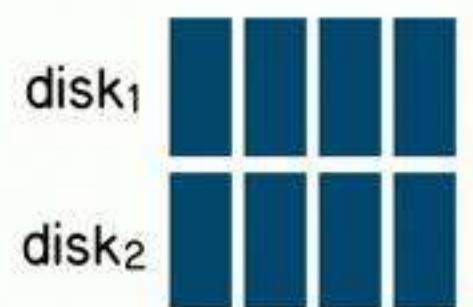


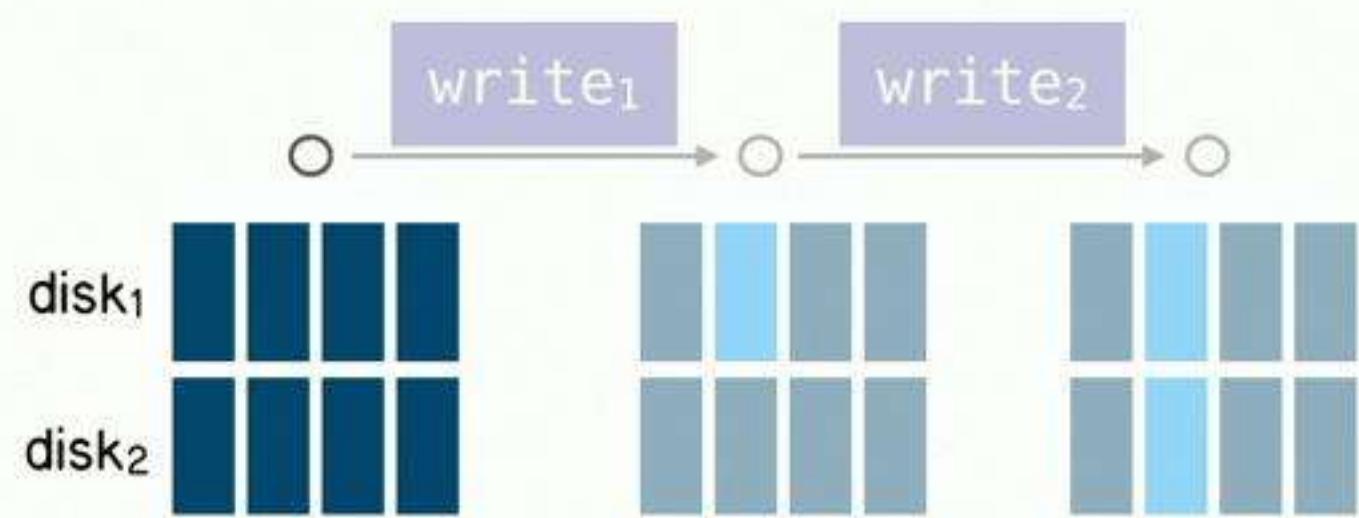
Argosy: Verifying layered storage systems with recovery refinement

Tej Chajed, Joseph Tassarotti, Frans Kaashoek, Nickolai Zeldovich

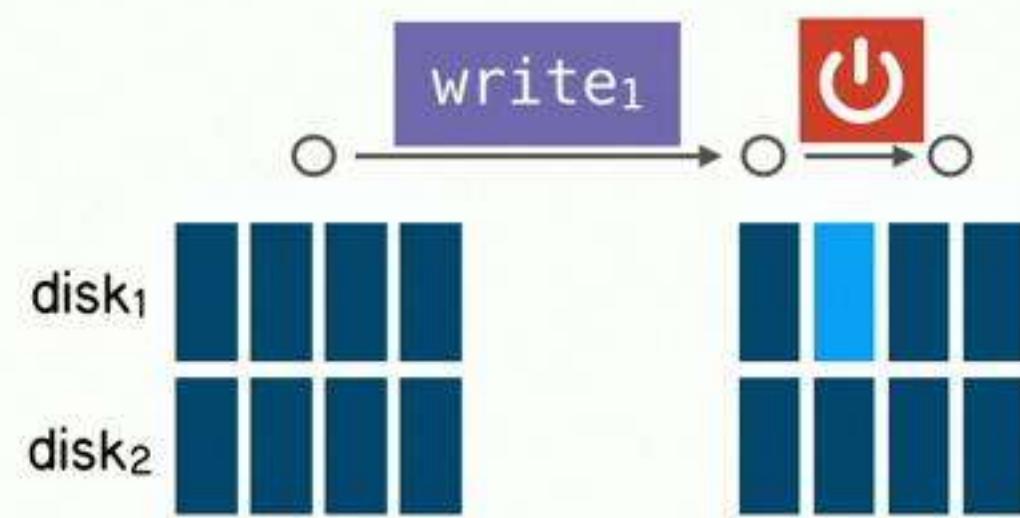
MIT



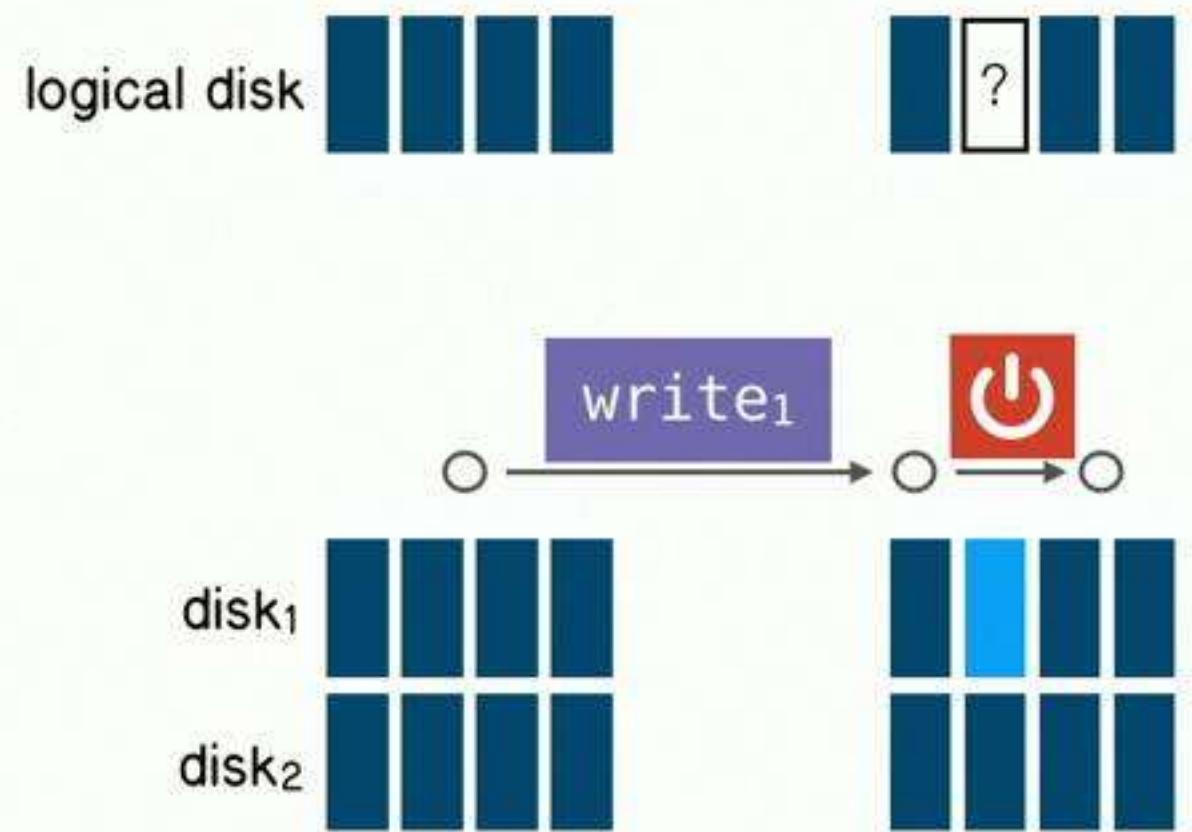
Bob writes a replication system



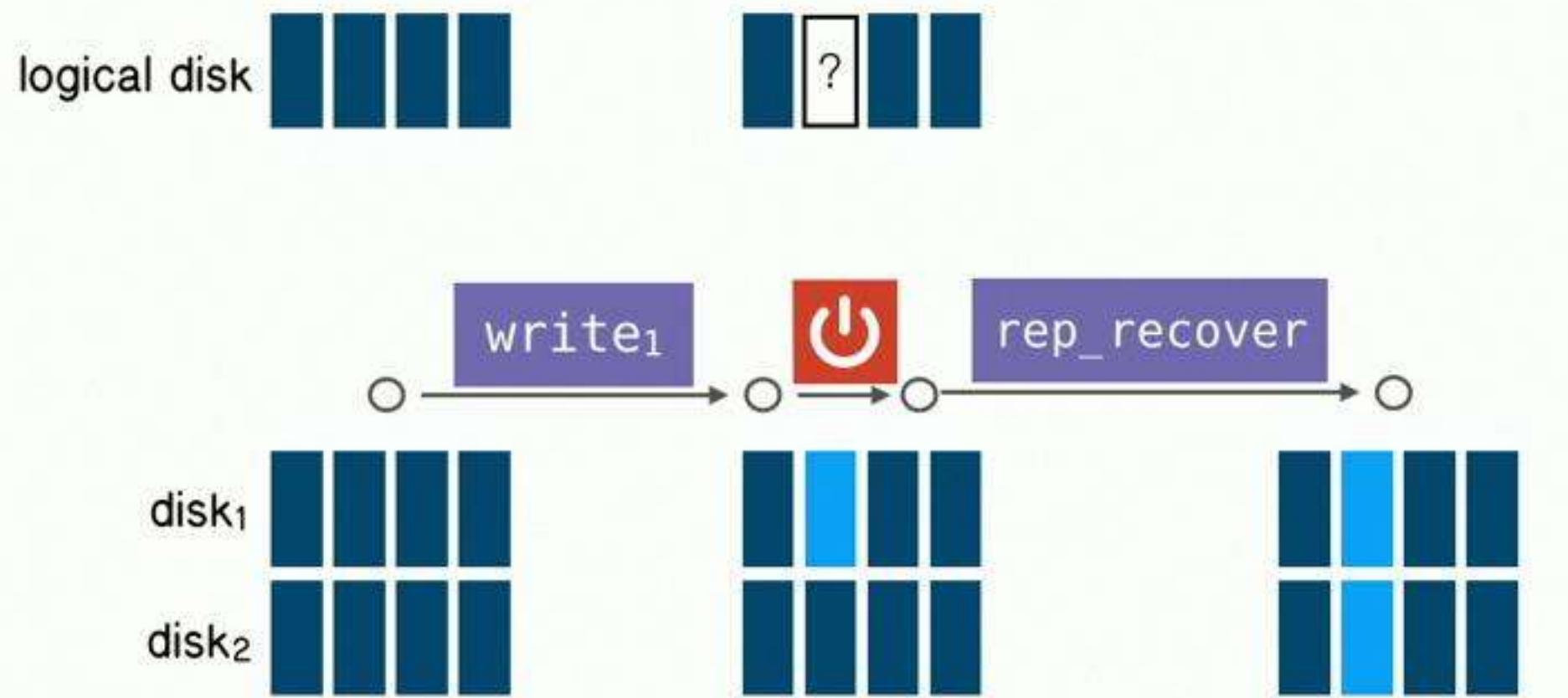
Bob writes a replication system



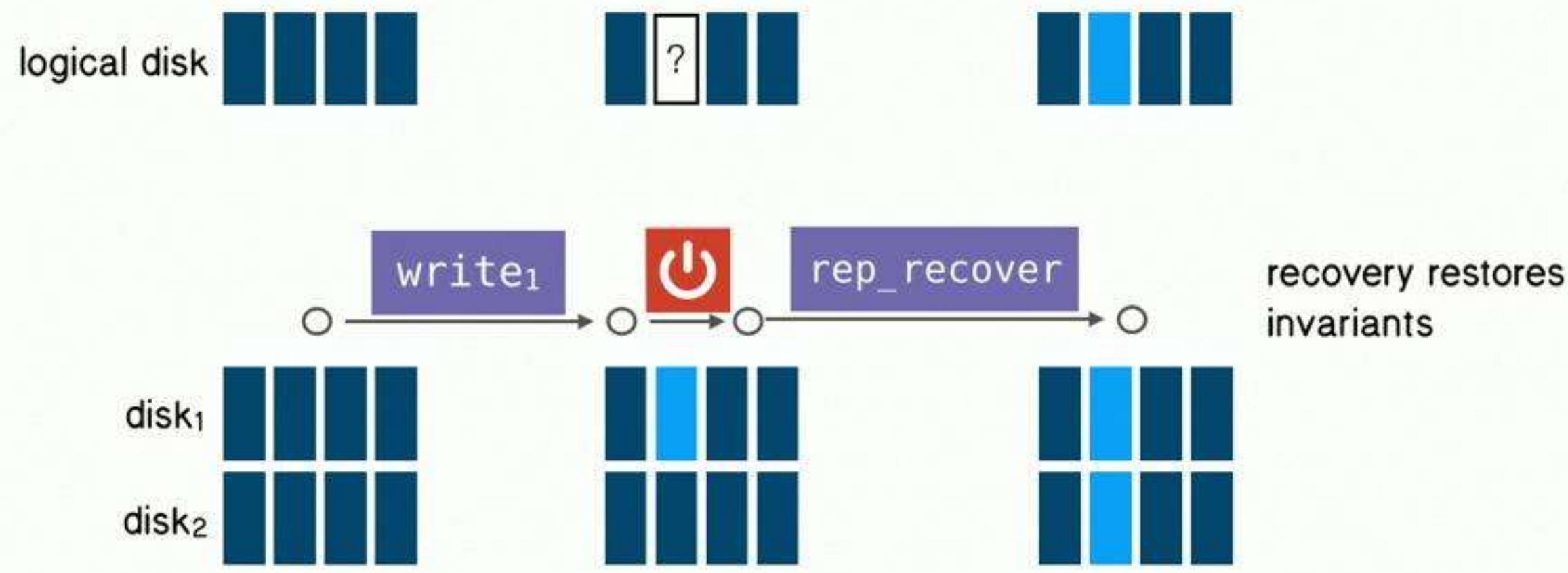
Bob writes a replication system



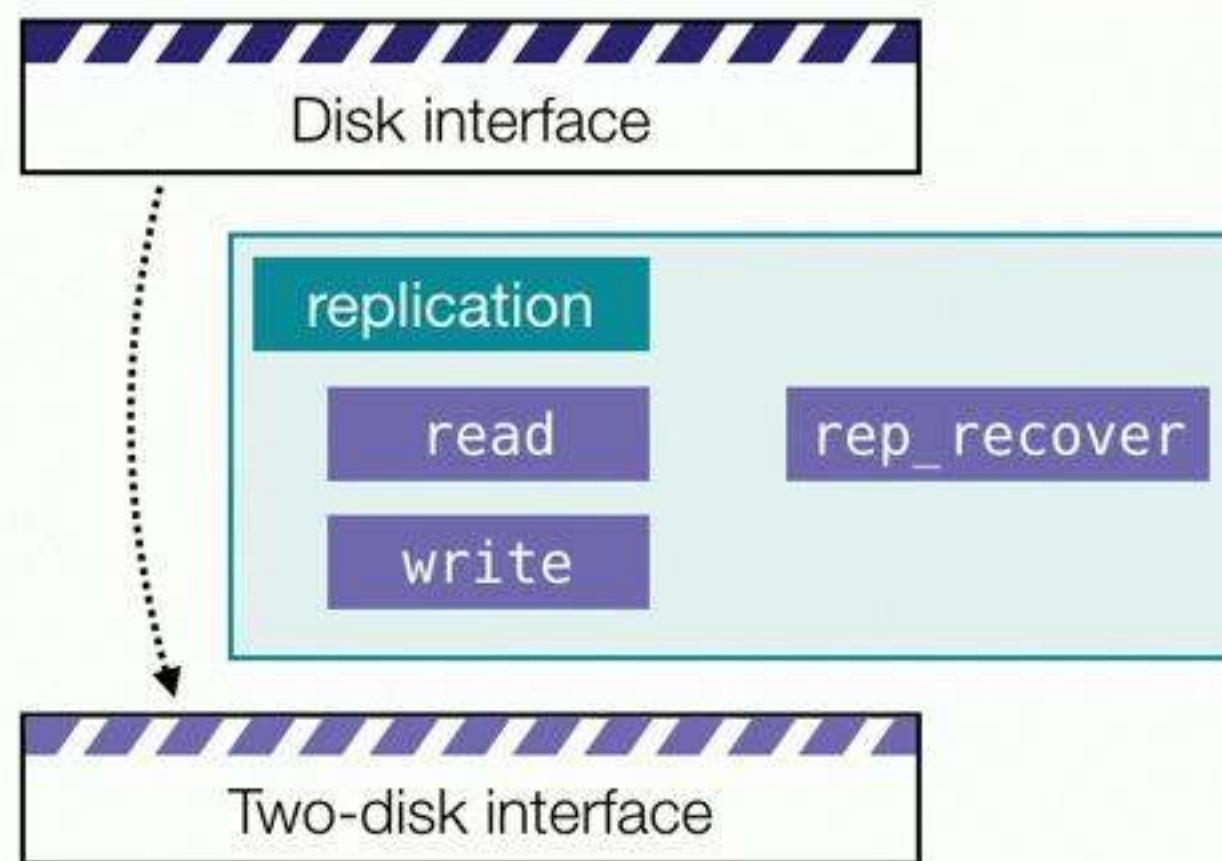
Bob writes a replication system



Bob writes a replication system and implements its recovery procedure

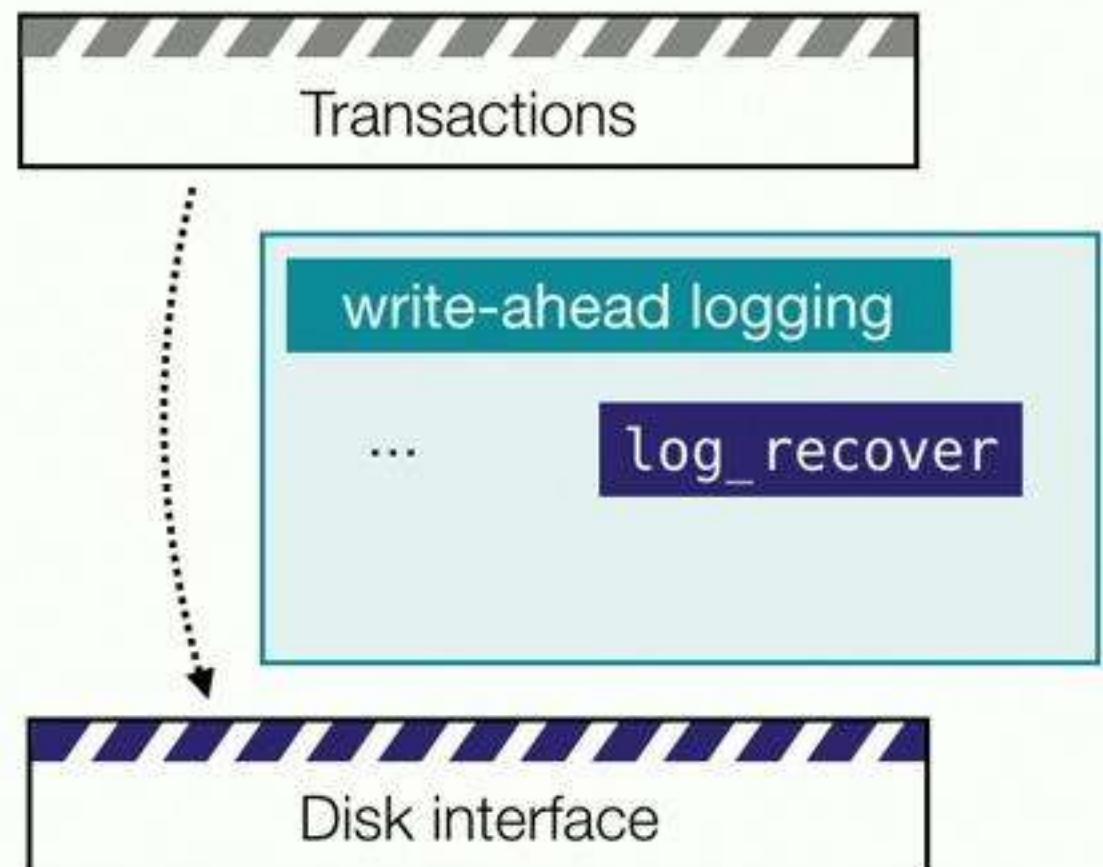


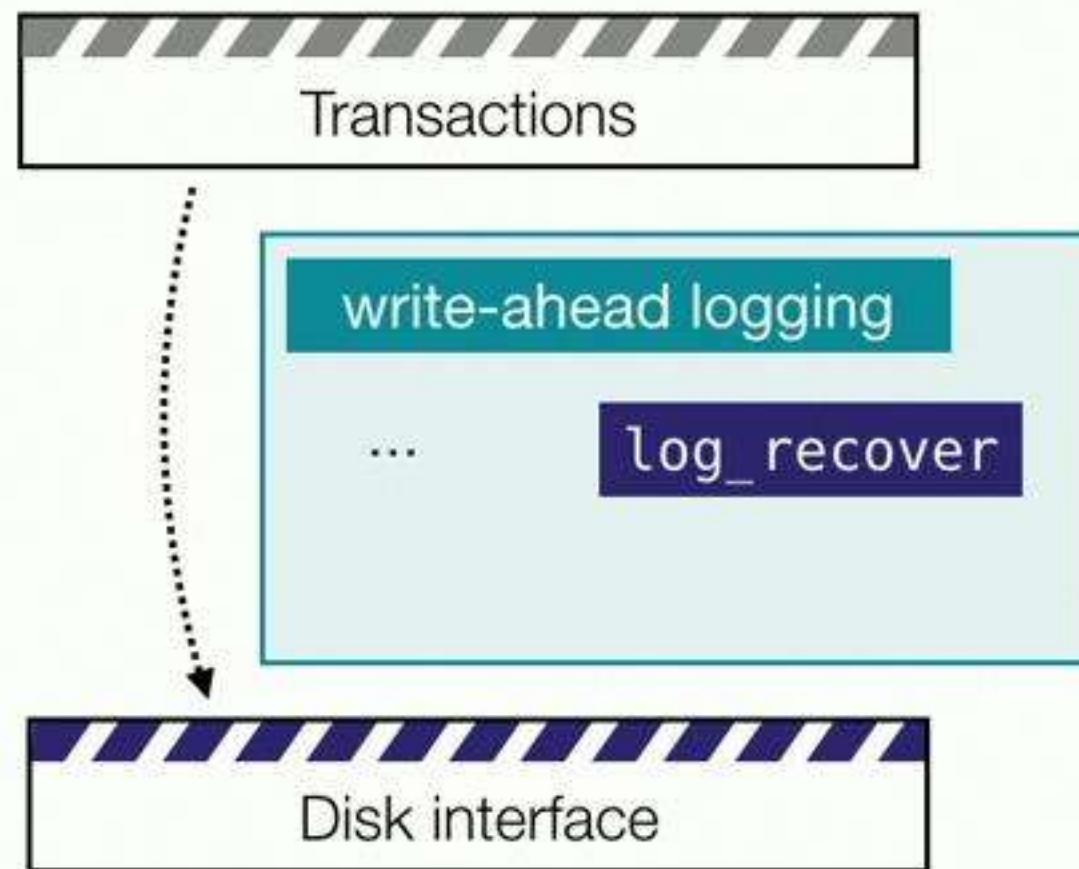
Bob writes a replication system and implements its recovery procedure



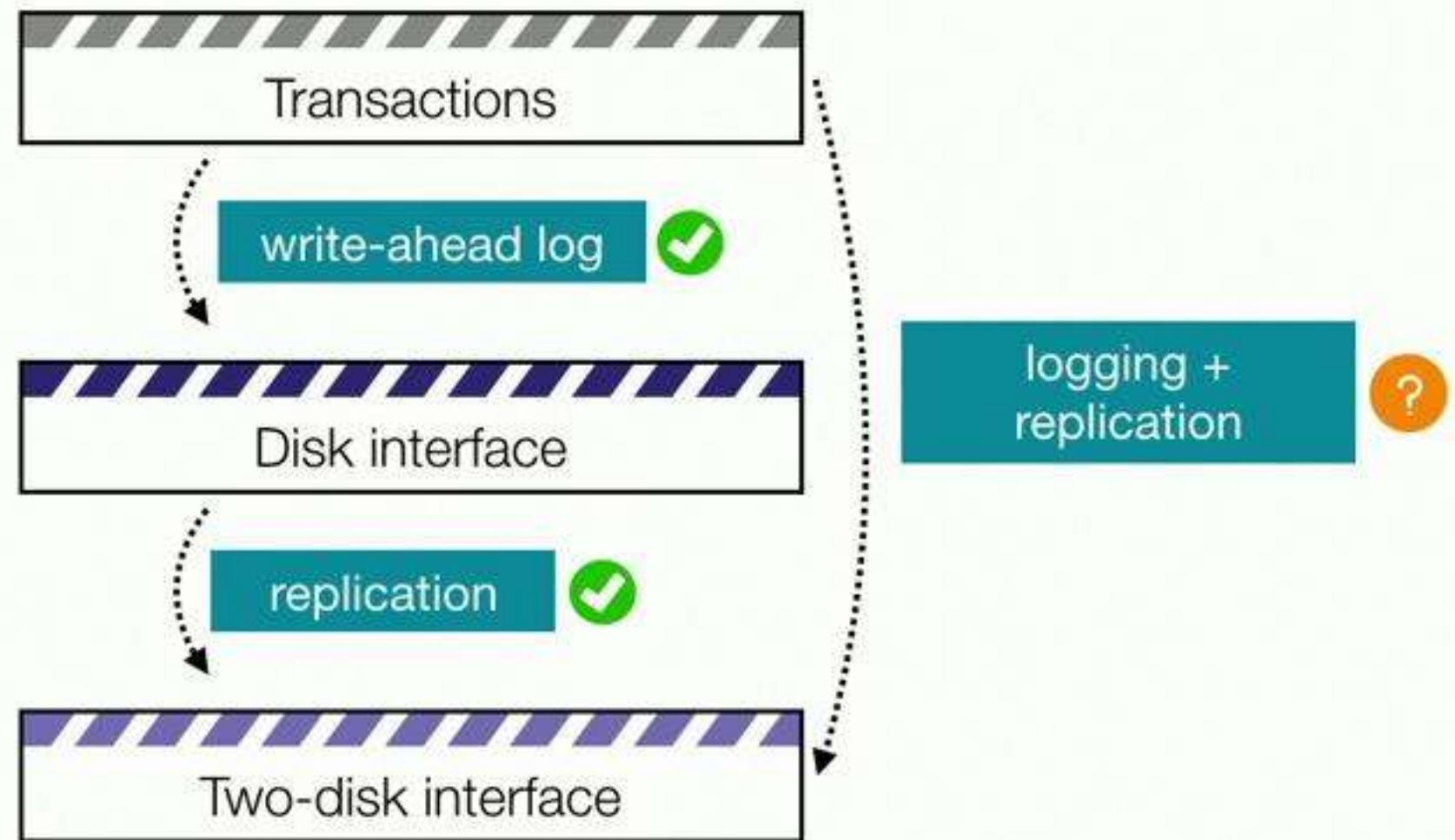
Bob is careful and writes a
machine-checked proof of correctness

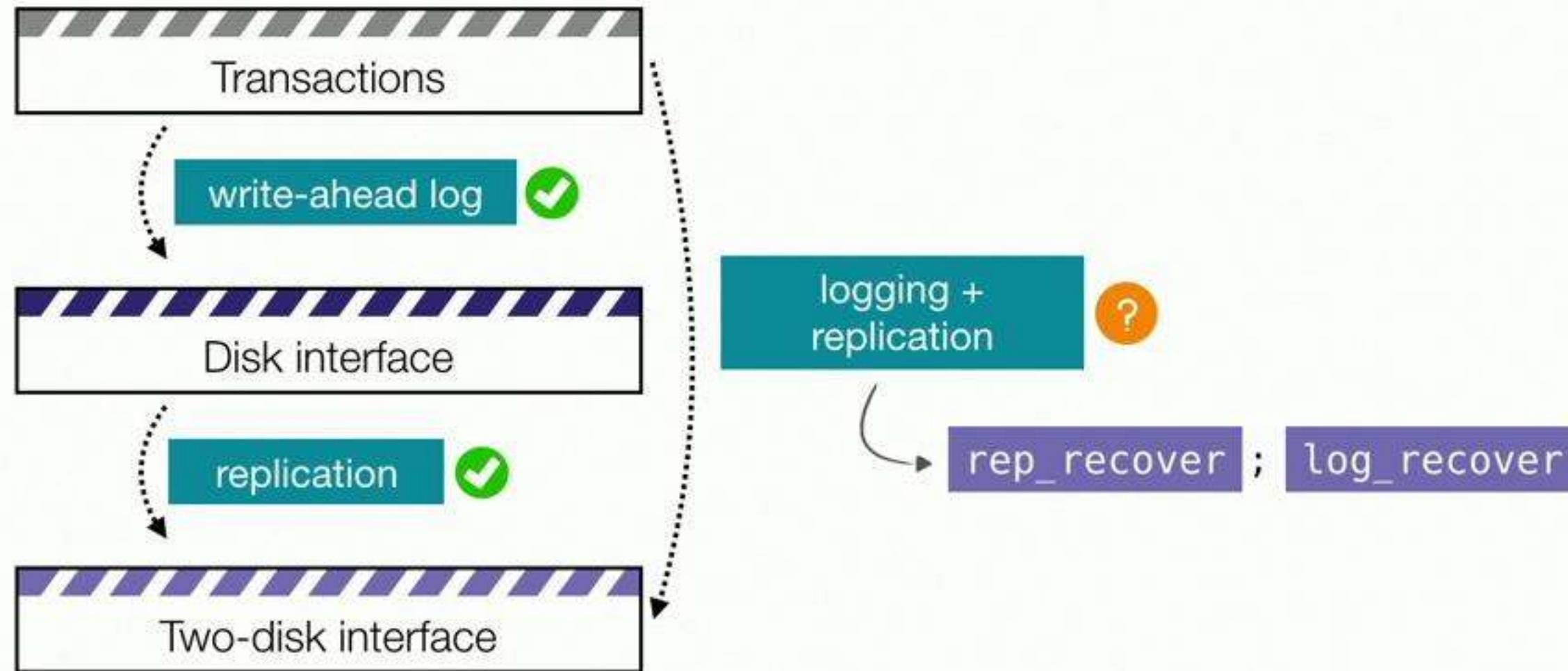
✓ read and write are atomic if you run
rep_recover after every crash





- ✓ ops are atomic if you run `log_recover` after every crash





Challenge: crashes during composed recovery

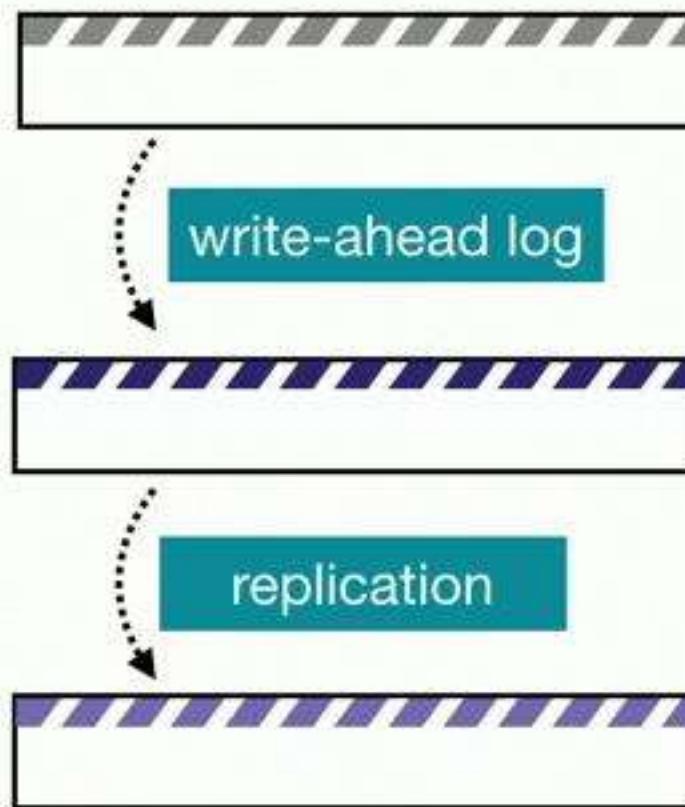
rep_recover under crashes

log_recover under crashes

rep_recover ; log_recover

how do we prove correctness
under crashes using the existing proofs?

Prior work cannot handle multiple recovery procedures



CHL [SOSP '15]

not modular

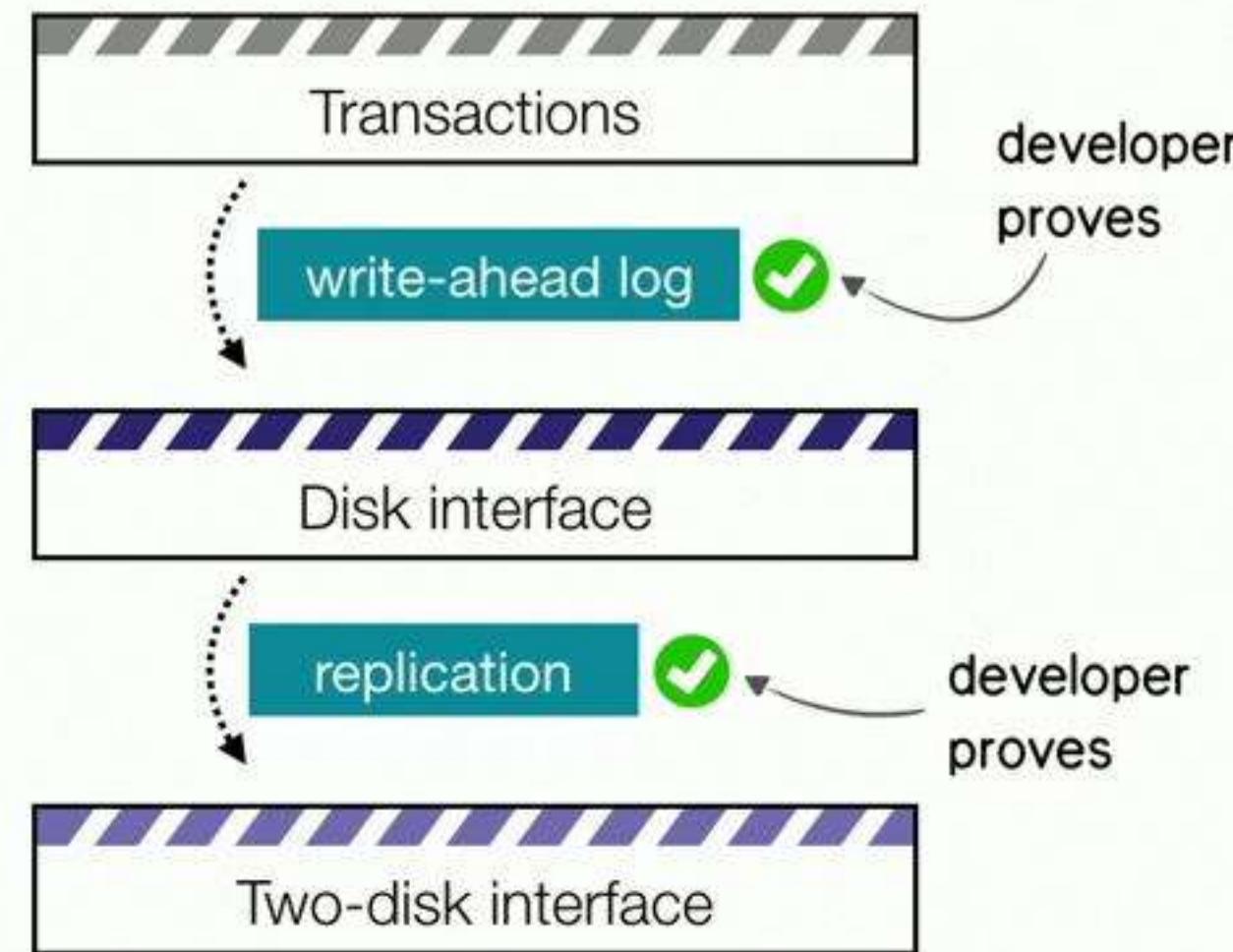
Yggdrasil [OSDI '16]

single recovery

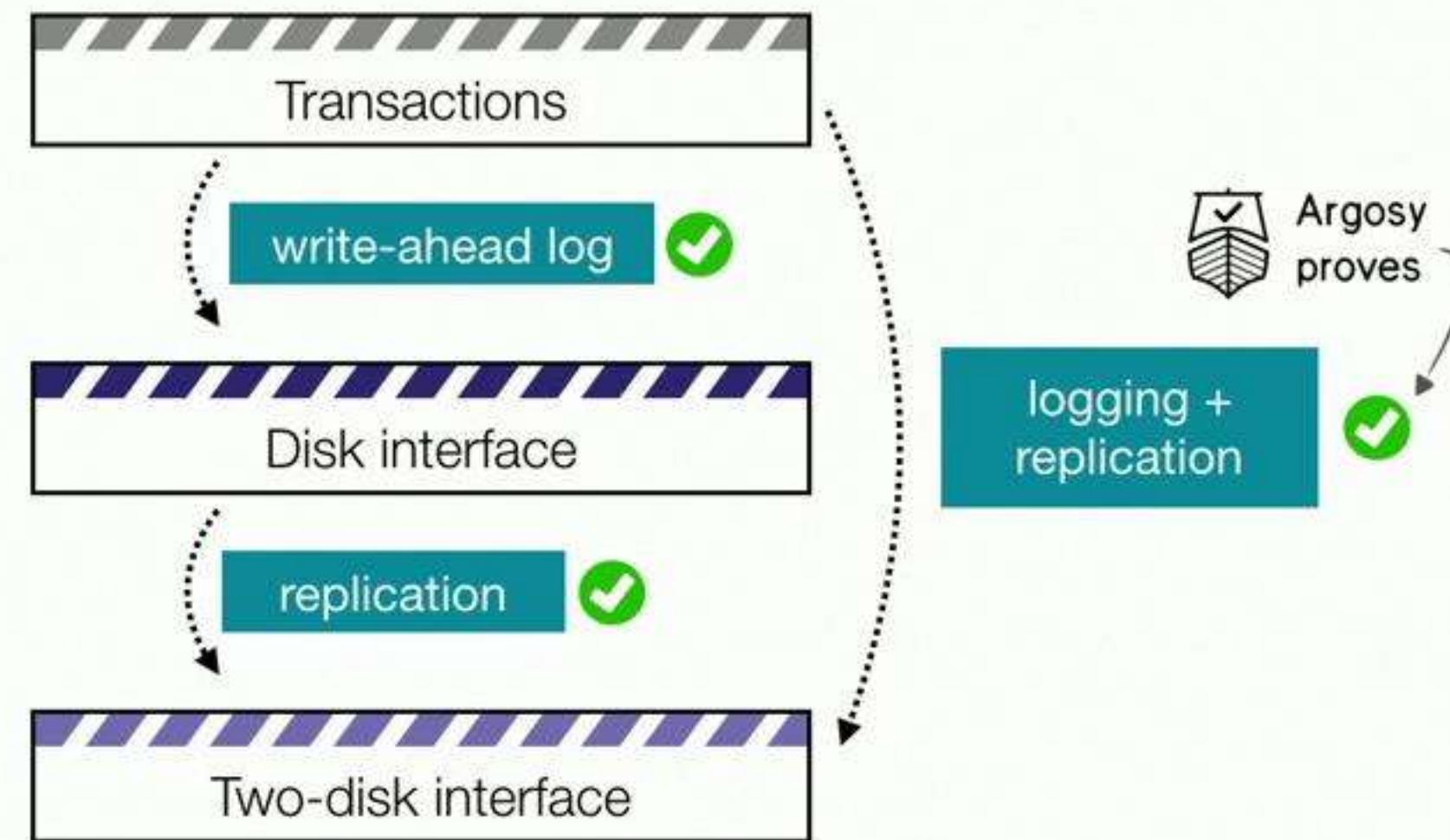
Flashix [SCP '16]

restricted recovery
procedures

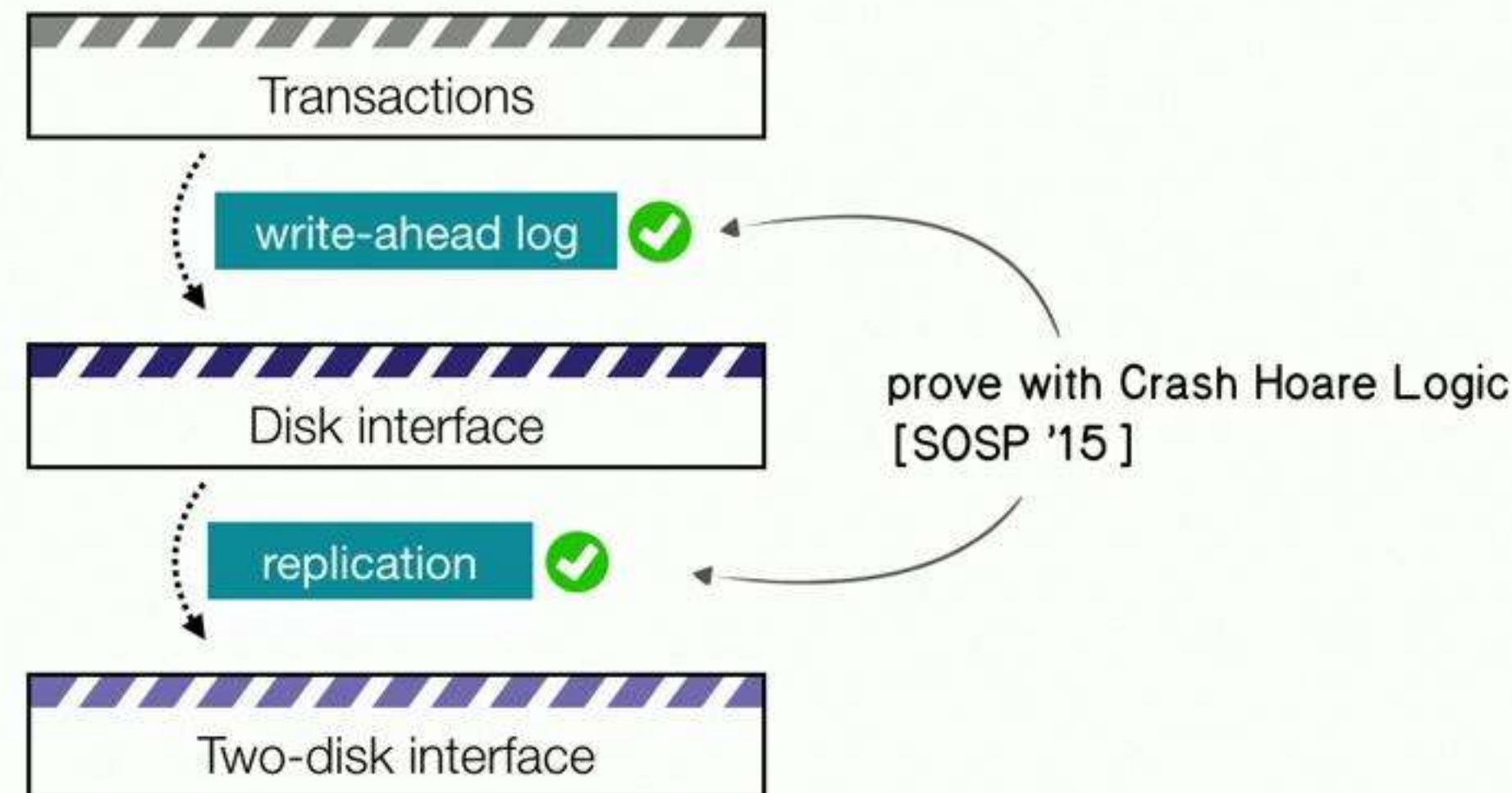
Argosy supports modular recovery proofs



Argosy supports modular recovery proofs



Argosy is compatible with existing techniques



Contributions

Recovery refinement for modular proofs

CHL for proving recovery refinement

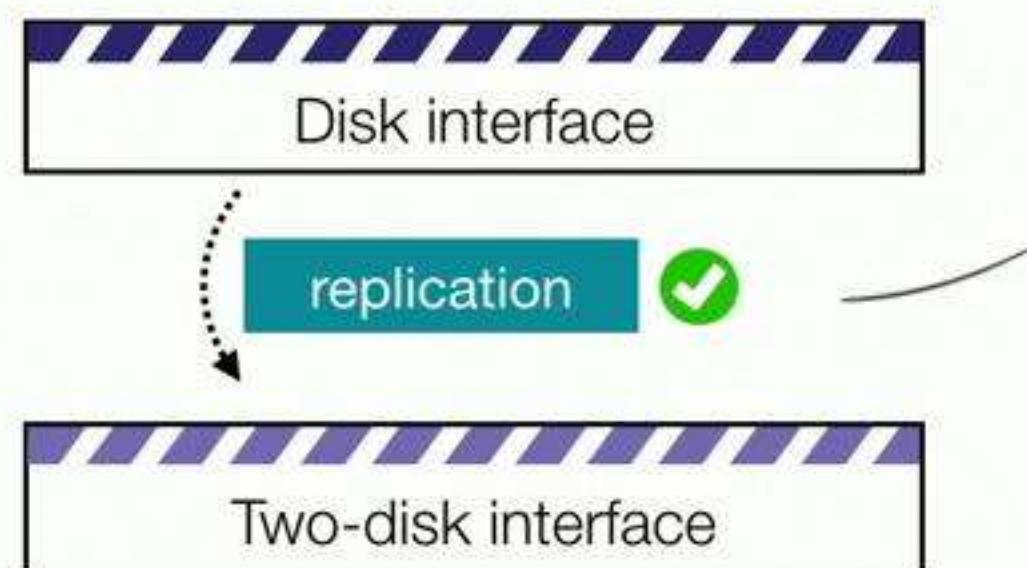
see paper

Verified example: logging + replication

see code

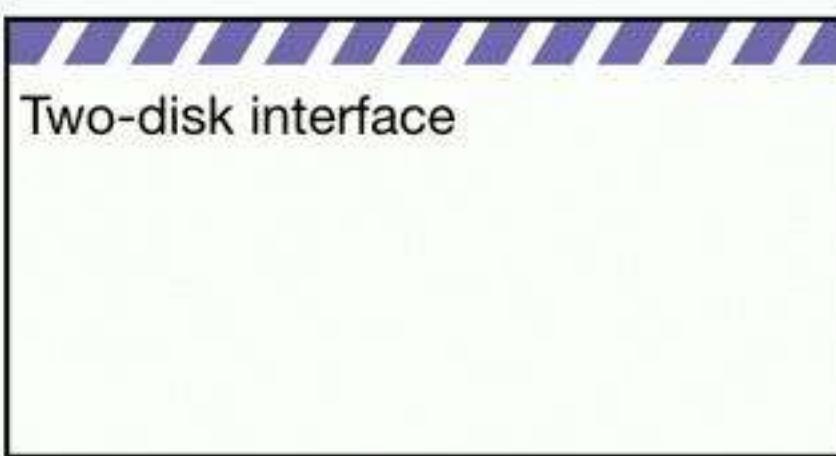
Machine-checked proofs in Coq

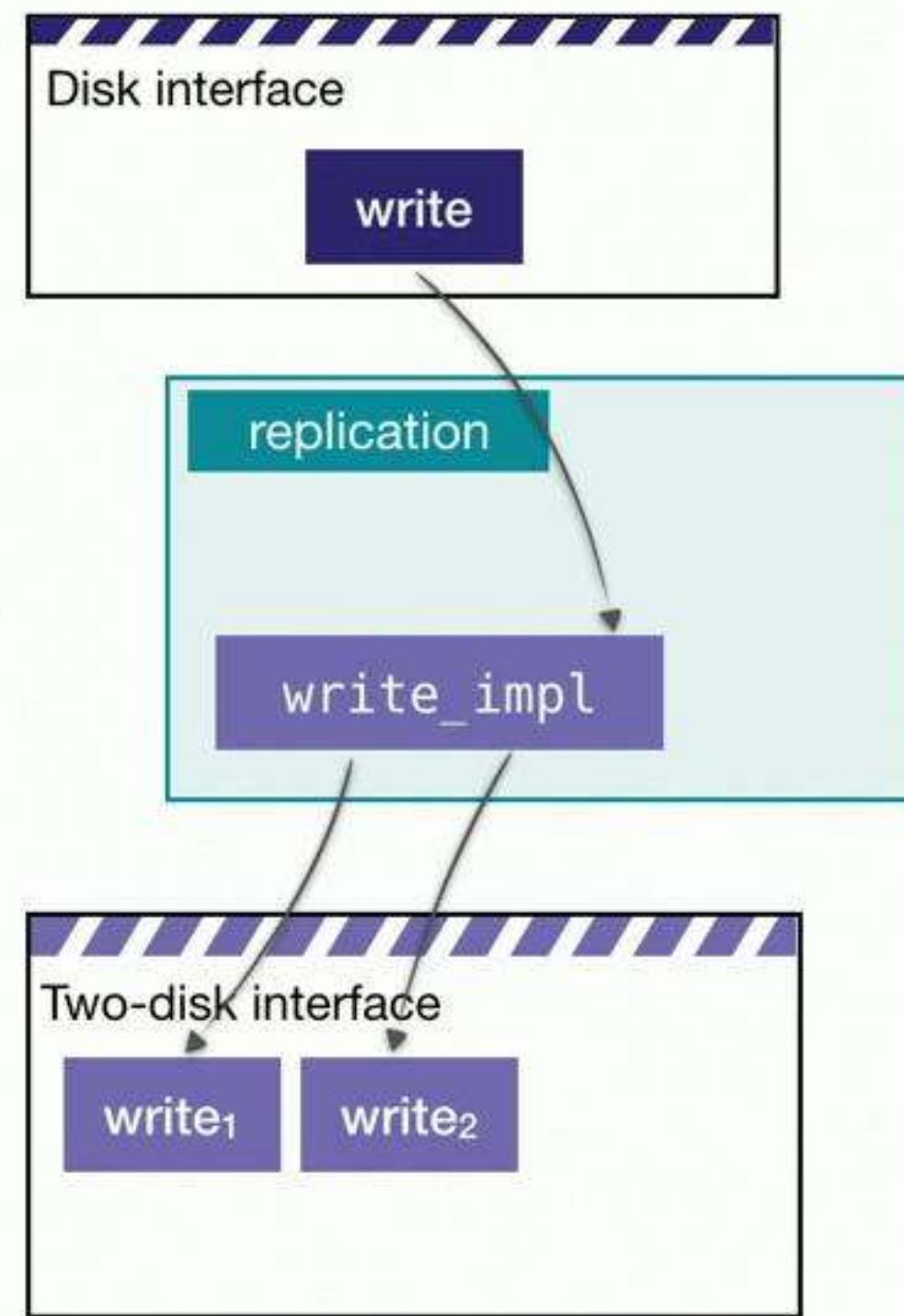
Preview: recovery refinement

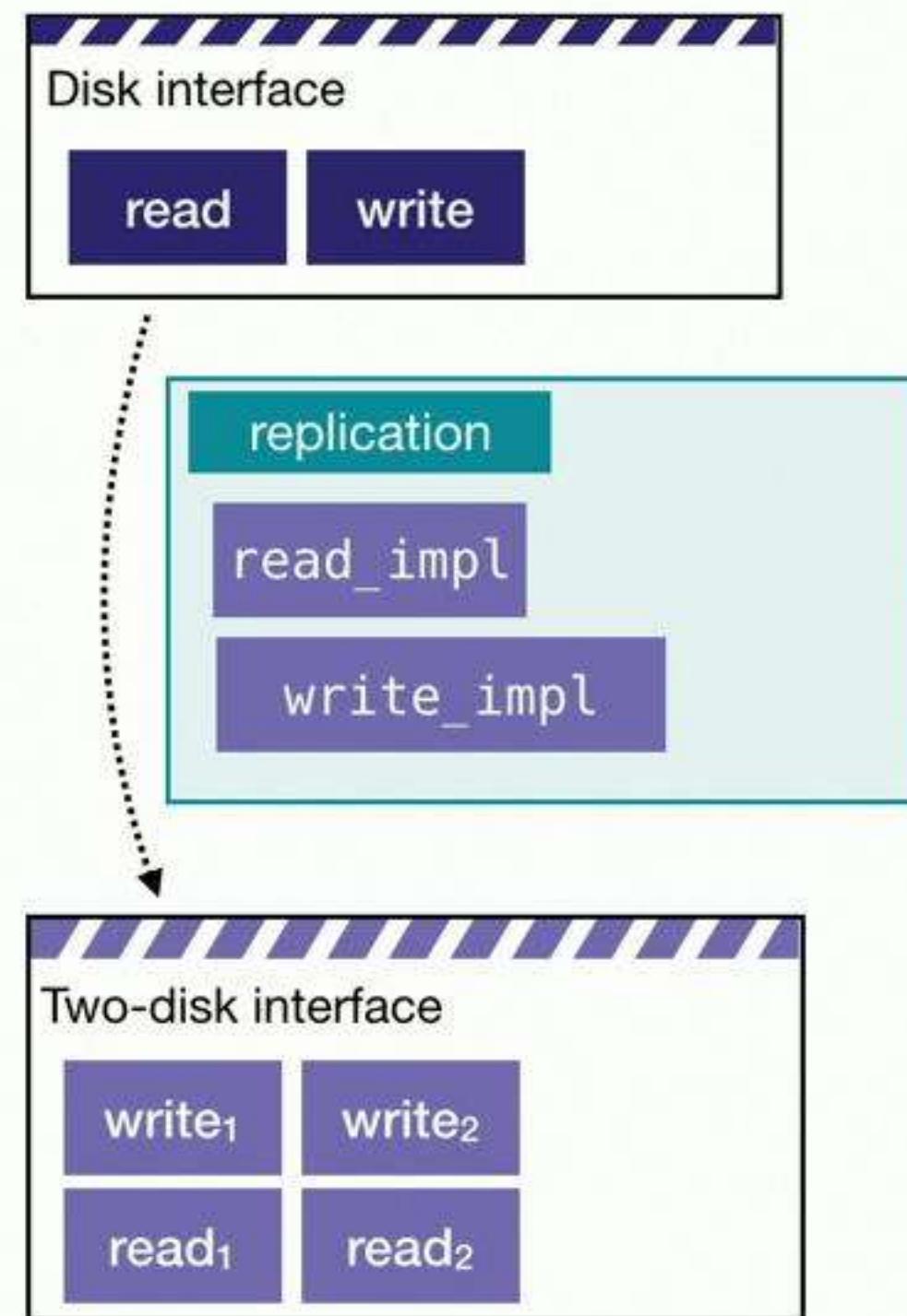


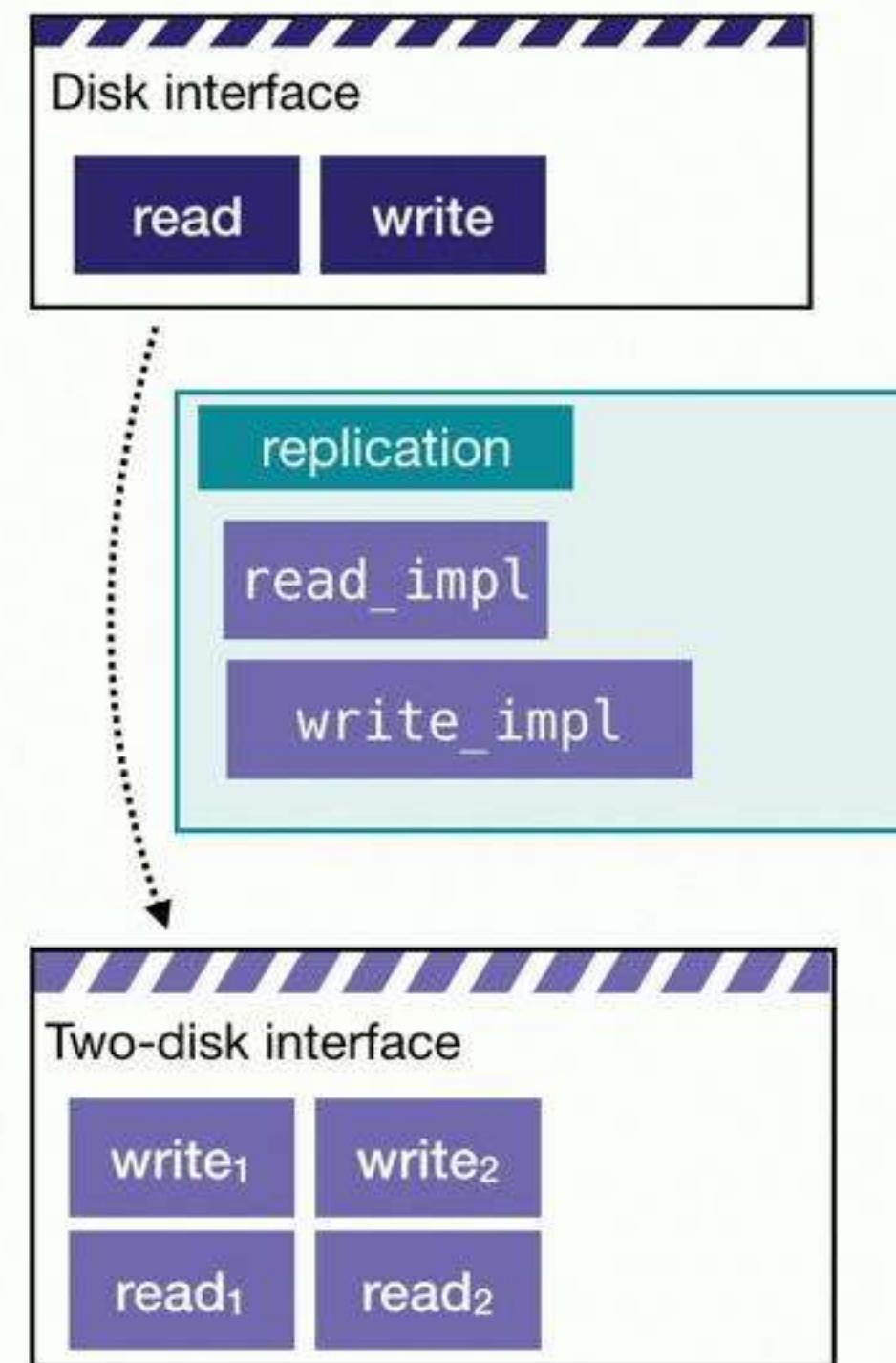
1. Normal execution correctness using *refinement*
2. Crash and recovery correctness using *recovery refinement*

Refinement

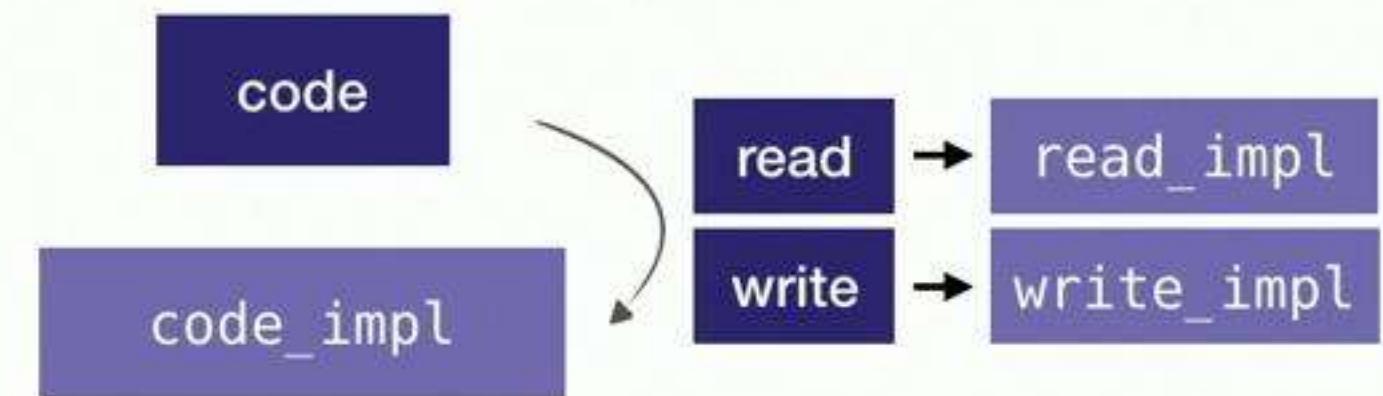




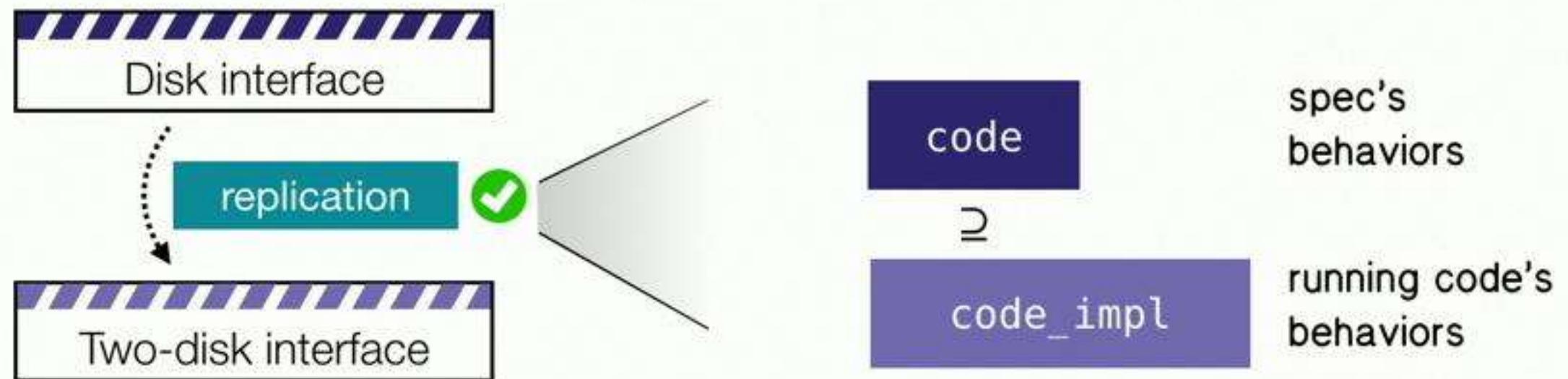




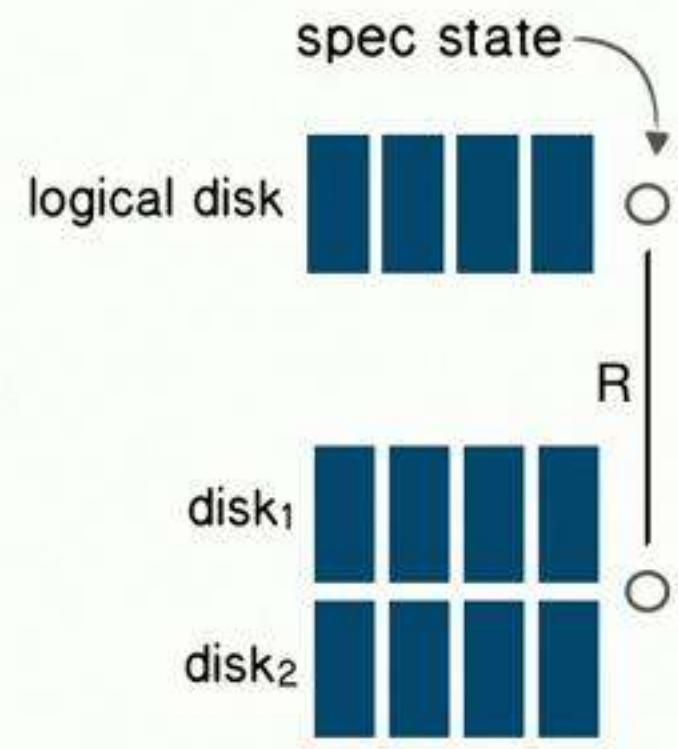
correctness is based on how we use replication:
run code using Disk interface on top of two disks



Correctness: trace inclusion

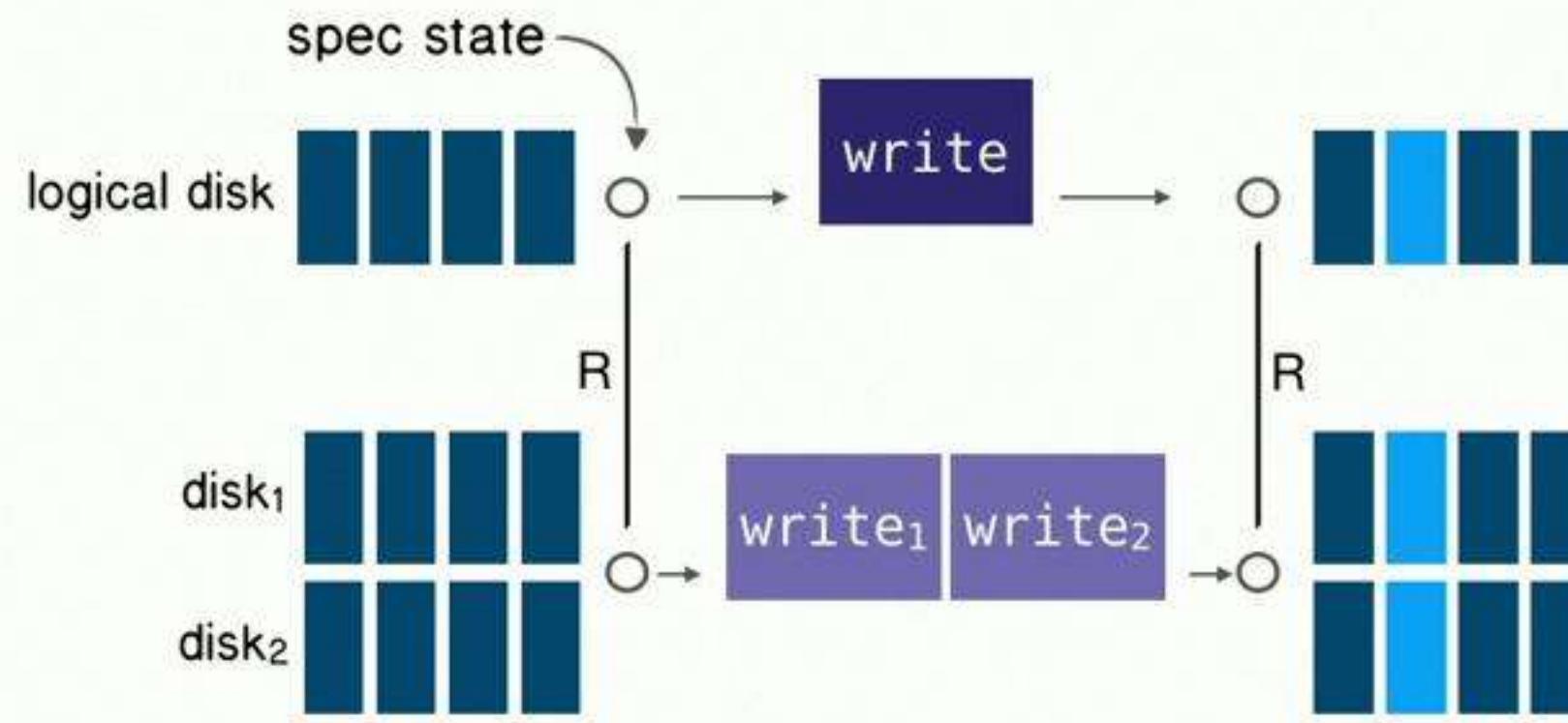


Proving correctness with an abstraction relation



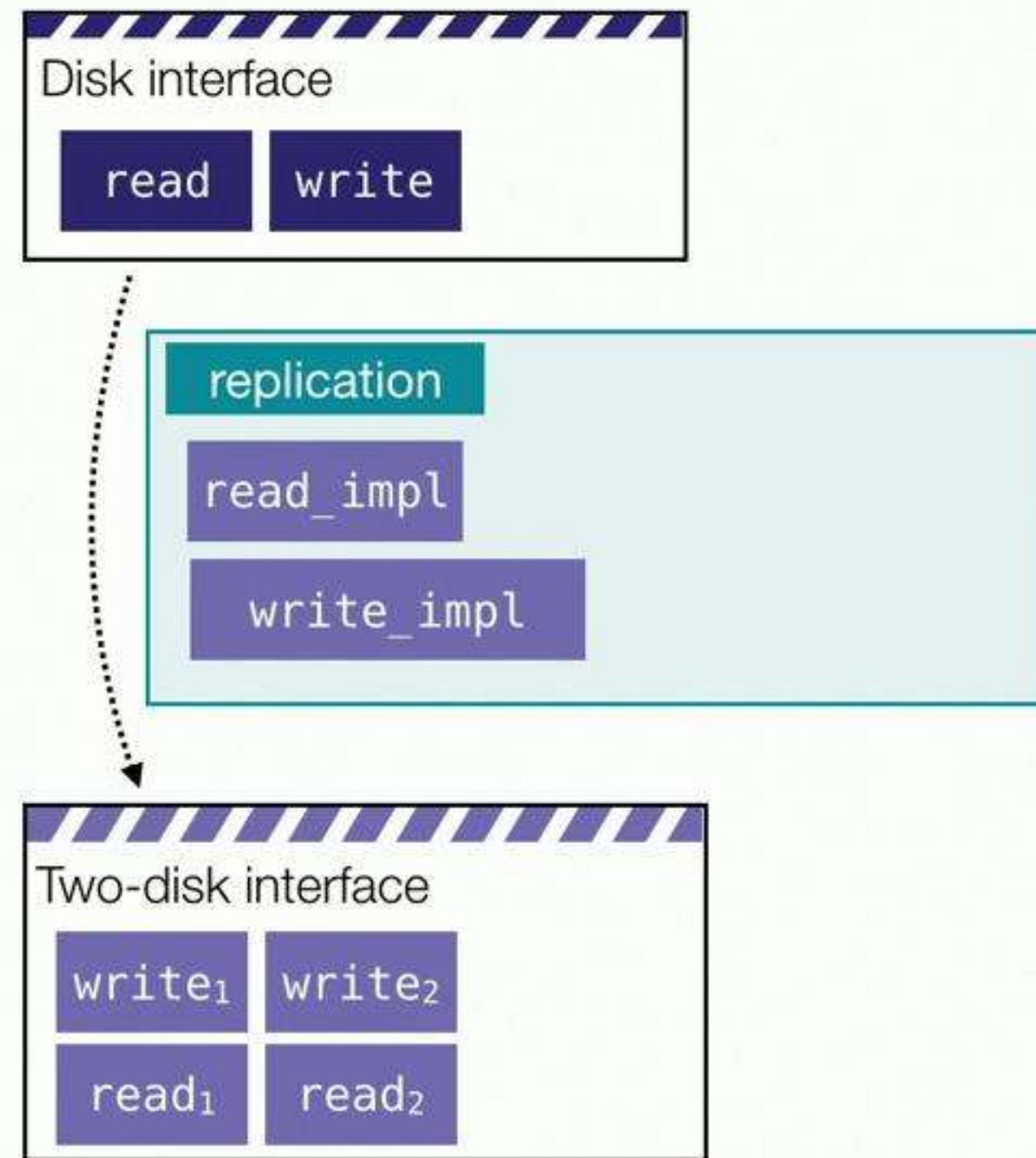
1. developer provides abstraction relation R

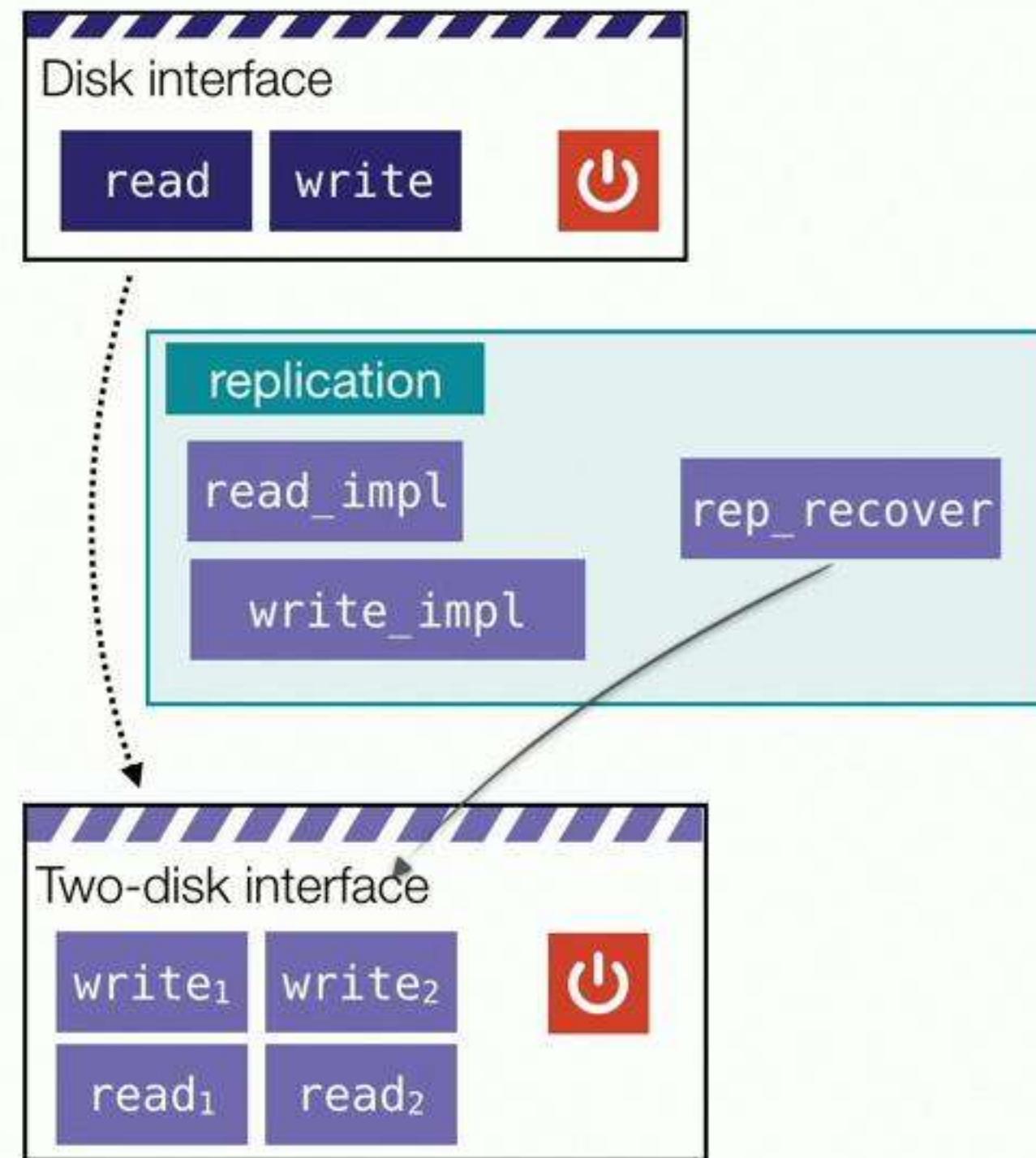
Proving correctness with an abstraction relation

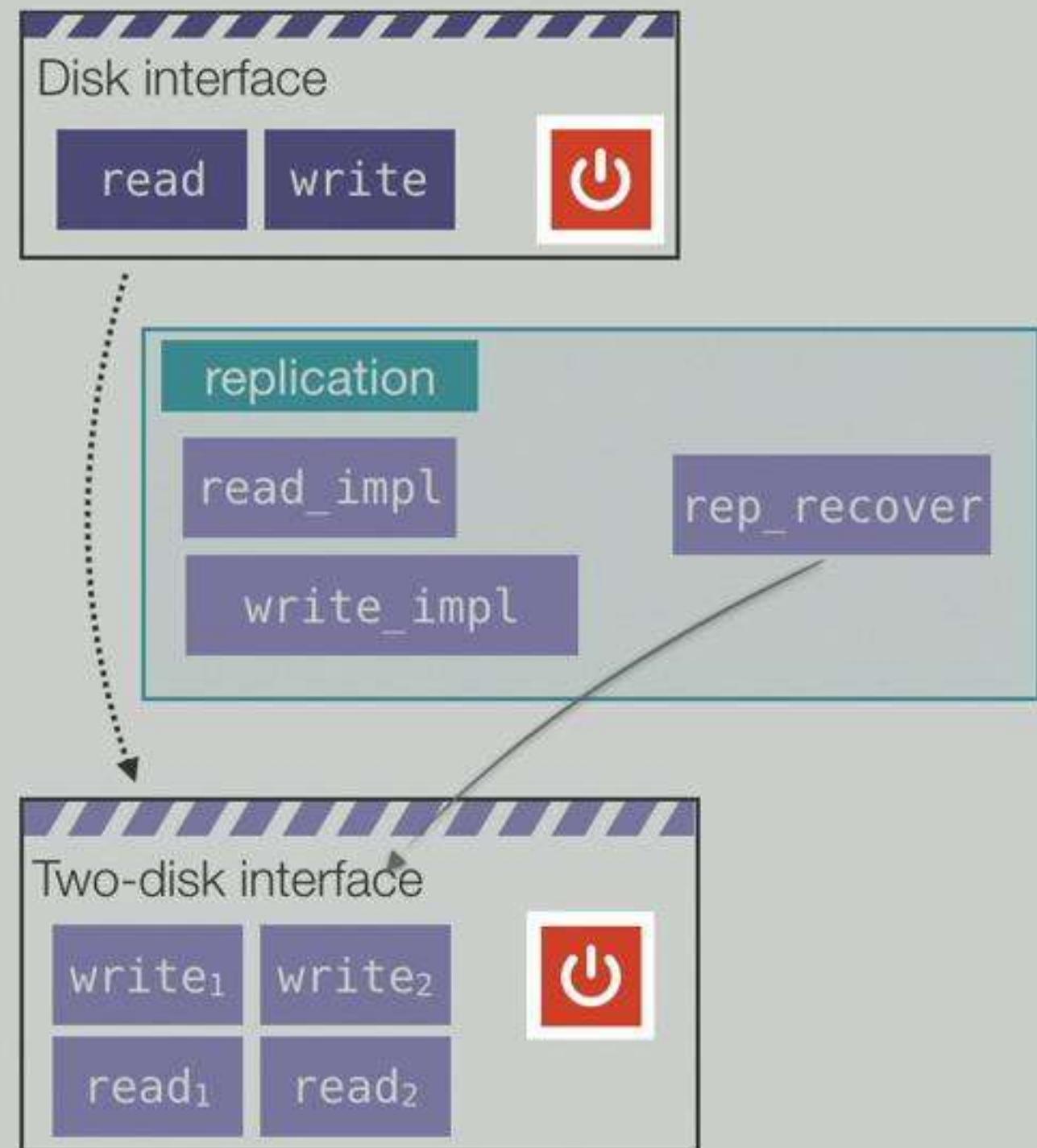


1. developer provides abstraction relation R
2. prove spec execution exists
3. and abstraction relation is preserved

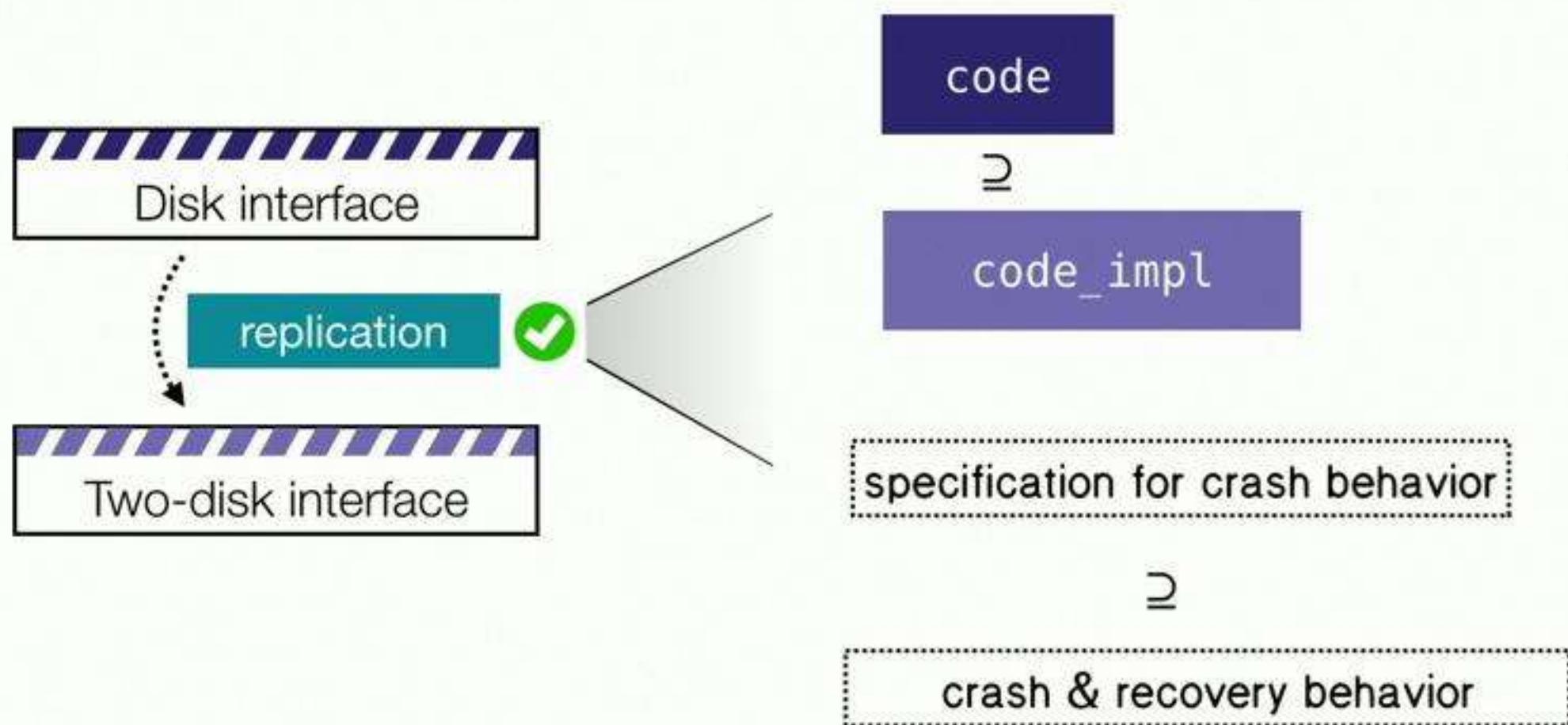
Recovery refinement



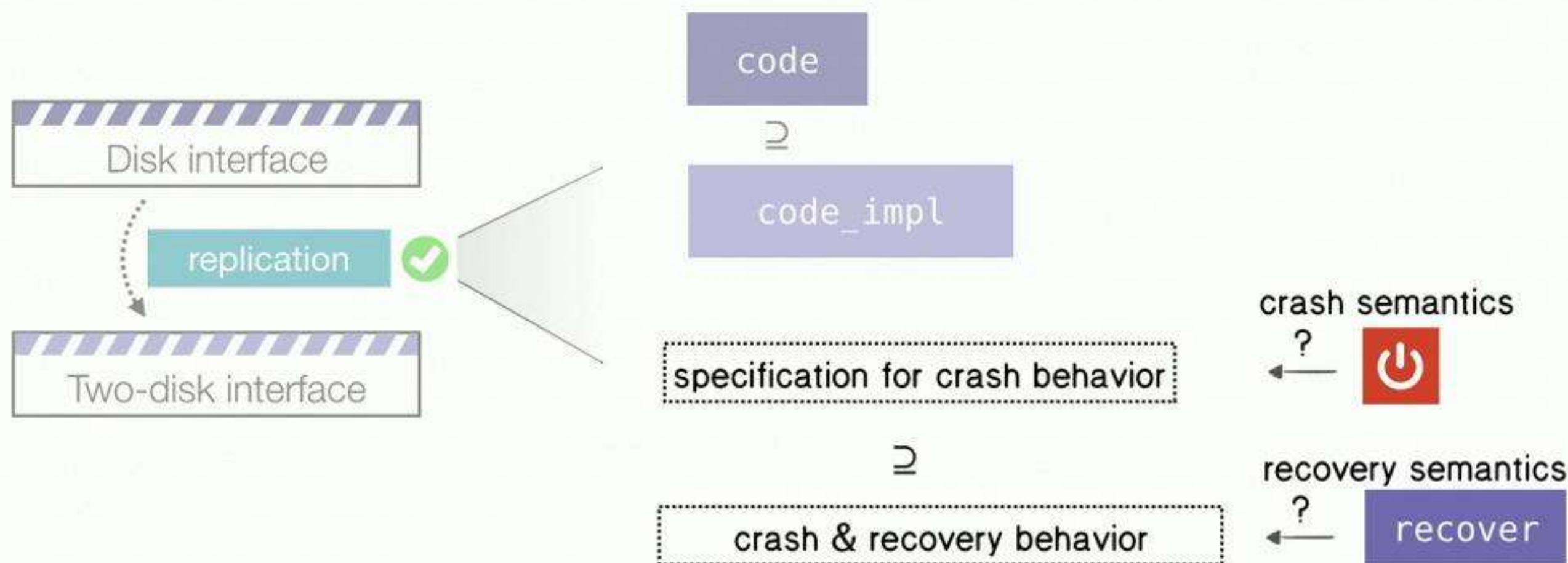


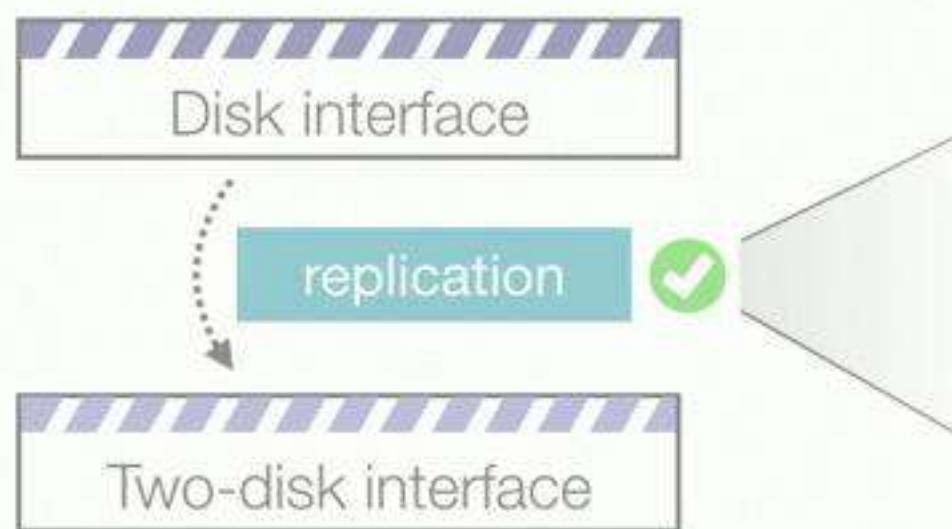
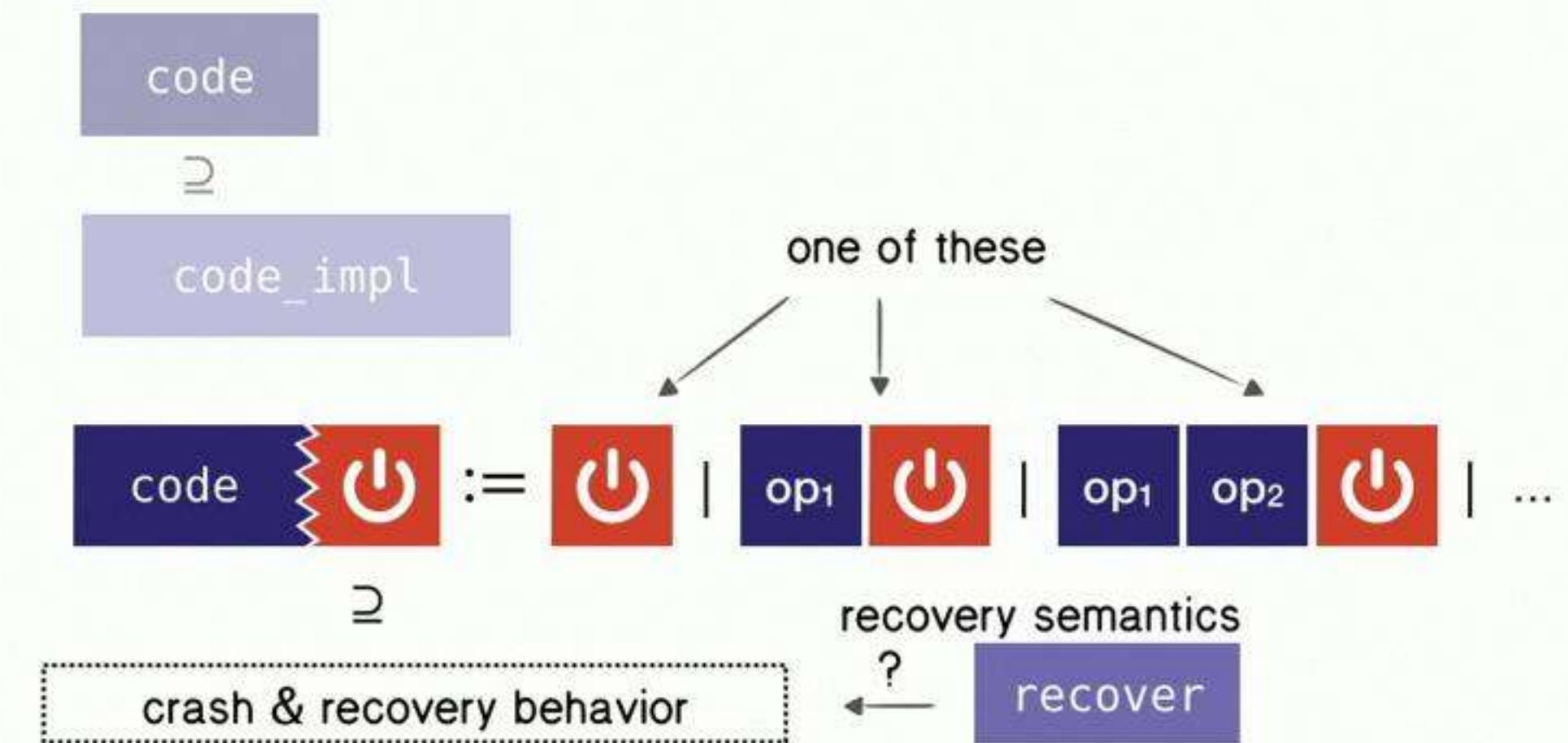


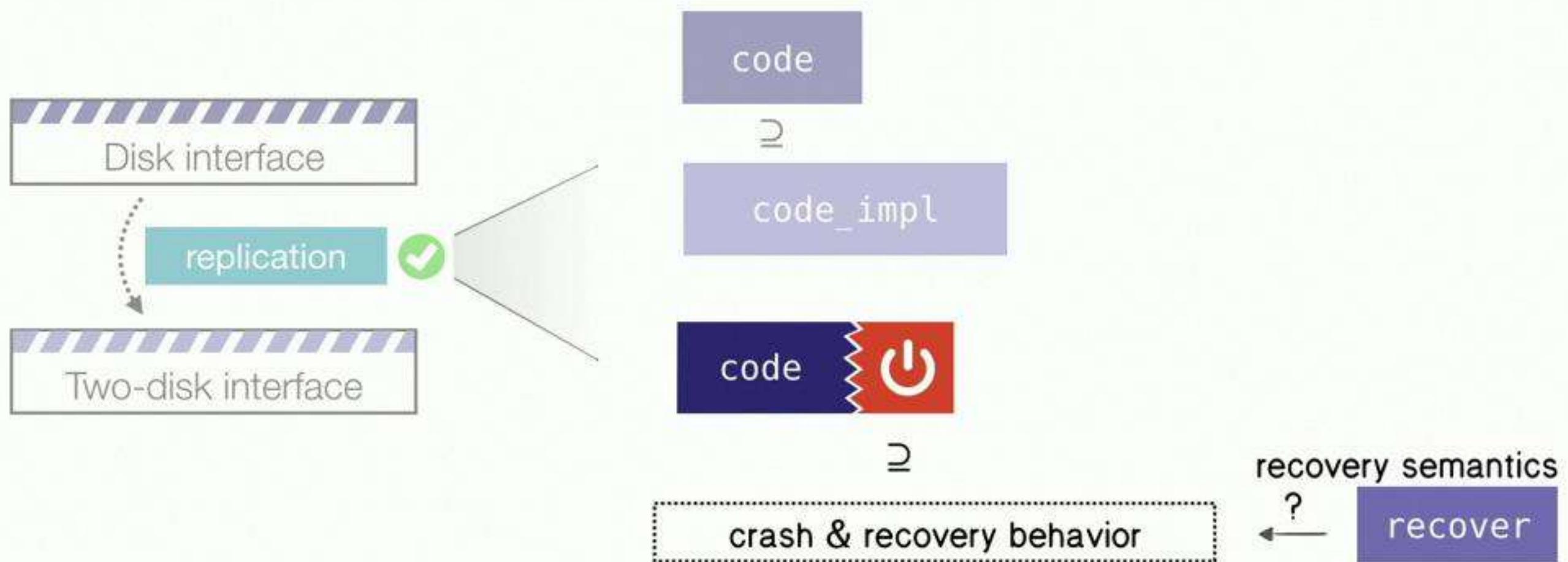
Extending trace inclusion with recovery

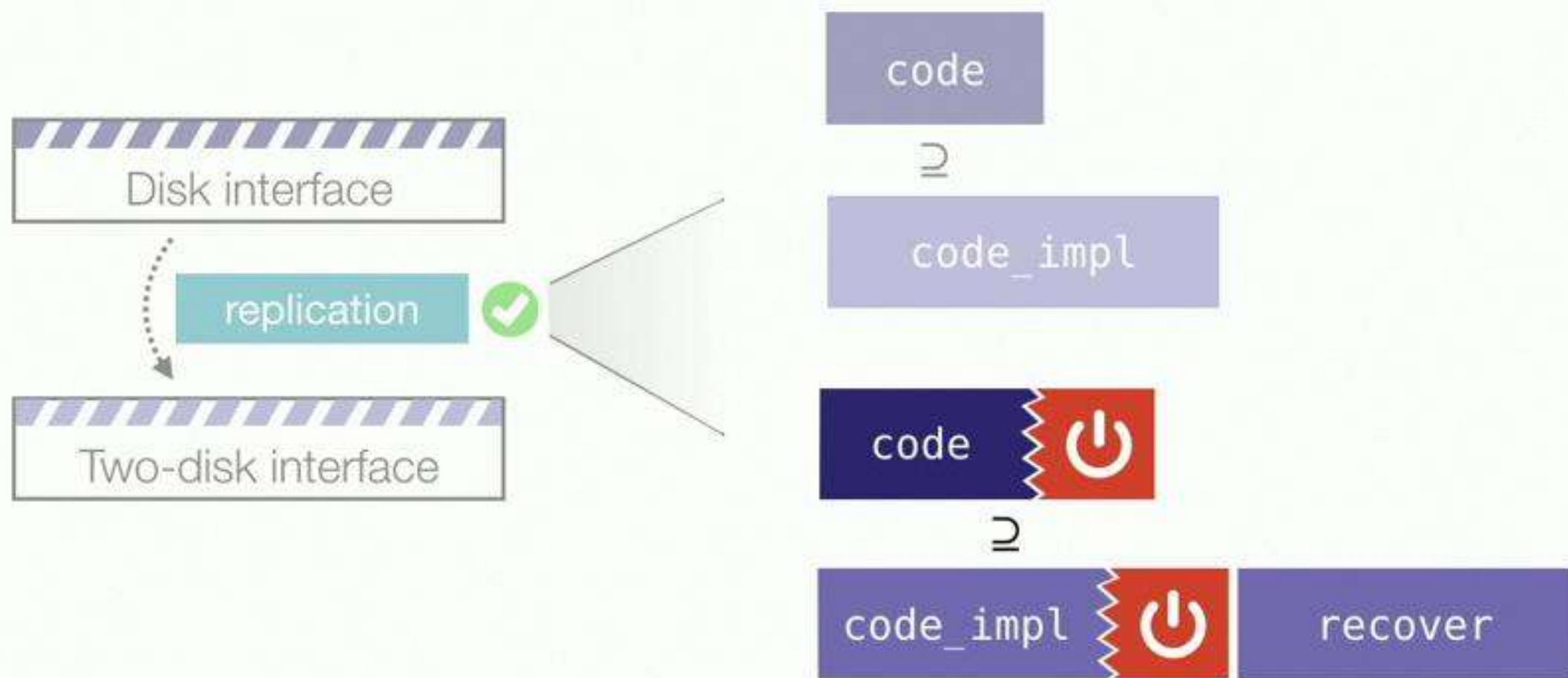


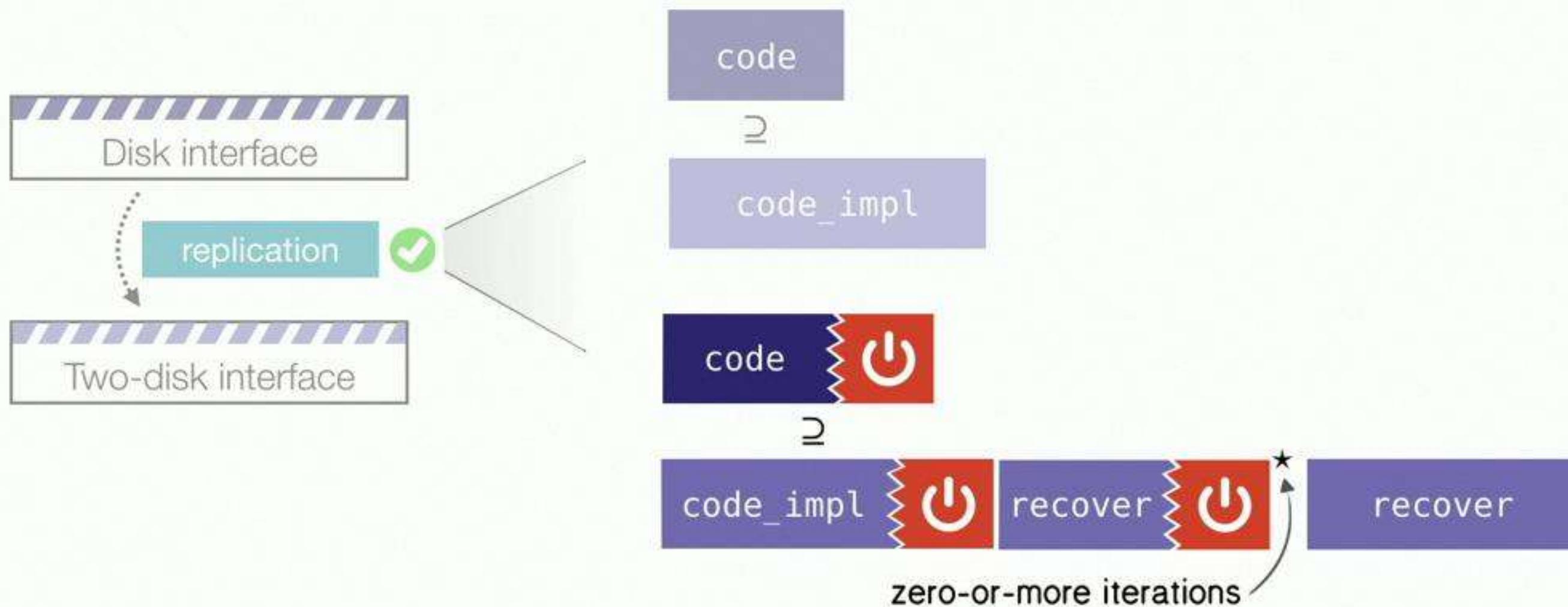
Extending trace inclusion with recovery



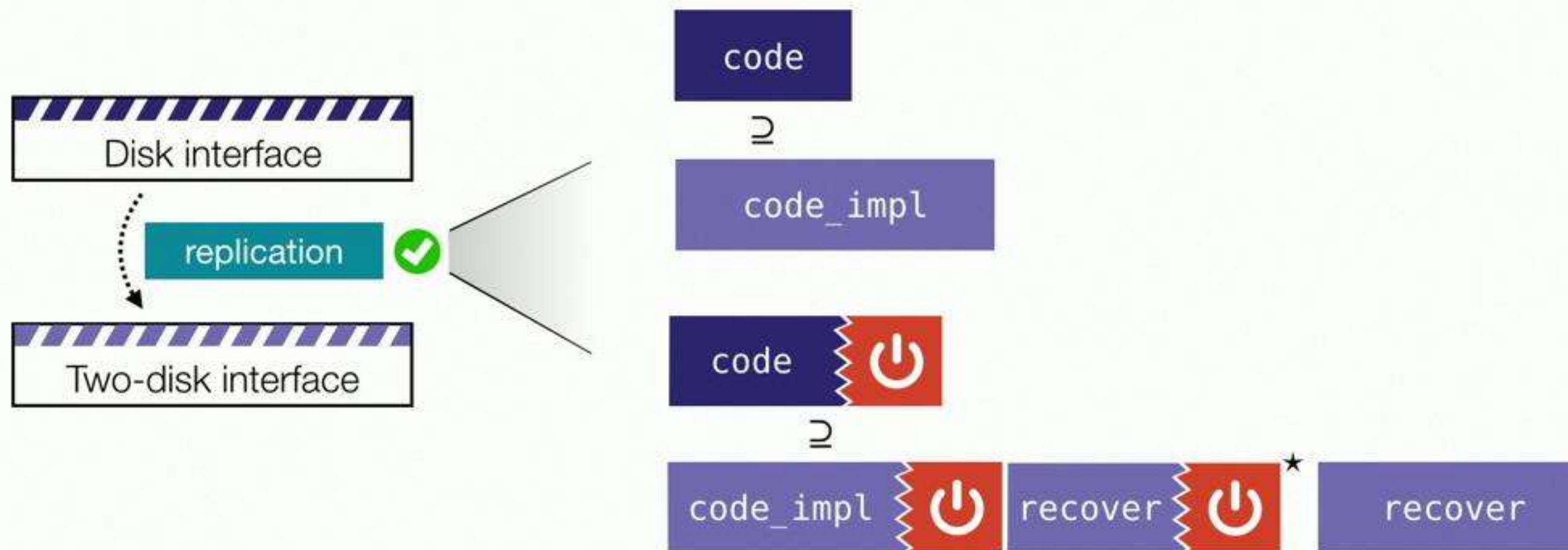








Trace inclusion, with recovery



Proving trace inclusion, with recovery

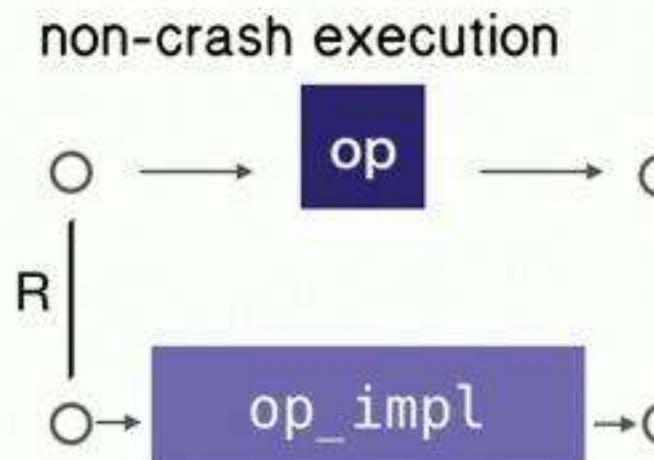
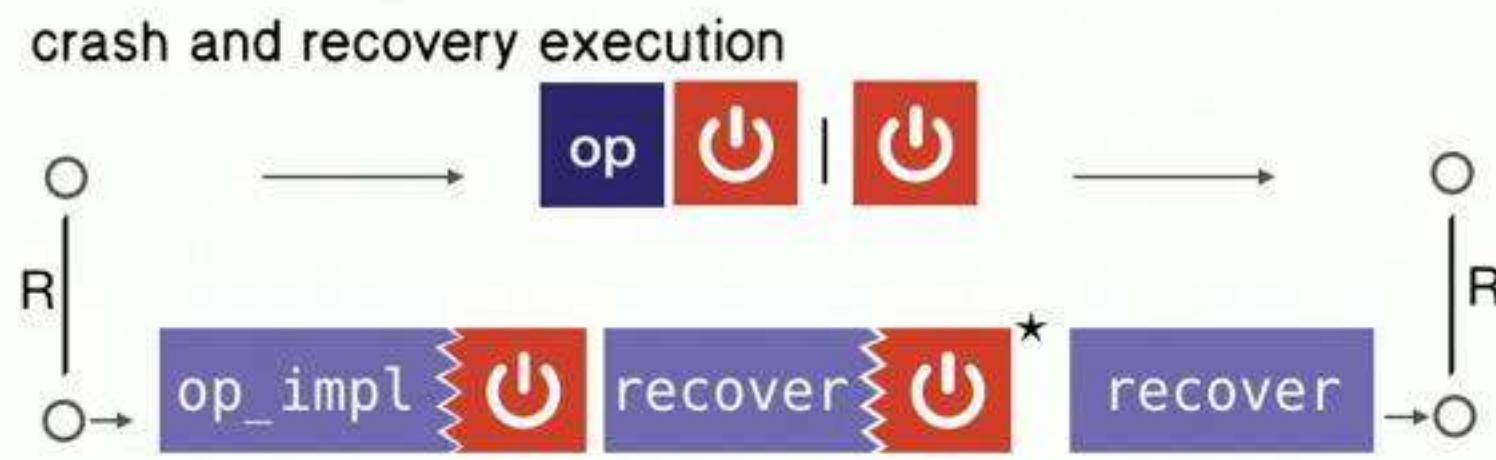
Proving trace inclusion, with recovery

Proving trace inclusion, with recovery

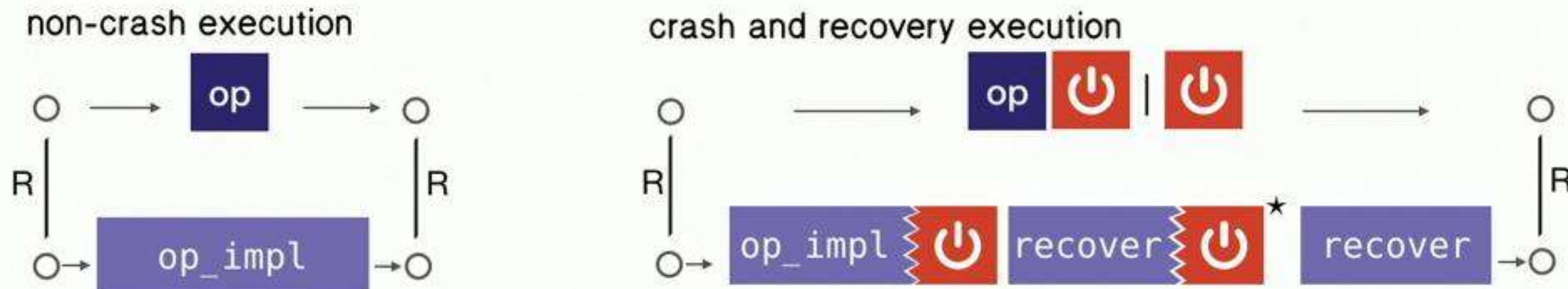
Proving trace inclusion, with recovery

Proving trace inclusion, with recovery

Recovery refinement



Recovery refinement



Trace inclusion

implies

specification behavior
 \supseteq
running code behavior

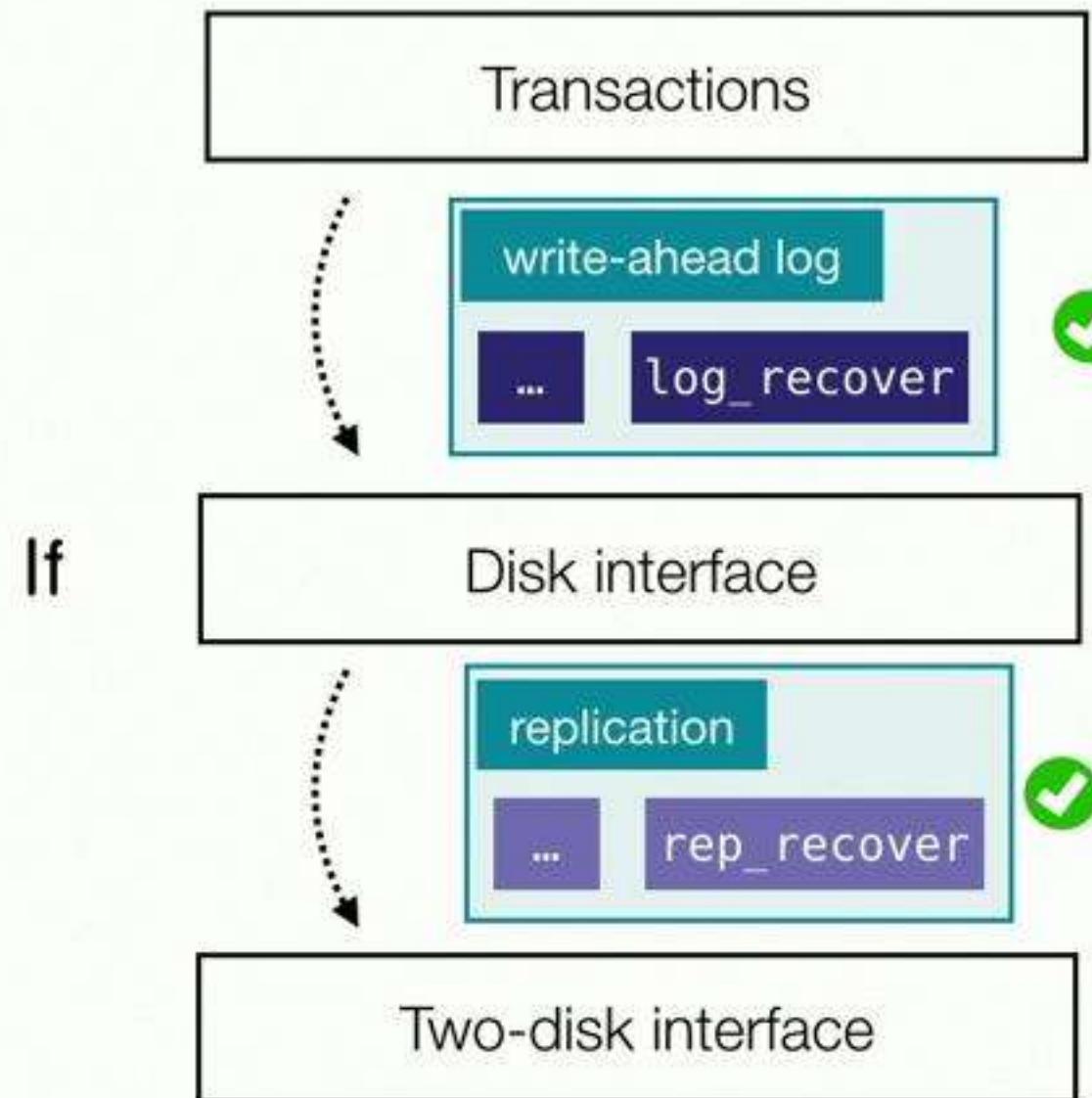
Composition theorem

Kleene algebra for transition relations

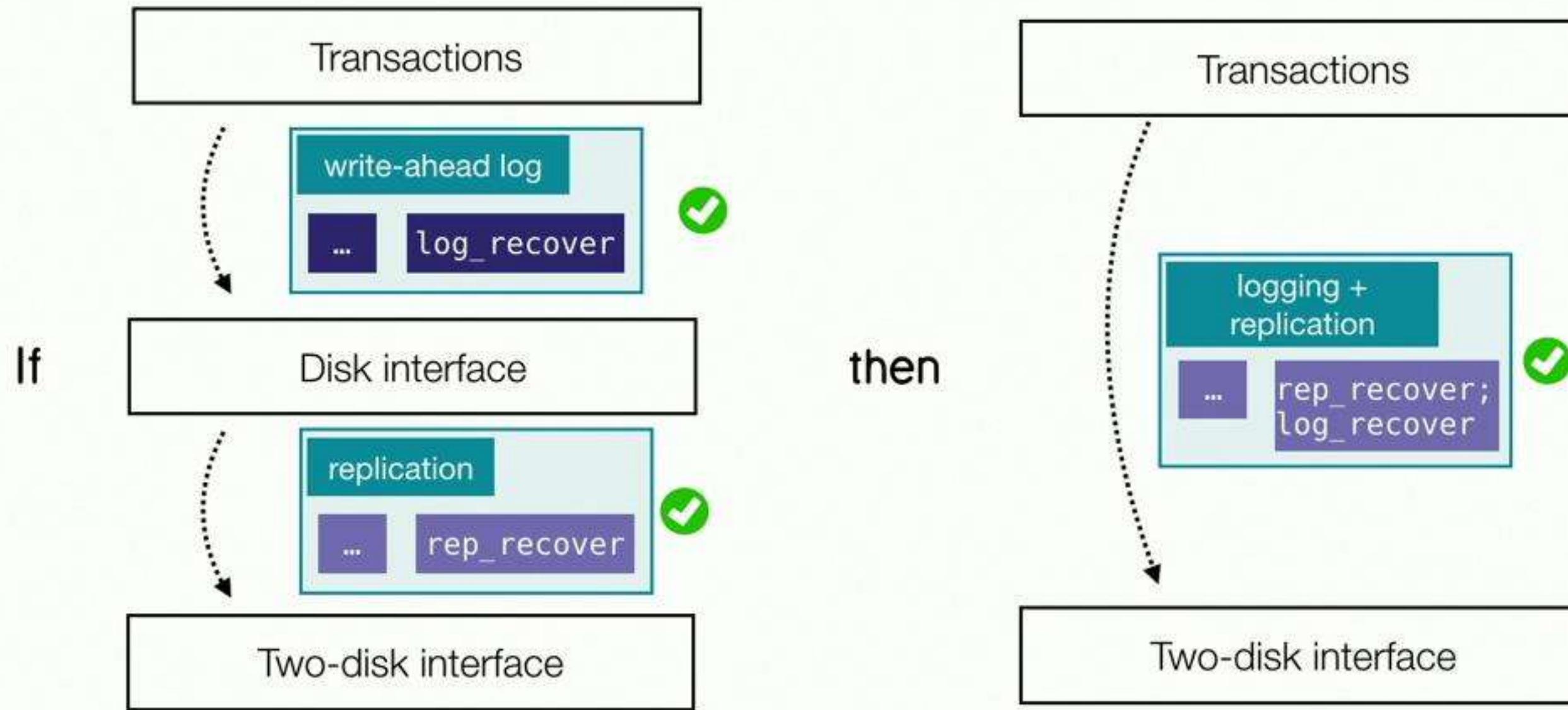
Kleene algebra for transition relations

expression	matching transitions
$op_1 \mid op_2$	$O \rightarrow op_1 \rightarrow O \rightarrow op_2 \rightarrow O$
$\text{power} \mid op \text{ power}$	$O \rightarrow \text{power} \rightarrow O$ $O \rightarrow op \rightarrow O \rightarrow \text{power} \rightarrow O$
$r \xrightarrow{*} \text{power}^*$	$O \xrightarrow{*} r \xrightarrow{*} \text{power}^* \rightarrow O$ $O \rightarrow r \xrightarrow{*} \text{power}^* \rightarrow O$ $O \rightarrow r \xrightarrow{*} \text{power}^* \rightarrow O \rightarrow r \xrightarrow{*} \text{power}^* \rightarrow O$ \dots

Theorem: recovery refinements compose



Theorem: recovery refinements compose



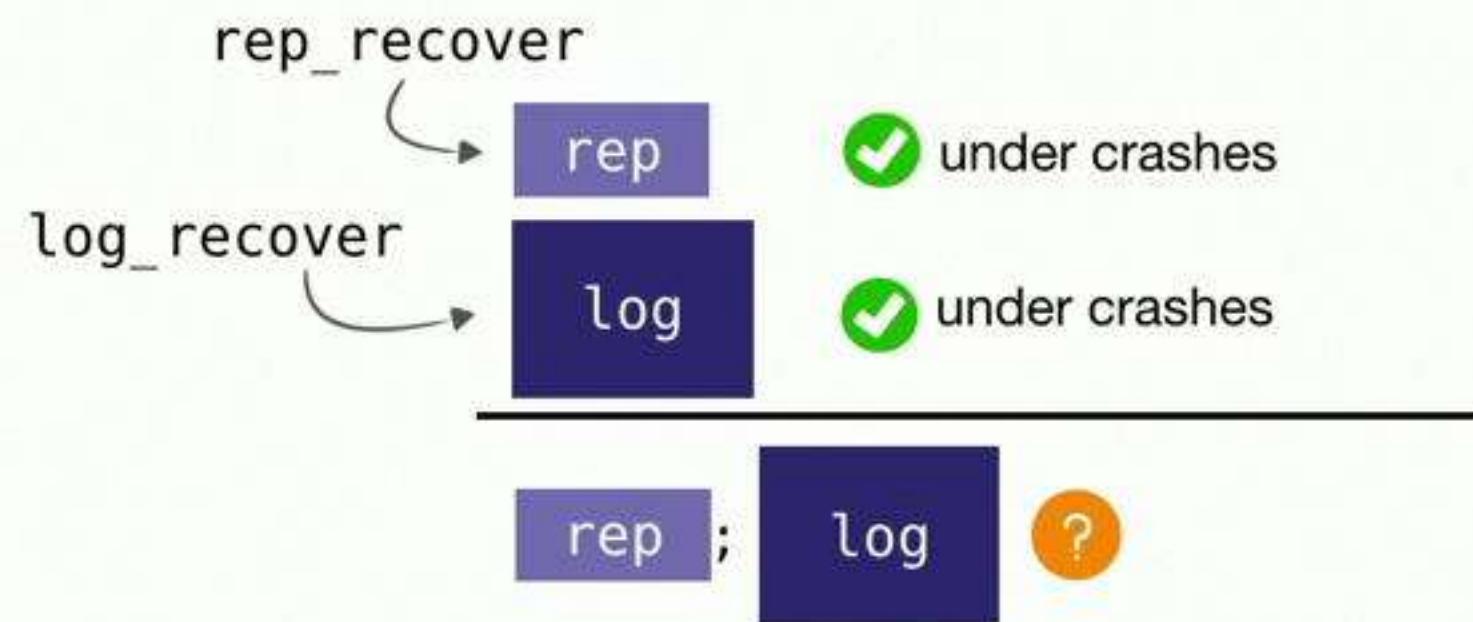
Goal: prove composed recovery correct

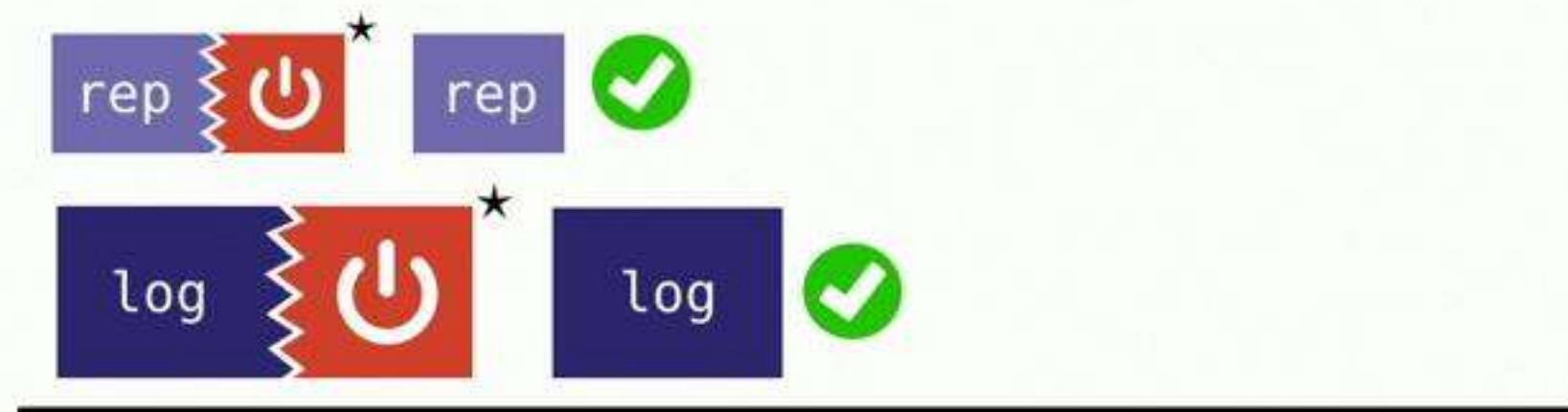
rep_recover ✓ under crashes

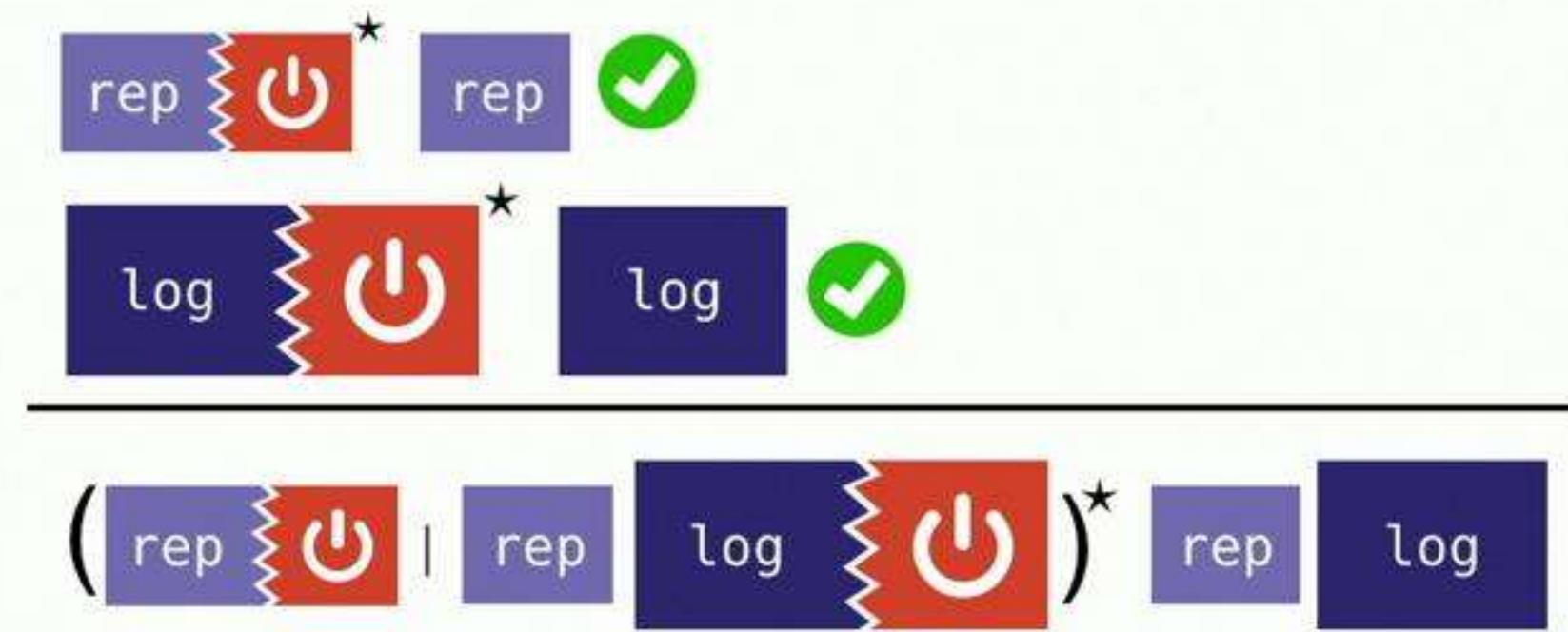
log_recover ✓ under crashes

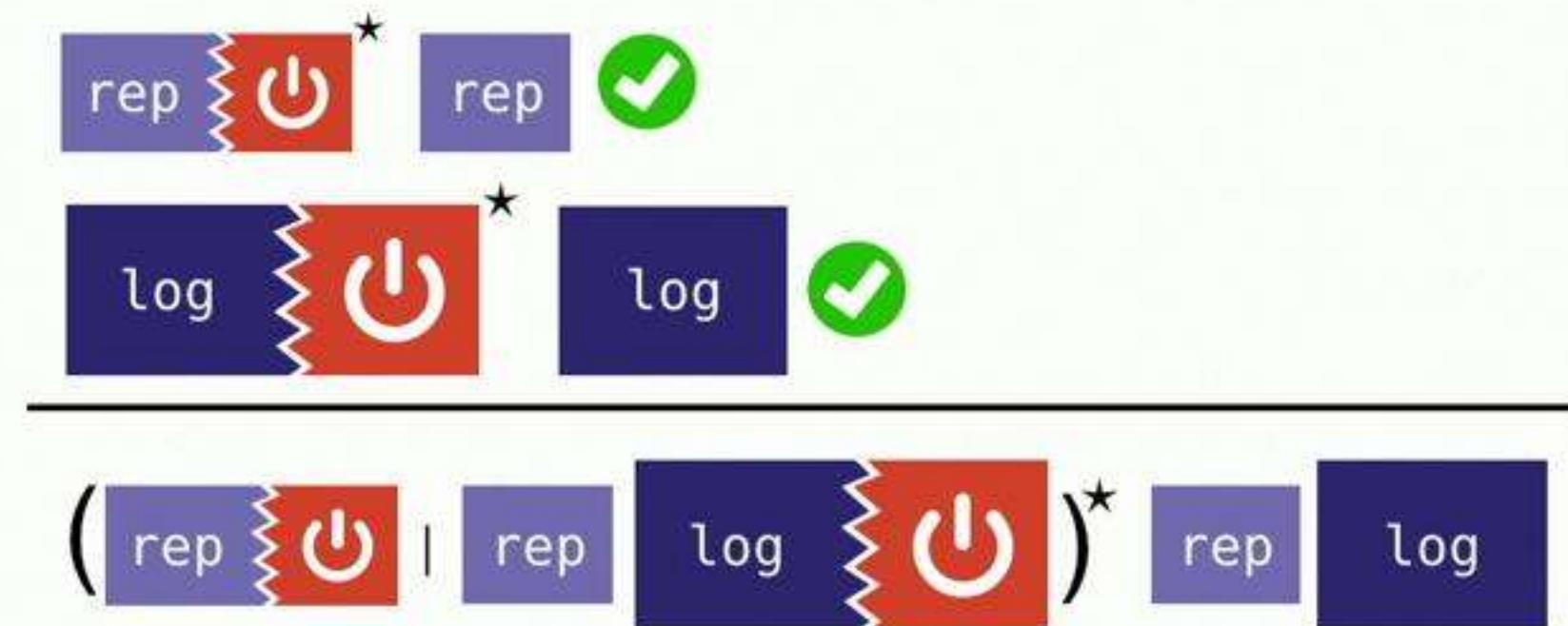
rep_recover ; log_recover ?

Goal: prove composed recovery correct









how to re-use recovery proofs here?

Using Kleene algebra for reasoning

(rep | rep log)^{*} rep log

after *de-nesting* $(p \mid q)^* = p^* (qp^*)^*$

Using Kleene algebra for reasoning

$$(\text{rep } \text{power} \mid \text{rep log } \text{power})^* \text{ rep log}$$

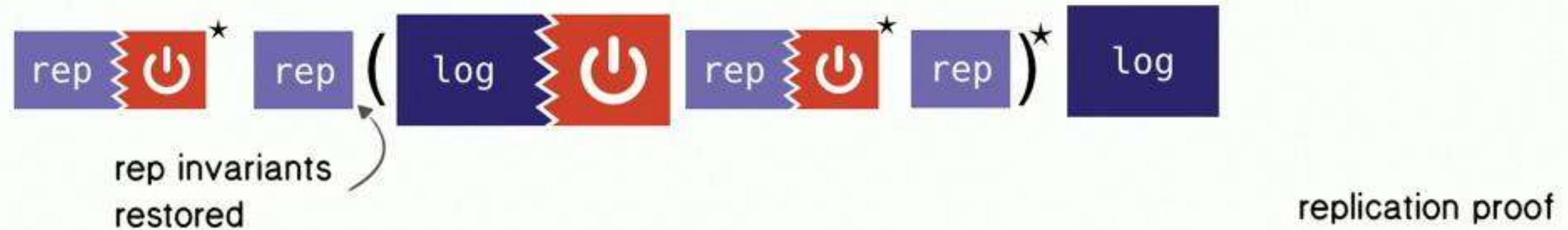
after *de-nesting* $(p \mid q)^* = p^* (qp^*)^*$

$$= \text{rep power}^* (\text{rep log power} \text{ rep power}^*)^* \text{ rep log}$$

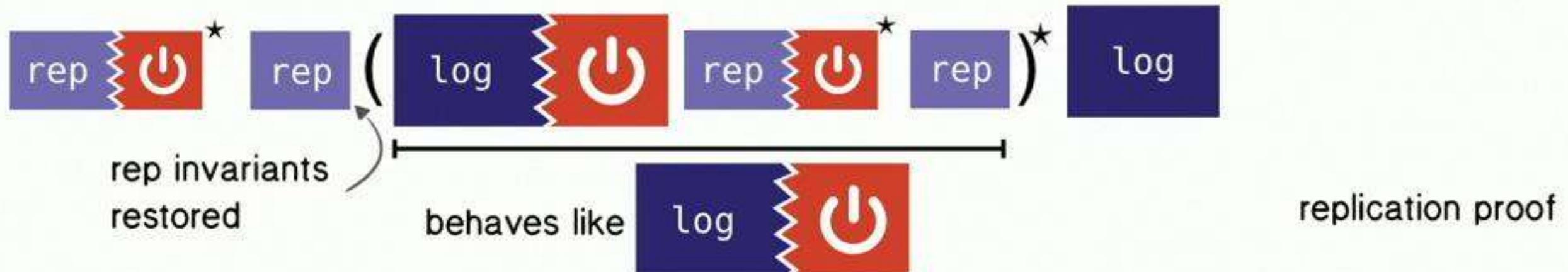
after *sliding* $(pq)^* p = p(qp)^*$

$$= \text{rep power}^* \text{ rep } (\text{log power} \text{ rep power}^* \text{ rep})^* \text{ log}$$

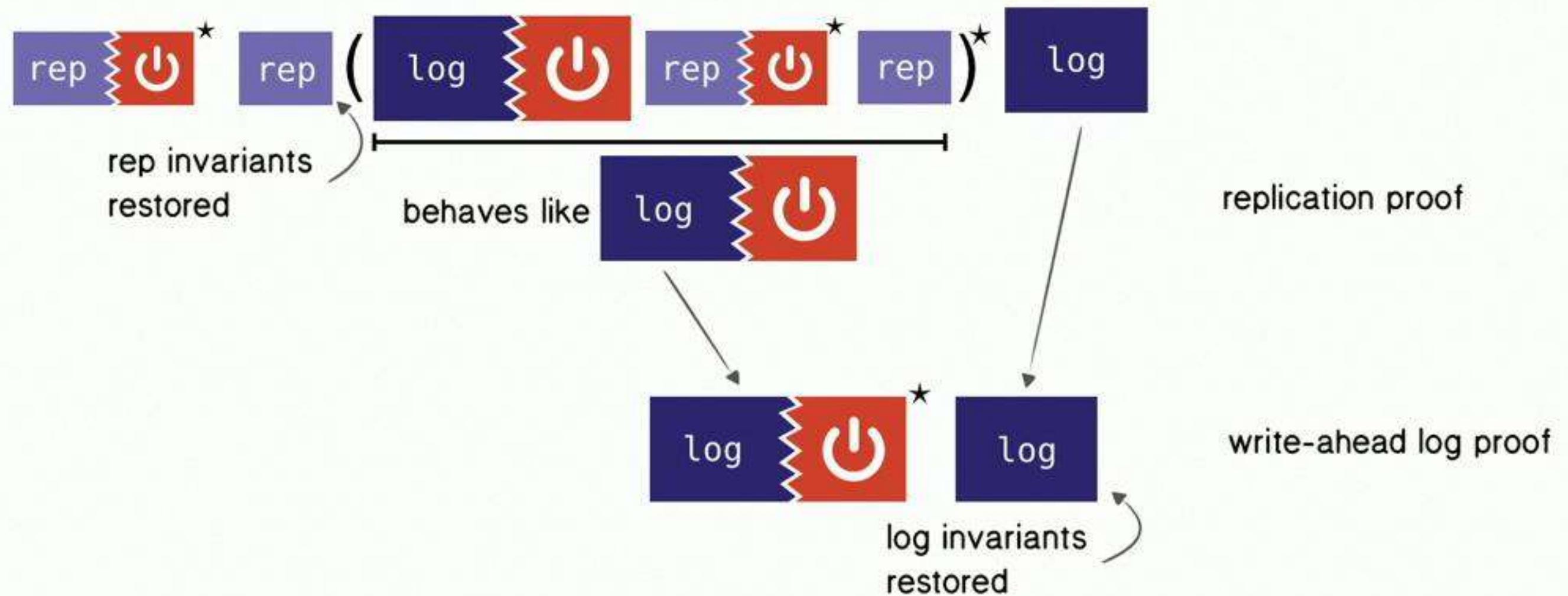
After rewrite both proofs apply



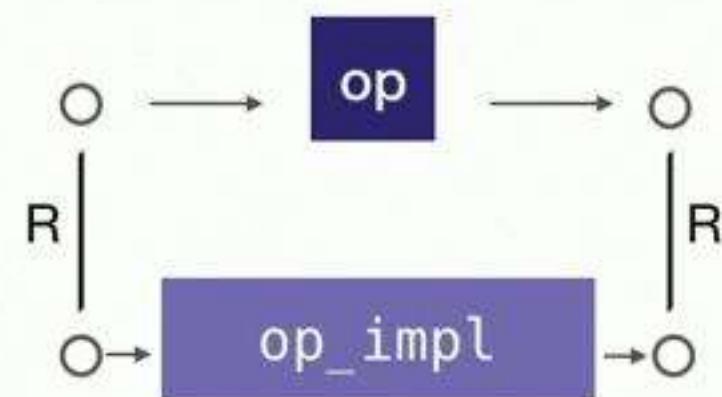
After rewrite both proofs apply



After rewrite both proofs apply



Kleene algebra also helps with refinement



Kleene algebra also helps with refinement

An anecdote about modularity

An anecdote about modularity

Using Crash Hoare Logic for Certifying the FSCQ File System

Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans Kaashoek, and Nickolai Zeldovich
MIT CSAIL

Abstract

FSCQ is the first file system verified using the Coq proof assistant. Its specification and whose implementation avoids bugs found in other systems, such as performing memory barriers or forgetting to zero out memory that happens at an inopportune time.

Verifying a high-performance crash-safe file system using a tree specification

Haogang Chen,[†] Tej Chajed, Alex Konradi,[‡] Stephanie Wang,[§] Atalay İleri,
Adam Chlipala, M. Frans Kaashoek, Nickolai Zeldovich
MIT CSAIL

ABSTRACT

DFSCQ is the first file system that (1) provides a precise specification for `fsync` and `fdatasync`, which allow applications to achieve high performance and crash safety, and (2) provides a machine-checked proof that its implementation meets this specification. DFSCQ's specification captures the behavior of sophisticated optimizations, including log-

1 INTRODUCTION

File systems achieve high I/O performance and crash safety by implementing sophisticated optimizations to increase disk throughput. These optimizations include deferring writing buffered data to persistent storage, grouping many transactions into a single I/O operation, checksumming journal entries, and bypassing the write-ahead log when writing to

An anecdote about modularity

Using Crash Hoare Logic for Certifying the FSCQ File System

Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans Kaashoek, and Nickolai Zeldovich
MIT CSAIL

Abstract

FSCQ is the first file system verified using the Coq proof assistant. Its specification and whose implementation avoids bugs in systems, such as performing barriers or forgetting to zero out memory that happens at an inopportune time.

Verifying a high-performance crash-safe file system using a tree specification (my advisor)

Haogang Chen,[†] Tej Chajed, Alex Konradi,[‡] Stephanie Wang,[§] Atalay İleri,
Adam Chlipala, M. Frans Kaashoek, Nickolai Zeldovich
MIT CSAIL

ABSTRACT

DFSCQ is the first file system that (1) provides a precise specification for `fsync` and `fdatasync`, which allow applications to achieve high performance and crash safety, and (2) provides a machine-checked proof that its implementation meets this specification. DFSCQ's specification captures the behavior of sophisticated optimizations, including log-optimization, write-ahead logging, and journaling.

1 INTRODUCTION

File systems achieve high I/O performance and crash safety by implementing sophisticated optimizations to increase disk throughput. These optimizations include deferring writing buffered data to persistent storage, grouping many transactions into a single I/O operation, checksumming journal entries, and bypassing the write-ahead log when writing to

```
def atomic_save(data, path):
    write_all(data, tmp)
    rename(tmp, path)

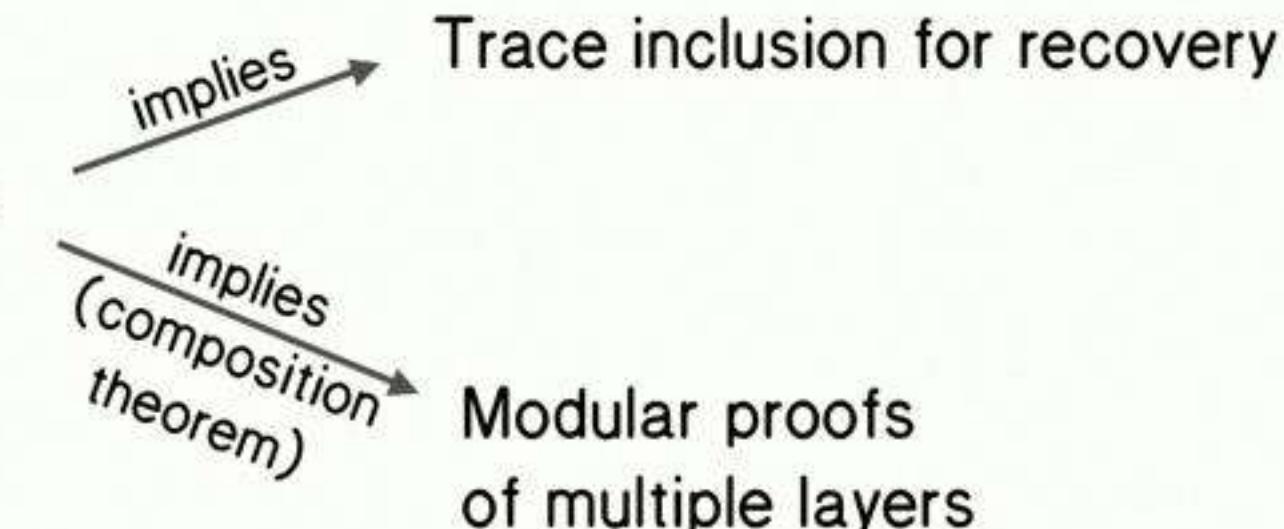
# runs on crash
def recover():
    fs_recover()
    unlink(tmp)
```

```
def atomic_save(data, path):  
    write_all(data, tmp)  
    rename(tmp, path)  
  
    # runs on crash  
def recover(): ← this is non-modular and makes  
    fs_recover() the proof much harder  
    unlink(tmp)
```

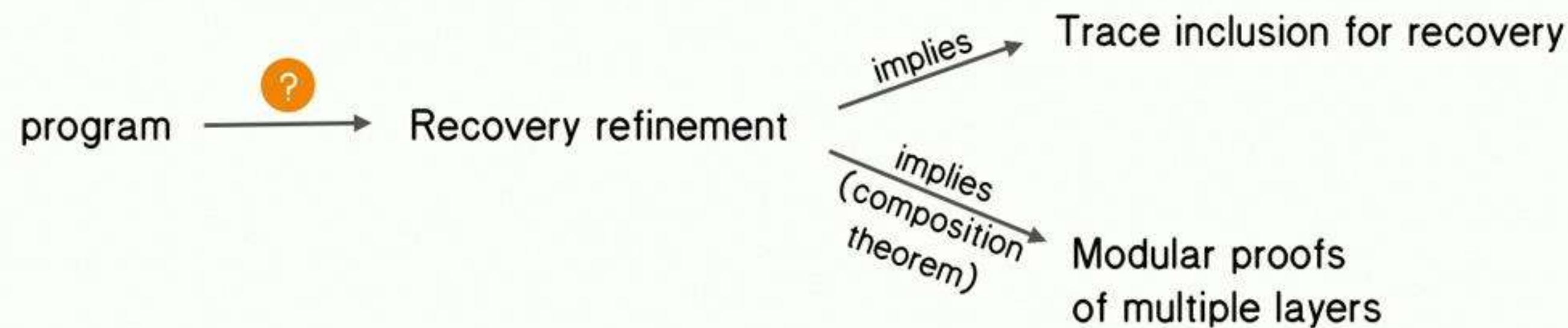
Proving this code correct took 1500 lines of proof code!

Argosy so far

Recovery refinement



Argosy so far



Crash Hoare Logic

Hoare Logic

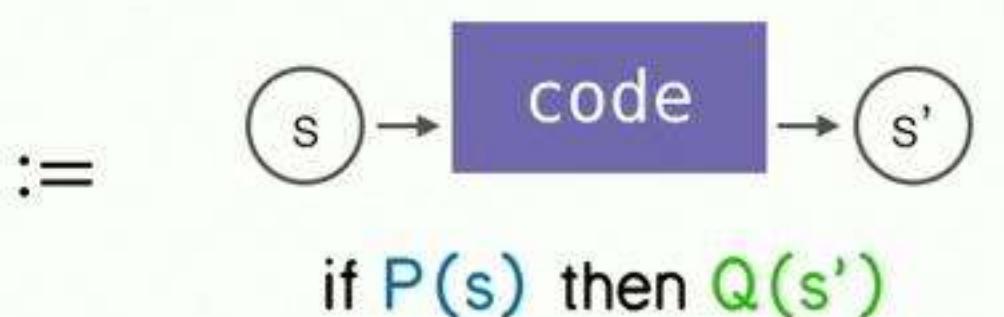
Hoare Logic

“Hoare triple”

$\{P\}$ code $\{Q\}$

precondition

postcondition



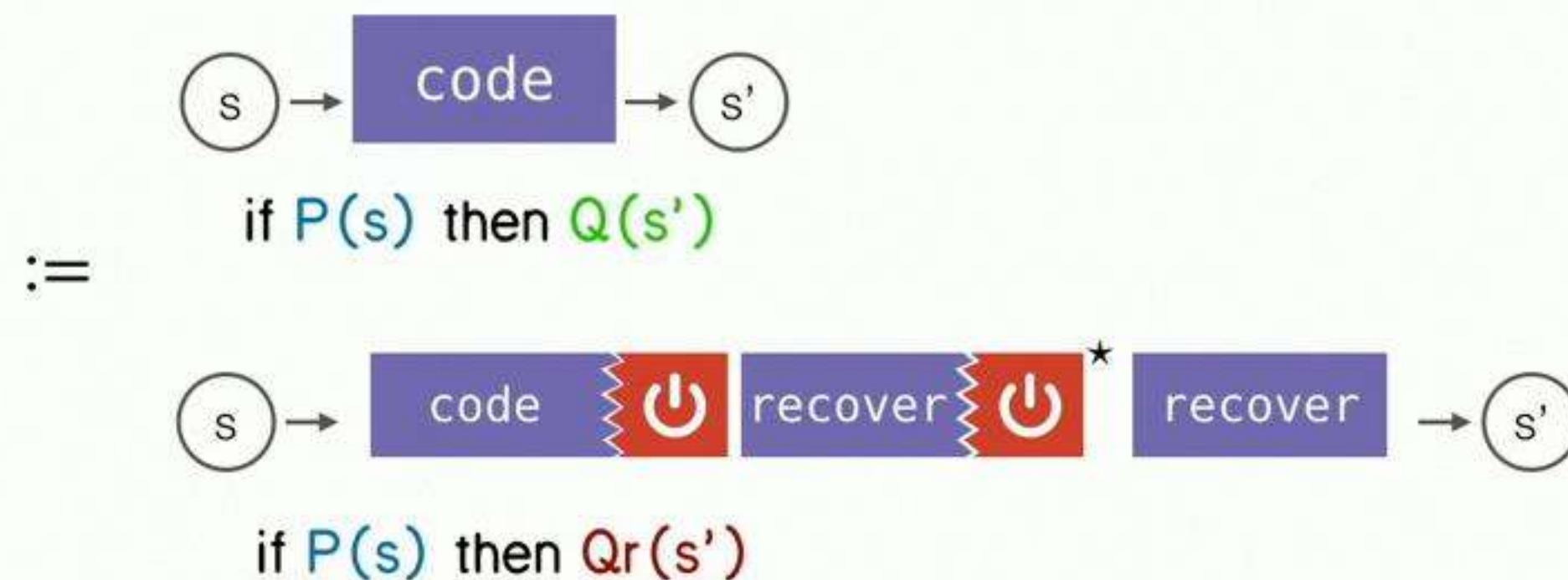
Crash Hoare Logic

:= if $P(s)$ then $Q(s')$

if $P(s)$ then $Q_c(s')$

Crash Hoare Logic

“recovery specification” $\{P\}$ code \circlearrowleft recover $\{Q\}$ $\{Q_r\}$
precondition postcondition recovery postcondition



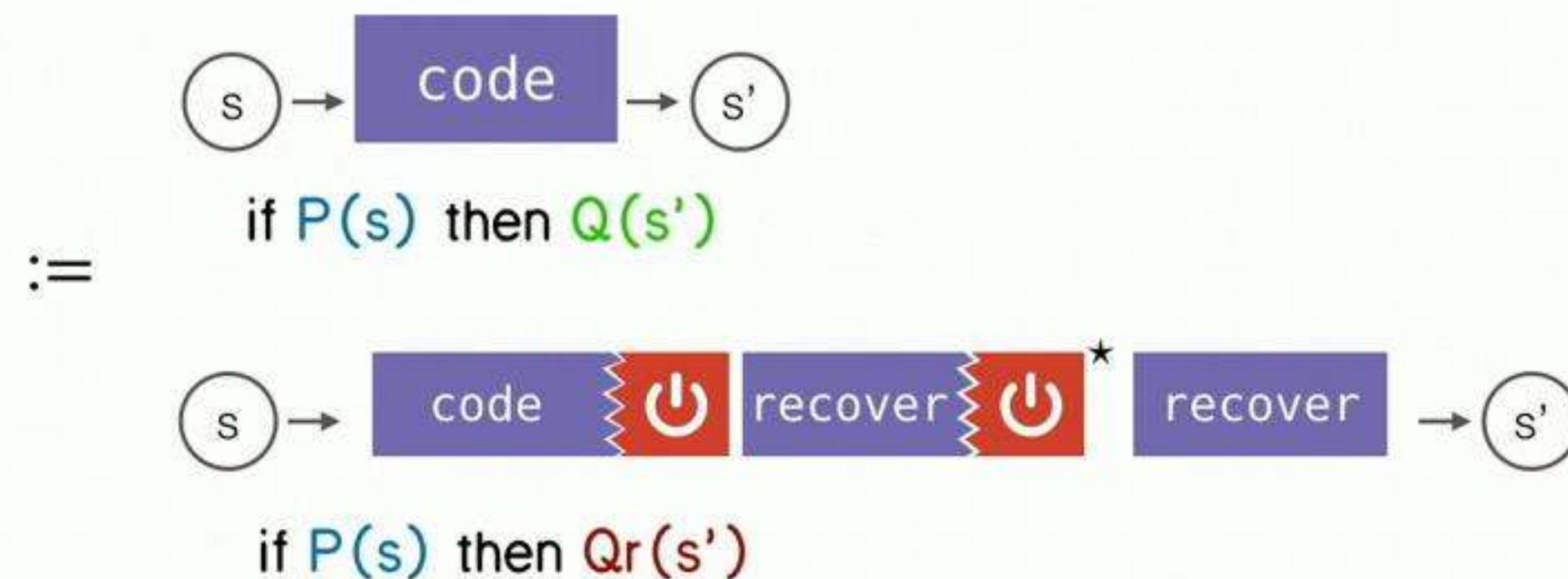
Crash Hoare Logic

:= if $P(s)$ then $Q(s')$

if $P(s)$ then $Qc(s')$

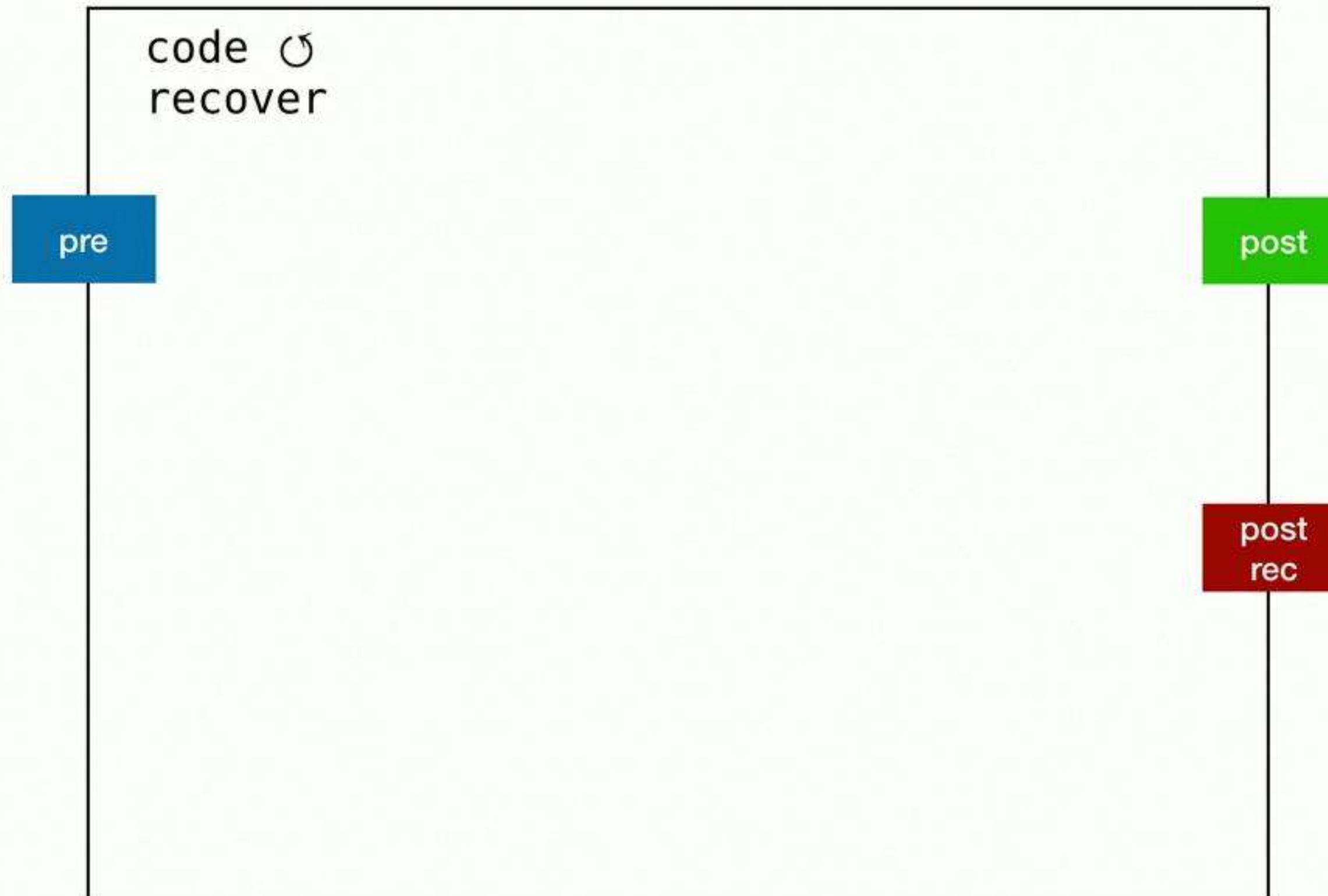
Crash Hoare Logic

“recovery specification” $\{P\}$ code \circlearrowleft recover $\{Q\}$ $\{Q_r\}$
precondition postcondition recovery postcondition

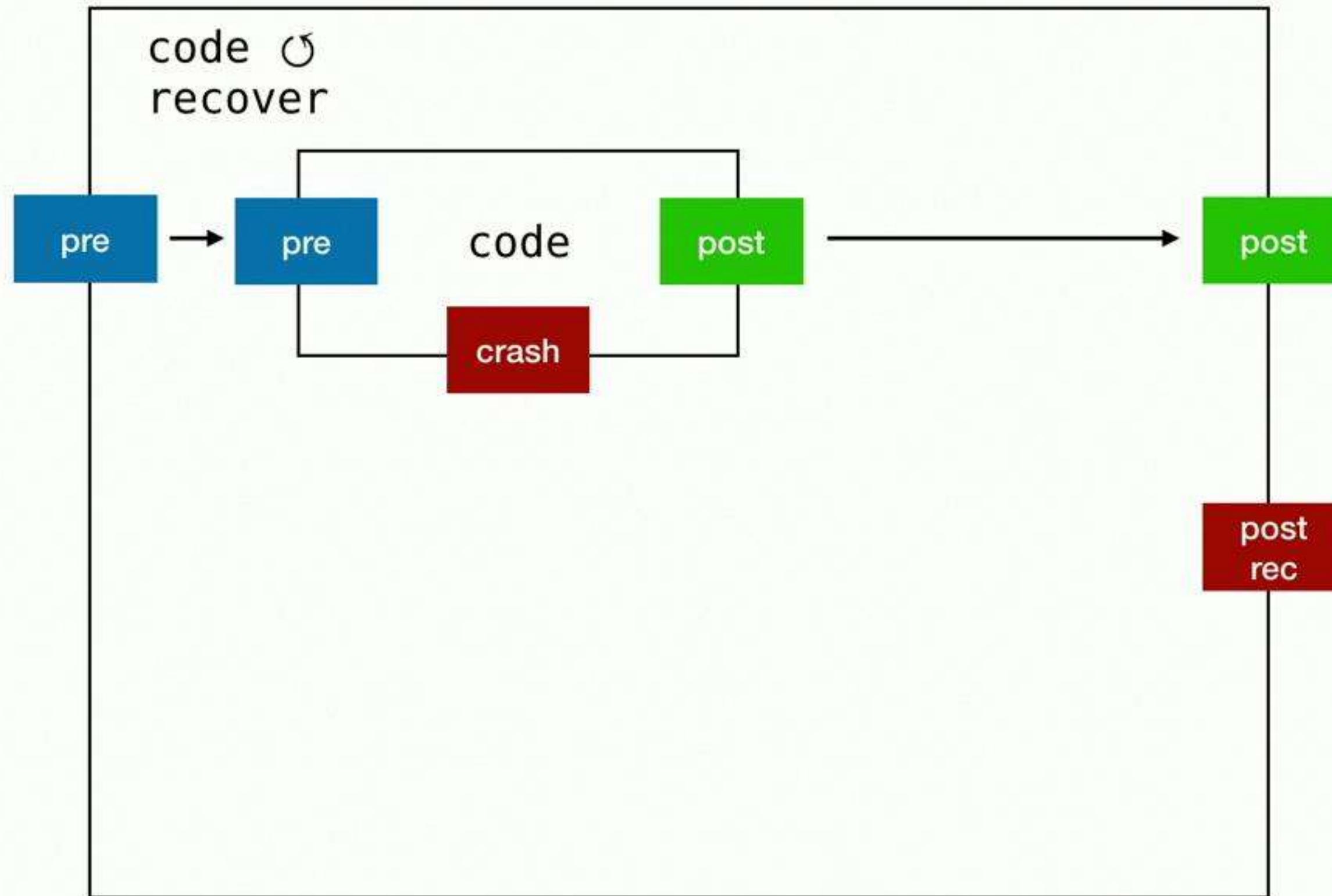


{pre} code ⚡ recover {post} {post rec}

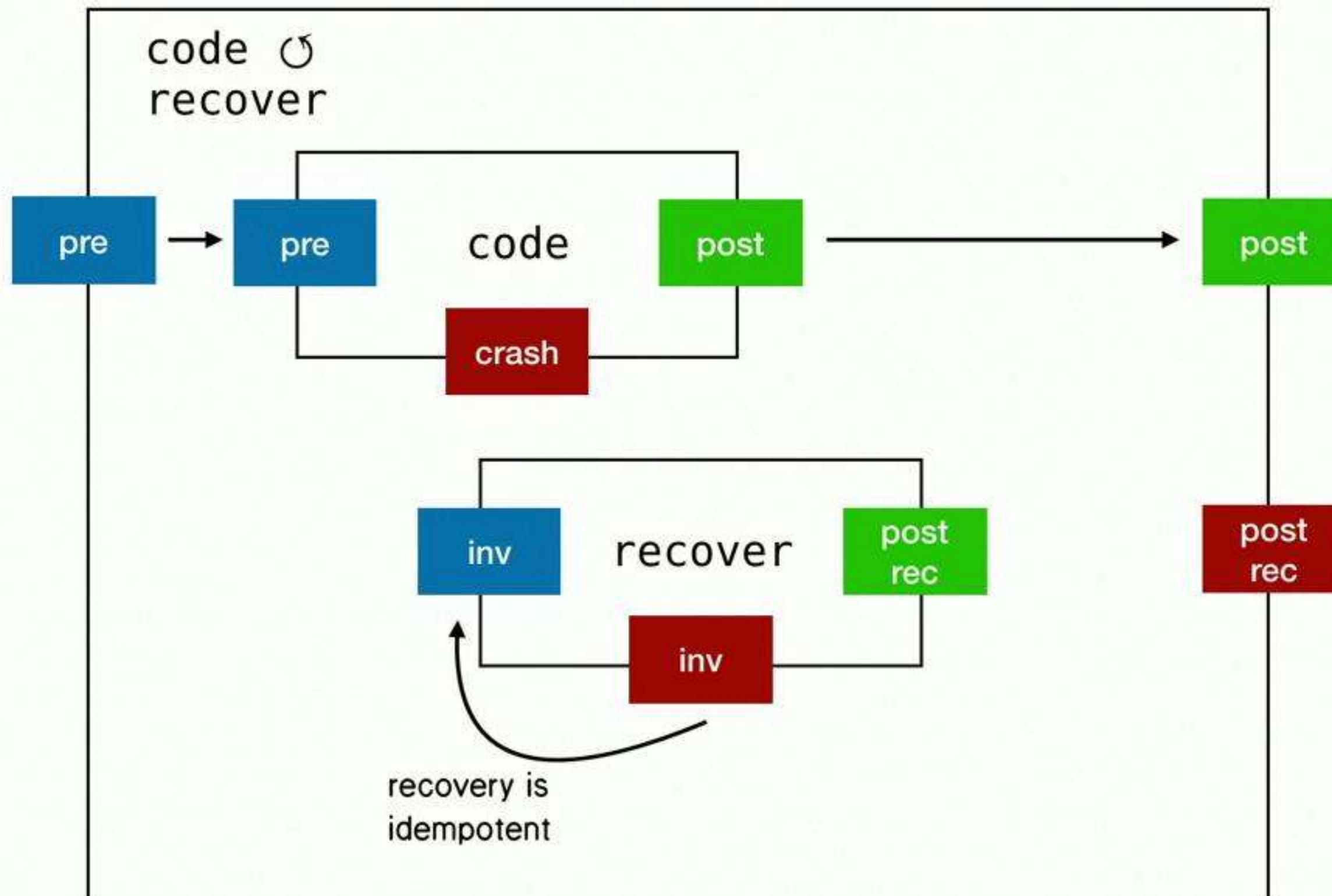
theorem in CHL to prove recovery specs from crash specs



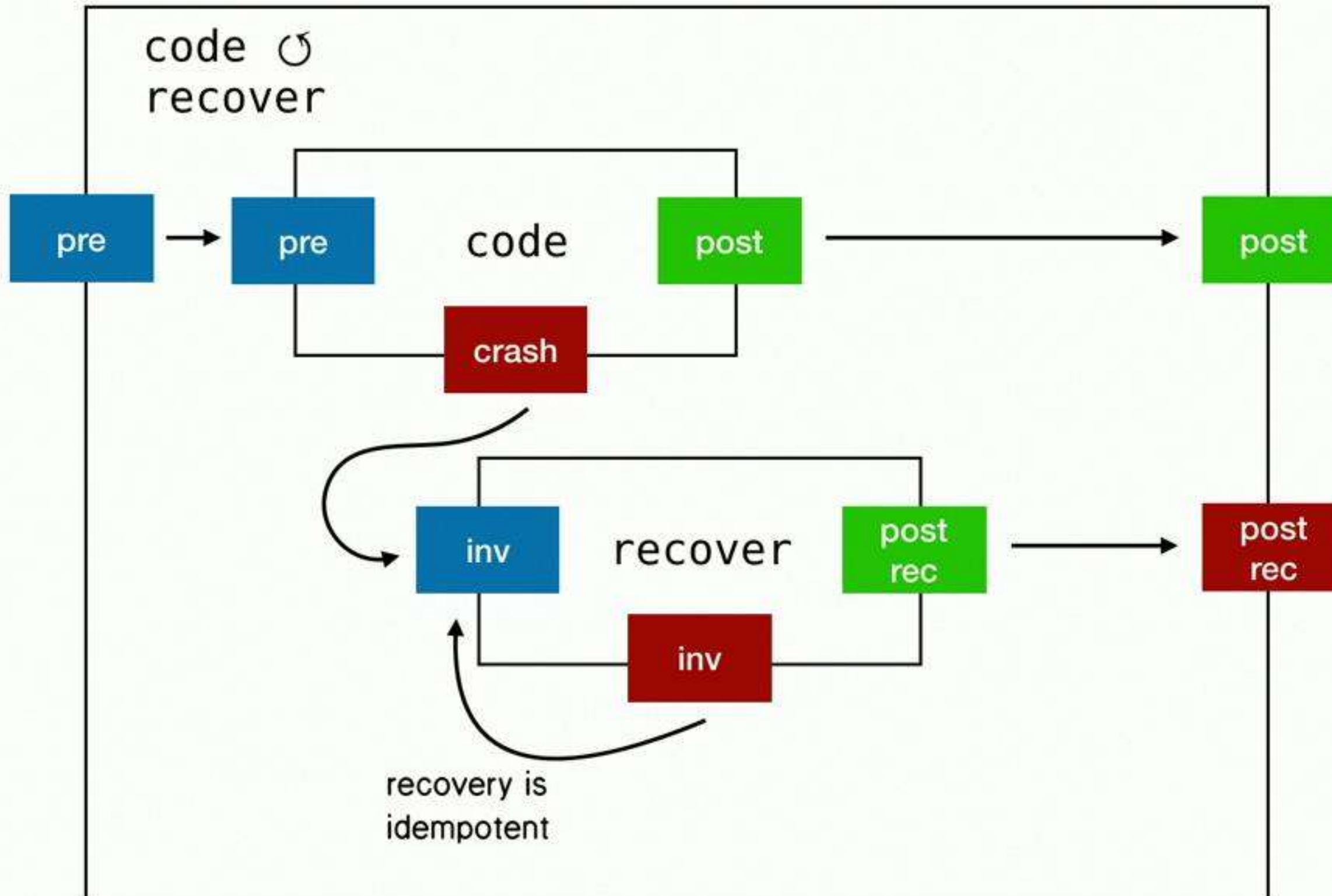
theorem in CHL to prove recovery specs from crash specs



theorem in CHL to prove recovery specs from crash specs



theorem in CHL to prove recovery specs from crash specs



Argosy connects CHL to recovery refinement

Come up with *abstraction relation*

Prove a *refinement specification* for every operation

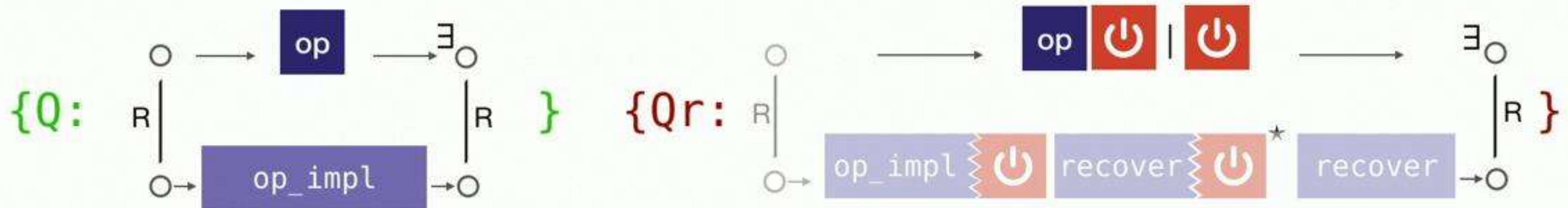
Gives recovery refinement for implementation

Recovery refinement as a CHL spec

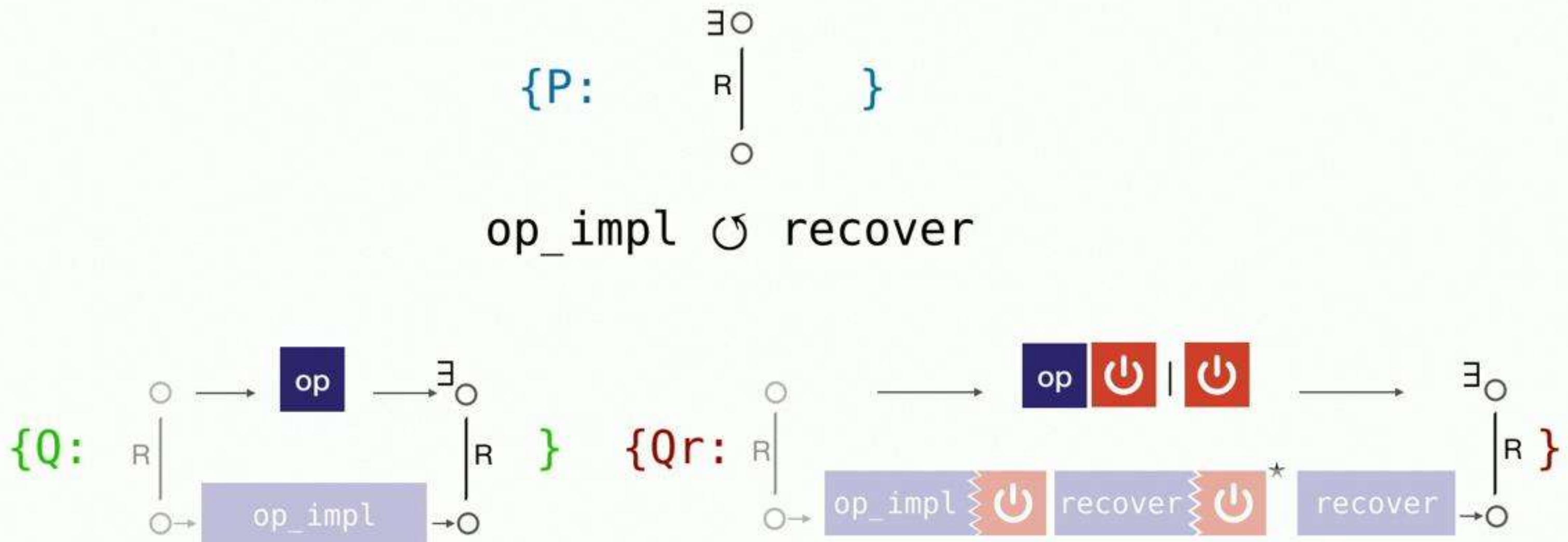
$\{P\} \text{ op_impl } \circ \text{ recover } \{Q\} \{Qr\}$

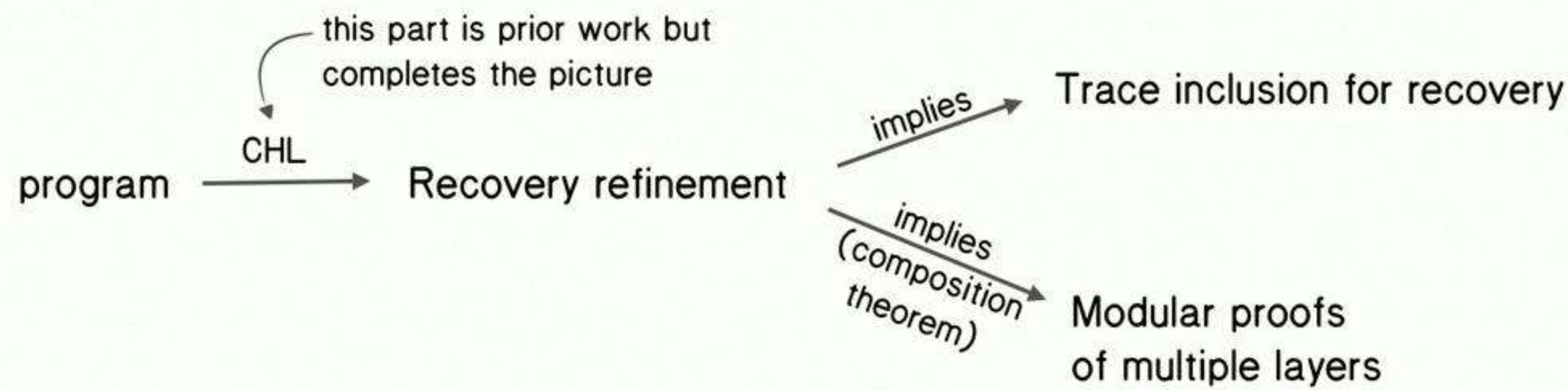
Recovery refinement as a CHL spec

$op_impl \circ recover$



Recovery refinement as a CHL spec





Argosy is implemented and verified in Coq

3,200 lines for framework

4,000 lines for verified example (logging + replication)

Example extracts to Haskell and runs

github.com/mit-pdos/argosy

Future work

Concurrency

Extending Concurrent Separation Logic [originally 2007]

Implemented using Iris [originally POPL 2015]

Better story for running code

Currently extract to Haskell

Performance problems (esp. for concurrency)

New plan: import Go into Coq

Usability for students

Argosy spun off from course infrastructure

Now want to backport improvements

Argosy: modular proofs of layered storage systems

Kleene algebra

(rep | rep log)^{*}

Argosy: modular proofs of layered storage systems

Kleene algebra

(rep | rep log)*

recovery refinemen

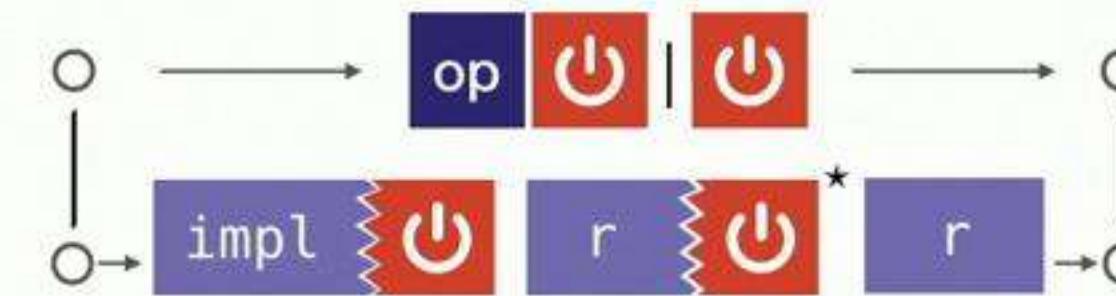


Argosy: modular proofs of layered storage systems

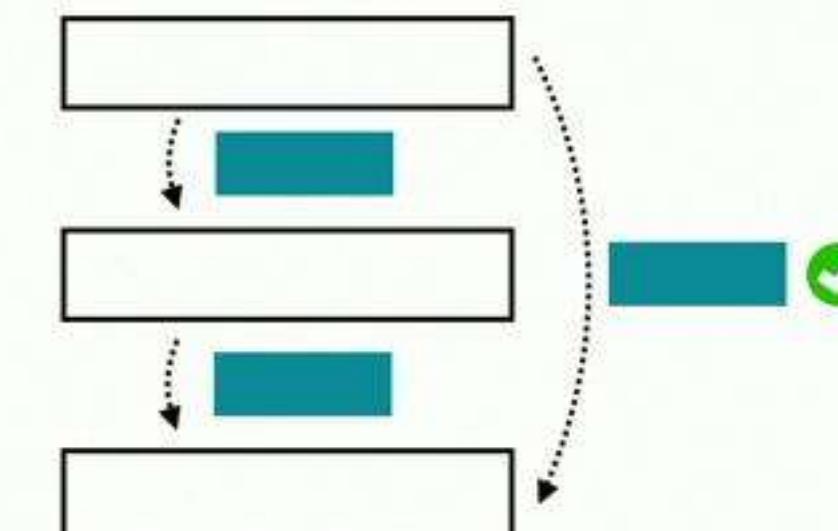
Kleene algebra

$$(\text{rep} \xrightarrow{\quad} \text{op} \mid \text{rep} \xrightarrow{\quad} \text{log} \xrightarrow{\quad} \text{op})^*$$

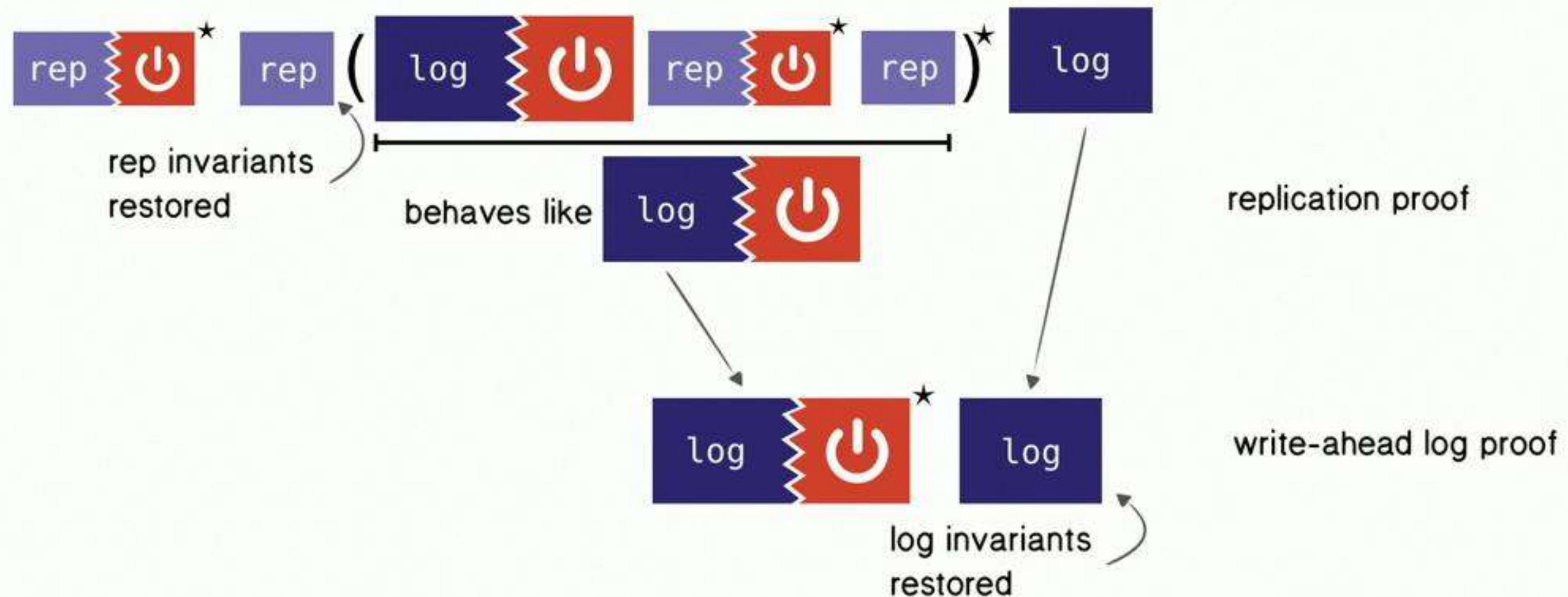
recovery refinement



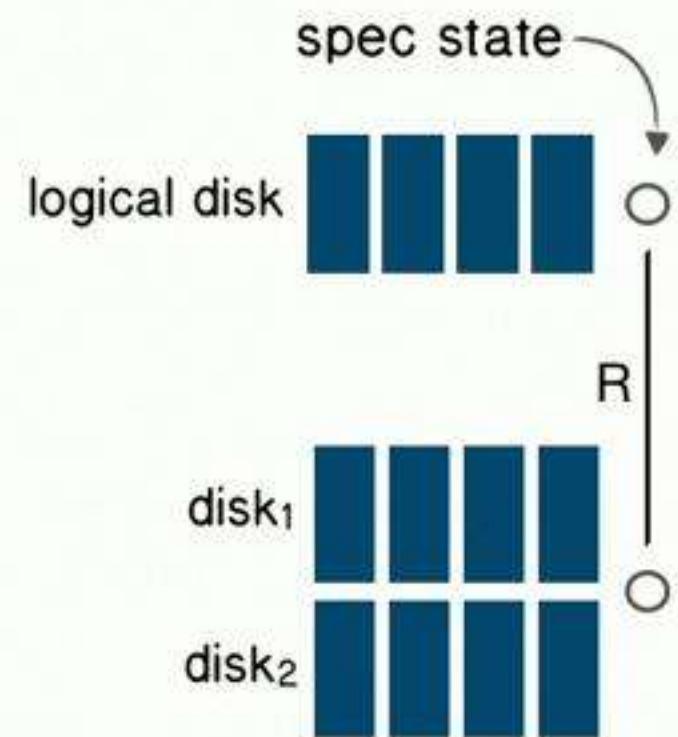
modular proofs



After rewrite both proofs apply



Proving correctness with an abstraction relation



1. developer provides abstraction relation R

```
def atomic_save(data, path):
    write_all(data, tmp)
    rename(tmp, path)

# runs on crash
def recover():
    fs_recover()
    unlink(tmp)
```