
143

On the Fly Synthesis of Edit Suggestions

ANDERS MILTNER
∗
, Princeton University, USA

SUMIT GULWANI,Microsoft, USA
VU LE,Microsoft, USA
ALAN LEUNG,Microsoft, USA
ARJUN RADHAKRISHNA,Microsoft, USA
GUSTAVO SOARES,Microsoft, USA
ASHISH TIWARI,Microsoft, USA
ABHISHEK UDUPA,Microsoft, USA

When working with a document, users often perform context-specific repetitive edits – changes to the docu-
ment that are similar but specific to the contexts at their locations. Programming by demonstration/examples
(PBD/PBE) systems automate these tasks by learning programs to perform the repetitive edits from demon-
stration or examples. However, PBD/PBE systems are not widely adopted, mainly because they require modal
UIs – users must enter a special mode to give the demonstration/examples. This paper presents Blue-Pencil,
a modeless system for synthesizing edit suggestions on the fly. Blue-Pencil observes users as they make
changes to the document, silently identifies repetitive changes, and automatically suggests transformations
that can apply at other locations. Blue-Pencil is parameterized – it allows the "plug-and-play" of different
PBE engines to support different document types and different kinds of transformations. We demonstrate this
parameterization by instantiating Blue-Pencil to several domains – C# and SQL code, markdown documents,
and spreadsheets – using various existing PBE engines. Our evaluation on 37 code editing sessions shows that
Blue-Pencil synthesized edit suggestions with a precision of 0.89 and a recall of 1.0, and took 199 ms to return
suggestions on average. Finally, we report on several improvements based on feedback gleaned from a field
study with professional programmers to investigate the use of Blue-Pencil during long code editing sessions.
Blue-Pencil has been integrated with Visual Studio IntelliCode to power the IntelliCode refactorings feature.

CCS Concepts: • Software and its engineering → Integrated and visual development environments;
Software maintenance tools; • Computing methodologies→ Artificial intelligence.

Additional Key Words and Phrases: Program transformation, Refactoring, Program synthesis, Programming
by example

ACM Reference Format:
Anders Miltner, Sumit Gulwani, Vu Le, Alan Leung, Arjun Radhakrishna, Gustavo Soares, Ashish Tiwari,
and Abhishek Udupa. 2019. On the Fly Synthesis of Edit Suggestions. Proc. ACM Program. Lang. 3, OOPSLA,
Article 143 (October 2019), 29 pages. https://doi.org/10.1145/3360569

∗Anders Miltner performed this work as part of his internship with the Prose team at Microsoft.

Authors’ addresses: Anders Miltner, Princeton University, USA, amiltner@cs.princeton.edu; Sumit Gulwani, Microsoft,
USA, sumitg@microsoft.com; Vu Le, Microsoft, USA, levu@microsoft.com; Alan Leung, Microsoft, USA, alan.leung@
microsoft.com; Arjun Radhakrishna, Microsoft, USA, arradha@microsoft.com; Gustavo Soares, Microsoft, USA, gustavo.
soares@microsoft.com; Ashish Tiwari, Microsoft, USA, ashish.tiwari@microsoft.com; Abhishek Udupa, Microsoft, USA,
abhishek.udupa@microsoft.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2019 Copyright held by the owner/author(s).
2475-1421/2019/10-ART143
https://doi.org/10.1145/3360569

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 143. Publication date: October 2019.

https://doi.org/10.1145/3360569
https://doi.org/10.1145/3360569

143:2 A. Miltner, S. Gulwani, V. Le, A. Leung, A. Radhakrishna, G. Soares, A. Tiwari, A. Udupa

1 INTRODUCTION

From source code to text files to slide decks, editing documents has become a pervasive component
of many jobs. When working with a document for an extended period of time, users often must
eventually perform repetitive edits – edits to the document that reflect a similar underlying change,
but are performed at multiple locations within the document. For example, software programmers
often have to deal with the task of performing repetitive code edits to add new features, refactor, and
fix bugs during software development [Kim and Notkin 2009; Nguyen et al. 2013]. Word processor
and presentation software users also usually make repetitive content and formatting changes such
as updating all hyperlinks to a new server [Stack Exchange 2019] or changing the bullet/chart
styles in the entire document [Edge et al. 2015].

Besides being tedious, manually performing these edits is error-prone and time consuming. When
editing source code, programmers sometimes perform a single repetitive edit task over multiple edit-
ing sessions and over multiple commits as they miss places where the edit should have been applied,
or they incorrectly apply the edit to some locations [Park et al. 2012; Rolim et al. 2017]. To reduce
the user burden involved in making such mechanical edits, document editing tools implement trans-
formations for some fixed classes of repetitive edits that are frequently encountered and universally
applicable, such as ReSharper’s [JetBrains 2019b] refactoring tools, PowerPoint’s [Microsoft 2019b]
snap-to features, and Microsoft Word’s [Microsoft 2019c] autocorrect features.
Although the aforementioned tools help users apply general-purpose repetitive edits, they are

not suited for edits that are only useful for a specific user and hence not candidates to be included
in these tools. We call such edits context-specific1. The challenges of learning and applying context-
specific repetitive edits are: (a) identifying all locations at which the edit must be applied, and (b)
adapting the edit to the context of each of such locations (for instance, by renaming variables).
Since each location differs syntactically, the programmer cannot perform a simple “find and replace”
operation. To automate the context-specific repetitive edits, users normally have to write special
scripts such as Microsoft Office macros [Microsoft 2019a], vim macros [Vim 2019], and Emacs’
repeat-complex-command [GNU Emacs 2019]. This process is also error-prone, time consuming,
and more importantly, out of reach for most non-expert end users.
Programming by demonstration/examples (PBD/PBE) has been applied to automate context-

specific edits [Cypher 1993; Lau 2001; Lieberman 2001]. Recent advances in PBD/PBE allow users
to synthesize edit scripts from demonstration or input-output examples in various domains such as
text documents [Lau et al. 2001], source code [Meng et al. 2011, 2013; Rolim et al. 2017], and slide
decks [Edge et al. 2015]. However, PBD/PBE systems have several problems that prevent their mass
adoption in practice [Lau 2008]. First, they have modal UIs (i.e., users enter a special mode to give
demonstration/examples), which interrupt users’ workflow and require users to have knowledge
about the systems to invoke them. Murphy-Hill et al. show that modal UIs are one of the greatest
barriers to adoption for automated refactoring systems [Murphy-Hill and Black 2007; Murphy-Hill
et al. 2009]. Second, PBD/PBE systems are domain-specific. A system usually targets one document
domain and supports a certain kind of transformation. Third, PBD systems are sensitive to noise
during demonstration. When users make a mistake, they usually have to start over to record a new
trace. Finally, PBD/PBE systems do not provide partial solutions when they fail. In some cases, it
would still be useful for the system to automate some of the repetitive edit instances, leaving the
user to manually edit the remaining instances that could not be automatically performed.

Blue-Pencil. This paper presents Blue-Pencil, a system for suggesting repetitive document
edits on the fly. Blue-Pencil observes users as they make changes to the document, silently
1We loosely define the current context to be current editing session. The context may thus include the function being edited,
the file being edited, or the entire project, depending on how wide-ranging the user edits are.

On the Fly Synthesis of Edit Suggestions 143:3

identifies possible repetitive edits, and automatically suggests transformations that can be applied
at other locations in the document. Learning repetitive edits on the fly without explicit input/output
examples is challenging. We need to maintain the entire user edit history and distinguish the
repetitive edits from large amounts of superfluous noise, such as non-repetitive edits and errors.
Additionally, a sequence of smaller edits can be stacked together into a larger edit, which on one
hand may be preferable because it reduces the number of suggestions to users, but on the other
hand may cause the system to miss some potentially useful fine-grained suggestions. Blue-Pencil
must decide whether a change is one completed edit, only a part of a larger edit, or in fact multiple
disparate edits. Moreover, the synthesis algorithm must be fast, or Blue-Pencil would fail to
suggest the edits before the user simply completes the edit manually.

At a high level, Blue-Pencil maintains the edit history as a directed acyclic multigraph (DAM)
whose nodes are document versions and edges are edits between two versions. As a user is
making changes, Blue-Pencil updates the DAM accordingly and tries to identify similar edits
by comparing the edges. To avoid comparing all possible combinations of edges, Blue-Pencil
uses nearest-neighbour-based heuristics to identify likely candidates. Blue-Pencil then invokes
two respective PBE engines on the candidates to synthesize (1) the guard, which determines the
locations which should be transformed, and (2) the transforming program to apply on the parts of
the document identified by the guard. As there are potentially many suggestions (due to different
candidates, different guards, and different transforming programs), Blue-Pencil uses a ranking
system to pick suggestions that best explain the edits performed by the user.

Blue-Pencil’s parameterization enables it to “plug-and-play” different PBE engines to support
different document types (e.g., source code, markdown documents, and spreadsheets) and different
kinds of transformations (e.g., tree-based and string-based transformations). Our system ismodeless:
users do not explicitly enter a special mode to give demonstration or examples. Instead, the intent is
inferred automatically, thus avoiding discoverability and context-switching problems. Blue-Pencil
also allows users to make repetitive changes in arbitrary manners, which makes it more flexible than
traditional PBE/PBD systems. For instance, users can perform the second instance of the a repetitive
edit either by moving text from the first edit with a copy-paste command and changing the relevant
parts, or by typing the full change manually. Furthermore, because Blue-Pencil maintains the
edits at various granularities, even if a bigger change is not expressible in the underlying language
of transformation programs, Blue-Pencil may still be able to suggest smaller repetitive edits that
partially automate the task. In contrast, traditional PBE/PBD systems require users to break down
the task to the right level of abstraction; if they do not, the systems fail completely.

Instantiations and evaluation. To demonstrate the benefits of Blue-Pencil’s parameterization, we
instantiated Blue-Pencil to several domains: C# and SQL code transformation using Refazer [Rolim
et al. 2017] as the underlying PBE system, and markdown document and spreadsheet transformation
using a combination of Refazer [Rolim et al. 2017], FlashFill [Gulwani 2011], and FlashProfile [Padhi
et al. 2018].

We evaluated the performance and accuracy of Blue-Pencil using the C# and SQL instantiation.
We simulated the use of Blue-Pencil on 37 fine-grained edit histories obtained by logging two
external programmers and one of the authors. In our experiments, Blue-Pencil identified correctly
all repetitive edits (recall 1.0) with average suggestion time of 199 ms. Some of Blue-Pencil
suggestions are false positives, but they happened when the user was in the middle of typing
the repetitive edit and disappeared as soon as the user finished the edit. The overall precision of
Blue-Pencil was 0.89.
We also collected additional qualitative feedback via an in-situ field study to investigate the

effectiveness of Blue-Pencil with a team of over 25 programmers. The sentiment in the collected

143:4 A. Miltner, S. Gulwani, V. Le, A. Leung, A. Radhakrishna, G. Soares, A. Tiwari, A. Udupa

feedback was generally positive, with a few minor issues raised. We used this feedback to improve
the usability, accuracy, and performance of Blue-Pencil, which forms the basis for the IntelliCode
refactorings feature in Visual Studio IntelliCode2.

Contributions. This paper makes the following contributions:
• We formalize the problem of synthesizing repetitive edit suggestions on the fly (§3).
• We propose Blue-Pencil and its algorithm for automatically suggesting repetitive edits on
the fly (§5). To the best of our knowledge, this is the first system of its kind.
• We demonstrate that by supplying Blue-Pencil with different PBE engines we can apply the
technique to several document domains with different kinds of transformations (§6).
• We evaluated Blue-Pencil on a suite of 37 real code edit histories. The results suggest that
Blue-Pencil can correctly automate real repetitive edit tasks without requiring explicit
examples within acceptable time (§7).
• We evaluated Blue-Pencil in a real programming environment with an in-situ field study
(§7.6).

2 REPETITIVE EDITS ANDWHY THEY SHOULD BE AUTOMATED.

We now illustrate the challenges and subtleties of the on the fly edit suggestion problem. Our
motivating example is inspired by a real scenario where Blue-Pencil helped a programmer perform
repetitive edits during our field study (Section 7.6). Section 6 provides more examples from other
domains.

2.1 Setting and Problem

Figure 1 shows a simplified history of code edits a programmer made to filter forbidden attributes
for several nodes. Each state in the history represents a parsable version of the code. Initially, the
code is in version v0. The programmer performs the following changes to the document:
(1) In line 730, she adds a Where clause to obtain only valid attributes specific to the node

(version v14). Prior to this edit are 13 other parsable edits (omitted from the figure). Notice
that although version v14 is parsable, the code does not compile because the method IsValid
does not exist.

(2) In lines 741-744, she adds the method IsValid (version v48). At this point, the code compiles.
(3) The programmer notices that she needs to update the code in line 735 as well, perhaps because

it is close to the first change in line 730 (version v55).
(4) The programmer thinks that she is done but Blue-Pencil, which is running in the background

and detecting the repeated patterns, alerts that there are two other locations where the
changes should have been applied (the blue squiggles in lines 312 and 579 – version v55).
Missing these locations would result in a bug in the code.

(5) The programmer agrees and accepts the suggestions (version v57).
Notice that the above repetitive edits were context-specific, and thus would be unsuitable for

inclusion in a refactoring tool.

Why are Repetitive Edits irksome? Performing repetitive edits manually is clearly tedious. Apart
from tedium, a programmer might forget to perform the repetitive edit at some locations. While
some locations can be detected because missing them leads to compilation error, this “compile-edit”
cycle is not only tedious but also potentially time consuming in large projects with significant
compilation times. In the worst case, a missed edit remains undetected by the compiler, leading to
a bug in the code – indeed, this would be the case in our motivating example.
2https://devblogs.microsoft.com/visualstudio/refactoring-made-easy-with-intellicode/

On the Fly Synthesis of Edit Suggestions 143:5

. . .
312 var attrs = child.Attrs();
. . .
579 var attrs = selectedNode.Attrs();
. . .
730 var attrs = node.Attrs();
. . .
735 var parentAttrs = node.Parent.Attrs();
. . .

v0

. . .
312 var attrs = child.Attrs();
. . .
579 var attrs = selectedNode.Attrs();
. . .
730 var attrs = node.Attrs().Where(l =>

::::::::::::
IsValid(node.Kind,

::::::
l.Name));

. . .
735 var parentAttrs = node.Parent.Attrs();
. . .

v14

. . .
312 var attrs = child.Attrs();
. . .
579 var attrs = selectedNode.Attrs();
. . .
730 var attrs = node.Attrs().Where(l => IsValid(node.Kind, l.Name));
. . .
735 var parentAttrs = node.Parent.Attrs();
. . .
735 }
. . .
741 private bool IsValid(string kind, string attr){
. . . // check if attr is valid for kind
744 }

v48

. . .
312

::
var

::::
attrs

:
=
::::::::::
child.Attrs();

. . .
579

::
var

::::
attrs

:
=
:::::::::::::::
selectedNode.Attrs();

. . .
730 var attrs = node.Attrs().Where(l => IsValid(node.Kind, l.Name));
. . .
735 var parentAttrs = node.Parent.Attrs().Where(l => IsValid(node.Parent.Kind, l.Name));
. . .

v55

. . .
312 var attrs = child.Attrs().Where(l => IsValid(child.Kind, l.Name));
. . .
579 var attrs = selectedNode.Attrs().Where(l => IsValid(selectedNode.Kind, l.Name));
. . .
730 var attrs = node.Attrs().Where(l => IsValid(node.Kind, l.Name));
. . .
735 var parentAttrs = node.Parent.Attrs().Where(l => IsValid(node.Parent.Kind, l.Name));
. . .

v57

Fig. 1. A simplified history of code changes that contains both programmer edits and Blue-Pencil’s sugges-

tions.

143:6 A. Miltner, S. Gulwani, V. Le, A. Leung, A. Radhakrishna, G. Soares, A. Tiwari, A. Udupa

Can we use Programming-by-Example (PBE) to solve this? Earlier work [Meng et al. 2013; Rolim
et al. 2017] has proposed the use of PBE techniques to automate code refactoring. These techniques
can indeed be used to automate repetitive edits, and our proposed approach uses earlier work as a
component. However, the primary limitation of these prior approaches [Meng et al. 2013; Rolim
et al. 2017] is that they require explicit specification of input-output examples.

In the context of our example in Figure 1, using PBE requires that the programmer (a) be aware
of the existence of the feature and how to invoke it, (b) think ahead about the repetitive changes
he plans to make and explicitly provide examples as pairs of versions (v0,v14) and (v48,v55), and
(c) remember to switch to a special mode during which to provide those examples. This series of
interactions is problematic, as step (a) suffers from the discoverability problem [Murphy-Hill and
Black 2007; Murphy-Hill et al. 2009], and steps (b) and (c) both intrude on the programmer’s normal
workflow.

Blue-Pencil: Non-intrusively watch, learn, and make intelligent suggestions. Blue-Pencil aims to
be both modeless and proactive. Blue-Pencil is modeless in that a user editing a document need
not switch modes to explicitly provide input-output examples that describe the intended repetitive
edit. Instead, Blue-Pencil automatically infers input-output examples by observing the user’s
changes to the document over time. Once an appropriate set of input-output examples has been
identified, Blue-Pencil then leverages an appropriate PBE engine to synthesize a program that
realizes the intent captured in the inferred examples. Blue-Pencil is proactive in that it identifies
other locations in the document where the (inferred) repetitive edit is applicable and offers to
automatically apply the edit on the user’s behalf. Returning to our example, the net effect is that by
observing the sequence of document versions v0, . . . ,v57, Blue-Pencil offers the programmer the
option of automatically applying the repetitive edit at lines 312 and 579.

Concretely, Blue-Pencil aims to identify (and abstract) repetitive edits from a series of document
versions — which we refer to as an edit history. There are several challenges that must be overcome
for Blue-Pencil to produce correct (and useful) suggestions, which we now discuss.

2.2 Blue-Pencil: The Challenges

Noise and unrelated edits. The changes to line 730 (v14) and line 735 (v55) are two separate
instances of the same repetitive edit (addition of a Where clause of specific form). However, note
that the user has interleaved those changes with a non-repetitive change to lines 741-744 (v48).
There are two important characteristics to note. First, a single repetitive edit instance can span
across several versions in the edit history (the first instance spans 15 individual versions, from v0 to
v14). Second, different instances of a repetitive edit need not occur consecutively in the edit history:
the changes to lines 730 and 735 are separated by a non-repetitive change adding the IsValid
method definition. Despite the presence of such noise, Blue-Pencil should still be able to identify
the repetitive edits.

Transient edits. In the process of inserting the Where method call at line 730 in version v14, the
programmer types a sequence of prefixes of the string “W”, “Wh”, . . ., “Where”. Although not
shown in Figure 1, versions of the program with each of these prefixes will likely be part of the
edit history provided to Blue-Pencil. To avoid producing spurious suggestions that include all of
these prefixes, Blue-Pencil must identify and ignore these transient edits.

Identifying similar edits applied in different ways. The repetitive edit shown in Figure 1 consists of
many fine-grained edits. For example, the edit in line 730 consists of 14 individual fine-grained edits
from v0 to v14. The analogous change to line 735 consists of 7 fine-grained edits from v48 to v55.
Although they represent two instances of the same repetitive edit, they were applied in different

On the Fly Synthesis of Edit Suggestions 143:7

ways: while the programmer typed the entire Where expression in line 730, she instead modified
line 735 by copying and pasting the expression from line 730 and inserting the string “.Parent”.
Blue-Pencil must be able to identify similar edits even when they are applied in different ways.

Generalizing user intent. The artifacts used to infer user intent in Programming-by-example or
programming-by-demonstration systems are inherently ambiguous. For instance, given the first
two instances of the repetitive edit in lines 730 and 735, one option would be to generalize them to
the transformation that adds the Where clause to the end of every expression containing the object
named node. Another option would be to generalize to obtain the transformation that adds the
Where clause to every expression of the form _.Attrs() that is assigned to a fresh variable created
using var. The options illustrate the complexity of finding the right generalization from examples
that is common to all PBE systems.
Additionally, the modeless, on the fly scenario in Blue-Pencil brings further ambiguity. In a

lot of cases, it is unclear which of the programmer’s edits should be generalized into one single
transformation, and at what granularity. For example, if in addition to the changes at line 730 and line
735, suppose the programmer also changed the var in each line to IEnumerable<Attribute>. Now,
the granularity of edits add further ambiguity—is the right generalization the full transformation
of adding the Where clause and specifying the type of the variable? Or is the right generalization to
treat these changes as two separate repetitive transformations, one to add the Where clause and one
to specify the type? The choice comes with trade-offs: treating the changes as one single repetitive
edit makes the suggestion not applicable to cases where the result of _.Attrs() is not assigned
to a fresh variable, while treating them as two separate repetitive edits make the suggestions less
useful and potentially noisy.

2.3 Repetitive Edits: Beyond Code

Wehave used an example involving code transformations to illustrate the repetitive edit problem and
to highlight the desiderata for any solution. However, we emphasize that repetitive edits naturally
arise in other activities which involve creation of content. Blue-Pencil is parameterized, in that
it is agnostic to the underlying document class as long as relevant PBE engines for by-example
synthesis are available. Leveraging this parameterization and commonly available PBE engines, we
apply Blue-Pencil to automate repetitive edits in markdown documents and in spreadsheets. See
Section 6 for a full description of these instantiations.

3 OPTIMAL EXPLANATION GENERATION PROBLEM

We first formalize the optimal explanation generation problem, which we use as a way to perform
on-the-fly edit suggestion.

3.1 Documents, Versions, and Edits

Documents. We use the term document to refer to any entity that a user edits and modifies over
time. We use the notation D to denote a class of documents. We use the notation v ∈ D for an
individual document, and we call each new document produced as the user edits a version. Examples
of document classes include: (a) abstract syntax trees, (b) Markdown (or other structured text)
documents, (c) spreadsheets, etc.

Locations and Lenses. We associate every change to a document with a “location”. Informally,
an edit to the document only modifies the contents at a single location: each edit (a) retrieves the
contents of a single location, (b) changes the retrieved contents, and (c) updates the document
by putting the changed contents into the given location. Examples of such locations include an
individual sub-tree of an AST, a line in a flat text document, a single paragraph in a structured

143:8 A. Miltner, S. Gulwani, V. Le, A. Leung, A. Radhakrishna, G. Soares, A. Tiwari, A. Udupa

text document, a single column in a spreadsheet, etc. Locations are not necessarily disjoint—for
example, two sub-trees of an AST have a non-empty intersection if one is an ancestor of the other.

We use lenses to formalize of the concept of locations [Foster et al. 2007]. Formally, a document
class D is associated with a universe of lenses L. Each lens ℓ ∈ L consists of a getter ℓдet : D 7→ V

which retrieves some view (of some part) of the document, and a setter ℓset : D ×V 7→ D which
updates the same part of the document that is retrieved by the getter to produce a new version of
the document.

Example 3.1. In our canonical application, the universe of all documents D is the set of all
abstract syntax trees (ASTs). Consider the edit shown in line 730 (Figure 1), where the programmer
adds the Where expression to the existing Attrs expression. This specific operation on a given
document (AST) v is modeled as: (a) selecting the sub-tree s of the AST that corresponds to the
call node.Attrs(), (b) creating a new sub-tree s ′ by cloning s and adding the nodes for the Where
clause, (c) updating the given AST v by replacing s with s ′. The lens ℓ corresponds to the location
of the sub-tree s for the method call node.Attrs(); ℓдet retrieves s and ℓset replaces s with any
updated contents. Here, the view type V of the lens is the set of sub-trees of the AST.

Remark 3.1. In our canonical setting of source code edits, we make the choice that our techniques
operate on ASTs rather than source code text. This choice disallows Blue-Pencil from learning certain
kinds of edits: for example, we cannot fix syntax errors.

Edits and Histories. An edit is a pair of documents (vb ,va) where vb and va are the documents
before and after the edit, respectively. A history is a sequence of documents h = v0v1 . . .vn created
by a sequence of edits. For the history h, we define: (a) Fine-grained edits in h as FineEdits(h) =
{(vi ,vi+1) | 0 ≤ i < n}, and (b) Transitive edits in h as TransEdits(h) = {(vi ,vj) | 0 ≤ i < j ≤ n}.

3.2 Explaining Edit Histories

Programs for Edit Explanation. We define programs for explaining edits to a document. Informally,
we want multiple edits that are different instances of the same repetitive change to be explained by
the same program.
A program P : D → 2D transforms a document into (zero or more) new versions of that

document. A program P is defined by a pair (guard
P
, transP), where guard

P
: D → 2L and

transP : V → V. The semantics of P is defined as follows: P(v) = {v ′ | ∃ℓ ∈ guard
P
(v) : v ′ =

ℓset (v, transP(ℓдet (v)))}. Intuitively, P changes the part of the document provided by the lenses
returned by guard

P
using the transformation transP, i.e., each document in the set returned by P

has the change applied to a single relevant location. The set of all programs is denoted by P. A
program P explains an edit (v,v ′), denoted as v →P v

′, if v ′ ∈ P(v).

Example 3.2. Consider the scenario in Figure 1. All of the edits in lines 312, 579, 730, and 735 can
be explained by the same program (guard

P
, transP) where:

• guard
P
(v) returns the lenses corresponding to sub-trees of form target.Attrs() in v , where

target is some method call target. In the AST encoding used in our experiments, they are
sub-trees having the label InvocationExpression and contain two children: one for the method
call target and one for the function application Attrs().
• transP(s) takes as input the sub-tree s (returned by guard

P
) and transform it into s ′ that has

the Where clause addition. In our encoding, s ′ is also a InvocationExpression node having two
children: the first child represents target.Attrs() and the second one is the Where clause. In
addition to creating new nodes, Blue-Pencil also copies nodes from s (e.g., target.Attrs()
and the variables inside the lambda) to generate context-specific edits.

On the Fly Synthesis of Edit Suggestions 143:9

Program Sets for History Explanation. A program set SSuite ⊆ P is a set of programs. A program
set SSuite ⊂ P is said to explain a history v0v1 . . .vk if the following two conditions hold:
(a) there is a sub-sequence v ′0,v

′
1, . . . ,v

′
m of the history with v ′0 = v0 and v

′
m = vk , and a sequence

of (not necessarily distinct) programs P0, P1, . . . Pm−1 from SSuite such that each edit (v ′j ,v
′
j+1)

is explained by Pj . Explicitly, we want: v0 = v ′0 →P0 v
′
1 →P1 v

′
2 →P2 · · · →Pm−2 v

′
m−1 →Pm−1

v ′m = vk ; and
(b) each explanation v ′j →Pj v

′
j+1 is either:

• Repetitive: program Pj repeats, i.e., ∃j ′ , j : Pj = Pj′ , or
• Fine-grained non-repetitive: program Pj does not repeat and (v ′j ,v

′
j+1) is a fine-grained edit in

the history. Formally, ∄j ′ , j : Pj = Pj′ =⇒ ∃k .v ′j = vk ∧v ′j+1 = vk+1.
In a nutshell, a program set explains a history if there is a path from the initial document version

to the final document version, where each edge is labelled by a program. These edges have the
restriction that if a program only labels one edge, the edge must go from version i to version i + 1.
Formalizing the program set as part of a path ensures the explanations are well-formed – each
edit must be taken into account exactly once. Restricting the non-repetitive edits to only apply to
fine-grained edits lets optimal program sets simply be the smallest program sets.

Example 3.3. Consider the history v0v1 . . .v54v55 in Figure 1. One explanation of the history is
given by v0 →P v14 →⊥14 v15 →⊥15 v16 · · · →⊥47 v48 →P v55, where:
• P is a repetitive program that selects method calls of form target.Attrs() and adds Where
expressions (Example 3.2).
• ⊥14, ⊥15, · · · , and ⊥47 are non-repetitive programs that only convert v14 to v15, v15 to v16, · · · ,
and v47 to v48, respectively.

P can skip over versions such as v2 in the history because it is repetitive while other non-repetitive
programs such as ⊥14 to ⊥47 are only allowed to explain fine-grained edits.

For any given history, there may exist a large number of explanations. Informally, we would like
to synthesize the explanation that represents the user intent. Intuitively, simpler explanations tend
to better represent user intent [Gulwani 2011]. For instance, when comparing a single program
that explains a repetitive edit in a location to multiple consecutive programs that explain smaller
repetitive edits to sub-locations of this location, it is more likely that the single program represents
the user intent. Our approach for predicting user’s future edits is predicated on the hypothesis
that a good explanation for the user’s past edits can help predict the user’s future actions.
In particular, if SSuite explains history H = d0d1 . . .dk , then the applications of the programs in
SSuite on the final version dk will give us possible next edits of interest.
We thus aim at generating an explanation with as many edits as possible being explained by

as few repetitive programs as possible. An explanation SSuite for a edit history h is optimal if
|SSuite| ≤ |SSuite′ | for any other explanation SSuite

′ for h. The below problem statement asks for
this property.

Definition 3.4 (Optimal Explanation Generation). Given a history h and the set of all programs P,
the optimal explanation generation problem is to produce a program suite SSuite ⊆ P that optimally
explains h.

Remark 3.2 (Alternative ways to predict user edits.). In our setting, the suggestion system
is not clairvoyant to new code the programmer might write, so we restrict ourselves to suggesting
repetitive edits. Note that this is unlike some existing works which may suggest edits that do not come
from the history, by learning from common edits in large source code corpora [Foster et al. 2012; Negara
et al. 2014; Raychev et al. 2014; Yin et al. 2019].

143:10 A. Miltner, S. Gulwani, V. Le, A. Leung, A. Radhakrishna, G. Soares, A. Tiwari, A. Udupa

Algorithm 1 Oracle-based Explanation Generation Algorithm
1: function OracleBasedExplanationGenerator(h = v0v1 · · ·vk)
2: Edits← FineEdits(h) ∪ TransEdits(h)
3: (V ,E) ← ({v0, . . . ,vk }, ∅)
4: for SubEdits ∈ 2Edits do ▷ Foreach subset of Edits
5: if |SubEdits| ≤ 1 ∨ Overlap(SubEdits) then
6: continue
7: label← Oracle(SubEdits) ▷ Ask the Oracle for explanation
8: if label , ⊥ then ▷ A common explanation found for edits in SubEdits

9: E ← E ∪ {(va , label,vb) | (va ,vb) ∈ SubEdits} ▷ Add edges labeled with label

10: E ← E ∪ {(vi ,⊥i ,vi+1) | 0 ≤ i < k} ▷ Add non-repetitive explanations labeled ⊥i
11: return LeastColorfulValidPath(V ,E,v0,vk)

4 ORACLE-GUIDED APPROACH FOR OPTIMAL EXPLANATION GENERATION

Given a history h = v0v1 · · ·vk of edits on some document, in this section, we describe a procedure
to find an optimal explanation for h. The procedure uses an oracle that generates explanations of
subset of edits from the history over some space P of programs.
Let Edits = FineEdits(h) ∪ TransEdits(h) be the union of all fine-grained edits and transitive

edits obtained from the history h. Note that |Edits| = k(k + 1)/2. We assume that we have access
to an oracle Oracle that given a subset SubEdits ⊆ Edits of edits, returns a program p from some
P that explains all the edits in SubEdits. We say Oracle is correct if (a) Oracle(SubEdits) returns
p ∈ P if and only if p explains every edit in SubEdits and (b) it returns ⊥ if and only if no such
p ∈ P exists.

Two edits (vi ,vi′) and (vj ,vj′) in Edits are said to overlap if [i, i ′ − 1] ∩ [j, j ′ − 1] , ∅. A subset
SubEdits of (fine-grained and transitive) edits overlaps if it contains two overlapping edits. Let
Overlap(SubEdits) return true if and only if SubEdits is overlapping.

Algorithm 1 usesOracle to find an optimal explanation for a given history. There are two steps in
the algorithm. The first step constructs a directed acyclic multigraph (DAM) whose nodes represent
the document versions present in the given history, and edges represent edits. Edges are labeled
by an explanation for that edit. There can be multiple edges between the nodes. Construction of
the DAM involves enumerating all possible sets of (non-overlapping) edits and using the oracle
to find a common explanation for that set of edits. Each fine-grained edit (vi ,vi+1) is also labeled
by a default explanation ⊥i . Informally, ⊥i is a program such that ⊥i (vi) = {vi+1}, and ⊥i (v) = ∅
for all v , vi . The second step computes an optimal explanation by finding the least colorful valid
path from v0 to vk in the directed acyclic multigraph. Here, the color of an edge (va , label,vb) in
the DAM is the program label, and a valid path is one where each color that is not ⊥i for some i
appears more than once. The LeastColorfulValidPath(V ,E,v0,vk) procedure returns the valid path
in the DAM that has the fewest distinct colors along its edges. Algorithm 1 can be shown to be
sound and complete, modulo the correctness of the oracle.

Theorem 4.1. Assuming that the oracle is correct with respect to some underlying program setP, the
collection of all labels in the path fromv0 tovk returned by OracleBasedExplanationGenerator(h)
is an optimal explanation for the history h over the program set P.

Proof. First, we show that there is a correspondence between valid paths in the DAM and
explanations. Let {P′0, . . . , P

′
n−1} be an explanation of h and let v ′0 →P

′
0
v ′1 →P

′
1
. . .→P

′
n−1

v ′n be the
witness. Recall that not all Pi are distinct.

On the Fly Synthesis of Edit Suggestions 143:11

• For a repetitive P′i , let {(vi1 ,vi1+1), . . . , (vim ,vim+1)} be the set of edits explained by Pi . In
line 4, the procedure iterates over every subset of edits in the history, and calls Oracle on the
subset. When SubEdits = {(vi1 ,vi1+1), . . . , (vim ,vim+1)}, by soundness of Oracle, we have
that Oracle(SubEdits) = Pi , ⊥. Hence, the edges (vi j , Pi ,vi j+1) are added to E. Note that Pi
may not be the same as P′i if there is more than one program in P that explains each edit in
SubEdits. However, if P′i = P

′
j , then we have that Pi = Pj .

• For a non-repetitive P
′
i , we have that (v ′i ,v

′
i+1) is a fine-grained edit. Hence, the edge

(v ′i ,⊥i ,v
′
i+1) is added to E in line 10. Let Pi = ⊥i .

Now, the path (v ′0, P0,v
′
1), . . . , (v

′
n−1, Pn−1,v

′
n) is a valid path in the DAM from v0 to vn . Further, by

construction, the number of colors along this path is at most the size of the explanation due to the
implication P

′
i = P

′
j =⇒ Pi = Pj .

In the reverse direction, given a valid path (v ′0,P0,v
′
1), . . . , (v

′
n−1,Pn−1,v

′
n) in the DAM, we can

construct the explanation {P0, . . . , Pn−1} with the witness v ′0 →P0 v
′
1 . . .→Pn−1 v

′
n . The validity of

the path enforces that each Pi either repeats multiple times or is equal to ⊥i for some i . Hence,
each non-repetitive program in the explanation is a fine-grained edit, implying the validity of the
witness. Here, the size of the explanation is equal to the number of colors in the path.

Given the above correspondence between valid paths and explanations (along with the relations
between the number of colors in a valid path and the size of the corresponding explanation), we
get that the set of colors in the least colorful valid path is a valid optimal explanation. □

While Algorithm 1 is correct, the complexity of the procedure is high, even modulo the oracle. In
the first step of the procedure, we make an exponential number of calls to the oracle in the length
k of the history. Furthermore, the problem of finding a least colorful valid path in a directed acyclic
multigraph, which is used in the second step, is easily shown to be NP-hard. We, therefore, use
heuristics inspired from machine learning and greedy approximation schemes to obtain a practical
explanation generation procedure.

5 ON-THE-FLY EXPLANATION GENERATION

Our motivation for generating an explanation for a history of edits is to use the explanation to
provide suggestions to the user about possible future edits as the user is making the edits. In this
section, we present an incremental and efficient procedure for explanation generation that follows
the logical flow of the OracleBasedExplanationGenerator procedure.

The OracleBasedExplanationGenerator procedure contains three main ingredients: (a) an oracle
that returns a program that explains a given set of (non-overlapping) edits, (b) an exhaustive
enumeration based procedure for creating the DAM, and (c) a solver for the least colorful path
problem on the DAM. The oracle is implemented using programming-by-example (PBE) technology.
The process for creating the DAM is optimized by eliminating transient versions, and defining a
distance metric on edits – based on featurization of edits – and using proximity to suggest the
subsets of edits that are likely to have a (common) explanation. Finally, the approach for least
colorful path is based on using a greedy heuristic. We describe these three in detail next.

5.1 Using PBE to implement the oracle

Program synthesis by example (PBE) is concerned with synthesizing programs given a partial
specification in the form of a few input-output examples. The key challenge that PBE engines solve
is that of generalization: the synthesizer has to generalize from the given input-output examples to
learn the transformation intended by the user. However, the synthesizer should not over-generalize
for it might then learn a transformation that the user views as being unsound.

143:12 A. Miltner, S. Gulwani, V. Le, A. Leung, A. Radhakrishna, G. Soares, A. Tiwari, A. Udupa

Algorithm 2 PBE based implementation of the Oracle.
Require: DSL for guards: DSLG
Require: DSL for transformations: DSLT
1: function PBEOracle({(vb1 ,va1), . . . , (vbn ,van)})
2: GuardSpec = {vbi 7→ DiffLoc(vbi ,vai) | 1 ≤ i ≤ n}
3: ▷ Differing locations (lenses) from each edit are examples for guard
4: TransSpec = {ℓiдet (vbi) 7→ ℓ

i
дet (vai) | 1 ≤ i ≤ n ∧ ℓi = GuardSpec(vbi)}

5: ▷ The change at the differing locations (lenses) from each edit are examples for trans
6: guard← PBESynth(DSLG,GuardSpec)
7: trans← PBESynth(DSLT, TransSpec)
8: if guard = ⊥ ∧ trans = ⊥ then return ⊥
9: if Score(guard) < thresholdд ∨ Score(trans) < thresholdt then return ⊥
10: return (guard, trans)

The problem solved by the oracle in the procedure OracleBasedExplanationGenerator can
be stated as: given a set of edits {(vb1 ,va1), (vb2 ,va2), . . . , (vbn ,van)}, find a pair of programs
(guard, trans) such that there exist lenses ℓ1, . . . , ℓn such that (a) ℓj ∈ guard(vbj), and (b)
ℓsetj (vbj , trans(ℓ

дet
j (vbj))) = vaj for j = 1, 2, . . . ,n.

Algorithm 2 presents a high level procedure that implements the oracle given a set of edits. The
major components of the algorithm are as follows:
(a) Diff computation. Given an edit (vb ,va), the procedure DiffLoc computes the location (lens)

whose content differs between vb and va . In the canonical domain of ASTs, we use a recursive
algorithm to find the smallest sub-tree that contains all the differences between the two ASTs.
For each edit (vbi ,vai), let ℓi be the computed differing location.

(b) Guard synthesis. Given the input-output examples {vb1 7→ ℓ1, . . . ,vbn 7→ ℓn}, we use PBE to
synthesize a program guard such that ℓi ∈ guard(vbi) for all i .

(c) Transformation synthesis. Given the input-output examples {ℓ1дet (vb1) 7→ ℓ1дet (va1), . . . ,
ℓnдet (van) 7→ ℓ

n
дet (van)}, find a program trans such that trans(ℓiдet (vbi)) = ℓiдet (vaj).

The above two PBE problems can be solved independently. For each PBE problem, we can
design a separate domain-specific language (DSL) based on the structure of the document and
the kind of edits of interest. In our canonical application where documents are ASTs, we can use
Refazer [Rolim et al. 2017] to synthesize both guard and trans since the DSL used by Refazer
can express both components.

Ranking and the Bias-Variance Tradeoff. In Algorithm 2, the expressivity of DSLG and DSLT along
with the thresholds thresholdд and thresholdt control the universe P of possible programs for
generating explanations. Given a sufficiently expressive universe of programs any finite set of
edits can be explained with a single program (that uses a top-level “switch” statement to separate
each edit into a case of its own). In this case, the optimal explanation generation problem has a
trivial solution, and the size of the optimal explanation is just 1. However, this is not very useful
because that one program would not be very predictive of a future edit. A good explanation must
therefore (a) generalize, without overgeneralizing, and (b) determine the appropriate context under
which generalized edits are applicable. This is exactly the bias-variance trade-off seen in the context
of machine learning; with the more and less expressive P’s playing the role of over-fitting and
under-fitting models, respectively.

On the Fly Synthesis of Edit Suggestions 143:13

Fortunately, the problem of capturing a user’s intent by learning a program that performs a
controlled generalization from concrete demonstrations (via input-output examples) is extensively
studied in the PBE field [Polozov and Gulwani 2015; Singh and Gulwani 2012; Yaghmazadeh et al.
2018], mainly in the form of ranking functions. Informally, highly ranked programs are more likely
to be the right generalizations. Hence, we leverage these ranking functions by using thresholds
(thresholdд and thresholdt) to precisely control the set of programs P available to Blue-Pencil.

5.2 Reducing the size of the DAM

While constructing the DAM, the OracleBasedExplanationGenerator procedure considers all pos-
sible subsets of (transitive) edits. This is expensive and infeasible to do in real time. In this section,
we describe multiple heuristic approaches for reducing the size of the DAM and for generating
only promising subsets of edits; that is, subsets of edits that are likely to have a shared explanation.

Debouncing and Transient Edits. Common editing activities such as typing generates a large
number of document versions. For example, a user typing the identifier IsValid is likely to generate
a history with versions for each of the partial names I, Is, IsV, and so on. To avoid this and other
related problems related to transient edits, we use a debounce strategy. Informally, we record all
the versions Vnew produced in a short time period called the debounce duration (500ms in our
experiments). Now, all these vertices are incrementally added to the DAM using the procedure
IncrementalVerticesAddition from Algorithm 3. For each new version vk+i , this procedure checks
if the version is transient in the context of the previous and next versions. Informally, a version is
considered transient if the location of the next edit is the same as the location of the current edit,
i.e., DiffLoc(prev,vk+i) = DiffLoc(vk+i ,vk+i+1). If the version is not transient, it is added to the
DAM. Then, the procedure incrementally adds all possible edges from previously existing versions
to the newly added version using the IncrementalEdgeAddition procedure (see below).

Promising Edit Subsets. The second heuristic avoids calling the oracle on all subsets of edges,
and instead only calls the oracle on subsets of edges that are likely to produce a common edit
explanation program. Our approach is based on defining a map, embed, from document space to
n-dimensional Euclidean space Rn . This map has the property that two documents that are similar
to each other (say, two versions of the same document that differ by just a few edits) map to points
that are close in the Euclidean space. In the case when the document is an abstract syntax tree of a
program – as is the case in our canonical example – there is existing work that already defines
such a map [Jiang et al. 2007], which we reuse in our work. However, unlike this previous work,
we are not interested in code clone detection, but we want to detect "edit" clones. Consequently,
we define an Euclidean space embedding of edits as

embed((v,v ′)) = embed(v ′) − embed(v)

Let KNearestNeighbors(e, edits,K) return theK edits from the set edits that are closest to the given
edit e in the Euclidean space. Given a new (transitive) edit (vi ,vj), the IncrementalEdgeAddition

procedure works by finding a promising set of “similar” edits using KNearestNeighbors. Non-
overlapping subsets of these similar edits are passed to the PBE oracle to generate a common
explanation for these sets. Since the number K is a fixed small constant, the running time of the
procedure is only polynomial, and not exponential, in the size of the DAM (V ,E).

5.3 Greedy procedure for finding short explanations

Let (V ,E) be the DAM where each node inV corresponds to a version of the document in the given
history v0v1 · · ·vk , and each edge (vi ,P,vj) ∈ E is labeled with a program P that explains the edit

143:14 A. Miltner, S. Gulwani, V. Le, A. Leung, A. Radhakrishna, G. Soares, A. Tiwari, A. Udupa

Algorithm 3 Incremental construction of the DAM when a set of new vertices Vnew are added.
1: function IncrementalVerticesAddition(V ,E,Vnew)
2: Say V = {v0, . . . ,vk } and Vnew = {vk+1, . . . ,vk+k ′}
3: prev← vk
4: for each vk+i ∈ Vnew do
5: if ¬IsTransient(prev,vk+i ,vk+i+1) then
6: prev← vk+i , V ← V ∪ {vk+i }
7: for v ∈ V \vk+i do
8: E ← E ∪ IncrementalEdgeAddition(V ,E, (v,vk+i))

9: return (V ,E)
10: function IncrementalEdgeAddition(V ,E, (vi ,vj))
11: newEdges← ∅

12: oldEdits← {(va ,vb) | 0 ≤ a < b ≤ i}
13: similarOldEdits← KNearestNeighbors((vi ,vj), oldEdits,K)
14: for each nonoverlapping subset of similarOldEdits that contains (vi ,vj) do
15: if PBEOracle(subset) = P , ⊥ then
16: newEdges← newEdges ∪ {(v,P,v ′) | (v,v ′) ∈ subset}

17: return newEdges

Algorithm 4 Greedy procedure for finding a short explanation
1: function GreedyExplanation(V ,E)
2: explanation← ∅

3: while E , ∅ do
4: P

∗ ← argmax
P
len(Span(E(P)))

5: E ← E \ {e ∈ E | Overlap(e,E(P∗)) = True}
6: E ← E \ {(vi ,P,vj) ∈ E | P , ⊥i ∧ |E(P)| = 1}
7: explanation← explanation ∪ {P∗}

8: return explanation

(vi ,vj), i < j. In this section, we present a greedy approach to find a path from the node v0 to the
node vk that minimizes the number of distinct programs P used as edge labels in the path.
When we add edges labeled by P to the DAM, for any fixed P, these edges are all mutually

non-overlapping. Let E(P) denote the edges in E labeled with P; that is, E(P) = {(v,P,v ′) ∈ E}.
For simplicity, assume that, for any fixed P, the edges in E(P) are always non-overlapping. This is
a reasonable assumption since it is unlikely that two overlapping edits will share the same edit
explanation program P. Define the span, Span, of an edge (vi , P,vj) as the interval [i, j], and define
the span of non-overlapping edges as the union of the spans of each edge; that is,

Span((vi ,P,vj)) = [i, j], Span(E ′) =
⋃
e ∈E′

Span(e)

The length len(Span(E ′)) is defined as
∑
(vi ,P,vj)∈E′(j − i).

Algorithm 4 shows pseudocode for the greedy approach for finding a path from v0 to vk . The
set E of edges keeps decreasing as we add more programs P to the set explanation. The procedure
greedily picks the program that covers most of the uncovered fine-grained edits. In practice, we
find that the greedy procedure produces explanations of reasonable size.

On the Fly Synthesis of Edit Suggestions 143:15

Algorithm 5 On the fly suggestion generation when user creates version vk+1
1: function OnTheFlySuggestions(V ,E)
2: while True do
3: Vnew ← collect new document versions for debounce period
4: (V ,E) ← IncrementalVerticesAddition(V ,E,Vnew)
5: explanation← GreedyExplanation(V ,E)
6: suggestions← ∅

7: for every p = (guard, trans) in explanation that is not ⊥i do
8: new_suggestions← {(ℓ, u) | ℓ ∈ guard(vk+k ′) ∧ u = trans(ℓдet (vk+k ′)) ∧ u , ⊥}
9: suggestions← suggestions ∪ new_suggestions
10: yield return suggestions

guard ::= Select(path)
path ::= Path(step1, . . . , stepn)
step ::= Step(kind, k, pred)
pred ::= Exists(path) | pred ∧ guard | ¬ pred

transformation ::= Update(ast) | InsertChild(ast, k)
| DeleteChildrenAt(pos, pos)

ast ::= const | Reference(guard, k)
const ::= Node(kind, attributes, ast1, . . . , astn)

Fig. 2. The composite DSL over which guards and transformations are synthesized in the Blue-Pencil

instantiation for code transformations.

5.4 Incremental procedure: Putting it all together

We finally have the heuristically optimized versions of the three components of the procedure
OracleBasedExplanationGenerator. These heuristics combined give us both performance and
ambiguity resolution. We can now put them together to obtain a procedure that can suggest future
edits on a document.

The Procedure OnTheFlySuggestions, shown as Algorithm 5, maintains a representation of the
DAM (V ,E). As the user is editing, the procedure collects new document versions for the debounce
period (500ms), and adds the new versions to the DAM using the IncrementalVerticesAddition

procedure. Once we have updated the DAM, we use procedure GreedyExplanation to generate
an explanation for the edit history v0v1 · · ·vk+k ′ using the greedy approach. Finally, we run each
of the programs found in the explanation on latest vk+k ′ to generate a number of suggestions. Each
suggestion is of the form (ℓ, u), suggesting that the contents of the location ℓ should be replaced by
the new contents u. Our user interface then shows a “Code Action lightbulb” [Microsoft 2019d]
and a “warning squiggle” that suggests this edit. A screenshot of the Visual Studio extension for
Blue-Pencil showing edit suggestions after the user modifies two locations is presented in Figure 9.

6 INSTANTIATIONS OF BLUE-PENCIL

The canonical instantiation of Blue-Pencil, that we have focused on throughout this paper is
applicable to the domain of repetitive code transformations. We now describe the PBE components
used in this instantiation. Further, we also include a brief discussion of our experience with building
other instantiations of Blue-Pencil.

6.1 Blue-Pencil for code transformations

Figure 2 shows the domain-specific language (DSL) over which the guards and transformations
are synthesized in the instantiation of Blue-Pencil for code edits. The DSL is similar to the one
described in earlier work [Rolim et al. 2017]. Programs derived from the non-terminal named

143:16 A. Miltner, S. Gulwani, V. Le, A. Leung, A. Radhakrishna, G. Soares, A. Tiwari, A. Udupa

Document Class DSL for Guards DSL for Transformations Location/View Type

1 Code/AST Refazer Refazer Sub-trees of AST
2 Markdown Refazer Refazer + FlashFill Sub-trees of AST and text

values from leaf nodes
3 Spreadsheets FlashProfile FlashFill Text contents of table cells

Table 1. Characteristic features of other instantiations of Blue-Pencil.

guard in Figure 2 are used as guards in our implementation. And programs rooted at the non-
terminal named transformation are used as transformations. Effectively, the lenses select and update
(sub-trees of) ASTs, while the transformations are performed over ASTs as well.

Guard expressions. A guard is represented by the Select operator, which selects every node n in
the input AST x that satisfy a guard represented as a path p. To represent paths, we use a language
inspired by XPath language [Refsnes Data 2019], which allows us to select an node n in x by
following a sequence of steps in the AST. The Path operator has a sequence of steps step1−n , where
the first step searches in children

∗(x) (denoted as “//” in XPath), and the following steps searches
only in children(t), where t is the current AST (denoted as “/” in XPath). Each step selects the kth
occurrence (or all occurrence if k is not specified) of an AST of kind kind where the predicate pred
holds. Predicates check the (non-)existence of elements in the AST.

Transformation expressions. A transformation is either an Update, an Insert or a Delete operation
on the given AST node. The sub-tree ast to be inserted or updated is built recursively out of either
constants or references to parts of the original node (selected by path specifiers).

6.2 Other instantiations of Blue-Pencil

We have alluded to the parameterization of Blue-Pencil several times. As proof-of-concept, we
have built implementations that automate repetitive edits for other document types to verify that
Blue-Pencil can indeed be adapted to other domains with minimal effort. Table 1 lists the other
instantiations, and describes the nature of the PBE engines used in them.

The first row of Table 1 shows the characteristics of Blue-Pencil for code edits, which forms the
main focus of this work. We briefly describe the other instantiations now. We do not conduct an
extensive evaluation of the instantiations of Blue-Pencil for markdown and for spreadsheets: they
are proof-of-concept implementations that serve to demonstrate that Blue-Pencil’s parameteriza-
tion permits application to a variety of domains. Our experience demonstrates that Blue-Pencil
can be adapted to automate repetitive edits in domains other than code editing with a reasonable
amount of effort.

Blue-Pencil for Markdown documents. Markdown is a simple language for writing structured
documents [CommonMark 2019]. It is designed to be readable in source form, while also supporting
compilation into HTML or other layout languages. We implemented a proof-of-concept of Blue-
Pencil instantiated to automate repetitive edits in Markdown documents. The total effort required
was about four person-days of work, which includes the time spent in adapting the UI (implemented
as a Visual Studio Code plugin) for Markdown. However, we did not implement the optimization
based on KNearestNeighbours.

The prototype supports both structural transformations in Markdown (which are implemented
as transformations on trees), as well as transformations on strings which occur in the leaf nodes of
the Markdown AST. We instantiated Blue-Pencil with the guard DSL from Refazer [Rolim et al.

On the Fly Synthesis of Edit Suggestions 143:17

Maynard Keenan
...
Bill Ward
...
Glenn Tipton
...
Syd Barret
...
Saul Hudson
...
John Bonham
...

Maynard Keenan
...
Bill Ward
...
...

List of contacts:
* Keenan, M
* Ward, B
* Tipton, G
* Barret, S
* Hudson, Saul
* Bonham, J

Fig. 3. An example of a repetitive edit in Markdown.

2017]. The transformation DSL was a combination of the DSL from Refazer (for the structural/tree
transformations), and the DSL from FlashFill [Gulwani 2011] (for string transformations).
The specific scenarios that we tested are listed below. The scenarios included non-repetitive

edits that were performed during the editing session.
• Converting headings of level n to level k , n , k .
• Phone number reformatting: reformat a phone number in a paragraph written as ##########,
i.e., as just 10 decimal digits into the format ###-###-####.

• Email reformatting: extract just the user name part of emails from a list of emails.
• Composite formatting and structural edits: See Figure 3. The original document shown on the
left in Figure 3 contains names of celebrities as level 3 headings, followed by a brief biography
(indicated with ellipses). The task is to collate the names of all of these celebrities into a list,
while simultaneously reformatting their names as shown on the left in Figure 3. Our prototype
was able to learn the intended transformation after the user manually populated the first two
entries of the list, and automatically populated the remaining four entries of the list.

Blue-Pencil for spreadsheets. We implemented Blue-Pencil for spreadsheets as a Visual Studio
Code plugin– extending the existing plugin to spreadsheets (represented as CSV files) took 3 person
hours of work – however, we did not implement the optimization based on KNearestNeighbours.
The guards for this implementation consist of a column number k and a regular expression r ; a
guard given by k and r selects exactly those cells from column k whose contents match the regular
expression r . The regular expressions r in the guards were synthesized by a variant of the technique
FlashProfile [Padhi et al. 2018]. Given a set of strings, FlashProfile can generate a set of regular
expressions that together matches strings similar to input strings; we modified this technique to
produce a single regular expression. We use FlashFill for the transformation DSL.

As compared to the widely deployed FlashFill PBE system for spreadsheets, Blue-Pencil allows:
(a) In-place modification of cell values to provide examples – no requirement of creating a new

column to enter into PBE mode,
(b) Noise and non-repetitive edits – Blue-Pencil filters out non-repetitive modifications, and
(c) Better support for selective and conditional transformations through FlashProfile generated

regular expressions – FlashFill by itself generates incorrect outputs in some cases due to applying
the learned transformation on cells that are dissimilar to the inputs in the examples.
Blue-Pencil was able to synthesize suggestions to automate the edits listed below. As before,

the editing session included noise in the form of non-repetitive edits
(1) Replacingmiddle nameswithmiddle initials in a list of names (e.g. ‘Arthur Charles Clarke’

to ‘Arthur C. Clarke’). The list contained names both with and without middle names—the
guard selected only the names with middle names (see Figure 4).

143:18 A. Miltner, S. Gulwani, V. Le, A. Leung, A. Radhakrishna, G. Soares, A. Tiwari, A. Udupa

Author DOB Language
Arthur Charles Clarke 16 December 1917 English
Surender Mohan Pathak 19-Feb-40 hindi

Alexandre Dumas 24 July 1802 French
Jorge Luis Borges 24 August 1899 Spanish
Haruki Murakami 12-Jan-49 Japanese
Barbara Cartland 9-Jul-01 English

.
Before

Author DOB Language
Arthur C. Clarke 1917 English

Surender M. Pathak 1940 Hindi
Alexandre Dumas 1802 French
Jorge L. Borges 1899 Spanish

Haruki Murakami 1949 Japanese
Barbara Cartland 1901 English

.
After

Orange, blue, and red edits refer to repetitive user edits, Blue-Pencil suggestions, and non-repetitive user edits, respectively.

Fig. 4. Blue-Pencil on spreadsheets.

(2) Extracting the year from a column of differently formatted dates (e.g., ‘11 November 1958’
to ‘1958’ and ‘14-03-77’ to ‘1977’). Here, multiple programs were learned (one for each
date format) with the learned guards (regexes) exactly matching dates of different formats.

(3) Reformatting negative numbers (from a column of both positive and negative numbers) from
standard to accounting format (e.g., ‘-5.27’ to ‘(5.27)’). Here, the guard was to select
cells that are floating point numbers starting with a minus sign.

In each of these cases, FlashFill by itself (without guards) produces the wrong outputs due to
applying the transformation on cells which do not match the intended guard.

7 EVALUATION

We present experiments that evaluate Blue-Pencil with respect to its effectiveness and efficiency.
In particular, we instantiate Blue-Pencil for code transformations (C# and SQL), as presented in
Section 6.1, and we aim to answer the following research questions:
RQ1 How accurate are the suggestions produced by Blue-Pencil in scenarios of repetitive and non-

repetitive edits?
Producing incorrect suggestions while the user is editing a document can be a big barrier
for the adoption of such systems. We measure the number of false positives (incorrect
suggestions), false negatives (missing suggestions), and true positives (correct suggestions)
produced by Blue-Pencil.

RQ2 How fast can Blue-Pencil generate suggestions?
Blue-Pencil needs to quickly generate suggestions, otherwise the user will edit the locations
before suggestions are produced.Wemeasure the time Blue-Pencil takes to learn suggestions.

RQ3 Can Blue-Pencil help programmers perform repetitive edits?
Ultimately, Blue-Pencil is intended to help programmers do their jobs better. We perform a
field study (Section 7.6) to understand how Blue-Pencil performs when used in everyday
development.

7.1 Benchmark Suite

We recorded 37 document editing sessions in the context of software development in two languages
(C# and SQL). These sessions came from three different sources:
Repositories We mined 5 scenarios of repetitive edits on C# programs from 3 public GitHub

repositories and 6 scenarios of repetitive edits on SQL programs from 3 private repositories.
Since the repository does not provide the fine-grained edits performed by the programmer
but instead provides the diff between two commits, we recorded two professional software
engineers performing these edits. In total, we recorded (5 + 6) * 2 = 22 editing sessions. For
each scenario, the software engineer was presented with the original code, a description of
the task that should be performed containing one example of the repetitive edit, and the
number of locations to edit.

On the Fly Synthesis of Edit Suggestions 143:19

Authors’ scenarios We collected 10 sessions containing repetitive edits during the development
of Blue-Pencil. These sessions were recorded from one of the authors of the paper, and they
are noisy, i.e., they contain non-repetitive edits performed before, between, and after the
repetitive edits.

Non-repetitive edits We recorded 15 min of non-repetitive edits divided in 5 small sessions.
In total, our benchmark suite consists of 22 + 10 + 5 = 37 code editing sessions, which contain 11

+ 10 = 21 distinct repetitive edit scenarios. Let us first determine what to expect from Blue-Pencil
on the 21 scenarios. Note that Blue-Pencil is parameterized by the PBE engines, and since it was
not our goal to evaluate the PBE engines, we picked the 21 scenarios so that they would be detected
as repetitive in theory. We first determined, by hand, the number of examples the PBE engine
would definitely need to synthesize a program that explains all the repetitive edits. Figure 5 shows
the total number of repetitive edits in each scenario and the minimum number of examples PBE
would need for that scenario. For example, three examples are necessary to synthesize the correct
program in Scenario 0. So no two examples, when given to the PBE engine, would synthesize the
correct program. On the other hand, while three carefully chosen examples would synthesize the
correct program, more examples could be required if the wrong ones were provided. We found
that, on average, Blue-Pencil should be able to automate 64% of each benchmark’s edits (86 out of
135 total edits). The granularity of a repetitive edit instance is the number of fine-grained edits
that instance is comprised of. The average granularity of the repetitive edit instances was found
to be 3.4 and the largest granularity was 17. The average size of the number of modified nodes in
the AST was 32 and the largest size was 99. The benchmark suite contains a variety of edits, from
small edits that need to be applied to many locations to large edits that only need to be applied to a
few locations.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Repetitive Edit Scenario

0

5

10

15

20

Q
ua

nt
it

y

Examples

Edits

Fig. 5. The total number of repetitive edits in each scenario and the minimum number of examples needed

by the PBE engine to learn the correct suggestions. The orange color represents the edits that Blue-Pencil

should suggest in theory.

7.2 Experimental Setup

For each recorded session, we simulate the use of Blue-Pencil by running it across the history
of document versions. To simulate a realistic environment, where Blue-Pencil gets a stream of
document versions, a suggestion suite is incrementally synthesized for each version. For sessions
with repetitive edits, we run Blue-Pencil until it has seen enough repetitive edits for the PBE
system to learn the correct program (as defined by Figure 5), assuming perfect edit sets as examples.
For instance, if the scenario has 20 repetitive edits and the underlying PBE system requires two

143:20 A. Miltner, S. Gulwani, V. Le, A. Leung, A. Radhakrishna, G. Soares, A. Tiwari, A. Udupa

Table 2. Blue-Pencil configurations used in the experiment.

Configuration Threshold Transient KNN Explanation

BP-threshold ✗ ✓ ✓ ✓
BP-transient ✓ ✗ ✓ ✓
BP-KNN ✓ ✓ ✗ ✓
BP-explanation ✓ ✓ ✓ ✗
BP ✓ ✓ ✓ ✓

Table 3. Summary of the results for RQ1. Suggestions = number of suggestions produced by Blue-Pencil;

False Positives = incorrect suggestions; False positives = missing suggestions.

Configuration Suggestions False positives False negatives Precision Recall

BP-threshold 998 815 0 0.18 1.00
BP-transient 313 134 0 0.57 1.00
BP-KNN 206 23 0 0.89 1.00
BP-explanation 234 51 0 0.78 1.00
BP 206 23 0 0.89 1.00

examples to learn the correct program, we incrementally run Blue-Pencil until the end of the
second example. For sessions that do not have repetitive edits, we run Blue-Pencil until the last
version of the document.

We measure the time to run Blue-Pencil at each document version, and calculate the precision
and recall of all the suggestions produced by Blue-Pencil over a session. To evaluate the impact of
each component of Blue-Pencil on its correctness and performance, we run it with the 5 different
configurations shown in Table 2. BP uses all components proposed in Section 5: (i) elimination
of low-scored programs produced by the DSL (Threshold); (ii) elimination of transient versions;
(iii) KNearestNeighbors-based search of edit sets (KNN); and (iv) greedy search of short expla-
nations (Explanation). We set K to 5 and the threshold for the minimum score of the programs
to 400. These values were empirically determined during the development of Blue-Pencil but
before collecting the benchmark from the external software engineers. Each other configuration
removes its corresponding component: (a) BP-threshold uses all programs returned by the PBE system,
(b) BP-transient does not eliminate transient versions, (c) BP-KNN search over all non-overlapping edit
sets, and (d) BP-explanation returns all possible explanations.
All our experiments were run on Intel Xeon E5-1620 v4 CPU running at 3.5 GHz with 32 GB

RAM running 64 bit Windows 10 Enterprise. The hardware is consistent with professional software
developer workstations.

7.3 Results

Table 3 and Table 4 summarize the results of our experiments. Table 3 presents the number of
synthesized suggestions, false positives, false negatives, precision, and recall. Table 4 presents
the time to invoke Blue-Pencil and number of synthesis invocations that Blue-Pencil did to
underlying the PBE system.

The precision and the recall of Blue-Pencil (BP) were 0.89 and 1.0, respectively. The time to
generate suggestions was 199 ms on average. These results suggest that Blue-Pencil is effective
and efficient enough to produce edit suggestions on the fly.

On the Fly Synthesis of Edit Suggestions 143:21

Table 4. Summary of the results for RQ2; time = time to invoke Blue-Pencil; Syn. inv. = number of synthesis

invocations; Suc. syn. inv = number of synthesis invocations that successfully return a program.

Configuration Mean time (ms) Std. dev. time (ms) Syn. inv. Suc. syn. inv.

BP-threshold 299.85 482.10 2792 187
BP-transient 952.15 1586.48 9725 264
BP-KNN 500.90 1863.43 8339 198
BP-explanation 222.43 406.13 2791 121
BP 198.91 348.88 2791 121

Table 5. Classification of false positives. Transient false positives are incorrect suggestions that were generated

while the user is editing the repetitive edit but removed when the user finished editing the code. Permanent

false positives are false positives that were still presented after the user finish editing the code.

Configuration Transient (%) Permanent (%)

BP-threshold 61 (0.07) 754 (0.93)
BP-transient 117 (0.87) 17 (0.13)
BP-KNN 23 (1.00) 0 (0.00)
BP-explanation 2 (0.04) 49 (0.96)
BP 23 (1.00) 0 (0.00)

7.4 Discussion

Causes and Prevention of False Positives. With all optimizations included, Blue-Pencil gen-
erated 43 false positives, which occurred across five editing sessions. Table 5 classifies the false
positives into two categories: transients and permanents. The former represents false positives
that were suggested while the user performed the edit, but were no longer suggested after the user
completed that change. These suggestions are usually small and represent some component of the
full repetitive edit. Filtering programs that have a low ranking score is crucial to avoid these false
positives. When we remove this filter (BP-transient), Blue-Pencil produced 134 false positives, from
which 87% were transient false positives.

Permanent false positives are incorrect suggestions that are still presented after the user finished
typing the repetitive edit. These false positives can impact user experience more, since they persist
in the document and make it harder for the user to decide which suggestions should be applied.
Finding the best explanation for the history is important to avoiding this type of false positive.
When we remove the component that selects the best explanation (as in BP-explanation), 97% of the
false positives produced were permanent. This indicates that our definition of optimal explanations
being those with a minimal number of programs helps capture user intent, for it prevents false
positives while still avoiding false negatives.
To illustrate this scenario, consider the repetitive edit showed in Figure 6. In this session, the

programmer moved the logic in the red lines to an existing method, avoiding the duplication.
To do so, the programmer quickly deleted statement by statement in both locations. There was
still one more location to apply this edit. The correct suggestion is shown in Figure 7a. Two of
permanent false positives produced by BP-explanation are shown in Figures 7b and 7c. Presenting
all these possible edits to the user can be confusing and reduce the confidence of the user in the
system.

143:22 A. Miltner, S. Gulwani, V. Le, A. Leung, A. Radhakrishna, G. Soares, A. Tiwari, A. Udupa

//...
if (newNode != null)
{

- var matchScore = rule.MatchProgram.Score;
- var editScore = rule.EditProgram.Score;
- if (matchScore > matchThreshold && editScore > editThreshold)
- {

return newNode;
- }

}
//...
if (newNode != null)
{

- var matchScore = rule.MatchProgram.Score;
- var editScore = rule.EditProgram.Score;
- if (matchScore > matchThreshold && editScore > editThreshold)
- {

node.Children[i] = newNode;
newNode.Parent = node;
break;

- }
}

//...

Fig. 6. Minified version of the repetitive edit performed in the recorded session 7. The programmer moved

the logic duplicated in these two locations to a different part of the code removing the duplication.

Resiliency to False Negatives. In our experiments, the recall for all configurations was 1.00,
which suggested that the two approaches proposed to reduce false positives (ranking programs
and explanations) and the approach proposed to reduce the search space (KNN-based search) do
not have a negative impact on recall.

Impact of KNN Clustering. BP-KNN generated the same suggestions and false positives of BP ,
which suggests that using a KNN-based search (instead of searching over all edit sets) does not
have a negative impact on the precision.

The KNN-based search had a significant impact on the performance of Blue-Pencil. When this
component is removed (as in BP-KNN), the average time increased to 500.90 ms. Additionally, there
was a much higher variation (1863.43 ms). This difference can be better visualized in Figure 8, where
we plot the time for every invocation of Blue-Pencil with and without the KNN-search. We can
observe that some of the invocations of BP-KNN took almost 30 seconds to be performed, which can
be a barrier to synthesize suggestions on the fly, BP invocation time was much more concentrated
on the left part of the plot. We can also observe that removing transient versions of the history not
only reduces false positives but has a significant positive impact on the performance since it makes
the history smaller. Table 4 shows that the number of invocations to the PBE system was much
higher in BP-KNN and BP-KNN compared to the invocations in BP , while the number of successful
invocations were much closer, which suggests that without the KNN-based search, the system
spends much more time trying to synthesize programs from sets of edits that are inconsistent.

7.5 Limitations

Our benchmark is not representative of all possible repetitive edits that users may perform. To
reduce this threat, we selected repetitive edits performed in two different languages, and that vary

On the Fly Synthesis of Edit Suggestions 143:23

- var matchScore = rule.MatchProgram.Score;
- var editScore = rule.EditProgram.Score;
- if (matchScore > matchThreshold && editScore > editThreshold)
- {

suggestions.Add(new Suggestion(location ,transformation));
- }

(a) Correct suggestion.

- var matchScore = rule.MatchProgram.Score;
var editScore = rule.EditProgram.Score;
if (matchScore > matchThreshold && editScore > editThreshold)
{

suggestions.Add(new Suggestion(location ,transformation));
}

(b) Incorrect suggestion that deletes just one statement.

- var matchScore = rule.MatchProgram.Score;
- var editScore = rule.EditProgram.Score;
- if (matchScore > matchThreshold && editScore > editThreshold)

{
suggestions.Add(new Suggestion(location ,transformation));

}

(c) Incorrect suggestion that deletes 3 statements, including the if statement, but does not delete the inner

braces.

Fig. 7. Example of suggestions produced by BP
-explanation

after the edits showed in Figure 6.

0 5000 10000 15000 20000 25000

Time (ms)

BP-KNN

BP

BP-transient

C
on

fi
gu

ra
ti

on

Fig. 8. Performance comparison between BP and BP-KNN.

in granularity, size, and number of locations. Additionally, we included sessions that contained
only non-repetitive edits.

The traces of the edits collected from software repositories were replicated to create a history of
document versions. To reduce bias during the replication, we asked for external software engineers
to apply these edits. However, the way they performed the edit may not represent the exact way
the edit was performed originally.

143:24 A. Miltner, S. Gulwani, V. Le, A. Leung, A. Radhakrishna, G. Soares, A. Tiwari, A. Udupa

Fig. 9. Blue-Pencil implemented as the “refactorings” detection feature in the IntelliCode extension.

7.6 Field Study

In addition to the in-vitro experiments above, we conducted a field study to investigate Blue-
Pencil’s effectiveness in a less controlled environment and collect qualitative feedback. In col-
laboration with the Microsoft IntelliCode3 team, we implemented the proposed algorithm as the
“refactorings” feature in the IntelliCode extension for C#.

Figure 9 illustrates the extension usage. In this scenario, a programmer performed two repetitive
edits to remove duplicated code by calling the method NotNullOrEmpty. The extension recognized
the pattern and immediately produces three other code edit suggestions. All suggestions are shown
as warnings in the “Error list” panel. Additionally, the green4 squiggles in the code and the green
boxes in the scroll bar help the programmer identify the locations where similar edits can be
performed. By clicking on the Light Bulb Action icon next to the squiggle, the programmer can see
a preview of the suggestion, apply the suggestion, or ignore it. To collect feedback, we created a
bug report channel and conducted informal interviews with the programmers.
We shipped the extension to an internal group of programmers at Microsoft. Over a period of

three months, we had around 25 programmers using the tool each week. Since many programmers
code in different languages, they were not using the tool all the time.

In our study, programmers applied suggestions produced by Blue-Pencil, including the sugges-
tions shown in Figure 1. The qualitative feedback provided by them was encouraging. For instance,
one programmer mentioned: “I did a refactor [sic] in a method, changed the output to an enumerable
and had to update the tests. The extension caught the pattern pretty quickly”. Next we describe three
aspects of the technology that were improved during the study.

3https://visualstudio.microsoft.com/services/intellicode/
4We used green squiggles instead of blue ones to be consistent with other suggestions produced by Visual Studio.

https://visualstudio.microsoft.com/services/intellicode/

On the Fly Synthesis of Edit Suggestions 143:25

Usability. During the first month of the study, programmers reported usability barriers for the
use of the suggestions. They raised two main issues. The first one was related to discoverability.
Participants were not seeing the suggestions produced by Blue-Pencil. Initially, lines in the code
that contain suggestions were marked just with the symbol . . . in the beginning of the line, which
is the default option in Visual Studio for code actions. We improved the discoverability of the tool
by adding the green squiggle and listing the suggestions as warnings. The second issue was related
to the lack of the preview feature, which made it difficult to review the changes. We added this
feature later. Finally, programmers asked for a feature that allows them to apply all suggestions at
once. We plan to include this feature in the future.

Accuracy. Programmers reported false positives and false negatives produced by the tool. Al-
though we collected more than 30 bugs related to these issues, only one programmer reported
annoyance with the false positives. Most of the bugs arose from two sources: short-comings of the
underlying PBE synthesizer (Refazer) and threshold for the scores of the programs (Section 5.1).
Originally, guard expressions produced by Refazer considered just the AST related to the location
being changed and the parent node of this AST. We observed that this context was not enough in
many cases. Specifically, when the changed sub-tree of the AST was small, the guard expression was
usually overly general. For instance, changing x to (int) Math.Sqrt(x) in an argument list could
be overgeneralized to do this edit to every variable in all argument lists in the code. We improved
the guards to consider more context such as method call information. Improving Refazer and
fine-tuning the ranking scores solved most of the issues. We plan to add more features to Refazer,
such as typing information, to improve the context more and eliminate the other false positives.
Additionally, there were false positives related to edits that were repetitive but that required more
semantic information about the task being performed to decide whether the suggestion should
be generated. For instance, changing the types of two variables from List<int> to List<string>
during a programming session is a repetitive edit but it does not mean that the programmer wants
to do it for all variables of type List<int> in the code. We added a button to allow programmers
to ignore suggestions.

Performance. Programmers have not reported any issue related to CPU usage while running
Blue-Pencil in the background and the tool was fast enough to produce suggestions in real
time. However, there were concerns related to the memory usage of the tool. Since Blue-Pencil
stores multiple versions of the code, on large files (> 1000 LOC), the amount of memory used to
produce the ASTs corresponding to each version of the file was prohibitive. We performed multiple
optimizations to our data structures in order to keep the memory used by Blue-Pencil under 50
megabytes per session.
To summarize, the feedback was useful to confirm the viability of Blue-Pencil in terms of

accuracy and performance in a real programming environment, and helped us make the tool more
robust. Given the success of the initial field study, as the next step, we plan to run a more formal
and involved quantitative study with more programmers using the IntelliCode refactorings feature
of IntelliCode that is based on Blue-Pencil.

8 RELATEDWORK

Inductive Program Synthesis. Inductive program synthesis has been an active research area
for decades [Cypher 1993; Lieberman 2001]. LAPIS is a text editor that takes a set of positive
and negative examples (i.e., text selections) from a file, learns a pattern and highlights similar
matches in the file [Miller and Myers 2002]. FlashFill learns syntactic string transformation from the
input/output examples in spreadsheets [Gulwani 2011]. FlashExtract extracts hierarchical data by
examples [Le and Gulwani 2014]. Parsify synthesizes parsers from input/output examples [Leung

143:26 A. Miltner, S. Gulwani, V. Le, A. Leung, A. Radhakrishna, G. Soares, A. Tiwari, A. Udupa

et al. 2015], while λ2 targets data structure transformation [Feser et al. 2015]. Recently, FlashMeta
(aka PROSE) reduces the effort in developing these domain-specific synthesizers by reusing the
synthesis algorithms [Polozov and Gulwani 2015]. Our work shows its applicability to a different
domain - learning program transformations.

Program Transformation from Examples. Andersen et al. proposed techniques to help update
Linux device drivers when Linux internal libraries evolve [Andersen and Lawall 2008; Andersen
et al. 2012]. Their approach generates generic patches from a set of files and their updated versions,
and applies these patches on other files. Because they only focus on API usage changes, their
underlying DSL is limited. Blue-Pencil has a more expressive DSL, thus can support a wider range
of transformations.
Meng et al. [2011] introduced Sydit, a program transformation tool that generates a context-

aware edit script from a single example. Sydit characterizes the code changes as a sequence of edits,
from which it abstracts edit positions and identifiers to obtain the script. Subsequently, the authors
extended the work in LASE to avoid the need to provide the edit locations and allow multiple
examples [Meng et al. 2013]. Rolim et al. [2017] leveraged state-of-the-art PBE methodology to
develop automatic transformation tool Refazer. While Blue-Pencil shares some similarities with
these work (e.g., both require synthesizing the guards and edits, both accept multiple examples), it
is quite different. Unlike previous work, Blue-Pencil continuously monitors the code changes and
suggests the edit on the fly, which requires a special mechanism to effectively store, locate, and
synthesize the transformations.

Edit Suggestion and Completion. Martin et al. introduced PQL, a declarative language, to allow
programmers search for code that violates a design rule [Martin et al. 2005]. Unlike Blue-Pencil, it
only suggests the violating locations. LibSync learns API usage adaptation patterns from existing
migrated code [Nguyen et al. 2010]. LibSync only recommends the locations and the transforming
operations. Programmers still have to write the changes manually based on these recommendations.
In contrast, Blue-Pencil can generate fully executable transformations. WitchDoctor monitors
programmer edits in the IDEs and completes refactorings that users begin performing refactorings
themselves [Foster et al. 2012], but requires a built-in set of previous suggestion programs.
Big Code is a recent trend that leverages a large existing codebase for repetitive edit tasks.

Nguyen et al. presented an API recommendation system based on statistical learning from fine-
grained code changes and their context. Raychev et al. developed a code completion tool based on
statistical language models [Raychev et al. 2014]. Recently, machine learning methods have been
used to learn representations of edits on code and text documents, which a “neural editor” can then
apply elsewhere [Yin et al. 2019]. Data mining techniques have been applied to large sequences of
fine-grained edit data to find common, but previously unknown refactorings [Negara et al. 2014].
While these approaches require training from a large number of examples, Blue-Pencil can learn
transformations from just a few examples.

Software Refactoring. Software refactoring is the process of changing the software system in a
way that it preserves the external behavior yet improves the internal structure [Opdyke 1992]. In
their classic survey, Mens and Tourwe [2004] described several aspects of software refactoring:
the types of refactoring, the techniques to perform refactoring, the artifacts being refactored, the
issues during implementation of refactoring tools, and the effect of refactoring. IDEs such as Visual
Studio [Microsoft 2019e], Eclipse [Eclipse Foundation 2019], and IntelliJ [JetBrains 2019a] have some
simple, yet popular, refactoring tasks built-in. These tasks (e.g., renaming variables or functions,
changing function signatures) usually preserve the semantics and are implemented based on fixed
templates. In contrast, Blue-Pencil supports transformations that may not be semantic-preserving.

On the Fly Synthesis of Edit Suggestions 143:27

Its transformations are context-sensitive – they may not make sense when applied to codebases
other than the one it was learned from. Such transformations should not be packaged within an
IDE, but are still useful when applied in right context. A recent field study by Kim et al. shows
that in practice refactoring does not necessarily have to be semantic-preserving [Kim et al. 2012].
Blue-Pencil does not limit itself in refactoring; it can be used for other software evolution tasks.
Work on ad-hoc refactorings (also called "refactorings without names") [Steimann and von

Pilgrim 2012] aims to generate specialized, context-specific refactorings not intended for general
reuse. Unlike Blue-Pencil, their tool requires the programmer to enter a special mode in which to
demonstrate a refactoring, after which the system suggests a number of candidate generalizations.
Because the suggested changes must preserve program semantics, while those suggested by Blue-
Pencil need not, we view their contribution as complementary to ours. Additionally, we speculate
that instantiating Blue-Pencil with such an ad-hoc refactoring generator would enable it to suggest
semantics preserving refactorings as well.

9 CONCLUSION

In this work, we introduce Blue-Pencil, a system to learn on the fly document edit suggestions by
watching user interactions. We formalize the edit suggestion problem, and develop a parameterized
algorithm to quickly find edit suggestions in different domains. We instantiate Blue-Pencil to
three different domains: code, markdown, and spreadsheet transformations. We evaluated Blue-
Pencil on 37 code (SQL and C#) editing sessions and found it suggested repetitive edits to the
user within 199 ms on average. Furthermore, all Blue-Pencil’s errors were transient – it returned
the desired transformation on all of our benchmarks when it was not run on partially-completed
edits. Our experiments suggest that Blue-Pencil can be used to suggest repetitive edits on the fly.
Finally, we performed a field study to collect qualitative feedback on Blue-Pencil from professional
programmers. The field study not only confirmed the viability of Blue-Pencil but also guided us
in making several improvements to make the technology more robust.

As future work, we plan to conduct user studies to provide additional evidence to Blue-Pencil’s
usability, particularly over existing modal PBE systems. Additionally, we plan to design extensions
based on it where the user can apply the suggestions over the entire code base, save them, share
with other collaborators, and provide other inputs to the system as negative examples. We plan to
improve the underlying PBE systems to increase the expressivity of Blue-Pencil and instantiate
it to other domains, such as text (e.g., Word) and presentation (e.g., PowerPoint) documents. We
hope that, with our future work, this technology can be used to produce the first applications that
generate repetitive edit suggestions on the fly just by learning from users as they edit a document
in a mode-less environment.

ACKNOWLEDGMENTS

The authors would like to thank all members of the Prose team at Microsoft, Mark Wilson-Thomas
and his colleagues from Visual Studio IntelliCode, Microsoft developers who participated in evalua-
tion studies, and Alex Polozov for their valuable feedback.

REFERENCES

J. Andersen and J. L. Lawall. 2008. Generic Patch Inference. In Proceedings of the 2008 23rd IEEE/ACM International
Conference on Automated Software Engineering (ASE ’08). IEEE Computer Society, Washington, DC, USA, 337–346.
https://doi.org/10.1109/ASE.2008.44

Jesper Andersen, Anh Cuong Nguyen, David Lo, Julia L. Lawall, and Siau-Cheng Khoo. 2012. Semantic Patch Inference. In
Proceedings of the 27th IEEE/ACM International Conference on Automated Software Engineering (ASE 2012). ACM, New
York, NY, USA, 382–385. https://doi.org/10.1145/2351676.2351753

CommonMark. 2019. CommonMark MarkDown Specification. (2019). At https://commonmark.org/.

https://doi.org/10.1109/ASE.2008.44
https://doi.org/10.1145/2351676.2351753
https://commonmark.org/

143:28 A. Miltner, S. Gulwani, V. Le, A. Leung, A. Radhakrishna, G. Soares, A. Tiwari, A. Udupa

Allen Cypher (Ed.). 1993. Watch What I Do: Programming by Demonstration. MIT Press.
Eclipse Foundation. 2019. Eclipse. (2019). At https://www.eclipse.org/.
Darren Edge, Sumit Gulwani, Natasa Milic-Frayling, Mohammad Raza, Reza Adhitya Saputra, Chao Wang, and Koji Yatani.

2015. Mixed-Initiative Approaches to Global Editing in Slideware. In Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems (CHI ’15). ACM, New York, NY, USA, 3503–3512. https://doi.org/10.1145/2702123.
2702551

John K. Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing Data Structure Transformations from Input-output
Examples. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’15). ACM, New York, NY, USA, 229–239. https://doi.org/10.1145/2737924.2737977

J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce, and Alan Schmitt. 2007. Combinators for
Bidirectional Tree Transformations: A Linguistic Approach to the View-update Problem. ACM Trans. Program. Lang.
Syst. 29, 3, Article 17 (May 2007). https://doi.org/10.1145/1232420.1232424

Stephen R. Foster, William G. Griswold, and Sorin Lerner. 2012. WitchDoctor: IDE Support for Real-time Auto-completion of
Refactorings. In Proceedings of the 34th International Conference on Software Engineering (ICSE ’12). IEEE Press, Piscataway,
NJ, USA, 222–232. http://dl.acm.org/citation.cfm?id=2337223.2337250

GNU Emacs. 2019. Repeat Commands. https://www.gnu.org/software/emacs/manual/html_node/efaq/Repeating-commands.
html. Accessed: 04/03/2019.

Sumit Gulwani. 2011. Automating String Processing in Spreadsheets Using Input-output Examples. In Proceedings of the
38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’11). ACM, New York,
NY, USA, 317–330.

JetBrains. 2019a. IntelliJ. (2019). At https://www.jetbrains.com/idea/.
JetBrains. 2019b. ReSharper. (2019). At https://www.jetbrains.com/resharper/.
Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. 2007. DECKARD: scalable and accurate tree-based

detection of code clones. 96–105. https://doi.org/10.1109/ICSE.2007.30
Miryung Kim and David Notkin. 2009. Discovering and Representing Systematic Code Changes. In Proceedings of the 31st

International Conference on Software Engineering (ICSE ’09). IEEE Computer Society, Washington, DC, USA, 309–319.
https://doi.org/10.1109/ICSE.2009.5070531

Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. 2012. A Field Study of Refactoring Challenges and
Benefits. In Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering
(FSE ’12). ACM, New York, NY, USA, Article 50, 11 pages. https://doi.org/10.1145/2393596.2393655

Tessa Lau. 2001. Programming by Demonstration: a Machine Learning Approach.
Tessa Lau. 2008. Why PBD systems fail: Lessons learned for usable AI.
Tessa Lau, Steven A. Wolfman, Pedro Domingos, and Daniel S. Weld. 2001. Your Wish is My Command. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, Chapter Learning Repetitive Text-editing Procedures with SMARTedit, 209–226.
http://dl.acm.org/citation.cfm?id=369505.369519

Vu Le and Sumit Gulwani. 2014. FlashExtract: A Framework for Data Extraction by Examples. In Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’14). New York, NY, USA, 542–553.

Alan Leung, John Sarracino, and Sorin Lerner. 2015. Interactive Parser Synthesis by Example. In Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’15). ACM, New York, NY, USA,
565–574. https://doi.org/10.1145/2737924.2738002

H. Lieberman. 2001. Your Wish Is My Command: Programming by Example. Morgan Kaufmann.
Michael Martin, Benjamin Livshits, and Monica S. Lam. 2005. Finding Application Errors and Security Flaws Using PQL: A

Program Query Language. In Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications (OOPSLA ’05). ACM, New York, NY, USA, 365–383. https://doi.org/10.1145/1094811.
1094840

Na Meng, Miryung Kim, and Kathryn S. McKinley. 2011. Systematic Editing: Generating Program Transformations from an
Example. In Proceedings of the 32Nd ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’11). ACM, New York, NY, USA, 329–342.

Na Meng, Miryung Kim, and Kathryn S. McKinley. 2013. LASE: Locating and Applying Systematic Edits by Learning from
Examples. In Proceedings of the 35th International Conference on Software Engineering (ICSE ’13). IEEE Press, Piscataway,
NJ, USA, 502–511.

T. Mens and T. Tourwe. 2004. A survey of software refactoring. IEEE Transactions on Software Engineering 30, 2 (Feb 2004),
126–139. https://doi.org/10.1109/TSE.2004.1265817

Microsoft. 2019a. Create or run a macro. https://support.office.com/en-us/article/Create-or-run-a-macro-C6B99036-905C-
49A6-818A-DFB98B7C3C9C. Accessed: 04/03/2019.

Microsoft. 2019b. Microsoft PowerPoint. (2019). At https://products.office.com/en-us/powerpoint.
Microsoft. 2019c. Microsoft Word. (2019). At https://products.office.com/en-us/word.

https://www.eclipse.org/
https://doi.org/10.1145/2702123.2702551
https://doi.org/10.1145/2702123.2702551
https://doi.org/10.1145/2737924.2737977
https://doi.org/10.1145/1232420.1232424
http://dl.acm.org/citation.cfm?id=2337223.2337250
https://www.gnu.org/software/emacs/manual/html_node/efaq/Repeating-commands.html
https://www.gnu.org/software/emacs/manual/html_node/efaq/Repeating-commands.html
https://www.jetbrains.com/idea/
https://www.jetbrains.com/resharper/
https://doi.org/10.1109/ICSE.2007.30
https://doi.org/10.1109/ICSE.2009.5070531
https://doi.org/10.1145/2393596.2393655
http://dl.acm.org/citation.cfm?id=369505.369519
https://doi.org/10.1145/2737924.2738002
https://doi.org/10.1145/1094811.1094840
https://doi.org/10.1145/1094811.1094840
https://doi.org/10.1109/TSE.2004.1265817
https://support.office.com/en-us/article/Create-or-run-a-macro-C6B99036-905C-49A6-818A-DFB98B7C3C9C
https://support.office.com/en-us/article/Create-or-run-a-macro-C6B99036-905C-49A6-818A-DFB98B7C3C9C
https://products.office.com/en-us/powerpoint
https://products.office.com/en-us/word

On the Fly Synthesis of Edit Suggestions 143:29

Microsoft. 2019d. Refactoring source code in Visual Studio Code. (2019). At https://code.visualstudio.com/docs/editor/
refactoring#_code-actions-quick-fixes-and-refactorings.

Microsoft. 2019e. Visual Studio. (2019). At https://www.visualstudio.com.
Robert C. Miller and Brad A. Myers. 2002. LAPIS: Smart editing with text structure. In CHI ’02. ACM, 496–497.
Emerson Murphy-Hill and Andrew P. Black. 2007. High Velocity Refactorings in Eclipse. In Proceedings of the 2007 OOPSLA

Workshop on Eclipse Technology eXchange (eclipse ’07). ACM, New York, NY, USA, 1–5. https://doi.org/10.1145/1328279.
1328280

E. Murphy-Hill, C. Parnin, and A. P. Black. 2009. How we refactor, and how we know it. In 2009 IEEE 31st International
Conference on Software Engineering. 287–297. https://doi.org/10.1109/ICSE.2009.5070529

Stas Negara, Mihai Codoban, Danny Dig, and Ralph E. Johnson. 2014. Mining Fine-grained Code Changes to Detect
Unknown Change Patterns. In Proceedings of the 36th International Conference on Software Engineering (ICSE 2014). ACM,
New York, NY, USA, 803–813. https://doi.org/10.1145/2568225.2568317

H. A. Nguyen, A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, and H. Rajan. 2013. A study of repetitiveness of code changes in
software evolution. In 2013 28th IEEE/ACM International Conference on Automated Software Engineering (ASE). 180–190.

Hoan Anh Nguyen, Tung Thanh Nguyen, Gary Wilson, Jr., Anh Tuan Nguyen, Miryung Kim, and Tien N. Nguyen.
2010. A Graph-based Approach to API Usage Adaptation. In Proceedings of the ACM International Conference on
Object Oriented Programming Systems Languages and Applications (OOPSLA ’10). ACM, New York, NY, USA, 302–321.
https://doi.org/10.1145/1869459.1869486

William F. Opdyke. 1992. Refactoring Object-oriented Frameworks. Ph.D. Dissertation. Champaign, IL, USA. UMI Order No.
GAX93-05645.

Saswat Padhi, Prateek Jain, Daniel Perelman, Oleksandr Polozov, Sumit Gulwani, and Todd Millstein. 2018. FlashProfile:
A Framework for Synthesizing Data Profiles. Proc. ACM Program. Lang. 2, OOPSLA, Article 150 (Oct. 2018), 28 pages.
https://doi.org/10.1145/3276520

J. Park, M. Kim, B. Ray, and D. Bae. 2012. An empirical study of supplementary bug fixes. In 2012 9th IEEE Working Conference
on Mining Software Repositories (MSR). 40–49.

Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: A Framework for Inductive Program Synthesis. In Proceedings of
the ACM International Conference on Object-oriented Programming Systems, Languages, and Applications (OOPSLA ’15).
ACM, New York, NY, USA, 542–553.

Veselin Raychev, Martin Vechev, and Eran Yahav. 2014. Code Completion with Statistical Language Models. In Proceedings
of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’14). ACM, New York,
NY, USA, 419–428. https://doi.org/10.1145/2594291.2594321

Refsnes Data. 2019. XPath Tutorial. (2019). At https://www.w3schools.com/xml/xpath_intro.asp.
Reudismam Rolim, Gustavo Soares, Loris D’Antoni, Oleksandr Polozov, Sumit Gulwani, Rohit Gheyi, Ryo Suzuki, and Björn

Hartmann. 2017. Learning Syntactic Program Transformations from Examples. In Proceedings of the 39th International
Conference on Software Engineering (ICSE ’17). IEEE Press, Piscataway, NJ, USA, 404–415. https://doi.org/10.1109/ICSE.
2017.44

Rishabh Singh and Sumit Gulwani. 2012. Synthesizing Number Transformations from Input-output Examples. In Proceedings
of the 24th International Conference on Computer Aided Verification (CAV’12). Springer-Verlag, Berlin, Heidelberg, 634–651.
https://doi.org/10.1007/978-3-642-31424-7_44

Stack Exchange. 2019. How to programmatically edit all hyperlinks in a Word document? https://stackoverflow.com/q/
3355266. Accessed: 04/03/2019.

Friedrich Steimann and Jens von Pilgrim. 2012. RefactoringsWithout Names. In Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2012). ACM, New York, NY, USA, 290–293. https://doi.org/10.1145/
2351676.2351726

Vim. 2019. Macros. https://vim.fandom.com/wiki/Macros. Accessed: 04/03/2019.
Navid Yaghmazadeh, Xinyu Wang, and Isil Dillig. 2018. Automated Migration of Hierarchical Data to Relational Tables

Using Programming-by-example. Proc. VLDB Endow. 11, 5 (Jan. 2018), 580–593. https://doi.org/10.1145/3187009.3177735
Pengcheng Yin, Graham Neubig, Miltiadis Allamanis, Marc Brockschmidt, and Alexander L. Gaunt. 2019. Learning to

Represent Edits. In International Conference on Learning Representations. https://openreview.net/forum?id=BJl6AjC5F7

https://code.visualstudio.com/docs/editor/refactoring#_code-actions-quick-fixes-and-refactorings
https://code.visualstudio.com/docs/editor/refactoring#_code-actions-quick-fixes-and-refactorings
https://www.visualstudio.com
https://doi.org/10.1145/1328279.1328280
https://doi.org/10.1145/1328279.1328280
https://doi.org/10.1109/ICSE.2009.5070529
https://doi.org/10.1145/2568225.2568317
https://doi.org/10.1145/1869459.1869486
https://doi.org/10.1145/3276520
https://doi.org/10.1145/2594291.2594321
https://www.w3schools.com/xml/xpath_intro.asp
https://doi.org/10.1109/ICSE.2017.44
https://doi.org/10.1109/ICSE.2017.44
https://doi.org/10.1007/978-3-642-31424-7_44
https://stackoverflow.com/q/3355266
https://stackoverflow.com/q/3355266
https://doi.org/10.1145/2351676.2351726
https://doi.org/10.1145/2351676.2351726
https://vim.fandom.com/wiki/Macros
https://doi.org/10.1145/3187009.3177735
https://openreview.net/forum?id=BJl6AjC5F7

	Abstract
	1 Introduction
	2 Repetitive edits and why they should be automated.
	2.1 Setting and Problem
	2.2 Blue-Pencil: The Challenges
	2.3 Repetitive Edits: Beyond Code

	3 Optimal Explanation Generation Problem
	3.1 Documents, Versions, and Edits
	3.2 Explaining Edit Histories

	4 Oracle-Guided Approach for Optimal Explanation Generation
	5 On-the-fly Explanation Generation
	5.1 Using PBE to implement the oracle
	5.2 Reducing the size of the DAM
	5.3 Greedy procedure for finding short explanations
	5.4 Incremental procedure: Putting it all together

	6 Instantiations of Blue-Pencil
	6.1 Blue-Pencil for code transformations
	6.2 Other instantiations of Blue-Pencil

	7 Evaluation
	7.1 Benchmark Suite
	7.2 Experimental Setup
	7.3 Results
	7.4 Discussion
	7.5 Limitations
	7.6 Field Study

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

