk 3
@T1 @T2 @T3
1 MB 100 kB 5 2 MB

Generation 0

Generation 1

Storage management

e Data layout
o Columns that are often queried together - placed close to each other
o Rows reordered to match query patterns
e File Encoding
o Replicated: Faster
o Reed Solomon: Smaller
e Block Sizes

o Larger: less overhead
o Smaller: more parallelism

e Storage Media

o SSD: faster
o HDD: less expensive

Storage Optimizer

Table
/
Chunk 1 Chunk 2 Chunk 3
@T1 @T2 @T3
1 MB 100 kB 5 2 MB

Generation 0

Generation 1

Storage management

e Data layout
o Columns that are often queried together - placed close to each other
o Rows reordered to match query patterns
e File Encoding
o Replicated: Faster
o Reed Solomon: Smaller
e Block Sizes
o Larger: less overhead
o Smaller: more parallelism
e Storage Media

o SSD: faster
o HDD: less expensive

Time Travel (FOR SYSTEM TIME AS OF)

[Table 1

Time Travel (FOR SYSTEM TIME AS OF)

[Table 1

U

olossus

o

\

Time Travel (FOR SYSTEM TIME AS OF)

[Table 1

Colossus

;
\

/
\

Time Travel (FOR SYSTEM TIME AS OF)

[

Table 1

(e

Chunk 1
@T1

@ B
Chunk 2

@T2
3 7

\ _/
Colossus

==

Chunk 3
@T3

At T3: Read as of T2.5 uses Chunk 3
At T3: Read as of T1.5 uses Chunk 1

DML

|]

a N O R 4 ™\

Chunk 1 Chunk 2 Chunk 3
@T1 @T2 @T3-T4
& Y & Y & 4

NS

UPDATE ... WHERE customerlD = “1234”

Streaming Ingestion

e
Streaming Ingest E ! :
I | |

Fast Batch Load | |

DML

[

UPDATE ... WHERE customerID = "1234"

Table 1

4 2 N (@
Chunk 1 Chunk 2 Chunk 3
@T1 @T2 @T3-T4

o oy G

Streaming Ingestion

e
Streaming Ingest E ' :

Fast Batch Load | E

Streaming Ingestion

e
Streaming Ingest E | ;

Fast Batch Load £

