CompAct: On-chip Compression of Activations for Low
Power Systolic Array Based CNN Acceleration

JEFF (_]UN) ZHANG and PARUL RAJ, New York University
SHUAYB ZARAR and AMOL AMBARDEKAR, Microsoft
SIDDHARTH GARG, New York University

This paper addresses the design of systolic array (SA) based convolutional neural network (CNN) accelerators
for mobile and embedded domains. On- and off-chip memory accesses to the large activation inputs (sometimes
called feature maps) of CNN layers contribute significantly to total energy consumption for such accelerators;
while prior has proposed off-chip compression, activations are still stored on-chip in uncompressed form,
requiring either large on-chip activation buffers or slow and energy-hungry off-chip accesses. In this paper,
we propose CompAct, a new architecture that enables on-chip compression of activations for SA based CNN
accelerators. CompAct is built around several key ideas. First, CompAct identifies an SA schedule that has
nearly regular access patterns, enabling the use of a modified run-length coding scheme (RLC). Second,
CompAct improves compression ratio of the RLC scheme using Sparse-RLC in later CNN layers and Lossy-RLC
in earlier layers. Finally, CompAct proposes look-ahead snoozing that operates synergistically with RLC to
reduce the leakage energy of activation buffers. Based on detailed synthesis results, we show that CompAct
enables up to 62% reduction in activation buffer energy, and 34% reduction in total chip energy.

CCS Concepts: « Computer systems organization — Systolic arrays; Neural networks; Data flow
architectures; Embedded hardware; - Hardware — Chip-level power issues.

Additional Key Words and Phrases: Deep Neural Networks, Systolic Arrays, Low-Power Design

ACM Reference Format:

Jeff (Jun) Zhang, Parul Raj, Shuayb Zarar, Amol Ambardekar, and Siddharth Garg. 2019. CompAct: On-chip
Compression of Activations for Low Power Systolic Array Based CNN Acceleration. ACM Trans. Embedd.
Comput. Syst. xx, xx, Article 50 (October 2019), 25 pages. https://doi.org/xx.XXXX/XXXXXX.XXXXXXX

1 INTRODUCTION

Deep neural networks (DNN) provide best-in-class accuracy for a range of machine learning
tasks including text, speech, images and video [18, 21, 32]. DNNs are composed of multiple layers
of computation. Each layer performs a linear transformation on its inputs followed by a non-
linear activation such as a sigmoid or rectified linear unit (ReLU). The outputs of each layer, or
equivalently the inputs of each subsequent layer, are referred to as activations. DNNs that use
convolutions as linear transforms are referred to as convolutional neural networks (CNN). Modern

This article appears as part of the ESWEEK-TECS special issue and was presented in the International Conference on
Compilers, Architecture, and Synthesis for Embedded Systems (CASES) 2019.

Authors’ addresses: Jeff (Jun) Zhang, jeffjunzhang@nyu.edu; Parul Raj, pr1498@nyu.edu, New York University, 370
Jay Street, Brooklyn, NY, 11201; Shuayb Zarar, shuayb@microsoft.com; Amol Ambardekar, amolamb@microsoft.com,
Microsoft, 1 Microsoft Way, Redmond, WA, 98052; Siddharth Garg, New York University, 370 Jay Street, Brooklyn, NY,
11201, sgl175@nyu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1539-9087/2019/10-ART50 $15.00

https://doi.org/xx XXXx/XXXXXX.XXXXXXX

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 50. Publication date: October 2019.

https://doi.org/xx.xxxx/xxxxxx.xxxxxxx
https://doi.org/xx.xxxx/xxxxxx.xxxxxxx

50:2 J. Zhang et al.

CNN architectures can have tens to hundreds of layers. Each layer is composed of multiple filters
whose parameters (or weights) are learnt during a training process that is based on gradient descent.

State-of-the-art CNNs perform billions of operations on large matrices or tensors representing
the CNN’s activations and weights, thus resulting in high computational and memory footprint. To
mitigate these issues, there is growing interest in the design of hardware accelerators to speed-up
CNN inference from both industry and academia [4, 5, 9, 17, 27, 30]'. Among the many accelerator
architectures that have been proposed, systolic array (SA) based CNN acceleration is one of the
frequently used architectural solutions; examples from industry include the Google Tensor Process-
ing Unit (TPU) [17] for server applications and ARM’s Trillium [6] targeting the embedded/mobile
domain.

SAs are tightly coupled 2-D grids of multiply-and-accumulate (MAC) units that can perform

matrix multiplications using only nearest neighbour communication. Activations and weights are
streamed through the array in a precisely synchronized manner, such that each activation gets
multiplied by its corresponding weight(s) and the resulting partial product(s) are appropriately
summed to produce an output. Compared to competing architectural solutions, SAs (i) obviate the
need for complex on-chip routing and buffering; and, importantly (ii) amortize the energy costs of
reading weights and activations from memory over multiple MAC operations.
Paper Motivation Our motivation is the observation that for low-power SA accelerators (targeted
towards) embedded/mobile applications, the energy cost of accessing memory is a significant
fraction of total energy consumption. This is because memory accesses are amortized over fewer
MAC operations; for instance, a 64 X 64 SA similar to the ARM Trillium has 4x fewer MAC
operations/access compared to the 256 x 256 Google TPU. Indeed, as observed in Section 4.2
memory accesses contribute up to 65% of total energy for a 64 x 64 SA.

Memory access energy comes from two sources: energy of on-chip SRAM accesses and off-chip
DRAM accesses. Architectures like the TPU (and others [11]) choose to store all activations in
on-chip SRAMs; the goal is to minimize the performance and energy penalty of costly off-chip
DRAM accesses. In these architectures, the outputs of each layer are written back into the on-chip
activation buffer instead of being written off-chip and loaded again from DRAM when the next
layer is executed. However, state-of-the-art CNNs have large activations (3.2MB for the largest
conv layer of VGGNet [33]) requiring large activation buffers; the TPU, for example, has a 24MB
activation buffer?.

An alternative is to use a smaller activation buffer, but at the expense of slower, energy hungry
DRAM accesses; architectures like Eyeriss adopt this strategy [5]. To reduce DRAM energy cost and
bandwidth, Eyeriss [5] uses run length encoding (RLC), a technique that compresses contiguous
sequences of the same value to one value and the number of repeated repetitions or “runs", to
compress/decompress data to/from DRAM. Nonetheless frequent DRAM accesses impose an energy
and performance penalty.

Paper Contributions: In this paper, we propose a new SA based CNN accelerator, CompAct,
that seeks to achieve the best of both worlds: like the TPU architecture, CompAct seeks to store
activations on chip (as much possible), but using only small on-chip activation buffers. CompAct
achieves this using on-chip compression of activations, i.e., activations are stored in compressed
format even in the on-chip activation buffers. All previous SA based architectures of which we are
aware store activations in uncompressed form on chip. On-chip compression of activations for SAs
is challenging for two reasons. (1) SAs are precisely synchronized; a new activation must be fed

INote that accelerators for CNN training have also been designed, but this paper focuses specifically on CNN inference
accelerators
2 Although the designers note that this buffer is over-provisioned.

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 50. Publication date: October 2019.

CompAct: On-chip Compression of Activations for Low Power Systolic Array Based CNN Acceleration 50:3

to each row of the systolic array in every clock cycle. Any read stalls cause the entire SA to stall,
resulting in large performance penalty. This obviates the use of complex variable length coding
schemes. (2) Read access patterns from the activation buffer are typically complex (or scattered) (at
least for the convolutional layers), obviating naive streaming compression schemes like RLC. To the
best of our knowledge, CompAct is the first SA based CNN accelerator that uses on-chip compression
for activations. CompAct is built around several key ideas.

e RLC-Aware Scheduling CompAct schedules the execution of convolutional layers such
that read access from the activation buffer are nearly regular (as described in Section 3.1), and
proposes a modified RLC scheme (described in Section 3.2) that enables on-chip compression
of activations.

e RLC Optimizations We propose two additional optimization, described in Section 3.3, to
the modified RLC scheme that further increase compression ratio. The first optimization
uses Sparse-RLC, a variant of RLC that only compresses runs of zeros, for later layers in the
CNN that are typically highly sparse. The second optimization is a novel Lossy-RLC scheme
that provides even greater compression ratios at the expense of limited loss in classification
accuracy. An energy-aware greedy algorithm (see Algorithm 2) determines the optimal (lossy)
compression ratio for each layer.

¢ Look-Ahead Snoozing CompAct proposes look-ahead snoozing (LAS) (Section 3.4), a leak-
age energy reduction techniques based on the observation that RLC allows exact identification
of when the activation buffer will accessed next; thus the buffer can be proactively placed
in drowsy (or snooze) mode and woken-up in advance, yielding significant reductions in
leakage power.

Based on detailed simulations and synthesis results, we show that when employed synergistically,
the proposed techniques reduce activation buffer energy by up to 62% and yield up to 34% reduction
in total chip energy for the AlexNet and VGG-16 benchmarks.

2 BACKGROUND

In this section, we describe CNN inference mathematically and show how SAs can be used to
accelerate it.

2.1 CNN Inference

A CNN consists of L stacked layers of computation; typically the first several layers are convolutional
while the last few layers are fully-connected. The input of a convolutional layer [is a tensor of
activations Al € RNNIXCr that is convolved with a tensor of weights W € RFP}XFiXCixCrii to yield
an output tensor Y!*! € RNi+1XNis1XCri1 The weight tensor can be thought of as Cy,; 3-D filters of
dimensionality F; X F; X C;. The convolution operation can be written as:

F;-1F;-1C;-1

I+1 _ 1 1
Yijk = Z Z Z Aisp,jrgr X Wp.gr.k* 1)

p=0 gq=0 r=0

Essentially, as shown in Figure 1, each filter strides across the activation tensor, producing one
element of the output tensor for each stride and yielding one channel of the output tensor. (For
simplicity, this discussion has assumes a stride of 1; in general, the filter in Equation 1 moves
across the input tensor with a stride of S.) Y!*! is then passed through an element-wise non-
linearity, ¢(.), for example, the ReLU or a sigmoid function, to yield activations of the next layer

yi+2 ¢ RNooNea e gl = ¢ (yH.1) The computational cost of a layer I’s convolution is
i,j,k i,j,k
O(NIZHFIZCICIH); typically, Nj;1, C; and Cj4 are large, resulting in high computational costs.

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 50. Publication date: October 2019.

50:4 J. Zhang et al.

Convolution i

Convolution Filters

! | |
gy P |
| I
. o —r : - W"A’c’t;v’ations : I
T R

| . MAC
TR |
| I

|

| |
| I

Activation SRAM

Partial sums

Input Activation Matrix

Fig. 1. Illustration of a CNN’s convolutional layer and representation as a matrix multiplication using an
im2col transformation. Also shown is the architecture of a baseline weight-stationary SA based on the TPU.

Convolutions as matrix multiplication. Convolutions can also be expressed as matrix multiplication
of using the im2col transform, as shown in Figure 1. Each row of the 2-D weight matrix, W2 (layer
index dropped for simplicity), corresponds to one of the Cy,4 filters, that is completely unrolled into
a row vector. Correspondingly, each column of the 2-D activation matrix, AP, contains a patch of
the input activation tensor. A patch is a 3-D volume of the same dimensions as a filter unrolled into
a column vector. Each row-vector dot product outputs one element of the output tensor.

The im2col transform is commonly used in software libraries for CNN inference and training [34,
37] since it enables the use of highly optimized numerical libraries for matrix multiplication.
Similarly, since SAs are highly efficient for matrix multiplications, prior work [12, 22] has advocated
for its use in hardware acceleration as well. This strawman strategy is described next, followed by
a discussion of its shortcomings.

2.2 SA-Based Acceleration of CNNs

In this section we describe how an SA can be used to accelerate matrix multiplication; specifically,
to multiple 2D weight matrix W?¢, with 2-D activation matrix A%?.

Figure 1 shows a block-diagram of an SA modeled on the TPU (shown also are the encoder and
decoder blocks that are added as part of CompAct, but we will ignore these for discussion in this
section). The core of the SA is a grid of MAC units, that only connect to their neighbors. The SA also
has three SRAMs that provide inputs to the SA core and store outputs. These are: (1) activation
buffer: stores elements of A%, each column of A?P maps to a row of the accumulation buffer; (2)
weight buffer: stores elements of W2P, each row of W2P maps to a column of the weight buffer;
(3) accumulation buffer: stores the outputs of matrix multiplication. Note that if the dimensions
of A’ and/or WP are large relative to the SA core, outputs are computed over several rounds

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 50. Publication date: October 2019.

CompAct: On-chip Compression of Activations for Low Power Systolic Array Based CNN Acceleration 50:5

or phases; in this case, the accumulation buffer stores and accumulates partial results from each
round [22].

However, for now, assume that the SA is large enough to hold the entire weight matrix, and that
the activation matrix can be fully stored in the activation SRAM. We now describe how W?P x A?P
can be accomplished using a weight stationary SA like the TPU. In a weight stationary architecture,
the weight matrix is first loaded into the SA’s MAC units and remain stationary throughout a round
of computation; Activations are then streamed through the SA, starting with the first SRAM row.
The second row lags behind the first by one clock cycle, the third behind the second by two clock
cycles and so on. As we will see, this precise synchronization in which each row lags behind the
preceding one by exactly one clock cycle enables the activations to arrive at each MAC at just the
right time. Any stall or change in the schedule will result in incorrect computations.

In the first clock cycle, a*P and w?P are multiplied and the partial product is passed downwards.
a?D x w2l is added to the partial product in the next clock and so on until the first element of the
output matrix is computed by the first column of the SA. Thus, the first column of SA computes all
elements of the first row of the output matrix. In the meantime, the second column of SA receives
activations from the first column and computes the second row of the output matrix, and so on.
The outputs of a layer are stored in the accumulation buffer. These outputs are passed through a
pooling and ReLU activation (not pictured in Figure 1) and fed back into the activation buffer from
where the next layer’s processing proceeds.

Drawbacks of im2col implementation. On the one hand, the baseline im2col implementation
described above is conceptually simple. Nonetheless, it has a major drawback as it relates to our
goal of reducing the area and energy costs of the on-chip activation buffer: the size of the 2-D
activation matrix A?P is F? times larger than the raw 3-D activation tensor A. Assuming even small
F = 3 filter size, this results in 9X blow-up in the size of the accumulation buffer (assuming, as the
TPU does, that all activations stay on chip).

One can argue that the memory blow-up of im2col can be contained somewhat using compres-
sion. Indeed, since activations are fetched from the activation buffer in streaming fashion for the
im2col implementation, columns of A%? can be compressed using simple RLC. However, in our
experiments, the best-case compression ration we achieved was 8.5X, which implies that even after
compression, the im2col implementation results in a net increase in memory requirement. As
described next, CompAct adopts a different strategy: activations are stored in the activation buffer
in raw 3-D tensor form, and compressed to significantly reduce memory requirements.

3 COMPACT DESIGN

We now describe in detail the new architectural innovations that we propose as part of CompAct.

3.1 Compression-Aware Scheduling

As we noted in Section 2, a naive im2col mapping result in memory blow-up; instead, our starting
point is to explore mapping/scheduling strategies in which activations are stored in raw tensor
format; however, as we will see, doing so might introduce irregular read access patterns from the
activation buffer.

We start with a mapping, as shown in Fig. 2, in which each input channel maps to a different
row of the activation buffer, and each filter maps to a different column. Looking at the first column,
we note that weights from “pipe" spanning all three channels of the first filter are loaded into the
column; a corresponding pipe of activations, also spanning all three channels, is streamed in from
the activation buffer in a synchronized manner such that the column computes the dot product of
the two pipes. The dot product is a partial sum for the first element of the output activation tensor

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 50. Publication date: October 2019.

50:6 J. Zhang et al.

) Weight Tensors
SA size: 3X3 -
Activation Tensor: 112 % 2 % 2
3X3X3(R,G,B) 314 4 4
Weight Tensor: V|
2X2X3 Clock Cycles @
cac3c2ca
< |
~=11]2]3
c
oll4l5]6 ,—| e Ay A ®
.g =Tsl9 Agg, ” AngAgl g2 Mgl
2
g
Ap, Ay ® ®
Activation Buffer ca

011 = AriWh1 + Ac1We1+As1We1

c5
012 = AraWra + As2We2+As2We2

Partial Outputs

Fig. 2. Baseline Mapping Strategy used in Compact.

Filter Filter
LV
Activation Tensor Activation Tensor
(a) Rasterized (b) Row-Major

Fig. 3. Illustration of (a) rasterized and (b) row major schedules. The rasterized schedule computes a square
patch of the output tensor at a time, while the row major schedule computes a subset of rows of the output
tensor.

and stored in the accumulation buffer (not pictured). This mapping strategy has been used in prior
work [40, 41] and, from publicly available information [29], is also used in the TPU.

Now consider how a convolution operation is scheduled given this mapping. Before proceedings,
we note that each column of the accumulation buffer holds data from a different output channel.
However, we note that the size of the accumulation buffer is typically limited since it holds data at
higher resolution than activations and weights.

Consider, without loss of generality, the first column of the SA. We will also assume, for now,
that the number of input channels equals the number of SA rows. The first step loads a pipe of

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 50. Publication date: October 2019.

CompAct: On-chip Compression of Activations for Low Power Systolic Array Based CNN Acceleration 50:7

//0utput filters mapped to columns on the SA
for (i = 0; 1 < Cout; i++){
//For each pipe of a filter
for (j = 0; j <F; j+5{
for (k = 0; k < F; k++){
//Compute first M rows of the output tensor
for (s = j; s < M+j; s++){
for (t = 0; t < N; t++){
//Dot product of input tensor and filter pipes
//0ccurs over rows of SA
prod = 0;
for (p = 0; p < Cin; p++)
prod + = w[jJI[kI[pl[i] * als][t1lpl;
//Performed in accumulation buffer
if((t-k>=0) && (t-k<=N-F))
y[s-j1t-k1[i] + = prod;
13333

Fig. 4. Code representing the row major schedule. The code outputs the first M rows of the output tensor.
Note that the schedules results in a small number of redundant computations that are dropped by the
accumulator.

1 x 1 X C; weights from the first filter into the SA column. Activations are now streamed into the
SA as per one of two schedules, both described in [29].

(1) Rasterized schedule: as shown in Figure 3(a), that generates a Q X Q patch of the first output
channel by repeating the schedule for each pipe of the input filter. To generate the next patch of
Q X Q outputs, a similar rasterized schedule is used over a window of inputs that overlaps with
the previous one. Note that in each round, the order in which activations are fetched is different. In
Figure 2, for instance, the order of accesses from the red channel would be A,; — A;2 — A;y — Ass,
at which point the first output would be computed, followed by A, — A,3 — A5 — Ay to
generate the next output. Observe that that both A,3 and A,4 need to be accessed after A,,. Since
RLC schemes typically only allow sequential accesses, this complicates the design of such a scheme
for the rasterized schedule.

(2) Row-major schedule: as shown in Figure 3(b), that generates M rows of the first output channel
(where M depends on the size of the accumulation buffer). As before, the schedule for the next M
rows overlaps with the first one, but accesses within a row are always sequential. This enables us to
craft a simple RLC scheme for the row major schedule.

Figure 4 shows equivalent software code for the row major schedule that is actually implemented.
The comments in the code indicate how each operation in the code is mapped to hardware. We
make two observations: (i) M contiguous rows of the activation tensor are read at any given time;
and (ii) assuming no padding, the schedule involves a small number of redundant computations that
are filtered out by the accumulation buffer. An RLC scheme for the proposed row major schedule is
described next.

3.2 On-chip RLC for Row-Major Scheduling

The row major schedule describe above suggests the following RLC scheme: for each channel of
the input activation tensor, CompAct compresses each row of channel separately, and concatenates

3 As noted in [29], this schedule performs some extra computations.

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 50. Publication date: October 2019.

50:8 J. Zhang et al.

the compressed rows into a single vector. This vector is then loaded into the corresponding row of
the activation buffer, as shown via the example in Figure 5.

The RLC scheme adds a single indicator bit per entry in the activation buffer that indicates
whether the entry in the activation buffer is an activation or a run. A run entry indicates the
number of times the previous activation value is repeated. In practice, the overheads of the indicator
bit is roughly 10% for both area and energy, relative to the baseline activation buffer, assuming
8-bit activations.

Finally, note that the row major schedule can be implemented if any subset of M successive
rows can be read from the activation buffer. To allow for this, we allocate a separate N entry row
address buffer that stores the starting address for each row in a channel of the input activation
tensor. The size of this buffer is N log R bits, where N is the maximum spatial dimension of any
activation tensor and R is the number of entries in an activation buffer row. For VGG — 16, N = 256,
which requires an extra storage of 512B per row of the activation buffer, and a total extra storage
cost of only 32KB for a 64 X 64 systolic array. Further, the row activation buffer is infrequently
accessed (relative to the activation buffer).

Algorithm 1 shows the RLC scheme that CompAct uses. The takes as input an N X N input, A,
that represents a channel of the input activation tensor and a threshold 6 whose relevance will
become clear shortly; for now we can assume 6 = 0. The algorithm outputs: (1) a variable length
vector s that represents the compression of A, and (2) a vector r of length N that represents the
entries of the row address buffer. Element s; of s is a tuple (c;, v;), where ¢; is a bit that indicates if
entry v; is an activation or a run.

Decoder logic. The RLC decoder block shown in Figure 5 can now fetch any subset of M contiguous
rows from the activation buffer by looking up the corresponding starting address in the row address
buffer, and then reading sequentially from the activation buffer until it has read a total of M X N
activation values. Note that the decoder decompresses data before feeding it into the SA, such that
the SA sees the exact same input stream as it would for the baseline design. For example, when the
decoder decodes a value 0 stored with run length 5, it outputs 5 zeros in sequence. The decoder adds
a single cycle latency but does not incur a performance overhead since it outputs one activation
per clock cycle to the systolic array.

Encoder logic. Recall that the row major schedule generates M contiguous rows per channel in
the accumulation buffer. In the baseline design (without RLC), as long as M > P, (P is the size of the
subsequent pooling filter), the re-quantization, ReLU and pooling logic can write back data from
each accumulation buffer to the corresponding row of the activation buffer in sequential row major
order. The RLC encoder intercepts the stream of data between the accumulation and activation
buffers and uses Algorithm 1 to store RLC compressed activations in the activation buffer. Note
that the first element of each row from an activation channel always gets encoded as a value in our
row-major scheduling.

3.3 RLC Optimizations

We now discuss two further optimizations that CompAct performs on the baseline RLC scheme to
further improve compression ratio. These are: (1) Sparse-RLC: a variant of RLC that only compresses
runs of 0 activations; and (2) Lossy-RLC. We describe these next.

Sparse-RLC. Our first optimization is based on the observation that later layers in the network
have sparse activations [26], that is, most activations are zeros. Consequently, when using RLC,
most runs in these layers are runs of zeros. Our baseline scheme uses two entries to store a run,
one for the value and the other for the run length. However, if we only compresses runs of zeros,

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 50. Publication date: October 2019.

CompAct: On-chip Compression of Activations for Low Power Systolic Array Based CNN Acceleration

Row Address Buffer 0

ra]rsr2]]

| B

RLC Encoding

Activation Buffer Row 0

Row Address Buffer N

I a]esfrera] |

Activation Buffer Row N

1f{ofo0

o

8uipodaqg Oy

Weight SRAM

X
| w
o7 S
oz =
| rz 3
P2 E
e Activation Tensor 3
| g Channel 0 <
-
o g
w3 310|101 o
| o5 Quantization + RelLU
: 1]1]1]1 Pooling
5|5(6|3 | — — —

Activation Tensor

Channel N

Fig. 5. Illustration of the proposed CompAct architecture. The RLC encoding and decoding blocks ensure
that activations are never stored on-chip in uncompressed form.

the value of the run does not need to be stored and larger compression ratios can be achieved for
sparse layers. We call this scheme Sparse-RLC. Empirically, we find that for VGG-16, RLC typically
provides equal or up to 1.5% higher compression ratio (compared to Sparse-RLC) for earlier layers
(Layers 1-4) in the network, while Sparse-RLC provides up to 1.3X greater compression ratio for
later layers (Layers 6-13). This is illustrated in Figure 6.

1 T T T T T T
2
=08}
o
S06}
]
17}
204t
g -%¢-Sparse-RLC
5 0.2}/ -o-RLC
o ; -@-Lossy-RLC
1 1 1 1 1 1
2 4 6 8 10 12

Conv. Layers

Fig. 6. lllustration of RLC and Sparse-RLC compression ratios on VGG-16.

In practice, CompAct switches between RLC and Sparse-RLC modes from layer to layer, depending
on which provides higher compression. The choice of which scheme is used for each layer is made
offline is based on training data. For example, in Fig. 6, RLC is used for Layer 1 and 2, while

Sparse-RLC is used for all other layers.

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 50. Publication date: October 2019.

50:10 J. Zhang et al.

ALGORITHM 1: CompAct RLC Scheme.

Data: Activation matrix Ayxxn, Threshold 6 of a layer.
Result: Compressed vector s = (¢, v), Row address buffer r.
1 indx < 0;

2 fori e [0,N-1]do

3 ri « indx;

4 Vindx < 4io;

5 Cindx < 0;

6 run «— 0;

7 forje[1,N—-1]do

8 if |a;j — Vingx| < 0 then
9 if ¢ingx = 0 then
10 indx « indx + 1;
1 Cindx < 1

12 run < 1;

13 end

14 else

15 run < run + 1;
16 end

17 end

18 else

19 if run > 0 then

20 ‘ Vindx < run;
21 end
22 indx <« indx + 1;
23 Cindx < 0;
24 Vindx < 4ij;
25 end
26 end
27 end

Lossy-RLC. The second optimization is a lossy-RLC scheme that increases compression ratio at
the expense of a tolerable loss in classification accuracy, as specified by the designer. The Lossy-RLC
scheme is parameterized by a threshold parameter 0. Instead of terminating runs as soon as an
activation different from run’s value is encountered, we instead only terminate runs when we
encounter an activation that is different from the run’s value by at least 8 + 1 (by this token, the
baseline RLC scheme is equivalent to Lossy-RLC with 6 = 0). Note that Algorithm 1 is already
described in terms of the general Lossy-RLC case.

CompAct sets the threshold for each layer differently offline (i.e., during training) using a greedy,
energy-aware algorithm described in Algorithm 2. Given a budget ¢ on the maximum tolerable
reduction in classification accuracy, the greedy algorithm iteratively picks the current layer with
the highest energy consumption (in line 3 where En;(CNNj) refers to the energy consumption

of the I'" layer of the CNN with threshold vector 5), increases its threshold by 1 (in line 4) and
tests the CNN’s classification accuracy on the validation set with this new vector of thresholds (in

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 50. Publication date: October 2019.

CompAct: On-chip Compression of Activations for Low Power Systolic Array Based CNN Acceleration 50:11

-

line 2, where Acc(CNNj) refers to the validation accuracy of the CNN with threshold vector 0).
The algorithm iterates till the classification accuracy drops below the budget. The algorithm then
reverts to the last point before which the accuracy dropped beyond the budget (line 6), and returns
this vector of thresholds.

Figure 6 plots the compression ratio obtained on VGG-16 using Lossy-RLC with a 2% drop in
accuracy; we observe up to a 1.4X increase in compression ratio, which is especially prominent
for earlier layers in the network (more details on the experimental setup are noted in Section 4.1).
Note that since the latter layers contribute relatively little to energy, the greedy algorithm does not
perform lossy compression for these layers.

ALGORITHM 2: Greedy, Energy-Aware Lossy-RLC Threshold Selection.
Data: Trained L layer CNN;; tolerable accuracy loss, .

Result: L-dimension vector 6 of compression thresholds for CNN layers.
10— [0,0,...,0];
2 while ACC(CNNébase) — Acc(CNN;) <t do
3 I « argmaxje[y, 1] Enl(CNNé);
4 51 — 5, +1;
5 end
6 5[— 5[-1

7 return 0;

3.4 Look-Ahead Snoozing (LAS)

RLC reduces both the number of access to the activation buffer, thus reducing its dynamic energy;
however, a significant fraction of energy consumption of large SRAMs comes from leakage power.

As a starting point, we assume that each row of the activation buffer is sub-banked into M banks,
as shown in Figure 7. Each bank is connected to two power gating transistors, enabling it to be put
in one of three modes:

e Active mode: the SRAM bank is connected to nominal voltage Vpp and consumes leakage
energy Egc;.

¢ Snooze mode: the SRAM bank is connected to a data retention voltage (DRV) voltage
Vprv < Vpp that reduce a bank’s leakage power but without any data loss and consumes
leakage energy Eg,, < Eqct.

e Deep sleep: both power gating transistors are OFF, resulting in maximal savings in leakage
power, but at the expense of data loss. A bank in deep sleep consumes leakage energy
Eslp < Esnz.

CompAct can leverage the benefits of RLC to place a greater number of SRAM banks, i.e., those
that are completely unused in any layer, in deep sleep mode. Note that the baseline design does
this too (because some layers require lesser memory than others), but is able to place fewer banks
in deep sleep mode than CompAct.

Second, CompAct leverages the fact that SRAM accesses occur in regular fashion, i.e., each bank
is accessed for a number of clock cycles after which the next bank is accessed and so on, to put
all banks that hold valid activations but are currently not accessed in snooze mode. Therefore,
only one bank, the currently accessed one, is in active mode in any cycle. For fair comparison, we
assume that this technique is also used by the baseline design.

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 50. Publication date: October 2019.

50:12 J. Zhang et al.

Vorv Voo Yorv Vo VoryVpp | B | Active Bank

SRAM| T T . F
Row LI Snooze
e o 0 3

By B,
Vorv Vop Vorv Voo VoryVop Deep Sleep
SRAM - T - el
Row 2 - PP =
-]
- -
SRAM Vory Voo VEIFinDD VorvWpp
~ g o = =
Row N 1 11 13
[Bulde--[B] [5&]

Fig. 7. Banked activation SRAM architecture with two power gating transistors for each bank. A bank can be
either in active (holds valid data, currently being accessed), snooze (holds valid data, currently unaccessed),
or deep sleep mode (does not hold data) modes.

Leveraging these two approaches, the total leakage energy consumption of the baseline scheme
(without compression) per SRAM row is Epgse = Eger + (M — 1)Esp, (assuming the activation
memory is utilized). Assume a sparsity factor of «; for row i, the corresponding leakage energy of
CompAct will be

ECompAct =Eqer + (1 - O()(M - I)Esnz + OC(M - l)ESlp~

Now, we discuss LAS, a leakage saving technique that is possible only for CompAct and operates
synergistically with our RLC scheme. Note that even the active SRAM bank is unaccessed between
runs. Because we store the run length, we know up-front in which cycle the bank will be next
accessed. Let C,,x,, be the number of clock cycles required to wake-up a bank; we can put an active
bank in snooze mode when it is unaccessed and put it back in active mode C,,x,, cycles before it is
next accessed.

An ideal implementation of LAS that can put a bank in snooze mode even if it is unaccessed for
a single cycle will have a leakage energy of

ECompAct+LAS =aEqe + (1 - a)MEsnz + a(M - 1)Eslp'

That is, CompAct additionally reduces the leakage power consumed by active banks. In practice, the
actual leakage power savings depend on the value of C, ¢, and the energy overhead to transition
from snooze to active mode. These overheads are discussed in Section 4.2.

3.5 System-Level Considerations

Here we describe how CompAct operates at the system level, taking into account practical consid-
erations that were not addressed in the discussion thus far.

Reducing size of the activation buffer. Our description of CompAct has implicitly assumed thus
far that the activation buffer is sized such that activations do not need to be written off-chip [17].
In practice, we evaluate CompAct with much smaller activation buffer sizes. If there is no space
in the activation buffer to store a layer’s outputs, the outputs are written to off-chip DRAM, in
raw format for the baseline SA and in compressed form for CompAct. When the subsequent layer
executes, its input activation tensors are fetched from off-chip DRAM.

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 50. Publication date: October 2019.

CompAct: On-chip Compression of Activations for Low Power Systolic Array Based CNN Acceleration 50:13

In addition to reducing the number of accesses from the activation buffer, CompAct also reduces
number of off-chip accesses when the activation buffer sizes are small. That is, when both input and
output activations are compressed, there is a chance that they fit in the limited on-chip activation
buffer even when the uncompressed activations do not. In the worst case, of course, CompAct also
goes off-chip to store compressed activations if required.

Provisioning weight and accumulation buffers. CompAct does not target energy or area reductions
for accumulation and weight buffer; these buffers consume relatively little area for the baseline SA
(as also in the TPU). Specifically, we provision the weight buffer so it can store the weights of at
least one filter per column of the SA. Weights are loaded from off-chip DRAM when required, and
are not compressed (weight compression is orthogonal to the proposed approach and will only
further increase the relative benefits of CompAct versus the baseline).

The accumulation buffer is sized such that each column of the buffer can hold at least P rows
from any layer, where P is the size of the largest pooling filter. Recall the our row major schedule
produces outputs row by row, which must then be pooled to produce outputs for the next layer.
With these constraints, the weight and accumulation buffers are still small, and consume between
5% — 12% of chip area.

Batching. Finally, note that CNN accelerators typically benefit from batching, i.e., computing
on multiple inputs in parallel, since it allows the overheads of fetching weights from DRAM to be
amortized over the batch. On the flip side lower batch sizes do provide the benefit of lower latency
which might be important for real-time applications. We were able to run AlexNet with a batch
size of 4 while still keeping the size of the activation buffer relatively small.

However for a larger network like VGG-16, even a batch size of 1 results in very large activation
buffers.

Nonetheless, there is still an opportunity for optimization, i.e., the later layers of VGG-16 have
smaller activations than its earlier layers and can be batched. More specifically, the first [(I < L)
layers execute with a batch size of 1 while the last L — [layers run with a batch size of B, where B
is determined based on the number of uncompressed activations that can fit in the activation buffer.
As mentioned in the TPU paper [17], the first [layers execute B times and generate a batch of B
inputs for the final layers. Finally, we note that by compressing activations, CompAct might enable
the use of larger batch sizes compared to the baseline. However, we have conservatively assumed
that the batch sizes are the same for both for the fairest comparison.

4 EMPIRICAL EVALUATION

We now present our empirical evaluation of CompAct compared to a baseline scheme modeled on
the TPU architecture that does not use any on-chip compression.

4.1 Experimental Setup

CNN Benchmarks. We evaluate CompAct on two CNNs benchmarks, AlexNet [20] and VGG16,
both for image recognition using the ImageNet dataset [7]. AlexNet has 5 convolution layers
and VGG-16 has 13. We note that for CNNs, convolution layers account more than 90% of the
computational load and therefore dominate energy consumption [2, 26, 28]. Table 1 shows the
parameters of the two CNN architectures. The weights and activations of both CNNs are quantized
to 8-bits for energy efficient hardware implementation, as is standard practice.

Hardware Parameters Our focus in this paper is on CNN accelerators for mobile and embedded
computing. For instance, ARM recently announced an SA based CNN accelerator that operates
within a 1.5W power budget [3]. To operate under a tight power budget, we evaluate a small 32 x 32
and 64 X 64 SAs.

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 50. Publication date: October 2019.

50:14

J. Zhang et al.

Table 1. Details of the CNNs used and accuracy of 32-bit and 8-bit implementations for the entire test set.

L12-L13 (Conv): (14, 14, 512) X (7, 7, 512)
L14-L16 (FC): 4096 X 4096 x 1000

Benchmarks Accuracy (%)
Name Architecture 32-bit | 8-bit
L1-L2 (224, 224 X (27, 27, 64) X (13, 13, 192
(Conv): (22,224, 3) X (27, 27, 64) X (13,13, 192) | 1[0
AlexNet [21] L3-L5 (Conv): (13, 13, 384) x (13, 13, 256) X (6, 6, 256)
L6-L8 (FC): 4096 X 4096 X 1000 79.066 | 78.598
L1-L2 (C (224, 224, 3) X (224, 224, 64) X (112, 112, 64
(Conv): () X ()% () Top5 | Tops
L3-L5 (Conv): (112, 112, 128) X (56, 56, 128) X (56, 56, 256)
VGG-16 [33] | L6-L8 (Conv): (56, 56, 256) X (28, 28, 256) X (28, 28, 512)
L9-L11 (Conv): (28, 28, 512) x (14, 14, 512) X (14, 14, 512) | 90.382 | 90.118

We evaluate CompAct for four different CNN accelerator configurations, one for AlexNet and
three for VGG-16. For all four configurations, the sizes of the SA and on-chip weight buffer and
accumulation buffers are shown in Table 2.

e The AlexNet accelerator has a 512K B activation buffer; this buffer size is sufficient to ensure
that even uncompressed activations remain on chip with a batch size of 4, while accounting
for 52% of the total chip area.

e We explore three configurations of the VGG-16 accelerator with large (L), medium (M) and
small (S) activation buffer sizes. VGG-L has a 6.4MB activation buffer sized to ensure that
all activations remain on chip, but the activation buffer occupies 80% of the total chip area.
Therefore, this architecture may not be suitable for embedded applications. VGG-M and
VGG-S have more reasonably sized activation buffers, of size 1.6MB and 0.8MB, respectively,
that represent 51% and 34% of chip area.

The chips are designed in 45 nm technology node. We assume a Vpp = 1V,a Vpgy = 0.7V (which
is conservative) [35] and a target frequency of 500 MHz. We evaluate the following techniques:

e Base: Does not perform any compression of values in the activation SRAM. To reduce leakage
power, the baseline architecture puts unused banks in sleep mode, and unaccessed banks in

snooze mode.

e Base+RLC: like Eyeriss, use RLC to compress activations when they are written off-chip,
but stores activations on-chip in uncompressed form.
e CompAct: our proposed CompAct architecture that always keeps activations in compressed
format, both on- and off-chip. CompAct includes Compacty,ssiess, compressing the activa-
tions without any approximation; and Compacty ossy:¢%, allowing upto t% CNN classification
accuracy drop during the compression. In our experimental results we allow t to be up to 2%.

Energy/Power Estimation We implemented CompAct along with its RL coding/decoding logic in
synthesizable Verilog, and synthesized with Nangate FreePDK 45 nm standard cell library using the
Cadence Genus synthesis tool to obtain power estimates for the logic components. Our energy and
power estimates for all memory components are based on HP CACTI 7.0 using 45 nm technology
node and a low power process [25]. We also obtain the wake-up time and wake-up energy overheads
from CACTI 7.0 using its power gating feature.

Table 2 reports the parameters for two specific chip designs, one for AlexNet and the other for
VGG-16. For a fair iso-area comparison, we use the same hardware parameters for both baseline
and Compact. The peak power consumption of the AlexNet chip is 0.7 W with a peak performance
of 128 GOPS and that of the VGG-16 chip is 2.5 W with a peak performance of 500 GOPS. All our
results are based on an in-house cycle accurate simulator for TPU operation.

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 50. Publication date: October 2019.

CompAct: On-chip Compression of Activations for Low Power Systolic Array Based CNN Acceleration 50:15

Table 2. Baseline and CompAct Design Parameters. The SRAM access energies are reported on a per
row/column basis.

Components AlexNet [VGG-16
Parameter
SA Size: 32X32 Size: 64X64
Area (mm?): 2.06 Area (mm?): 8.22
MAC OP dynamic energy (pJ): 1.32
MAC leakage energy (pJ): 0.03
Cycle Time (ns): 2
RLgti;JlglC Dynamic energy per OP (p]): 0.17; Leakage per OP (pJ): 0.006
Capacity (KB): 512 Capacity (MB):
S:0.8 M: 1.6 L: 6.4
Area (mm?): 3.46 Area (mm?):
S:5.35M: 11.4 L: 46.0
Banks: 1 Banks: S: 1 M: 2L: 8
Activation Output bits: 9 Output bits: 9
Buffer Dynamic R/W energy (pJ): Dynamic R/W energy (pJ):
11.2/5.8 S:7.7/4.5 M: 10.8/6.6 L: 17.6/13.3
Bank Leakage (p]): 8.9 Bank Leakage (pJ):
S: (5.14) M: (6.85) L: (6.99)
Snooze Leakage (pJ): 0.89 Snooze Leakage (pJ): 0.7
Wake-up Energy (pJ): 5 Wake-up Energy (pJ): 9.8
Wake-up time (ns): 0.36 Wake-up time (ns): 0.56
Capacity (KB): 16.3 Capacity (KB): 32
Row Address | Area (mm?): 0.128 Area (mm?): 0.256
Buffer Output bits: 16 Output bits: 16
Dynamic R/W energy (pJ): 0.9/2 | Dynamic R/W energy (pJ): 0.9/2
Capacity (KB): 43 Capacity (KB): 86
Area(mm?): 0.35 Area(mm?): 0.71
Accumulation | Output bits: 24 Output bits: 24
Buffer Dynamic R/W energy (p]): Dynamic R/W energy (pJ):
2.16/3.2 2.16/3.27
Leakage (pJ): 0.314 Leakage (pJ): 0.32
Capacity (KB): 112 Capacity (KB): 295
Area(mm?): 0.82 Area(mm?): 2.18
Weight Buffer | Dynamic R/W energy (pJ): Dynamic R/W energy (pJ):
2.96/2.6 4.4/3.19
Leakage (p]): 1 Leakage (p]): 1.5

Simulation Methodology Based on the synthesized results in Table 2, we built up a cycle-accurate
model for all the components shown in Fig 5. All the overheads including the encoding/decoding
logic, wake-up energy costs are all built in. We scheduled the benchmark CNNs on the systolic
array as described in Section 3.1, and simulated the execution all CNN layers, by accounting the
data movements within and between CNN layers. We used a set of training data to determine
compression thresholds, and a separate validation data for test.

4.2 CompAct Energy Savings

In this section, we compare the proposed CompAct designs against our Base and Base+RLC. We
first report the obtained saving in the leakage, dynamic and total energy for the activation buffers
alone, and then report the total chip-wide energy savings; note that although CompAct does not
(and is not intended to) reduce the power consumed by the SA logic, weight buffers or accumulation
buffers, the saving in activation buffer and off-chip energy translate into significant savings in total

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 50. Publication date: October 2019.

50:16 J. Zhang et al.

Table 3. Details of Compact coding scheme and threshold g for each CNN (r represents RLC, and s is
Sparse-RLC).

L1 | L2 | L3 |L4|L5|Le | L7-L13

AlexNet | coding | r r s s s
Lossy: 2% 0 0 1 2 1 1 -
VGG-16 | coding | r r s s s s s
Lossy: 1% 0 0|1 |1 |1]1]1 0
VGG-16 | coding | r r s s s s s
Lossy: 2% 0 0 2 1 1 1 1 0
A: Base, B: CompActLossless, C: CompActLossy_ze/
014 2
A
~0.12F Dynamic
5
£
> 01F B
2 0.08 -
50
= C
E 0.06 A
B C
2004}
o
%)
0.02F
0
L1 L2 L3 L4 L5

(a) AlexNet with 512 KB Activation Buffer.

05 6: Base, B: comPAcﬁ_ossbss! C: co'T'p't\ctLossy:1%’ D: compAc‘Lossy:z%
Leakage
. A [l Dynamic
) -
£ 0.4
>
12
So3f
w
s B
So2f A
z c
" D M

Lt L2 L3 L4 L5 L6 L7 L8 L9 L10O L11 Li12 L13

(b) VGG-S with 0.8 MB Activation Buffer.

Fig. 8. Per Layer Activation Buffer Energy Reduction.

chip energy. In our experiments, we present data for both CompAct,ssiess and CompActyossy:22-

Details of coding scheme and threshold 0 used by Compact are in Table 3.

Activation Buffer Energy Reduction We begin by evaluating CompAct energy savings for the
activation buffer only. Fig. 8a and Fig. 8b plots the activation buffer energy costs, broken down
into dynamic and leakage energy, for each layer of AlexNet and the VGG-S chips, respectively
(the results for VGG-L and VGG-M chips are qualitatively similar and are not shown due to space
limitations). We note that any savings in leakage power consumption accrue directly from the
proposed LAS scheme, since LAS is able to additionally turn off the active bank during long runs.

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 50. Publication date: October 2019.

CompAct: On-chip Compression of Activations for Low Power Systolic Array Based CNN Acceleration 50:17

; C\: Base, B: CompActLossless, C: CompActLossyn%, D: CompActLussy:z%
> A A [JLeakage
g [l Dynamic
T 08
©
e
= 0.6 B

B
< C D
5 C
Do4at D
°
(5]
N
goaf
S
zZ
0
VGG-S VGG-M VGG-L

Fig. 9. VGG-16 Total Activation Buffer Energy on 3 Sizes.

VGG-16 on ImageNet

0-92 T T

T T

091 1
compl‘\ctLossy:PAa
0.9¢ S 1

CompAct

Lossless 4

yau

CompAct

o

©

©
T

Top 5 Accuracy
[=] =]
© ©
~ ©
.

Lossy:2%

4

©

2
T

0.85 i}

1

1 1

0.84
0 01 02 03 04 05 06 07 08

Feature Map Compression Ratio

Fig. 10. VGG-16 Accuracy Vs CompAct Tradeoff.

We compare only Base with CompAct since Base+RLC has the same activation buffer costs as
Base. Several observations are in order. (1) Across the board, CompAct (both lossless and lossy)
reduces both dynamic and leakage energy compared to Base. This is true for both AlexNet and
VGG-S. The reductions for each layer depend largely on the compression ratio for dynamic energy,
and the length of runs for leakage energy (since the wake-up energy costs are amortized). (2) The
reductions for CompActy ossy:27 are greater than those for CompActy ossiess. (3) Summed across all
layers, CompActy ossy:29, (CompActy ossiess) achieves 63% (50%) reduction in dynamic energy, 50.74%
(38.67%) reduction in leakage energy and 57.22% (44.8%) reduction in static+dynamic energy for
AlexNet. Fig. 9 plots the activation buffer energy summed over all layers for the VGG-S, VGG-M and
VGG-L chips. For VGG-S 72% (61%), 49% (36.7%) and 62% (51.3%) reductions in dynamic, leakage
and dynamic+leakage energy are achieved by CompActyossy.27 (CompActyossiess)-

Accuracy Vs. Energy Trade-offs The data above demonstrate a trade-off between accuracy and
energy savings for lossless (t = 0%) and lossy (with ¢t = 2%) compression accuracy. To further
illustrate the impact of varying ¢, Fig.10 for VGG-16 plots compression ratio vs accuracy for different
values of t. From the plot, we observe that accuracy drops gradually till t = 1% (Compactyossy14)

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 50. Publication date: October 2019.

50:18 J. Zhang et al.

but more significantly thereafter. The per-layer and total activation buffer energy savings for
Compacty gssy.17 are shown in Fig. 8b and Fig. 9 illustrating the energy-accuracy trade-offs achieved
by CompAct.

System-level Energy Reduction Figure 11 plots the system-wide energy per layer of AlexNet,
while Figure 12 shows the same information for VGG-L, VGG-M and VGG-S. The data for CompAct
in all cases correspond to our more aggressive CompActyossy:2%- The energy costs are broken down
by contributions by the SA core logic, on-chip buffers and DRAM access costs. We observe that
AlexNet’s memory accesses costs are dominated by activation buffer energy, which CompAct
reduces significantly, and off-chip (DRAM) weight accesses, that CompAct does not target. Overall,
CompAct reduces total chip energy across all layers by 22% compared to both Base and Base+RLC
which have the same energy costs for AlexNet.

Several interesting observations can be made for VGG-16, in particular as it relates to decreasing
activation buffer sizes. (1) For the largest activation buffer size, VGG-L, memory energy costs are
dominated by activation buffer accesses (all DRAM access are due to weights); the benefits of
CompAct therefore accrue from the reductions in dynamic and leakage power of the activation
buffer. (2) For VGG-M and VGG-S, the contribution of DRAM energy increases. For the earlier
layers (such as L2) these costs are dominated by storing and loading activations from DRAM —
CompAct dramatically reduces the DRAM costs of L2 because after on-chip compression, activations
typically fit within the activation buffer. In the few cases that CompAct has to go off-chip, it fetches
compressed activations (as does DRAM+Comp, which is not pictured). (3) For the latter layers of
VGG-S (L8, L9, L10), the DRAM costs go up due to repeated weight accesses. CompAct does not
reduce these costs; however, orthogonal weight compression techniques might be of use here.

Figure 13 shows the chip-wide energy costs of VGG-S, VGG-M and VGG-L for Base, Base+RLC
and CompAct. We make several observations. (1) For VGG-S, Base+RLC reduces DRAM costs
relative to Base but has the same activation buffer energy, resulting in a 18% energy reduction.
CompAct further reduces both the DRAM and activation buffer energy (the latter more than the
former), providing 33% energy reduction over Base. (2) VGG-M has similar trends, except that
CompAct significantly cuts both the activation buffer and DRAM energy relative to Base+RLC.
CompAct provides 34% and 26% energy reduction over Base and Base+RLC, respectively. (3) For
VGG-L, the energy costs of the activation buffer are significant, while DRAM costs are small. Here,
Base and Base+RLC have similar energy. CompAct provides a 24% energy saving over Base+RLC.

A: Base, B: CompActLossy:z%

Ar
’ A WA
035 [Accumulation Buffer
B [IWeight Buffer

= 03f A [l Activation Buffer
£ [DRAM
025
5 A g A B
[5) 02 -
& B A
T0.15F
° B
F oot

0.05

o

L1 L2 L3 L4 L5

Fig. 11. AlexNet Per-Layer System-level Energy.

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 50. Publication date: October 2019.

CompAct: On-chip Compression of Activations for Low Power Systolic Array Based CNN Acceleration

25

n

Total Energy (mJ)

Total Energy (mJ)
o . INd
(4,1 - (4] n (3}

o

Total Energy (mJ)
o . N w
(9,1 - (4] n (4] w (4]

o

L1

L1

L1

L2

L2

L2

A: Base, B: CompAct . . »o,

I SA
[Accumulation Buffer
[1Weight Buffer

Il Activation Buffer
EEIDRAM

L3 4 L5 L6 L7 L8 L9 L10O L11 L12 L13

(a) Activation buffer size 6.4 MB.

A: Base, B: CompAct‘_ossy: 2%

I SA
[Accumulation Buffer
[Weight Buffer

[l Activation Buffer
EEIDRAM

L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13

(b) Activation buffer size 1.6 MB.

A: Base, B: CompActLossy: 2%

I SA
[Accumulation Buffer
[Weight Buffer

[l Activation Buffer
[DRAM

L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13

(c) Activation buffer size 0.8 MB.

Fig. 12. VGG-16 Per Layer System-Level Energy.

4.3 Comparison with Channel Pruning

50:19

Another approach to reducing activation buffer accesses is channel pruning, which has been widely
studied as a CNN model compression strategy [15, 23, 24, 31, 36, 38].

At the outset, we note that CompActyossiess can always be applied on top of any pruned CNN,
resulting in further energy reductions without accuracy loss. As we have seen in the results so

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 50. Publication date: October 2019.

50:20 J. Zhang et al.

A: Base, B: Base+RLC, C:CompActLussy: 2%

I SA

I Accumulation Buffer

[IWeight Buffer

A I Activation Buffer
B_|E=oram

n
o
1

N

o
T
>

o

Total Energy (mJ)
>

o

VGG-S VGG-M VGG-L

Fig. 13. VGG-16 Total Energy on 3 Activation Buffer Sizes

far, CompActyossiess itself provides significant activation buffer energy savings. We now show that
CompActy ossy can be used synergistically with channel pruning to achieve even greater savings.
Before beginning, we first note that channel pruning without retraining results in significant
drop in accuracy even with limited amounts of pruning. Fig. 14 shows accuracy versus per-layer
compression ratio using pruning (Fig. 14(a)) or CompActy ossy (Fig. 14(b)) on each layer individually
— pruning without retraining can achieve at most 50% compression ratio beyond which accuracy
starts dropping sharply, while CompAct; ossy typically enables > 50% compression. This is consistent
with data reported in other papers [15, 23]. Thus a fair comparison with pruning requires the
pruned networks to be retrained — unfortunately, retraining a single pruned network for ImageNet
would take than 40 hours on 4 GPUs, limiting our ability to search for optimally pruned networks.
Thus, for this comparison, we use the smaller CIFAR-10 dataset, which is commonly used in prior
work for exploring accuracy vs. energy trade-offs of pruning [15, 23, 24, 31].
Comparison with Pruning+Retraining In order to compare with the pruning with Retraining,
we use a small Cifar-10 dataset to speed up the re-training process. Note here, we only apply
training on Pruning, but not on the Compact. Fig. 15a shows the accuracy versus compression
ratio (in terms of the total size of the CNN’s activation layers) for five pruned versions of AlexNet
obtained via the L1-norm pruning method [23, 24]. Beyond a point (shown as AlexNet Py 5, with
only 0.2% accuracy drop), we see sharp drop in accuracy if channels are further pruned. We now
apply CompActyossiess and CompActy ossy:s% for several values of t < 2% on top of Py 24 and plot the
accuracy versus compression ratio also in Fig. 15a. Now, we compare two solutions with exactly the
same accuracy loss: (1) Py 74, that uses pruning alone, with a net accuracy drop relative to unpruned
of 1.7%, and (2) Py 2% +CompActossy:1.5% Which has the same net accuracy drop relative to unpruned.
Figure 15b shows the activation buffer energy consumption of these two solutions for the AlexNet
chip in Table 2, along with that of Py 25 and Py 2 + CompActyessiess- Allowing for a 0.2% accuracy
drop, Py 2% + CompActyssiess provides 38% savings over pruning (Py 2¢) alone. Allowing for a 1.7%
accuracy drop, synergistic pruning plus lossy CompAct (Py 25 + CompActyossy:1.5%) provides 41%
savings over pruning alone (P 74). Although our focus is on reducing activation buffer energy,
these savings translate roughly 20% reductions in system-wide energy consumption. We repeated
this experiment for VGG; Figure 16 shows Pareto curves of accuracy versus energy for pruning
alone, pruning+CompActy,ssiess and pruning+CompActy s,y — We note again that at iso-accuracy,
pruning+CompActyossy results in the greatest energy savings. At the points highlighted in the
figure (all with 1.5% accuracy drop), pruning+CompActy gssiess has 53% lower energy than pruning
alone; pruning+CompActy ossy provides a further 17% reduction in energy.

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 50. Publication date: October 2019.

CompAct: On-chip Compression of Activations for Low Power Systolic Array Based CNN Acceleration 50:21

CompAct Per Layer of VGG16 on ImageNet

100 100
—
8o 80t N
— 2
5 |Fene 5 |Fow
€ 60 € 6of|—Conv3
3 Conv 4 3
8 —Conv 5 o Conv 4
g g —Conv 5
< —Conv 6 < | Conve
n n
o 40 Conv7 o 40 Conv7
5 —Conv 8 o —Conv 8
= —Conv 9 [onv
—Conv 10 :gunv 9
20{-—cConv 11 20} onv 10|
—Conv 12 Conv 11
- —Conv 12|
Conv 13| |_Conv 13
0 L L L L L L L o— L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Feature Map Compression Ratio Feature Map Compression Ratio
(a) Filter Pruning (b) Compact

Fig. 14. VGG-16 Per Layer Filter Pruning (without re-training) Vs Compact on ImageNet.

5 RELATED WORK

There have been several attempts in the past to design compression schemes for CNN acceler-
ation, including schemes that target weight/filter compression, activation compression or both.
Weight/filter compression techniques such as CNN/DNN pruning [13, 36, 39] are orthogonal to
the goal of the CompAct, that focuses on compressing activations. Techniques such as cirCNN [8]
place constraints on the weight matrices that allow for compact representations, but again do
not explicitly compress activations. For the weight-stationary SA architecture that we adopt as
a baseline, the dominant SRAM block (in terms of area and energy) is the activation SRAM [17],
which is the compression target for CompAct. Note also that weight compression can be performed
offline, while activations needs to be compressed online. Further, we expect that deploying any of
the aforementioned weight compression approaches, CompAct’s relative benefits over the baseline
would improve, since activations would account for an even greater fraction of total chip-wide
energy.

Techniques that compress activations have only been explored thus far in the context of loosely-
coupled accelerators. The EIE architecture uses run-length encoding (RLC) for off-chip compression,
but stores data in uncompressed format [14]. More relevant is the SCNN [26] approach that uses
sparse coding for on-chip activation compression. However, SCNN implements a highly specialized
architecture that uses on-chip compression to reduce the number of MAC operations performed,;
that is, SCNN stores the indices and values of all non-zero activations and weights, and operates
on these elements in an irregular fashion. In contrast, to maintain precise synchrony for an SA
architecture, all activations and weights, including zeros, must be streamed through the SA in
regular order. Thus, the SCNN compression scheme cannot be easily or directly applied to SA based
acceleration. Furthermore, it is important to note from Figure 6, that RLC provides far greater
compression ratio than sparse coding for earlier layers in the CNNs that we experimented with.

Previous work has exploited sparsity to reduce compute energy by skipping or bypassing MACs
with zero inputs [1, 5, 19]. Our baseline design also uses the same approach (we do not claim this as
a new contribution). For loosely couple accelerators, sparse coding also improves performance [26]
by skipping compute cycles. However, because precise synchrony has to be maintained, this is
not possible for the TPU. As we show, the primary benefit of sparse coding in this context is to
reduce the dynamic/leakage energy of activation SRAMs. Because of their low design complexity
(and other advantages as explained in [6]), several recent works have performed design space

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 50. Publication date: October 2019.

50:22 J. Zhang et al.

0.874 P0.2% +C°n;pa0t Lossless
Po2% ‘7
0.86 ’\ .
3 »
. !
gosst .
P-4 1.7% 029 *COMPACY oy 1 5%
-
So.84f |
-
0.83 .
-6~ Pruning+Retraining
-+-Compact
0.82 L L L L
0 0.2 0.4 0.6 0.8 1

Feature Map Compression Ratio

(a) Compression Ratio

A: Py 5o, B: Py 5o, +CompAct C:P
Total Activation Buffer Energy
- A: 13.8289 pud
B: 8.7882uJ
- C: 6.5217 pd
D: 10.9644 pJ

Lossless’ CF Pg.2g *COMPACY oy 5o D1 Py 7,

w
&)

N
o w

&

F|[ILeakage
[l Dynamic

SRAM Total Energy (uJ)
- [N

o
o
T

o

L1 L2 L3 L4 L5

(b) Activation Buffer Energy

Fig. 15. AlexNet Pruning Vs Compact on Cifar-10.

exploration studies of SA based accelerators. This includes work on optimizing the SA architecture
including the shape of the SA core and buffer sizes [16, 42], optimized memory schedules [10],and
techniques to reduce power consumption of the SA core [40]. None of these papers have so far
performed on-chip compression of activations.

6 CONCLUSION AND FUTURE WORK

In this paper, we have presented and evaluated CompAct, the first architecture that uses on-chip
compression in the context of tightly-coupled SA based CNN accelerators. CompAct is motivated by
the observations that memory energy is a major contributor to on-chip energy consumption for
SAs based accelerators, especially for mobile and embedded accelerators with small SAs. CompAct
introduces several novel ideas to enable on-chip compression of activations; (i) CompAct uses a row
major schedule that has nearly regular access patterns from the activation buffer, and implements a
modified RLC scheme that exploits this access patterns; (ii) CompAct further increases compression
ratio using Sparse-RLC in later layers in the network and Lossy-RLC in earlier layers; and (iii)

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 50. Publication date: October 2019.

CompAct: On-chip Compression of Activations for Low Power Systolic Array Based CNN Acceleration 50:23

0.92 .
>0.91F \ -
7]
®
=
3 oo}]
g 09
<
-

2.0.89 .
|2 -©-Pruning+Retraining
-#-Pruning+Retraining+Compact, |
0.881 -.A.-Pruning+Retraining+CompactLossy b
10° 10"

Normalized Activation Buffer Energy

Fig. 16. VGG-16 Pruning+Compact on Cifar-10.

CompAct reduces leakage power using a lookahead snooze scheme that places activation buffers in
sleep mode during long runs. Leveraging these ideas, CompAct is able to achieve between 39%—62%
reduction in activation buffer energy, and up to 34% savings in total chip energy for chips with
32 X 32 and 64 X 64 SAs for AlexNet and VGG-16 CNNs. As future work, we will explore the use of
RLC coding for modified SA based architectures, like the one proposed by [22], that are especially
designed for CNNs like MobileNet.

ACKNOWLEDGMENTS

This work is performed when the first author interned at Microsoft Research, and is supported
in part by an National Science Foundation CAREER Award. The authors would like to thank the
anonymous reviewers for their time, suggestions, and valuable feedback.

REFERENCES

[1] Jorge Albericio et al. 2016. Cnvlutin: ineffectual-neuron-free deep neural network computing. In Processdings of
ACM/IEEE ISCA. 1-13.

[2] Manoj Alwani et al. 2016. Fused-layer CNN accelerators. In IEEE/ACM MICRO. 1-12.

[3] ARM. 2018. PROJECT TRILLIUM@ONLINE. https://www.arm.com/products/silicon-ip-cpu/machine-learning/project-
trillium

[4] Srimat Chakradhar et al. 2010. A dynamically configurable coprocessor for convolutional neural networks. In ACM
Computer Architecture News, Vol. 38. 247-257.

[5] Yu-Hsin Chen et al. 2017. Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural
networks. IEEE JSSC 52, 1 (2017), 127-138.

[6] Reetuparna Das and Tushar Krishna. [n.d.]. DNN Accelerator Architecture 4AS SIMD or Systolic? https://www.sigarch.
org/dnn-accelerator-architecture-simd-or-systolic/. Accessed: 2019-04-27.

[7] Jia Deng et al. 2009. Imagenet: A large-scale hierarchical image database. In IEEE CVPR. 248-255.

[8] Caiwen Ding, Siyu Liao, Yanzhi Wang, Zhe Li, Ning Liu, Youwei Zhuo, Chao Wang, Xuehai Qian, Yu Bai, Geng Yuan,
et al. 2017. CirCNN: Accelerating and Compressing Deep Neural Networks Using Block-CirculantWeight Matrices.
arXiv preprint arXiv:1708.08917 (2017).

[9] Zidong Du et al. 2015. ShiDianNao: Shifting vision processing closer to the sensor. In ACM SIGARCH Computer
Architecture News, Vol. 43. 92-104.

[10] Li et. al. 2018. SmartShuttle: Optimizing off-chip memory accesses for deep learning accelerators. In 2018 IEEE DATE.
343-348.

[11] Mingyu Gao, Xuan Yang, Jing Pu, Mark Horowitz, and Christos Kozyrakis. 2019. Tangram: Optimized Coarse-Grained
Dataflow for Scalable NN Accelerators.

[12] Yijin Guan et. al. 2017. FP-DNN: An automated framework for mapping deep neural networks onto FPGAs with
RTL-HLS hybrid templates. In 2017 IEEE FCCM. 152-159.

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 50. Publication date: October 2019.

https://www.arm.com/products/silicon-ip-cpu/machine-learning/project-trillium
https://www.arm.com/products/silicon-ip-cpu/machine-learning/project-trillium
https://www.sigarch.org/dnn-accelerator-architecture-simd-or-systolic/
https://www.sigarch.org/dnn-accelerator-architecture-simd-or-systolic/

50:24 J. Zhang et al.

[13] Song Han et al. 2015. Deep compression: Compressing deep neural networks with pruning, trained quantization and
huffman coding. arXiv preprint arXiv:1510.00149 (2015).

[14] Song Han et al. 2016. EIE: efficient inference engine on compressed deep neural network. In Proceedings of IEEE ISCA.
243-254.

[15] Muhammad Abdullah Hanif, Alberto Marchisio, Tabasher Arif, Rehan Hafiz, Semeen Rehman, and Muhammad Shafique.
2018. X-DNNss: Systematic Cross-Layer Approximations for Energy-Efficient Deep Neural Networks. Journal of Low
Power Electronics 14, 4 (2018), 520-534.

[16] Weiwen Jiang, Edwin Hsing-Mean Sha, Qingfeng Zhuge, Lei Yang, Xianzhang Chen, and Jingtong Hu. 2018. Heteroge-
neous fpga-based cost-optimal design for timing-constrained cnns. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 37, 11 (2018), 2542-2554.

[17] Norman Jouppi et al. 2017. In-datacenter performance analysis of a tensor processing unit. arXiv preprint
arXiv:1704.04760 (2017).

[18] Andrej Karpathy et al. 2014. Large-scale video classification with convolutional neural networks. In Proceedings of the
IEEE CVPR. 1725-1732.

[19] Dongyoung Kim et al. 2017. ZeNA: Zero-Aware Neural Network Accelerator. IEEE Design Test (2017).

[20] Alex Krizhevsky. 2014. One weird trick for parallelizing convolutional neural networks. arXiv preprint arXiv:1404.5997
(2014).

[21] Alex Krizhevsky et al. 2012. Imagenet classification with deep convolutional neural networks. In NIPS. 1097-1105.

[22] HT Kung et. al. 2019. Packing sparse convolutional neural networks for efficient systolic array implementations:
Column combining under joint optimization. In 24th ASPLOS. ACM, 821-834.

[23] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. 2016. Pruning filters for efficient convnets.
arXiv preprint arXiv:1608.08710 (2016).

[24] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. 2018. Rethinking the value of network
pruning. arXiv preprint arXiv:1810.05270 (2018).

[25] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P Jouppi. 2009. CACTI 6.0: A tool to model large
caches. HP laboratories (2009), 22-31.

[26] Angshuman Parashar et al. 2017. SCNN: An Accelerator for Compressed-sparse Convolutional Neural Networks.
SIGARCH Comput. Archit. News 45, 2 (June 2017).

[27] Seongwook Park et al. 2015. 93TOPS/W scalable deep learning/inference processor with tetra-parallel MIMD architec-
ture for big-data applications. In IEEE ISSCC.

[28] Atul Rahman et al. 2016. Efficient FPGA acceleration of convolutional neural networks using logical-3D compute array.
In IEEE DATE. 1393-1398.

[29] Jonathan Ross and Gregory Michael Thorson. 2017. Rotating data for neural network computations. US Patent
9,805,303.

[30] Murugan Sankaradas et al. 2009. A massively parallel coprocessor for convolutional neural networks. In IEEE ASAP
2009. 53-60.

[31] Syed Shakib Sarwar, Gopalakrishnan Srinivasan, Bing Han, Parami Wijesinghe, Akhilesh Jaiswal, Priyadarshini Panda,
Anand Raghunathan, and Kaushik Roy. 2018. Energy efficient neural computing: A study of cross-layer approximations.
IEEE Journal on Emerging and Selected Topics in Circuits and Systems 8, 4 (2018), 796—809.

[32] Jurgen Schmidhuber. 2015. Deep learning in neural networks: An overview. Neural networks 61 (2015), 85-117.

[33] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556 (2014).

[34] Aravind Vasudevan et al., Andrew Anderson, and David Gregg. 2017. Parallel multi channel convolution using general
matrix multiplication. In IEEE 28th ASAP. 19-24.

[35] Elenal Vatajelu and Joan Figueras. 2011. Statistical analysis of 6T SRAM data retention voltage under process variation.
In 14th IEEE International Symposium on Design and Diagnostics of Electronic Circuits and Systems. IEEE, 365-370.

[36] Wei Wen et al. 2016. Learning structured sparsity in deep neural networks. In NIPS. 2074-2082.

[37] Keiji Yanai, Ryosuke Tanno, and Koichi Okamoto. 2016. Efficient mobile implementation of a cnn-based object
recognition system. In Proceedings of the 24th ACM international conference on Multimedia. ACM, 362-366.

[38] Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. 2017. Designing energy-efficient convolutional neural networks using
energy-aware pruning. In Proceedings of the IEEE CVPR. 5687-5695.

[39] Jiecao Yu et al. 2017. Scalpel: Customizing DNN Pruning to the Underlying Hardware Parallelism. In Proceedings of
ACM ISCA. 548-560.

[40] Jeff Zhang, Kartheek Rangineni, Zahra Ghodsi, and Siddharth Garg. 2018. Thundervolt: enabling aggressive voltage
underscaling and timing error resilience for energy efficient deep learning accelerators. In ACM 55th DAC. 19.

[41] Jeff Jun Zhang, Tianyu Gu, Kanad Basu, and Siddharth Garg. 2018. Analyzing and mitigating the impact of permanent
faults on a systolic array based neural network accelerator. In 2018 IEEE 36th VLSI Test Symposium (VTS). IEEE, 1-6.

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 50. Publication date: October 2019.

CompAct: On-chip Compression of Activations for Low Power Systolic Array Based CNN Acceleration 50:25

[42] Chen Zhang et al. 2015. Optimizing fpga-based accelerator design for deep convolutional neural networks. In
Proceedings of the 2015 ACM FPGA. ACM, 161-170.

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 50. Publication date: October 2019.

	Abstract
	1 Introduction
	2 Background
	2.1 CNN Inference
	2.2 SA-Based Acceleration of CNNs

	3 CompAct Design
	3.1 Compression-Aware Scheduling
	3.2 On-chip RLC for Row-Major Scheduling
	3.3 RLC Optimizations
	3.4 Look-Ahead Snoozing (LAS)
	3.5 System-Level Considerations

	4 Empirical Evaluation
	4.1 Experimental Setup
	4.2 CompAct Energy Savings
	4.3 Comparison with Channel Pruning

	5 Related Work
	6 Conclusion and Future Work
	Acknowledgments
	References

