Aperture
Data

Visual Data Management System

github.com/IntelLabs/vdms
aperturedata.io

Vishakha Gupta, ApertureData Inc.
Luis Remis, Intel Labs

«/=5»

Typical Machine Learning (ML) Workload

Visual Workload: Metadata + Visual Data

Typical Machine Learning (ML) Workload

Visual Workload: Metadata + Visual Data R

Metadata -> Relational Database, Graph Database

Typical Machine Learning (ML) Workload

Visual Workload: Metadata + Visual Data R

Metadata -> Relational Database, Graph Database

Service for storing the images -> HTTP Server, PACS

== ORT{H)ANC

Typical Machine Learning (ML) Workload

Visual Workload: Metadata + Visual Data R

Metadata -> Relational Database, Graph Database

Service for storing the images -> HTTP Server, PACS

== ORTH)ANC

Library for preprocessing -> OpenCV

Typical Machine Learning (ML) Workload

Visual Workload: Metadata + Visual Data m

Metadata -> Relational Database, Graph Database

Service for storing the images -> HTTP Server, PACS

== ORT{H)ANC

Library for preprocessing -> OpenCV

2,
O

OpenCV

Typical Machine Learning (ML) Workload

Visual Workload: Metadata + Visual Data R

Metadata -> Relational Database, Graph Database

Service for storing the images -> HTTP Server, PACS

== ORTH}ANC

Library for preprocessing -> OpenCV

2,

Very tailored set of scripts c u

OpenCV

ML requires a new type of data management

Unified

Efficient
Al ready and
evolving

ApertureData Inc.

Next Generation of Data Challenges

Primarily Visual
e.g. images, feature
vectors, videos

ApertureData Inc. 4

Next Generation of Data Challenges

Primarily Visual
e.g. images, feature
vectors, videos

+

ApertureData Inc. 4

Machine learning or
data science usages

Next Generation of Data Challenges

Primarily Visual
e.g. images, feature

vectors, videos
]

VDMS is designed to address these

Machine learning or
data science usages

ApertureData Inc.

VDMS Capabilities

* Efficient completion of complex metadata queries
 Metadata stored in (persistent) memory

* Using our in-house Graph Database (now ACID compliant)

* Efficient visual data retrieval

* Images can be stored in image format designed for analytics
 Threshold, crop, resize, or basic augmentation on images on the server side.

* Visual Descriptors can be stored, and similarity search (KNN) performed on the fly.
* Using different mechanism to index and compute distances
 Video can be stored/retrieved.

» Straightforward client APl to enable both metadata and data retrieval

* Queries submitted as JSON (using Python or C++)

VDMS Pipeline Example

Python/C++ Client

VDMS
ML pipeline Client

Module

VDMS Server

Data (images, videos,
descriptors, blobs)

0
q
P
©
ﬂ
o
0
M
v
v
)
q

[1-’:’) T7TA QQ 7 1
[1:’7 T7A QR 7 1

[1.52,7.4,98.7, ...]

VDMS Pipeline Example

Python/C++ Client VDMS Server
VDMS query
JSON Query - Pull Data
Return Data
VDMS Data (images, videos,
ML pipeline Client descriptors, blobs)

Module

10ss320.4d-3.d

[1:’) ‘A Q%Y 1
[1:’7 TA QR 7 1

1 [1.52,7.4,98.7, ...)

VDMS Pipeline Example

Python/C++ Client VDMS Server

VDMS query
JSON Query - Pull Data
‘L . Return Data
VDMS Data (images, videos,
ML pipeline Client n- descriptors, blobs)
Module _g -
o
JSON Query - Push Data o
- §
VDMS Query + Return Successful 180 74 027

[1:’) TA QR 7 1

Image Blob |
[1.52, 7.4,98.7, ...

VDMS
Release 2.0

- .
* Properties on
relationships

e Search using
constraints on
relationships

(

* PMGD 2.0
eVCL1.0

e Wiki and docker
updates

Complex,
multi-hop
searches

Fixes,
performance
and usability

updates

)

ApertureData Inc.

e Feature vectors
e Videos
e Bounding boxes

More visual

data types
besides Image
Richer set of
operations
* Rotate, Flip
* Similarity
t search

Visual Descriptors in VDMS

= ‘. : W s by VDMS

Novel solution for persistent Feature Vector storage, indexing, and search {

Visual Descriptors in VDMS

VDMS

Descriptor: [2.2, 2.9, 54.9, ...]
Label: person_28

Novel solution for persistent Feature Vector storage, indexing, and search

Visual Descriptors in VDMS

VDMS

Descriptor: [2.2, 2.9, 54.9, ...]
Label: person_28

Query:
Descriptor: [2.13, 3.3, 55.3, ...]

Novel solution for persistent Feature Vector storage, indexing, and search

Visual Descriptors in VDMS

VDMS

Descriptor: [2.2, 2.9, 54.9, ...]
Label: person_28

Query:
Descriptor: [2.13, 3.3, 55.3, ...]

2
——>
O
——>
O

[person_28, 4.2]

[person_342, 654.32]
[person_15, 786.43]
[person_94, 965.65]

Novel solution for persistent Feature Vector storage, indexing, and search d

Visual ML Pipeline

Collaboration with Intel Labs

Integration with other Research Project

SAF

Data Acquisition * Processing data in real
/ S
Cameras

\‘ Edge Processing

P t ,
n,%“;vtifj/”mp” < VDMS | Presentation and

i * Persistence !
Preprocessin
ﬁltepring ; * Intelligent access Interpretation

/ * aggregation '
Sensors
Scanner

Large sets of historical
data

More Information

* https://aperturedata.io
o https://github.com/IntelLabs/vdms

 VDMS: Efficient Big-Visual-Data Access for Machine Learning Workloads
Luis Remis, Vishakha Gupta-Cledat, et. Al.
Systems for Machine Learning Workshop @ NIPS 2018

e Addressing the dark side of vision research: Storage
Vishakha Gupta-Cledat, Luis Remis, el al.
ATC HotStorage 2017

ApertureData Inc.

11

Aperture

Data

3%

XX snowflake

The Snowflake
Engine

Northwest Database Society (NWDS)
Annual Meeting 2019

Torsten Grabs - Product Management - torsten.grabs@snowflake.com

© 2018 Snowftake Computing Inc. All Rights Reserved

ave

E/\3

Who we are

Founded: August 2012
Mission: The data warehouse for the cloud

HQ in downtown San Mateo (south of San Francisco) with engineering offices in Bellevue, WA, and
Berlin, Germany

1000+ employees, ~150 engs (and hiring...)
Founders: Benoit Dageville, Thierry Cruanes, Marcin Zukowski
CEO: Bob Muglia

GA in 2015

Raised over $900M across series A-F

ave
/3

Our Product

The Snowflake Elastic Data Warehouse, or “Snowflake”

« Multi-tenant, transactional, secure, highly scalable, elastic
« Implemented from scratch (no Hadoop, Postgres etc.)

Currently runs in the Amazon cloud (AWS) and Microsoft Azure
Serves millions of queries per day over 10s of petabyte of data

1500+ active customers, growing fast

AV

e/ \3

Our Vision for a Cloud Data Warehouse

Data warehouse
as a service

No infrastructure to
manage, no knobs to tune

Multidimensional
elasticity

On-demand scalability
data, queries, users

I—A"_‘

All business
data

Native support for
relational +
semi-structured data

X

el

Multi-cluster Shared-data Architecture

Authentication & access control

Cloud Infrastructure Transactlon

Metadata

Virtual Virtual
Warehouse Warehouse

L1111 EEE
Cache __Cache _

Virtual
Warehouse

EEEE
__Cache _

Virtual
Warehouse

_HE

Data Storage

snowflake

Rest (JDBC/ODBC/Python)

All data in one place

Independently scale storage
and compute

No unload / reload to shut off
compute

Every virtual warehouse can
access all data

ave
e/ \3

Data Storage Layer

Stores table data and query results

Uses cloud-based blob storage in AWS or Azure
* Object store (key-value) with HTTP(S) PUT/GET/DELETE interface
« High availability, extreme durability (11-9)

Some important differences w.r.t. local disks
« Performance (sure...)
* No update-in-place, objects must be written in full
« But: can read parts (byte ranges) of objects

Strong influence on table file format and concurrency control

L Header
6482 2547 3249 8349
1228
—> John Anne Susan
Jeremiah Tim
—» 45 | 21 | 65 | 42 | 36

ave
e/ \3

Table Files

Snowflake uses PAX [AilamakiO1] aka hybrid columnar storage
for table files

Tables horizontally partitioned into large immutable files (~16
MB each)

Updates add or remove entire files

Values of each column grouped together and compressed
Queries read header + columns they need

Old table versions retained for time travel

Metadata stored in a transactional key-value store (not blob
storage)

« Which table consists of which blob storage objects
« Optimizer statistics, lock tables, transaction logs etc.
« Part of Cloud Services layer (see later)

ave
e/ \3

Virtual Warehouse

VW = Cluster of cloud compute VM instances called worker nodes

Pure compute resources
 Created, destroyed, resized on demand
« Users may run multiple VW at same time
« Each VW has access to all data but isolated performance
« Users may shut down all VWs when they have nothing to run

T-Shirt sizes: XS to 4XL

« Users do not know which type or how many VM instances
« Service and pricing can evolve independent of cloud platform

Each worker node maintains local table cache
« Collection of table files i.e. cloud storage objects accessed in past
« Shared across concurrent and subsequent worker processes
« Assignment of table files to nodes using consistent hashing

AYe
e/ \3

Execution Engine

Columnar [MonetDB, C-Store, many more]
- Effective use of CPU caches, SIMD instructions, and compression

Vectorized [Zukowski05]

« Operators handle batches of a few thousand rows in columnar format
* Avoids materialization of intermediate results

Push-based [Neumann11]

« Operators push results to downstream operators (no Volcano iterators)
« Removes control logic from tight loops
« Works well with DAG-shaped plans

No transaction management, no buffer pool
« But: most operators (join, group by, sort) can spill to disk and recurse

ave
r/\3

Cloud Services

Collection of services
« Access control, query optimizer, transaction manager etc.

Heavily multi-tenant (shared among users) and always on
 Improves utilization and reduces administration

Each service replicated for availability and scalability
« Hard state stored in transactional key-value store

AYe
/' \J

Concurrency Control SRRl

Designed for analytic workloads

« Large reads, bulk or trickle inserts, bulk updates
Snapshot Isolation (Sl) [Berenson95]

S| based on multi-version concurrency control (MVCC)

« DML statements (insert, update, delete, merge) produce new table versions of tables by adding or removing
whole files

» Natural choice because table files in cloud storage are immutable
« Additions and removals tracked in metadata (key-value store)

Versioned snapshots used also for time travel and cloning

ave
/' \3

Pruning

Database adage: The fastest way to process data? Don't.

« Limiting access only to relevant data is key aspect of query processing

Traditional solution: B*-trees and other indices
« Poor fit for us: random accesses, high load time, manual tuning

Snowflake approach: pruning

« AKA small materialized aggregates [Moerkotte98], zone maps [Netezza], data skipping [IBM]
« Per file min/max values, #distinct values, #nulls, bloom filters etc.

« Use metadata to decide which files are relevant for a given query

« Smaller than indices, more load-friendly, no user input required

AVe
7

Ongoing Challenges

« Support thousands of concurrent users, some of which do weird things
« Metadata layer is becoming huge

« Customer data is becoming huge

More cloud regions across the globe

« Categorizing and handling failures automatically is very hard

« Automation is key to keeping operations lean

Serverless computing paradigm
Continuous and low latency data ingestion
Data sharing and collaboration over data

Lots of other work left to do
« SQL performance improvements.
« Stronger integration with 3™ party tools
« Self-service model
* Multi-account manageability
« Data visualization

AVe
TAT

It’s a wrap

Snowflake is an enterprise-ready data warehouse as a service
* Novel multi-cluster, shared-data architecture
Highly elastic and available
Semi-structured and schema-less data at the speed of relational data
Pure SaaS experience

Rapidly growing user base and data volume
Lots of challenging work left to do

Veritas: Overlaying
Distributed Database
Applications over
Blockchains

Donald Kossmann
Microsoft Research

Value Prop of Blockchain

Prooft for Digital Transactions

Transactions in the Real World

- All Transactions require Proof. Witnesses and/or Receipts
+ getting married (best man + ring)

- buying a house (notary + contract)

- drinking alcohol (driver's licence)

- Why do we need Proof?

- transactions have conditions and come with rights & accountabilities
+ getting married: ,/ am married to you! Please, be nice to me!”
+ buying a house: ,/ am the rightful owner of the house! | am allowed to live here.”
- birth: ,/ become Donald Kossmann.” - drinking: ,/ am Donald Kossmann!”

- Witnesses and receipts provide proof. Proof = Trust

Transactions in the Digital World

PC Era: If you are alone, you do not need trust (proof)
- user owns and controls all data; user trusts herself

Cloud Era / Connected World: Trust is needed

- users collaborate and share data (e.g., for Al
- news gets hacked

- users need to verify data before making decisions: How?
- proof (receipts & witnesses) in the digital world!
- (Or we are stuck with trusted brands such as Facebook, ..)

Where is the Trust Button?

Book1 - Excel

r
Insert Draw Page Layout Formulas Data Review View () Tell me what Y
gg Calibri 11~ A A == — '59" =€ Wrap Text General
Paste " B I U- - &y ~ A' = = = €= I= éMerge&Center v $ - % 9
Clipboard M Font M Alignment P Numb
Cc4 v fx 35
A | B ’ C . D _ E | F 4 G | H ' I | J
1 First Last Age
2 Tom Cruise 55
3 Donald Kossmann 28
4 Britney Spears 35
5 :
6

Where is the Trust Button?

—1 Book1 - Excel

Insert Draw Page Layout Formulas Data Review View () Tell me what Y
3{) Calibri =111 v AA Av = = — ’5’7' [S’Wrap Text General
" Eé ’ O _ -
Paste . B I U- - &- A = = = €= 3= |Merge & Center - $ "% 9
Clipboard M Font P Alignment M Numb
c4 v f\' 35
| A | B | C D | E | F | G | H , l | J
First Last Age
Tom Cruise

: Donald Kossmann
Britney Spears

O VA WN =

The Dream: Automate Trust

Create Proof in the Connected Digital World
- trace data and transactions
- every document comes with proof (verification)
- | can prove that | did the right thing

Blockchain is a nice building block, but not enough
- Issues: Integration, Performance, Privacy, ...
- Challenge: Retrofit trust into existing applications

Where is the Trust Button?

Book1 - Excel

Y
Insert Draw Page Layout Formulas Data Review View O Tell me what V(¢
% Calibri =111 v A‘ A' = = — ’5’7' [?WrapText General
"I E@ : I _ =
Paste ” B I U- -3~ A' = = = €= 3= < Merge&Center ~ $ - % 9
Clipboard M Font P Alignment M Numb
c4 v [fx | 35
| A | B | € p | E | F | & | H [v |
First Last Age
Tom Cruise

i Donald Kossmann
Britney Spears

O VA WN =

The Dream: Automate Trust

Create Proof in the Connected Digital World
- trace data and transactions
- every document comes with proof (verification)
- | can prove that | did the right thing

Blockchain is a nice building block, but not enough
- Issues: Integration, Performance, Privacy, ...
- Challenge: Retrofit trust into existing applications

Overview

Blockchain 101

Veritas: Integrating Proof into Databases

Example: Decentralized ID

3lockchain 101

Idea 1: Crypto to make transactions Immutable Contract
immutable and atomic.

Idea 2: Consensus protocol to commit Witnesses
a transaction. Community verifies all
transactions.

BLOCKCHAIN 101: UNTRUSTED LEDGER

Ledger

Amy " Harry Hinkegich

BLOCKCHAIN 101: UNTRUSTED LEDGER

Problem: No protection against greedy Harry!

Ledger

(linked list)

Padmasree

H(B3)

BLOCKCHAIN 101

Satya

H(B1)

20
Amy—- Harry

Teri

H(B2)

30
Amy—- Harry

Ledger
(linked list)

15

Padmasree

BLOCKCHAIN 101

Satya

Teri

B3
H(B2)

30
Amy—- Harry

Ledger
(linked list)

16

Padmasree

BLOCKCHAIN 101

Satya

Ledger
(linked list)

17

Traditional

Application

read and write

TRADITIONAL VS. BLOCKCHAIN

Blockchain

H(B)
Application

read and append, verify

Traditional IT Systems

* Productivity: great abstractions
» Security: proven technology

» Performance: millions ops/sec
« Standardization

* but no proofs

Blockchain
* reinvent the wheel
* but proofs

18

Traditional

Application

read and write

VERITAS

Blockchain

H(B)
Application

read and append, verify

Veritas

Application

read and write

19

= = = = == == === == Ry == == =——

20
Amy—- Harry

Amy

VERITAS

22

20
Amy—- Harry

Receipt: 01011

VERITAS

20
I P

23

20
Amy—- Harry

VERITAS
Satya

Receipt: 01011

-
4 H({B)
Verify

20
I P

Teri

24

Amy

VERITAS
Satya

! Verify
50
- [amy = frry

25

20
Amy— Harry

VERITAS
Satya

20
I P

26

Receipt: 100

VERITAS
Satya

Receipt: 100

20

27

Example: Decentralized 1Ds

Acknowledgments:

Daniel Buchner, Esha Ghosh, Rahee Ghosh, Ankur Jain, Srinath Setty, Henry Tsal

DID:
Decentralized

(Digital)
|dentifiers

"On the Internet, nobody knows you're a dog.”

Transactions in the Real World

- All Transactions require Proof. Witnesses and/or Receipts
+ getting married (best man + ring)

- buying a house (notary + contract)

- drinking alcohol (driver's licence)

- Why do we need Proof?

- transactions have conditions and come with rights & accountabillities
+ getting married: ,/ am married to you! Please, be nice to me!”

- buying a house: ,/ am the rightful owner of the house! | am allowed to live here.”

+ birth: ,/ become Donald Kossmann.” - drinking: ,/ am Donald Kossmann!”
- Witnesses and receipts provide proof. Proof = Trust

31

[dentity Problem

Online
Personas

Personal Info

Claims and Credentials

* Enter the country
« Citizenship

* Drive a vehicle
 Driving skills

 Drink alcohol
* Age

 Enter this building
« Work @ MS

32

[dentity Systems Today

LinkedIn

Me

US Bank

;

MS Badge

Diplomas
Birth certificate

33

[dentity Systems Today: Challenges

+ Lack of ownership and control over identifiers

. Centralized root of trust

+ Patchwork of multiple identifiers
-+ Management complexity

- Integration complexity (e.g., Mint)

- Non-cryptographic “proofs” of claims

- |dentity theft

- Privacy

- Example: Establishing my age with DL reveals my location

34

Decentralized Identifiers (DIDs)

A self-owned identity which can be used to securely and privately store

all elements of our identity and establish claims and credentials.

-]
N

Decentralized ldentity Foundation (DI

& uport v BLOCKSTACK gz sovrin & Microsoft iEE
-_:&:‘ .f_":-HvPERLEDGER -'? 1) Civic o acceniure
DANUBE® RSA | e7ernym = aetna S

authenteq) R "4 validated D - o0 2o

fager Ockam NulD el @ DIID @ nuggets
@rmustepkey ZINT @A ONTology @B SLIKE og
verbiomo @ pillar dominode ~ enigma -
& soLocom @ dotum sy (& onfido $o9 AuthO (55 1KOsSmos
@ sm@® @u @lfeld Comw |DENTOS

diwala «sitekity @G EF $= Rremme

@ TRANSMUTE Finema _% GATACA ﬁﬂmgk

36

Decentralized Identifiers (DIDs)

A self-owned identity which can be used to securely and privately store

all elements of our identity and establish claims and credentials.

Sidetree

D

D protocol

-

-

-y

Sidetree DID protocol

— -l

Sidetree

DID protocol

Create DID
(e MrermmmnTrmETeTTEsTOEneEnarn, >
did:ex:0+12d981115702

Alice

/
/
, Q
/
. ”
”
~
~
~
Ny,
~
~

— - a- .

38

Sidetree DID protocol

Alice

Create DID

did:ex:0¥12d981115702

“"@context": "https://w3id.org/did/v1",
"id": "did:ex:0f12d98i1157@2",
"authentication": [{
// this key can be used to authenticate as did:...7@2
"id": "did:example:123456789abcdefghi#keys-1",
“type": "RsaVerificationKey2018",
“"controller": "did:ex: ©f12d981115702",
“publicKeyPem": "----- BEGIN PUBLIC KEY...END PUBLIC KEY----- \r\n"

|3 PR

o —
- -
- -
- -

- -
- -
- =
- - -

- - -

- -
- -
- - -
- - . -
e
-~ - .
-

- =
-
-
- &
-

38

Alice

DID-based Claims

did:ex:0¥12d981115702
Name: Alice

DOB: 1/1/77

-

did:ex:0f12d981115702
Name: Alice

DOB: 1/1/77

G

T e

39

DID-based Claims

Alice

did:ex:0¥12d981115702
Name: Alice

DOB: 1/1/77

did:ex:0f12d981115702
Name: Alice

DOB: 1/1/77

Gos

T e

— -

39

DID-based Claims
W,

did:ex: 1245a0b9\dﬁ2_\328

Alice

E did:ex:0¥12d981115702

WA DOL”
@

did:ex:1a996014456123

— -

40

DID-based claims: Proofs

&

Bob the Barman

DID-based claims: Proofs

did:ex:0f12d981115702

-

Bob the Barman

41

DID-based claims: Proofs

SKatice did:ex:0f12d98i115702

=
/ \ T i
y S e N
/ \ -
/ . "” /
/ = /
” ,
™ /
LN - y
-~ /
Wi /
S /
~ /
~
i /
s

%

Bob the Barman

42

DID-based claims: Proofs

SKatice did:ex:0f12d98i115702

Bob the Barman

{

“@context"”: "https://w3id.org/did/v1",

"id": "did:ex:0f12d98i115702",

“"authentication": [{

// this key can be used to authenticate as did:...7@2

4 "id": "did:example:123456789abcdefghi#keys-1",
/ “type": "RsaVerificationKey2018",

. “controller”: "did:ex: ©f12d98i115702",
/ “publicKeyPem": "----- BEGIN PUBLIC KEY...END PUBLIC KEY----- \r\n"

g -1 1}
Qa @i' Name: Alice

S DL: @ab340976fce34
e
-
- ,

DID-based claims: Proofs

Skai; . .
Alice did:ex:0f12d981115702

[="N
/ \ Ty
S i s
7/ \ -t
/ . —”’ /
y = /
s /
~ hof /
I8 COf- /
/
N /
~
& /
~ /
~
N /
L

Bob the Barman

PKatice G
SHA(DLgjice)

43

DID-based claims: Proofs

Kai '
SKatice Random string s

="
/ \ ~-~.
; i B
/ \ o
/ . f’—' /
¢ OE ;
- /
v ’
- /
. /
\\ 7
~ 7/
~ /7
~
N /7
~LN

Bob the Barman

PKatice G
SHA(DLajice)

44

DID-based claims: Proofs

Kai '
SKatice Random string s

S

Sign(s» SkAlice)

—
S~
—
—
—
—
-
- .

Bob the Barman

PKatice G
SHA(DLajice)

44

DID-based claims: Proofs

S kAlice

B~ -
/ N 0 TG
A L8 N
/ —
p \ = .
/ - /
/7 ” ,
> /
- /
. /
S /
/
\\ 7
~ /
~
-

Bob the Barman

PR atice Gz
SHA(DLajice)

45

DID-based claims: Proofs

S kAlice

.
>

DLAlzce
-
/ \ -sﬁ.
¢ LJE O
/ \ ,—",
, —
¢ - d
7/
CRCg-" ’
CJ§- /
. 7/
\\ 7/
/7
\\ 7
~ 7
~
Ly

Bob the Barman

PKatice G
SHA(DLgjice)

45

Retrofitting Openlo

Claims
Credentials

Alice

Retrofitting Openlo

Claims
Credentials

Authentication
< ID Provid
ﬂ X > roviaer ”

Alice Token

46

Retrofitting Openlo

Account
Setup
i1-
: new DID
Alice
= .
/, \\ ,:‘ i:}i
AP = - ;P
e -~ . ,,'
N
-

ID Provider

Claims
Credentials

47

Retrofitting Openlo

Authenticate
<)

Alice
Claims
Credentials
/Di“‘~-
N SAE.
/ \ o i[:li
:]E l’ am" ’,‘p
~ @
\\ ,’
SO
(-

< H<-E-H-E-n

ID Provider

Claims
Credentials

48

Retrofitting Openlo

Authenticate
<)

Alice
Verifiable
Caches
-
,// \\‘ '_,—:?igi
’ o 7/
O - - 4;; /
~CE
(-

ID Provider

Verifiable
Caches

DID

49

Conclusions

- Blockchains

- proofs of digital transactions

- Limitations — abstractions, performance

- Veritas
- Retrofit verifiability to existing systems

- Overlay on blockchains for consensus

- Decentralized Ids

50

Retrofitting Openlo

Relyi ng) Authenticate) G

Party
Alice
Verifiable
Caches
i~ .
\ -
/, \ b i Dﬂ
l, ,“Qﬁ" ’—p
@i Dﬁ’ > . ,/,
~CE
(-

ID Provider

Verifiable
Caches

DID

49

Retrofitting Openlo

Authenticate
< 1)

Alice
Claims
Credentials
/:)E“‘~~
F oS S
/ \ g i@i
= I =i ,j’;]
~_ @/
~CE
(-

ID Provider

Claims
Credentials

48

DID-based claims: Proofs

Kai '
SKatice Random string s

=N
/ \ ~~~.
y i s
/ \ g
/ . ”—‘ /
y -3 /
o /
— hof 7/
L8 COf- /
/
~ /
~
"2 /7
~ /7
~
N /
~L

&.

Bob the Barman

PKatice G
SHA(DLajice)

44

