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Typical Machine Learning (ML) Workload

Visual Workload: Metadata + Visual Data R

Metadata -> Relational Database, Graph Database

Service for storing the images -> HTTP Server, PACS

== ORTH}ANC

Library for preprocessing -> OpenCV
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Very tailored set of scripts c u

OpenCV



ML requires a new type of data management

Unified

Efficient
Al ready and
evolving

ApertureData Inc.
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Next Generation of Data Challenges

Primarily Visual
e.g. images, feature

vectors, videos
]

VDMS is designed to address these

Machine learning or
data science usages

ApertureData Inc.




VDMS Capabilities

* Efficient completion of complex metadata queries
 Metadata stored in (persistent) memory

* Using our in-house Graph Database (now ACID compliant)

* Efficient visual data retrieval

* Images can be stored in image format designed for analytics
 Threshold, crop, resize, or basic augmentation on images on the server side.

* Visual Descriptors can be stored, and similarity search (KNN) performed on the fly.
* Using different mechanism to index and compute distances
 Video can be stored/retrieved.

» Straightforward client APl to enable both metadata and data retrieval

* Queries submitted as JSON (using Python or C++)



VDMS Pipeline Example

Python/C++ Client

VDMS
ML pipeline Client

Module

VDMS Server

Data (images, videos,
descriptors, blobs)
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VDMS Pipeline Example

Python/C++ Client VDMS Server
VDMS query
JSON Query - Pull Data
Return Data
VDMS Data (images, videos,
ML pipeline Client descriptors, blobs)

Module
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VDMS Pipeline Example

Python/C++ Client VDMS Server

VDMS query
JSON Query - Pull Data
‘L . Return Data
VDMS Data (images, videos,
ML pipeline Client n- descriptors, blobs)
Module _g -
o
JSON Query - Push Data o
- §
VDMS Query + Return Successful 180 74 027

[1:’) TA QR 7 1

Image Blob |
[1.52, 7.4,98.7, ...




VDMS
Release 2.0

- .
* Properties on
relationships

e Search using
constraints on
relationships

(

* PMGD 2.0
eVCL1.0

e Wiki and docker
updates

Complex,
multi-hop
searches

Fixes,
performance
and usability

updates

)

ApertureData Inc.

e Feature vectors
e Videos
e Bounding boxes

More visual

data types
besides Image
Richer set of
operations
* Rotate, Flip
* Similarity
t search




Visual Descriptors in VDMS

= ‘. : W s by VDMS

Novel solution for persistent Feature Vector storage, indexing, and search {
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Visual Descriptors in VDMS

VDMS

Descriptor: [2.2, 2.9, 54.9, ... ]
Label: person_28

Query:
Descriptor: [2.13, 3.3, 55.3, ... ]
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[person_28, 4.2]

[person_342, 654.32 ]
[person_15, 786.43]
[person_94, 965.65]

Novel solution for persistent Feature Vector storage, indexing, and search d




Visual ML Pipeline

Collaboration with Intel Labs



Integration with other Research Project

SAF

Data Acquisition * Processing data in real
/ S
Cameras

\‘ Edge Processing

P t ,
n,%“;vtifj/”mp” < VDMS | Presentation and

i * Persistence !
Preprocessin
ﬁltepring ; * Intelligent access Interpretation

/ * aggregation '
Sensors
Scanner

Large sets of historical
data




More Information

* https://aperturedata.io
o https://github.com/IntelLabs/vdms

 VDMS: Efficient Big-Visual-Data Access for Machine Learning Workloads
Luis Remis, Vishakha Gupta-Cledat, et. Al.
Systems for Machine Learning Workshop @ NIPS 2018

e Addressing the dark side of vision research: Storage
Vishakha Gupta-Cledat, Luis Remis, el al.
ATC HotStorage 2017

ApertureData Inc.

11



Aperture

Data



3%

XX snowflake

The Snowflake
Engine

Northwest Database Society (NWDS)
Annual Meeting 2019

Torsten Grabs - Product Management - torsten.grabs@snowflake.com

© 2018 Snowftake Computing Inc. All Rights Reserved
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Who we are

Founded: August 2012
Mission: The data warehouse for the cloud

HQ in downtown San Mateo (south of San Francisco) with engineering offices in Bellevue, WA, and
Berlin, Germany

1000+ employees, ~150 engs (and hiring...)
Founders: Benoit Dageville, Thierry Cruanes, Marcin Zukowski
CEO: Bob Muglia

GA in 2015

Raised over $900M across series A-F
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Our Product

The Snowflake Elastic Data Warehouse, or “Snowflake”

« Multi-tenant, transactional, secure, highly scalable, elastic
« Implemented from scratch (no Hadoop, Postgres etc.)

Currently runs in the Amazon cloud (AWS) and Microsoft Azure
Serves millions of queries per day over 10s of petabyte of data

1500+ active customers, growing fast
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Our Vision for a Cloud Data Warehouse

Data warehouse
as a service

No infrastructure to
manage, no knobs to tune

Multidimensional
elasticity

On-demand scalability
data, queries, users

I—A"_‘

All business
data

Native support for
relational +
semi-structured data
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Multi-cluster Shared-data Architecture

Authentication & access control

Cloud Infrastructure Transactlon

Metadata

Virtual Virtual
Warehouse Warehouse

L1111 EEE
Cache __Cache _

Virtual
Warehouse

EEEE
__Cache _

Virtual
Warehouse

_HE

Data Storage

snowflake

Rest (JDBC/ODBC/Python)

All data in one place

Independently scale storage
and compute

No unload / reload to shut off
compute

Every virtual warehouse can
access all data



ave
e/ \3

Data Storage Layer

Stores table data and query results

Uses cloud-based blob storage in AWS or Azure
*  Object store (key-value) with HTTP(S) PUT/GET/DELETE interface
«  High availability, extreme durability (11-9)

Some important differences w.r.t. local disks
« Performance (sure...)
* No update-in-place, objects must be written in full
« But: can read parts (byte ranges) of objects

Strong influence on table file format and concurrency control
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Table Files

Snowflake uses PAX [AilamakiO1] aka hybrid columnar storage
for table files

Tables horizontally partitioned into large immutable files (~16
MB each)

Updates add or remove entire files

Values of each column grouped together and compressed
Queries read header + columns they need

Old table versions retained for time travel

Metadata stored in a transactional key-value store (not blob
storage)

«  Which table consists of which blob storage objects
«  Optimizer statistics, lock tables, transaction logs etc.
« Part of Cloud Services layer (see later)
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Virtual Warehouse

VW = Cluster of cloud compute VM instances called worker nodes

Pure compute resources
 Created, destroyed, resized on demand
« Users may run multiple VW at same time
« Each VW has access to all data but isolated performance
« Users may shut down all VWs when they have nothing to run

T-Shirt sizes: XS to 4XL

« Users do not know which type or how many VM instances
«  Service and pricing can evolve independent of cloud platform

Each worker node maintains local table cache
« Collection of table files i.e. cloud storage objects accessed in past
« Shared across concurrent and subsequent worker processes
« Assignment of table files to nodes using consistent hashing
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Execution Engine

Columnar [MonetDB, C-Store, many more]
- Effective use of CPU caches, SIMD instructions, and compression

Vectorized [Zukowski05]

«  Operators handle batches of a few thousand rows in columnar format
* Avoids materialization of intermediate results

Push-based [Neumann11]

«  Operators push results to downstream operators (no Volcano iterators)
« Removes control logic from tight loops
«  Works well with DAG-shaped plans

No transaction management, no buffer pool
«  But: most operators (join, group by, sort) can spill to disk and recurse
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Cloud Services

Collection of services
«  Access control, query optimizer, transaction manager etc.

Heavily multi-tenant (shared among users) and always on
 Improves utilization and reduces administration

Each service replicated for availability and scalability
« Hard state stored in transactional key-value store
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Concurrency Control SRRl

Designed for analytic workloads

« Large reads, bulk or trickle inserts, bulk updates
Snapshot Isolation (Sl) [Berenson95]

S| based on multi-version concurrency control (MVCC)

« DML statements (insert, update, delete, merge) produce new table versions of tables by adding or removing
whole files

» Natural choice because table files in cloud storage are immutable
« Additions and removals tracked in metadata (key-value store)

Versioned snapshots used also for time travel and cloning
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Pruning

Database adage: The fastest way to process data? Don't.

« Limiting access only to relevant data is key aspect of query processing

Traditional solution: B*-trees and other indices
« Poor fit for us: random accesses, high load time, manual tuning

Snowflake approach: pruning

« AKA small materialized aggregates [Moerkotte98], zone maps [Netezza], data skipping [IBM]
«  Per file min/max values, #distinct values, #nulls, bloom filters etc.

« Use metadata to decide which files are relevant for a given query

« Smaller than indices, more load-friendly, no user input required
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Ongoing Challenges

«  Support thousands of concurrent users, some of which do weird things
« Metadata layer is becoming huge

« Customer data is becoming huge

More cloud regions across the globe

« Categorizing and handling failures automatically is very hard

« Automation is key to keeping operations lean

Serverless computing paradigm
Continuous and low latency data ingestion
Data sharing and collaboration over data

Lots of other work left to do
«  SQL performance improvements.
«  Stronger integration with 3™ party tools
«  Self-service model
*  Multi-account manageability
« Data visualization
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It’s a wrap

Snowflake is an enterprise-ready data warehouse as a service
*  Novel multi-cluster, shared-data architecture
Highly elastic and available
Semi-structured and schema-less data at the speed of relational data
Pure SaaS experience

Rapidly growing user base and data volume
Lots of challenging work left to do



Veritas: Overlaying
Distributed Database
Applications over
Blockchains

Donald Kossmann
Microsoft Research




Value Prop of Blockchain

Prooft for Digital Transactions



Transactions in the Real World

- All Transactions require Proof. Witnesses and/or Receipts
+ getting married (best man + ring)

- buying a house (notary + contract)

- drinking alcohol (driver's licence)

- Why do we need Proof?

- transactions have conditions and come with rights & accountabilities
+ getting married: ,/ am married to you! Please, be nice to me!”
+ buying a house: ,/ am the rightful owner of the house! | am allowed to live here.”
- birth: ,/ become Donald Kossmann.” - drinking: ,/ am Donald Kossmann!”

- Witnesses and receipts provide proof. Proof = Trust



Transactions in the Digital World

PC Era: If you are alone, you do not need trust (proof)
- user owns and controls all data; user trusts herself

Cloud Era / Connected World: Trust is needed

- users collaborate and share data (e.g., for Al
- news gets hacked

- users need to verify data before making decisions: How?
- proof (receipts & witnesses) in the digital world!
- (Or we are stuck with trusted brands such as Facebook, ..)



Where is the Trust Button?

Book1 - Excel
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The Dream: Automate Trust

Create Proof in the Connected Digital World
- trace data and transactions
- every document comes with proof (verification)
- | can prove that | did the right thing

Blockchain is a nice building block, but not enough
- Issues: Integration, Performance, Privacy, ...
- Challenge: Retrofit trust into existing applications
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The Dream: Automate Trust

Create Proof in the Connected Digital World
- trace data and transactions
- every document comes with proof (verification)
- | can prove that | did the right thing

Blockchain is a nice building block, but not enough
- Issues: Integration, Performance, Privacy, ...
- Challenge: Retrofit trust into existing applications




Overview

Blockchain 101

Veritas: Integrating Proof into Databases

Example: Decentralized ID



3lockchain 101

Idea 1: Crypto to make transactions Immutable Contract
immutable and atomic.

Idea 2: Consensus protocol to commit Witnesses
a transaction. Community verifies all
transactions.




BLOCKCHAIN 101: UNTRUSTED LEDGER

Ledger

Amy " Harry Hinkegich




BLOCKCHAIN 101: UNTRUSTED LEDGER

Problem: No protection against greedy Harry!

Ledger

(linked list)
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H(B3)

BLOCKCHAIN 101

Satya

H(B1)

20
Amy—- Harry

Teri

H(B2)

30
Amy—- Harry

Ledger
(linked list)
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BLOCKCHAIN 101
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Amy—- Harry

Ledger
(linked list)
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Padmasree

BLOCKCHAIN 101

Satya

Ledger
(linked list)
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Traditional

Application

read and write

TRADITIONAL VS. BLOCKCHAIN

Blockchain

H(B)
Application

read and append, verify

Traditional IT Systems

* Productivity: great abstractions
» Security: proven technology

» Performance: millions ops/sec
« Standardization

* but no proofs

Blockchain
* reinvent the wheel
* but proofs
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Traditional

Application

read and write

VERITAS

Blockchain

H(B)
Application

read and append, verify

Veritas

Application

read and write

19
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20
Amy—- Harry

Amy

VERITAS
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Amy—- Harry

Receipt: 01011

VERITAS

20
I P
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20
Amy—- Harry

VERITAS
Satya

Receipt: 01011

-
4 H({B)
Verify

20
I P

Teri
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Amy

VERITAS
Satya

! Verify
50
- [ amy = frry
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Satya

20
I P

26



Receipt: 100

VERITAS
Satya

Receipt: 100

20
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Example: Decentralized 1Ds

Acknowledgments:

Daniel Buchner, Esha Ghosh, Rahee Ghosh, Ankur Jain, Srinath Setty, Henry Tsal



DID:
Decentralized

(Digital)
|dentifiers

"On the Internet, nobody knows you're a dog.”



Transactions in the Real World

- All Transactions require Proof. Witnesses and/or Receipts
+ getting married (best man + ring)

- buying a house (notary + contract)

- drinking alcohol (driver's licence)

- Why do we need Proof?

- transactions have conditions and come with rights & accountabillities
+ getting married: ,/ am married to you! Please, be nice to me!”

- buying a house: ,/ am the rightful owner of the house! | am allowed to live here.”

+ birth: ,/ become Donald Kossmann.” - drinking: ,/ am Donald Kossmann!”
- Witnesses and receipts provide proof. Proof = Trust
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[dentity Problem

Online
Personas

Personal Info

Claims and Credentials

* Enter the country
« Citizenship

* Drive a vehicle
 Driving skills

 Drink alcohol
* Age

 Enter this building
« Work @ MS

32



[dentity Systems Today

LinkedIn

Me

US Bank

;

MS Badge

Diplomas
Birth certificate

33



[dentity Systems Today: Challenges

+ Lack of ownership and control over identifiers

. Centralized root of trust

+ Patchwork of multiple identifiers
-+ Management complexity

- Integration complexity (e.g., Mint)

- Non-cryptographic “proofs” of claims

- |dentity theft

- Privacy

- Example: Establishing my age with DL reveals my location

34



Decentralized Identifiers (DIDs)

A self-owned identity which can be used to securely and privately store

all elements of our identity and establish claims and credentials.



-]
N

Decentralized ldentity Foundation (DI

& uport v BLOCKSTACK gz sovrin & Microsoft iEE
-_:&:‘ .f_":-HvPERLEDGER -'? 1) Civic o acceniure
DANUBE® RSA | e7ernym = aetna S

authenteq ) R "4 validated D - o0 2o

fager Ockam NulD el @ DIID @ nuggets
@rmustepkey ZINT @A ONTology @B SLIKE og
verbiomo @  pillar  dominode ~ enigma -
& soLocom @ dotum sy (& onfido $o9 AuthO (55 1KOsSmos
@  sm@® @u  @lfeld Comw  |DENTOS

diwala  «sitekity @G EF $=  Rremme

@ TRANSMUTE Finema _% GATACA ﬁﬂmgk

36



Decentralized Identifiers (DIDs)

A self-owned identity which can be used to securely and privately store

all elements of our identity and establish claims and credentials.
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Sidetree DID protocol
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Sidetree

DID protocol

Create DID
(e MrermmmnTrmETeTTEsTOEneEnarn, >
did:ex:0+12d981115702

Alice
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Sidetree DID protocol

Alice

Create DID

did:ex:0¥12d981115702

“"@context": "https://w3id.org/did/v1",
"id": "did:ex:0f12d98i1157@2",
"authentication": [{
// this key can be used to authenticate as did:...7@2
"id": "did:example:123456789abcdefghi#keys-1",
“type": "RsaVerificationKey2018",
“"controller": "did:ex: ©f12d981115702",
“publicKeyPem": "----- BEGIN PUBLIC KEY...END PUBLIC KEY----- \r\n"

|3 PR

o —
- -
- -
- -

- -
- -
- =
- - -

- - -

- -
- -
- - -
- - . -
e
-~ - .
-

- =
-
-
- &
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Alice

DID-based Claims

did:ex:0¥12d981115702
Name: Alice

DOB: 1/1/77

-

did:ex:0f12d981115702
Name: Alice

DOB: 1/1/77

G

T e
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DID-based Claims

Alice

did:ex:0¥12d981115702
Name: Alice

DOB: 1/1/77

did:ex:0f12d981115702
Name: Alice

DOB: 1/1/77

Gos

T e

— -
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DID-based Claims
W,

did:ex: 1245a0b9\dﬁ2_\328

Alice

E did:ex:0¥12d981115702

WA DOL”
@

did:ex:1a996014456123

— -
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DID-based claims: Proofs

&

Bob the Barman




DID-based claims: Proofs

did:ex:0f12d981115702

-

Bob the Barman
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DID-based claims: Proofs

SKatice did:ex:0f12d98i115702

=
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Bob the Barman
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DID-based claims: Proofs

SKatice did:ex:0f12d98i115702

Bob the Barman

{

“@context"”: "https://w3id.org/did/v1",

"id": "did:ex:0f12d98i115702",

“"authentication": [{

// this key can be used to authenticate as did:...7@2

4 "id": "did:example:123456789abcdefghi#keys-1",
/ “type": "RsaVerificationKey2018",

. “controller”: "did:ex: ©f12d98i115702",
/ “publicKeyPem": "----- BEGIN PUBLIC KEY...END PUBLIC KEY----- \r\n"

g -1 1}
Qa @i' Name: Alice

S DL: @ab340976fce34
e
-
- ,




DID-based claims: Proofs

Skai; . .
Alice did:ex:0f12d981115702
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SHA(DLgjice)
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DID-based claims: Proofs

Kai '
SKatice Random string s
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DID-based claims: Proofs

Kai '
SKatice Random string s

S

Sign(s» SkAlice)
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Bob the Barman

PKatice G
SHA(DLajice)
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DID-based claims: Proofs

S kAlice
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DID-based claims: Proofs

S kAlice

.
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Retrofitting Openlo

Claims
Credentials

Alice




Retrofitting Openlo

Claims
Credentials

Authentication
< ID Provid
ﬂ X > roviaer ”

Alice Token
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Retrofitting Openlo

Account
Setup
i1-
: new DID
Alice
= .
/, \\ ,:‘ i:}i
AP = - ;P
e -~ . ,,'
N
-

ID Provider

Claims
Credentials
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Retrofitting Openlo

Authenticate
< )

Alice
Claims
Credentials
/Di“‘~-
N SAE.
/ \ o i[:li
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~ @
\\ ,’
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ID Provider

Claims
Credentials
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Retrofitting Openlo

Authenticate
< )

Alice
Verifiable
Caches
-
,// \\‘ '_,—:?igi
’ o 7/
O - - 4;; /
~CE
(-

ID Provider

Verifiable
Caches

DID

49



Conclusions

- Blockchains

- proofs of digital transactions

- Limitations — abstractions, performance

- Veritas
- Retrofit verifiability to existing systems

- Overlay on blockchains for consensus

- Decentralized Ids
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Retrofitting Openlo

Relyi ng ) Authenticate ) G

Party
Alice
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ID Provider

Verifiable
Caches

DID
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Retrofitting Openlo

Authenticate
< 1)

Alice
Claims
Credentials
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ID Provider

Claims
Credentials
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DID-based claims: Proofs

Kai '
SKatice Random string s
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