Argosy: Verifying layered storage
systems with recovery refinement

Tej Chajed, Joseph Tassarotti, Frans Kaashoek, Nickolai Zeldovich

MIT

logical disk l I I I

disk; IIII
NN

Bob writes a replication system

logical disk llll

O— »O— > O

Bob writes a replication system

logical disk l l I l

O > =0
o [N

ol | | .

Bob writes a replication system

logical disk Illl l T II

O » ==
o [N

« [IR HHEN

Bob writes a replication system

logical disk llll l ? I I

O > O » O > O

oo [|| BN | (| BN ||
«[J Il TIIR HEAEN

Bob writes a replication system and implements its recovery procedure

SUP T T 0 |

write; recovery restores
®) + O > O » O

invariants
= || (.] 11k
= | || . ||| 11

Bob writes a replication system and implements its recovery procedure

Bob is careful and writes a
machine-checked proof of correctness

‘ Disk interface \

| 4
replication) read and write are atomic if you run

rep recover after every crash
¥

‘ Two-disk interface \

‘ Transactions |

write-ahead logging

log recover

4

| Disk interface \

‘ Transactions |

write-ahead logging) ops are atomic if you run
log recover after every crash

1

‘ Disk interface \

‘ Transactions \

write-ahead log [«]
El

logging + o
‘ Disk interface \ Kepication

M replication [«]
4

Two-disk interface

‘ Transactions \

write-ahead log [«

logging + 0
‘ Disk interface I replication

O 3 rep recover Bl log recover

‘ Two-disk interface \'

Challenge: crashes during composed recovery

rep_recover O under crashes
log recover [« UL EIEEIES

how do we prov
rep recover Hll Llog recover e liniaane - i correctne_ss'
- — under crashes using the existing proofs?

Prior work cannot handle multiple recovery

procedures

WIS FA

write-ahead log

3
8 replication

Y

B el]

CHL [SOSP ’15]

Yggdrasil [OSDI ’16]

Flashix [SCP *16]

not modular

single recovery

restricted recovery
procedures

Argosy supports modular recovery proofs

I Transactions \ developer

proves

o g [V

4

| Disk interface I

| proves

| Two-disk interface |

Argosy supports modular recovery proofs

I Transactions \

. ".'_ v\ Argosy

3 write-ahead log O é% prc?ves

? "')
13

logging + O
Disk interface replication

§ repiication [v

4

‘ Two-disk interface |

Argosy Is compatible with existing techniques

I Transactions \

write-ahead log O 4 ’\
4

S prove with Crash Hoare Logic
Disk interface [SOSP 15]

EEEe -
El

| Two-disk interface |

10

Contributions

Recovery refinement for modular proofs

CHL for proving recovery refinement

see paper Verifled example: logging + replication

see code Machine-checked proofs in Cog ¥

11

Preview: recovery refinement

‘ Disk interface \ :
| 1. Normal execution correctness

v using refinement
O BT 2. Crash and recovery correctness
4

using recovery refinement
‘ Two-disk interface \

12

Refinement

13

WIS IS A
Disk interface

replication

WITITITIIIIIFa

Two-disk interface

14

WIS A
Disk interface

write

5

N\

replication

v

/ /

Two-disK interface

-3 v
writes writes

14

IS A
Disk interface

1

WIS TTIVTIFIFa

Two-disk interface

reads reads

14

I IS
Disk interface

correctness is based on how we use replication:

run code using Disk interface on top of two disks

w

oo

WISV ITIINIIIFA

Two-disk interface

o [ress sopt_
i -)

writes writes

read:

reads

14

Correctness: trace inclusion

‘ Dusk interface ‘ spec’s
/ behaviors

code im :
Two-disk interface | 1P behaviors

15

8
: ; : N o/,
Proving correctness with an abstraction relation ™&Z»

spec st ate

logical disk IIII O

d“llll
TR

1. developer provides
abstraction relation R

16

spec state

write
1

disk : ‘
= 1 “1nm

. developer provides

abstraction relation R

prove spec execution exists

and abstraction relation is preserved

Ol PO

16

Recovery refinement

17

I I IIIIIIA
Disk interface

read write

WIiFIFIIyFyyssya
Two-disk interface

write; gwrite;

read;

read;

18

Disk interface

L
-
-

rep recover

Two-disk interface

write; gwrite;

readi read;

18

Disk interface

rep recover

Two-disk interface

18

Extending trace inclusion with recovery

ikt
b 2
Disk interface

/ code impl
§ repiication [V
% \
ety specification for crash behavior:

19

Extending trace inclusion with recovery

P crash semantics

7 T T ‘ R 8 2
Two-disk interface —‘ : specification for crash behavior: * O

...

) recovery semantics

crash & recovery behavior | <«— RRESSEAAC

19

| Disk interface '

4

one of these

l—llllﬂll'

2 recovery semantics

Two-disk Interface

?
crash & recovery behavior : <— EASSEAAAS

recovery semantics

4 - A
v &

Tw

Yy 4
L

O_

= Y N - f—t
e 4 f—~ [; B

£ B 4 y A B B i

é

disk interface

2

21

s

: ‘l A e BN "

- ',"::,-,Pﬁ, ’—.;:‘,l :

: B G ; é-};,{;;‘ ‘i\ A I
|

= = F 7 i

2
*
. »
code impl ’) recover ’)/ recover

Zero-or-more iterations

22

Trace inclusion, with recovery

)
ace
—
" ropicaton [

‘ Disk interf \

|

\ |
‘ Two-disk interface \
2
*

23

Proving trace inclusion, with recovery

*
o- IR - o ST recover [8

24

Proving trace inclusion, with recovery

*
o

K crash must occur
during some operation

24

Proving trace inclusion, with recovery

o- -0

R R

*

24

Proving trace inclusion, with recovery

O

R
*

24

Proving trace inclusion, with recovery

O

O

oo
R R
;

24

Recovery refinement

non-crash execution

o — B —o
R‘ |R

crash and recovery execution

SR T[] [
R' ‘R
*

25

Recovery refinement

non-crash execution

o — B —o
R‘ |R

crash and recovery execution

N T[] [
R' ‘R
*

€ Trace inclusion

implies

> specification behavior
=

running code behavior

25

Composition theorem

Kleene algebra for transition relations

expression

o fop
Off >l

27

Kleene algebra for transition relations

expression matching transitions
0| op2 S oo RS o IS
- O
OO .
*
g

Theorem: recovery refinements compose

Transactions

write-ahead log
] e

|f Disk interface

replication
- rep recover

Two-disk interface

%

Theorem: recovery refinements compose

If

Transactions

write-ahead log
i

Disk interface

replication
- rep recover

Two-disk interface

then

Transactions

logging +
replication

. rep recover;
log recover

1

Two-disk interface

28

Goal: prove composed recovery correct

rep_recover O under crashes
LRIl) under crashes

rep recover B lLog recover @

29

Goal: prove composed recovery correct

rep recover

k» O under crashes

log recover

_,v Log

O under crashes

X gl ©

30

*
ree B

31

31

B0 B o
*
-8

*
feiofla] - O)

how to re-use recovery proofs here?

31

Using Kleene algebra for reasoning

oo) .

esting (p | q)* =p™(gp™)*

32

Using Kleene algebra for reasoning

*
Lol o)

after de-nesting (p | ¢)* = p*(gp™)*
* * ok
- {rer i =] o
. * o *
after sliding (pq)™p = plgp)

* % *
ol oleiof-)

32

After rewrite both proofs apply

replication proof

After rewrite both proofs apply
oo o o))

replication proof

After rewrite both proofs apply

il ’ :)
rep mvarnants

log mvarlants
restored

replication proof

33

34

translates to
i

=

34

An anecdote about modularity

An anecdote about modularit

MIT CSAIL

Using Crash Hoare Logic for Certifying the FSCQ File System

Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans Kaashoek, and Nickolai Zeldovich

Abstract

FSCQ 1s the first file system v
(using the Ci W proot assistany
its specihication and whose
FSCOQ provably avoids bugs
systems, such as performing
barmers or forgetting to zero

happens at an mopportune

Verifying a high-performance crash-safe file system
using a tree specification

Haogang Chen,’ Tef' Chajed, Alex Konradi,* Stephanie Wang,® Atalay ileri,
Adam Chlipala, M. Frans Kaashoek, Nickolai Zeldovich
MIT CSAIL

ABSTRACT

DFSCQ is the first file system that (1) provides

i i'i('l IS

specification for fsync and fdatasync, which allow appli

» | 1 . -
cations to achieve high performance and ¢

(2)

tion meets this specification, DFSCQ s sped

e

!

}

whavior of sophisticated optimizatiol

rash safety, and

13!

4

provides a machine-checked proof that its implementa

cation « aptures

includine loe

1 INTRODUCTION

File systems achieve high VO performance and crash safely
by implementing sophistic ated optimizations to increase disk

throughput. These optimizations include deferring writing
buffered data to persistent storage, grouping many trans
achions into a simgle | () operation, checksumming journal

entries, and bypassing the write-ahead log when writing to

35

An anecdote about modularity

Using Crash Hoare Logic for Certitying the FSCQ File System

Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chhipala. M. Frans Kaashoek, and Nickolai Zeldovich

MIT CSAIL

Verifying a high-performance crash-safe file system
using a tree specification (my advisor)

Haogang Chen,’ Tej ChajgefAlex Konradi,” & ¢phanie \\.»’;leg_{_"‘: Atalay [leri,
Adam Chlipala{M. Frans Kaashoek, lfickolai Zeldovich
- MIT CSAIL_-

def atomic save(data, path):

write all(data, tmp)
rename(tmp, path)

runs on crash

def recover():
fs recover()
unlink(tmp)

36

def atomic save(data, path):

write all(data, tmp)
rename(tmp, path)

runs on crash
defs recoveﬁz L. this is non-modular and makes
e P the proof much harder

Proving this code correct took 1500 lines of proof code!

36

Argosy so far

Recovery refinement

\eo

IMpy:
(Com D//eS
DOS' .

Trace inclusion for recovery

Modular proofs
of multiple layers

37

Argosy so far

program — Recovery refinement

eS
.“.“p\\e
IMpy:
DO S/tr

Trace inclusion for recovery

Modular proofs
of multiple layers

37

Crash Hoare Logic

Hoare Logic

“Hoare triple” { P } code 1Q}

precondition postcondition

39

Hoare Logic

“Hoare triple” {P } code 1Q}

precondition postcondition

oF - NO

if P(s) then Q(s’)

39

Crash Hoare Logic

“crash specification” {P} code {0} {Qc}

precondition postcondition crash invariant

-6

if P(s) then Q(s’)

of - oig

if P(s) then Qc(s’)

40

Crash Hoare Logic

“recovery specification”

{P} code O recover {0} {Qr}

precondition postcondition recovery postcondition

o- -6

if P(s) then Q(s")

*
@_, code recover recover _,@

if P(s) then Qr(s’)

41

Crash Hoare Logic

“crash specification” {P} code {0} {Qc}

precondition postcondition crash invariant

-6

if P(s) then Q(s’)

of - oig

if P(s) then Qc(s')

40

Crash Hoare Logic

“recovery specification”

{P} code O recover {0} {Qr}

precondition postcondition recovery postcondition

oF - NO

if P(s) then Q(s’)

*
@_.. code recover recover _,@

if P(s) then Qr(s’)

41

{pre} code (O recover {post} {post rec}

El Coc
recover

42

theorem in CHL to prove recovery specs from crash specs

code O
recover

43

theorem in CHL to prove recovery specs from crash specs

code O
recover

E3-E3 - E3 »

crash

theorem in CHL to prove recovery specs from crash specs

code O
recover

code

crash

recover

recovery Is
idempotent

theorem in CHL to prove recovery specs from crash specs

code O
recover

code

crash

(* recover

|

recovery Is
idempotent

Argosy connects CHL to recovery refinement

Come up with abstraction relation
Prove a refinement specification for every operation

Gives recovery refinement for implementation

44

Recovery refinement as a CHL spec

{P} op impl O recover {Q} {Qr}

Recovery refinement as a CHL spec

30
{1 P R

O

}

op 1mpl O recover

|R } {Qr: s | . : ‘R}

o- IR - -0

46

Recovery refinement as a CHL spec

30
g R

O

}

op 1mpl O recover

46

program

-

<4

CHL

this part is prior work but
completes the picture

—> Recovery refinement

p\\es

/770/, es

Trace inclusion for recovery

Modular proofs
of multiple layers

48

Argosy is implemented and verified in Coq

3,200 lines for framework

4,000 lines for verified example (logging + replication)

Example extracts to Haskell and runs

github.com/mit-pdos/argosy

49

Future work

50

Concurrency

Extending Concurrent Separation Logic [originally 2007]

Implemented using Iris [originally POPL 2015]

51

Better story for running code

Currently extract to Haskell
Performance problems (esp. for concurrency)

New plan: import Go into Coqg

52

Usability for students

Argosy spun off from course infrastructure

Now want to backport improvements

53

Argosy: modular proofs of layered storage systems

Kleene algebra (Ol |)*

54

Argosy: modular proofs of layered storage systems

Kleene algebra (Ol |)*
o — B — o

recovery refinement |

o R Bl -

54

Argosy: modular proofs of layered storage systems

Kleene algebra (Of)*
o — EfIE — o

recovery refinement |

o R Bl -

modular proofs O

After rewrite both proofs apply

il ’ :)
rep mvanams

log mvarlants
restored

replication proof

33

Gao
. . . o,
Proving correctness with an abstraction relation —<»

spec st ate

logical disk IIII O

°“||||
TR

1. developer provides
abstraction relation R

16

def atomic save(data, path):

write all(data, tmp)
rename(tmp, path)

runs on crash

def recover():
fs recover()
unlink(tmp)

36

