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Bob writes a replication system and implements its recovery procedure




SUP T T 0 |

write; recovery restores
®) + O > O » O

invariants
= || (. ] 11k
= | || . ||| 11

Bob writes a replication system and implements its recovery procedure




Bob is careful and writes a
machine-checked proof of correctness
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Challenge: crashes during composed recovery
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Prior work cannot handle multiple recovery
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Argosy supports modular recovery proofs
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Argosy supports modular recovery proofs
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Argosy Is compatible with existing techniques
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Contributions

Recovery refinement for modular proofs

CHL for proving recovery refinement

see paper  Verifled example: logging + replication

see code  Machine-checked proofs in Cog ¥
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Preview: recovery refinement
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Correctness: trace inclusion
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Recovery refinement
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Disk interface
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Extending trace inclusion with recovery
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Extending trace inclusion with recovery

P crash semantics
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Trace inclusion, with recovery
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Proving trace inclusion, with recovery
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Proving trace inclusion, with recovery
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Proving trace inclusion, with recovery

o- -0

R R

*

24



Proving trace inclusion, with recovery

O

R
*

24



Proving trace inclusion, with recovery
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Recovery refinement

non-crash execution
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Recovery refinement
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Composition theorem



Kleene algebra for transition relations
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Kleene algebra for transition relations
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Theorem: recovery refinements compose
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Theorem: recovery refinements compose
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Goal: prove composed recovery correct
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Goal: prove composed recovery correct

rep recover

k» O under crashes

log recover

\_,v Log

O under crashes

X gl ©

30



*
ree B

31



31



B0 B o
*
-8

*
feiofla] - O)

how to re-use recovery proofs here?
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Using Kleene algebra for reasoning
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Using Kleene algebra for reasoning
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After rewrite both proofs apply
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After rewrite both proofs apply
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Abstract
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ABSTRACT

DFSCQ is the first file system that (1) provides
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1 INTRODUCTION

File systems achieve high VO performance and crash safely
by implementing sophistic ated optimizations to increase disk

throughput. These optimizations include deferring writing
buffered data to persistent storage, grouping many trans
achions into a simgle | () operation, checksumming journal

entries, and bypassing the write-ahead log when writing to
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def atomic save(data, path):

write all(data, tmp)
rename(tmp, path)

# runs on crash

def recover():
fs recover()
unlink(tmp)
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def atomic save(data, path):

write all(data, tmp)
rename(tmp, path)

# runs on crash
defs recoveﬁz L. this is non-modular and makes
e P the proof much harder

Proving this code correct took 1500 lines of proof code!
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Argosy so far

Recovery refinement
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Trace inclusion for recovery

Modular proofs
of multiple layers
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Argosy so far

program — Recovery refinement
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Trace inclusion for recovery

Modular proofs
of multiple layers
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Crash Hoare Logic



Hoare Logic

“Hoare triple” { P } code 1Q}

precondition postcondition
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Hoare Logic

“Hoare triple” {P } code 1Q}

precondition postcondition

oF - NO

if P(s) then Q(s’)
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Crash Hoare Logic

“crash specification” {P} code {0} {Qc}

precondition postcondition crash invariant
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if P(s) then Q(s’)

of - oig

if P(s) then Qc(s’)
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Crash Hoare Logic

“recovery specification”

{P} code O recover {0} {Qr}

precondition postcondition recovery postcondition

o- -6
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if P(s) then Qr(s’)
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Crash Hoare Logic
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Crash Hoare Logic

“recovery specification”

{P} code O recover {0} {Qr}

precondition postcondition recovery postcondition

oF - NO

if P(s) then Q(s’)
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@_.. code recover recover _,@

if P(s) then Qr(s’)
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theorem in CHL to prove recovery specs from crash specs

code O
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theorem in CHL to prove recovery specs from crash specs
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theorem in CHL to prove recovery specs from crash specs

code O
recover

code

crash

recover

recovery Is
idempotent




theorem in CHL to prove recovery specs from crash specs

code O
recover

code

crash

(* recover

|

recovery Is
idempotent




Argosy connects CHL to recovery refinement

Come up with abstraction relation
Prove a refinement specification for every operation

Gives recovery refinement for implementation
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Recovery refinement as a CHL spec
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Recovery refinement as a CHL spec
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Recovery refinement as a CHL spec
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CHL

this part is prior work but
completes the picture

—> Recovery refinement

p\\es

/770/, es

Trace inclusion for recovery

Modular proofs
of multiple layers
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Argosy is implemented and verified in Coq

3,200 lines for framework

4,000 lines for verified example (logging + replication)

Example extracts to Haskell and runs

github.com/mit-pdos/argosy
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Future work

50



Concurrency

Extending Concurrent Separation Logic [originally 2007]

Implemented using Iris [originally POPL 2015]
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Better story for running code

Currently extract to Haskell
Performance problems (esp. for concurrency)

New plan: import Go into Coqg
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Usability for students

Argosy spun off from course infrastructure

Now want to backport improvements
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Argosy: modular proofs of layered storage systems

Kleene algebra ( Ol | )*
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Argosy: modular proofs of layered storage systems
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Argosy: modular proofs of layered storage systems
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After rewrite both proofs apply
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def atomic save(data, path):

write all(data, tmp)
rename(tmp, path)

# runs on crash

def recover():
fs recover()
unlink(tmp)
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