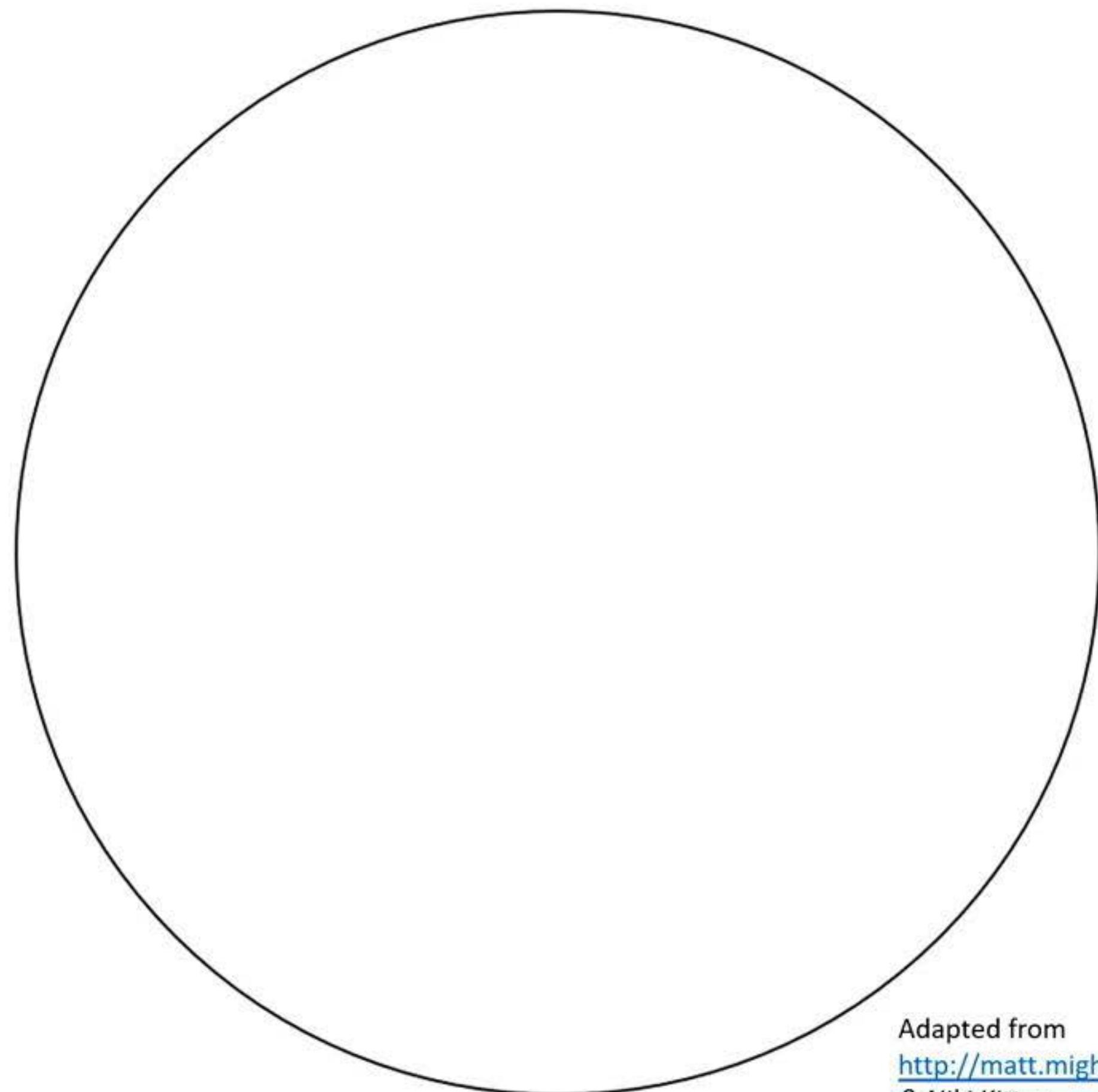


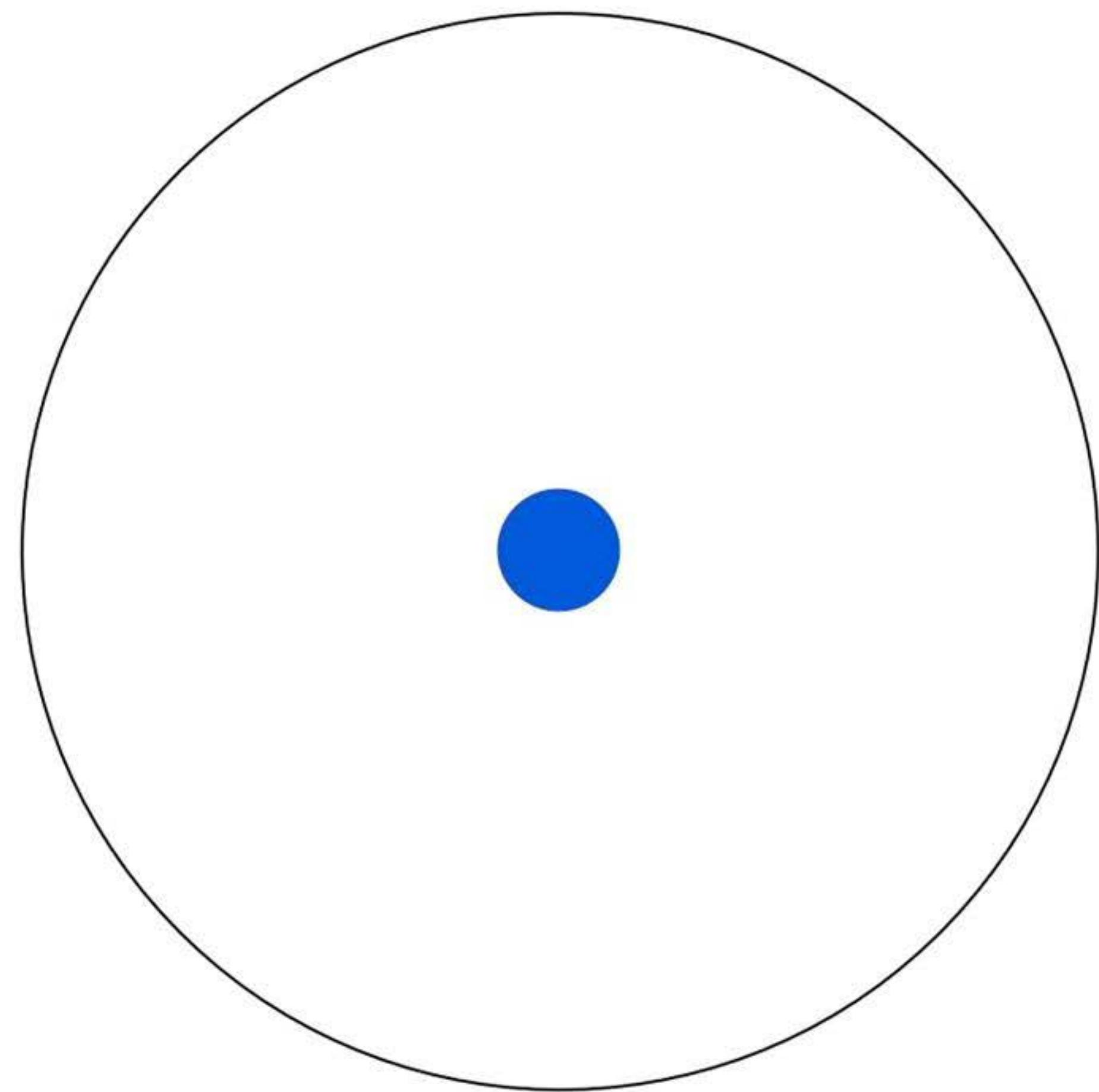
Automating Innovation and Discovery with Machine Learning

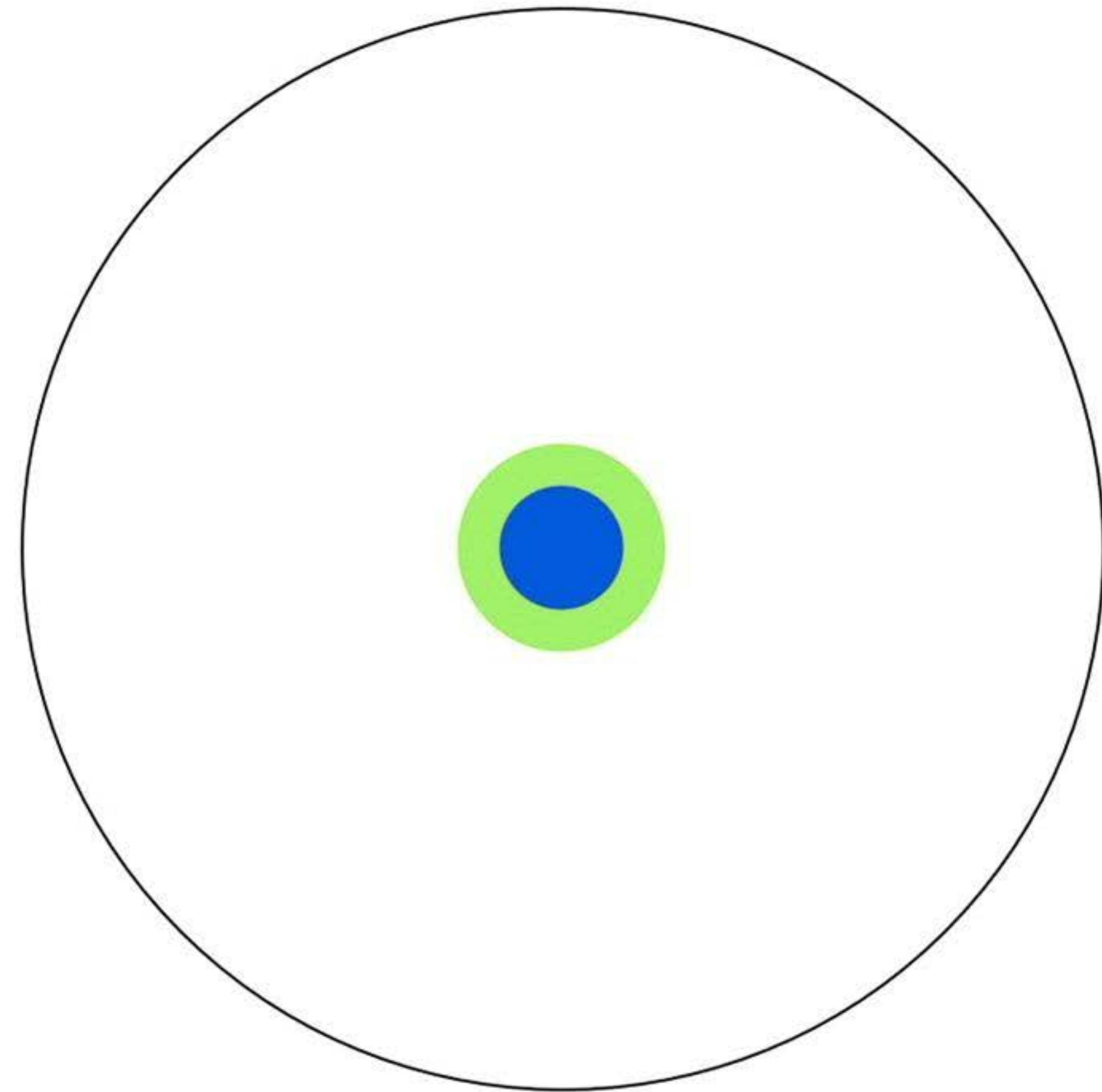
My PhD (so far)
Tom Hope

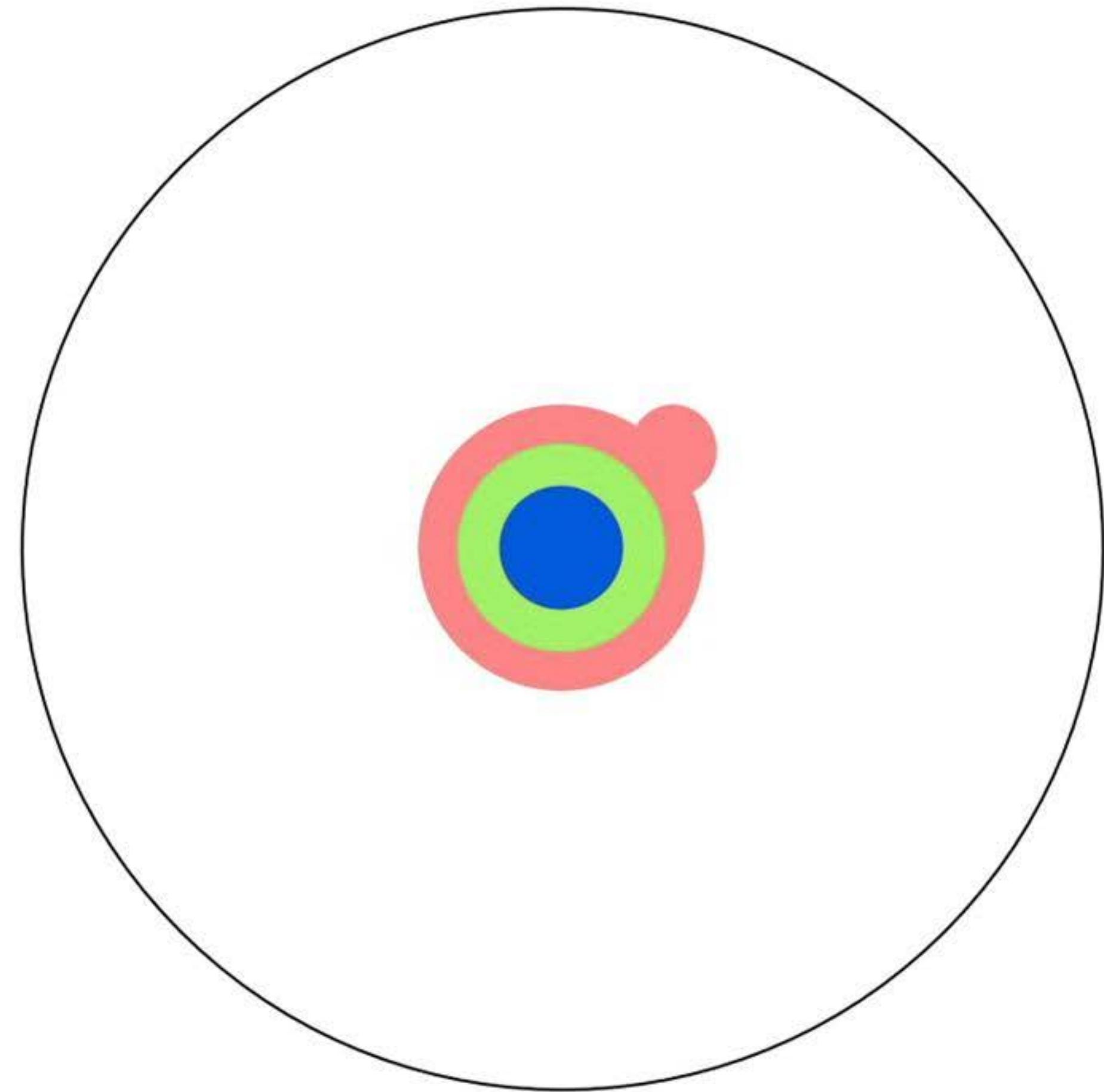
PhD Advisor: Dafna Shahaf

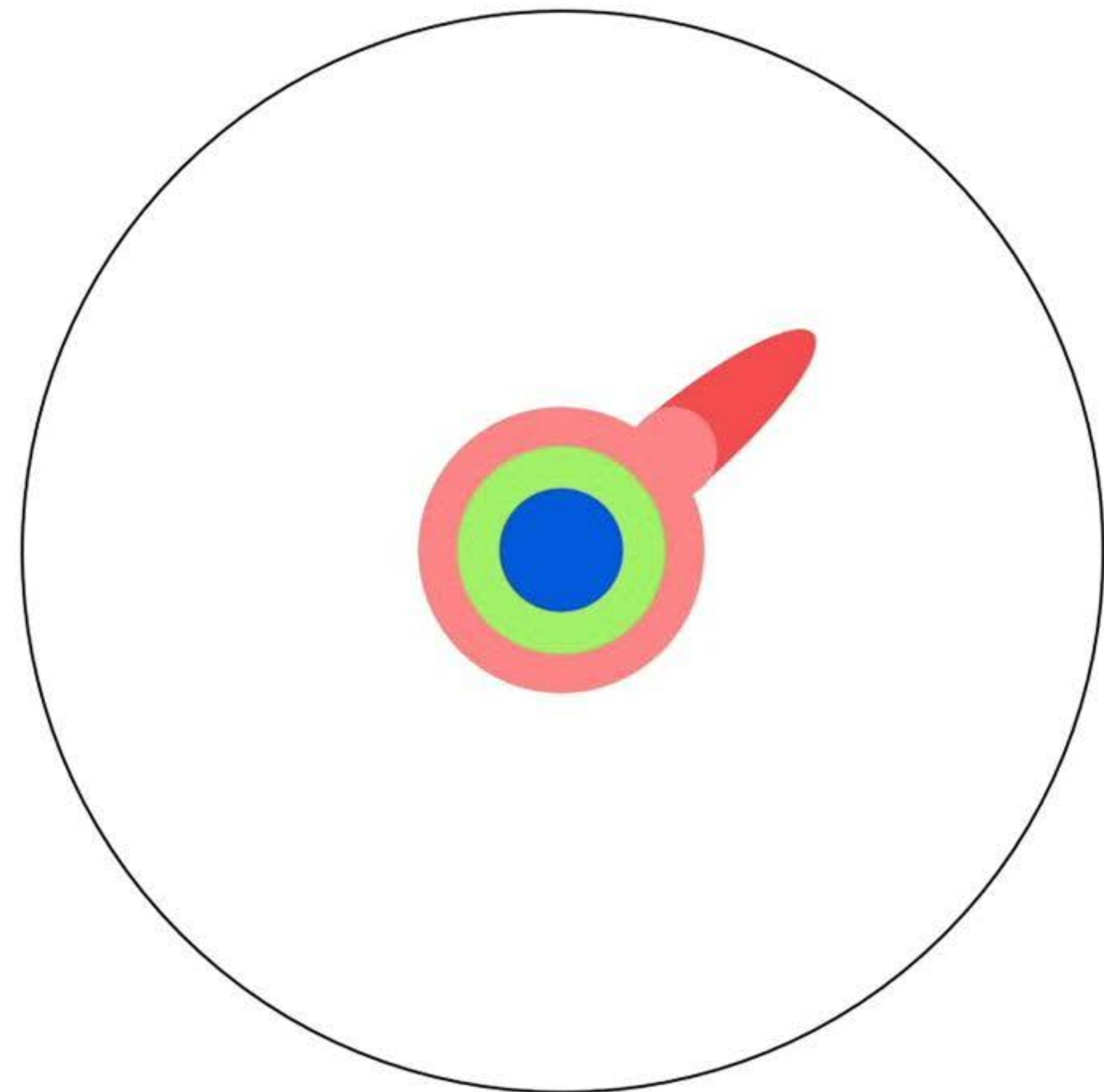


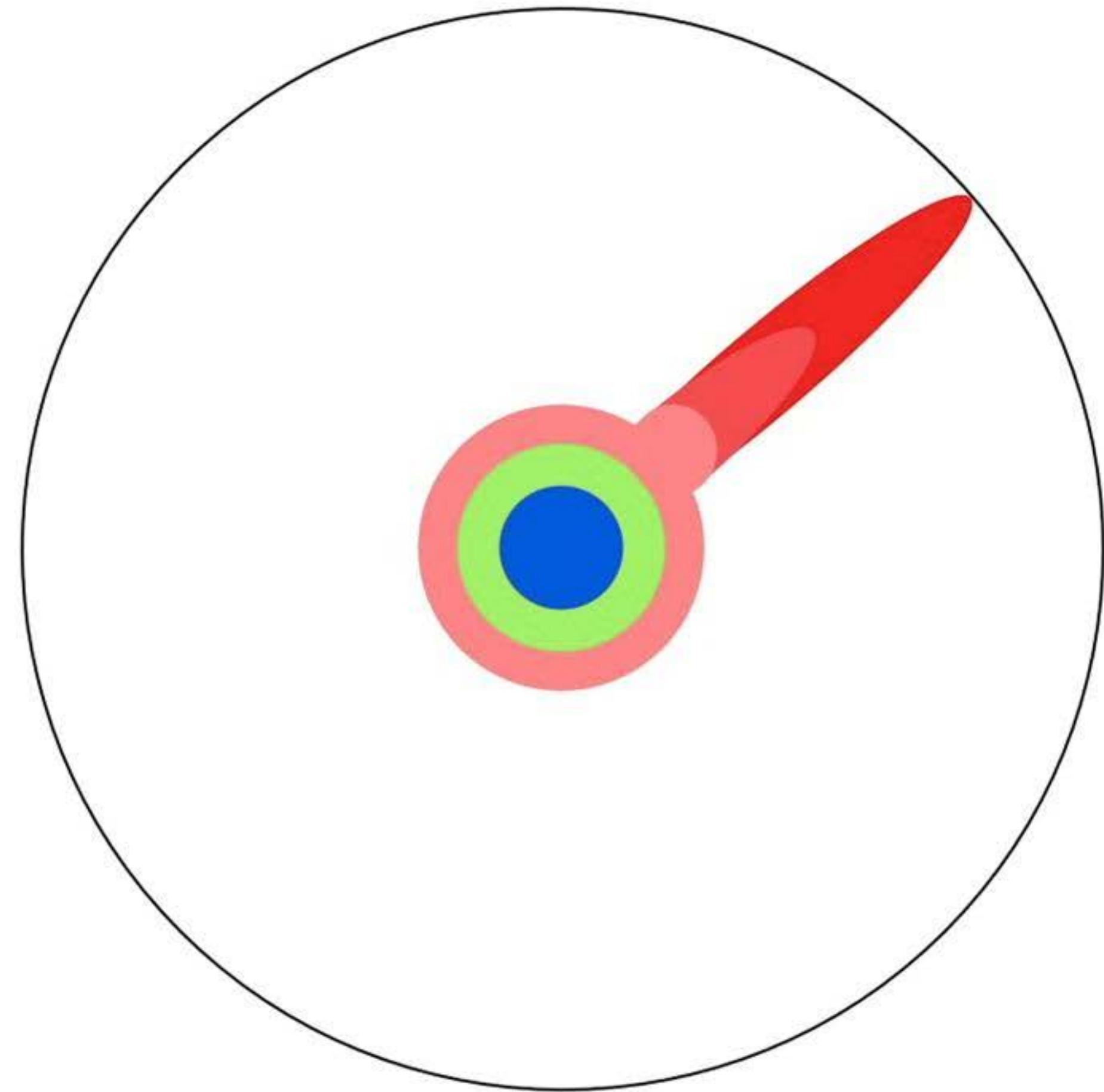
Adapted from
<http://matt.might.net/articles/phd-school-in-pictures/>
& Niki Kittur

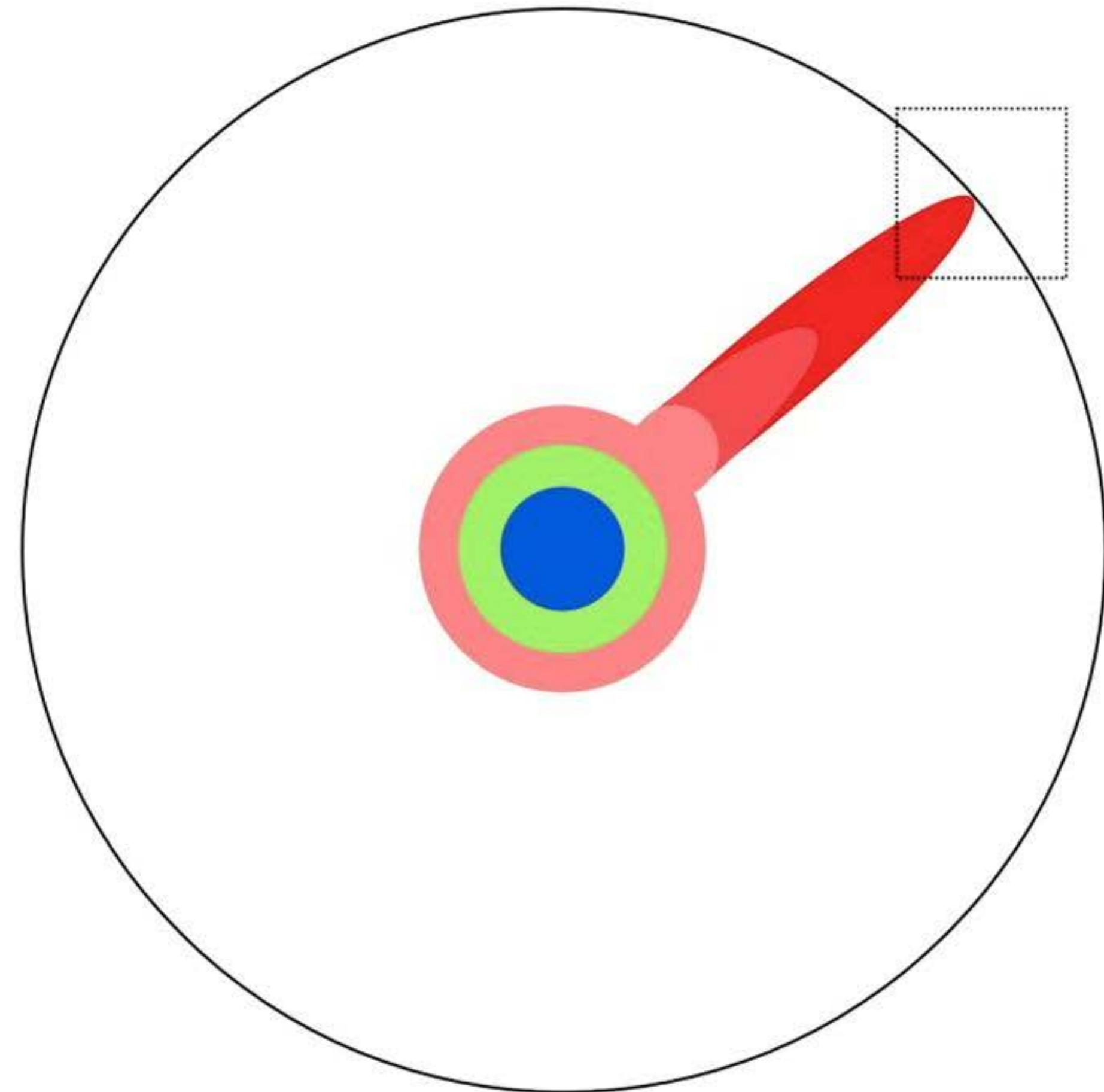


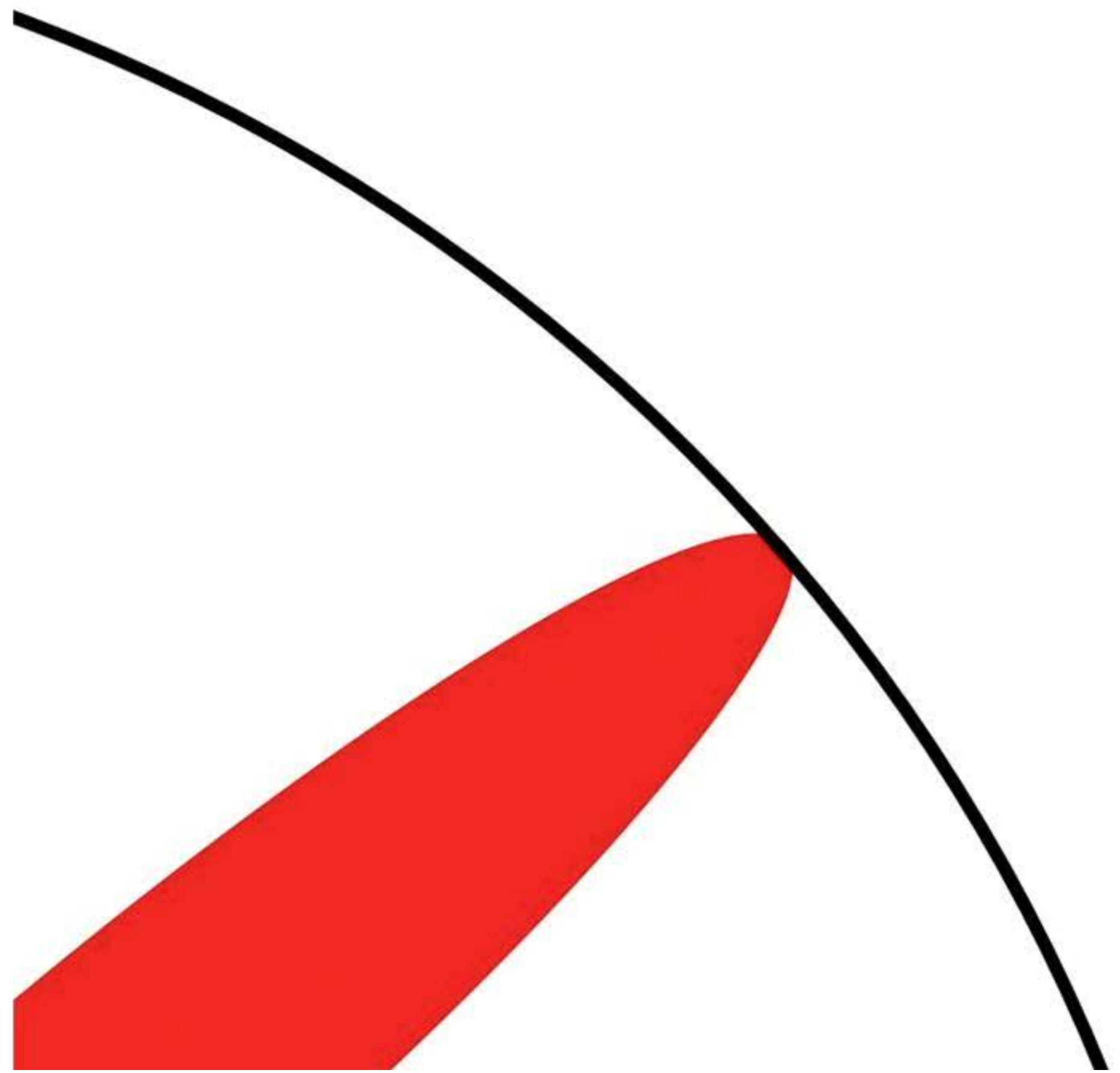


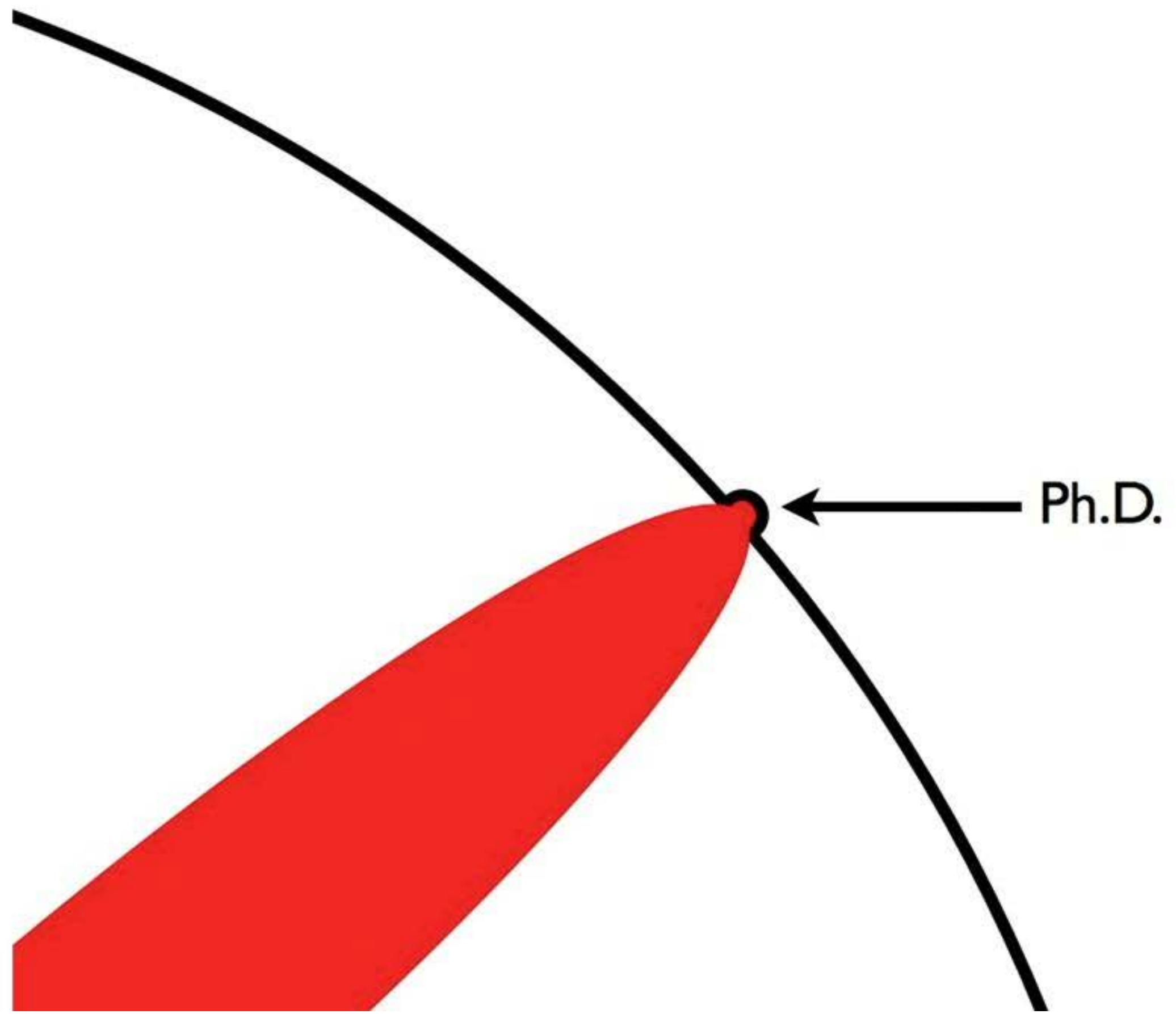


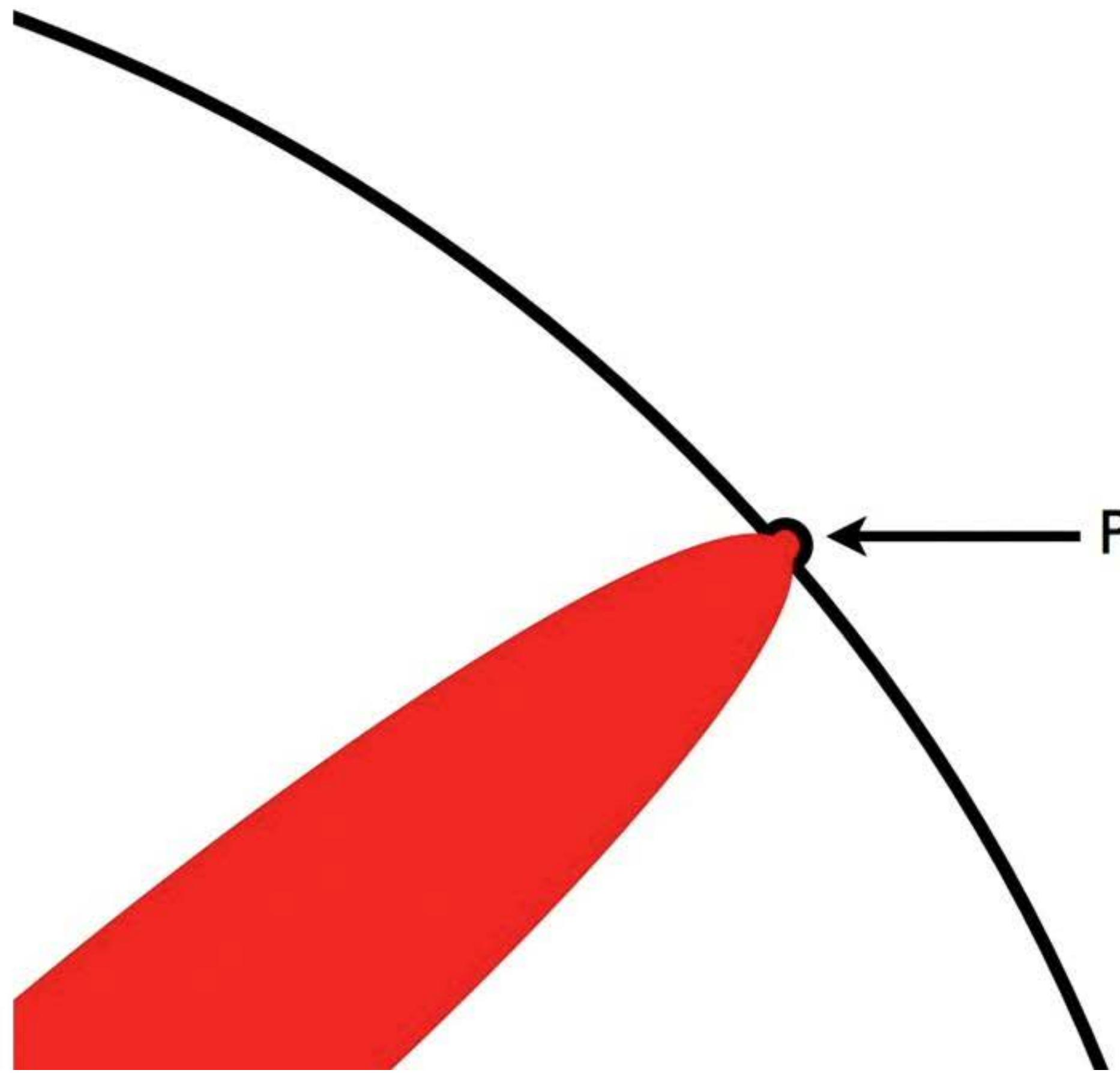




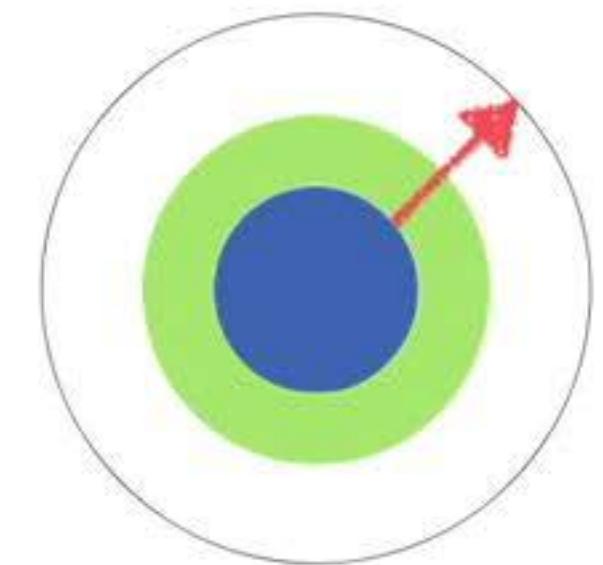


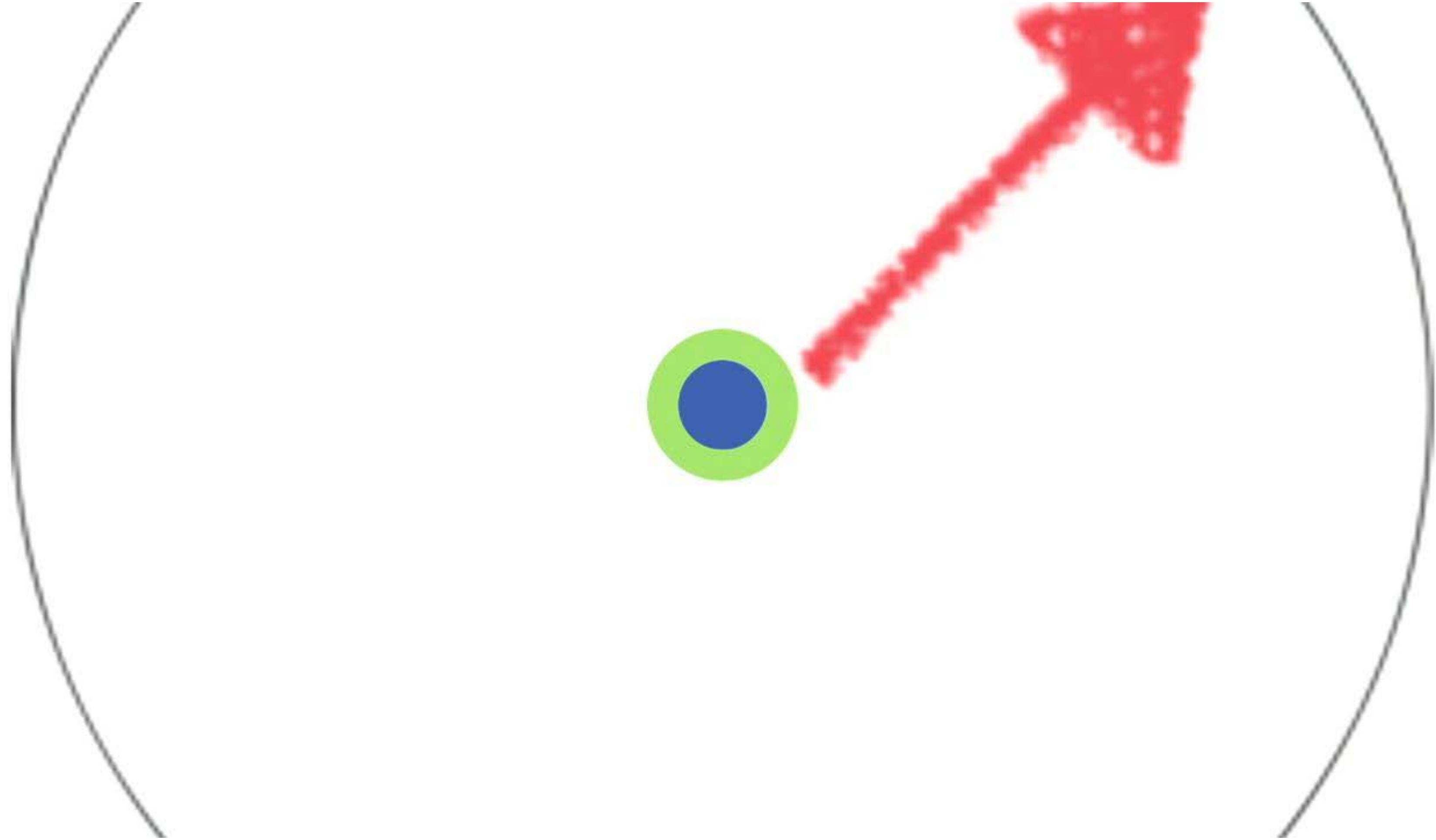


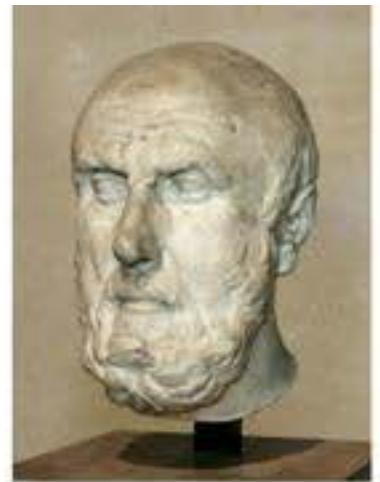




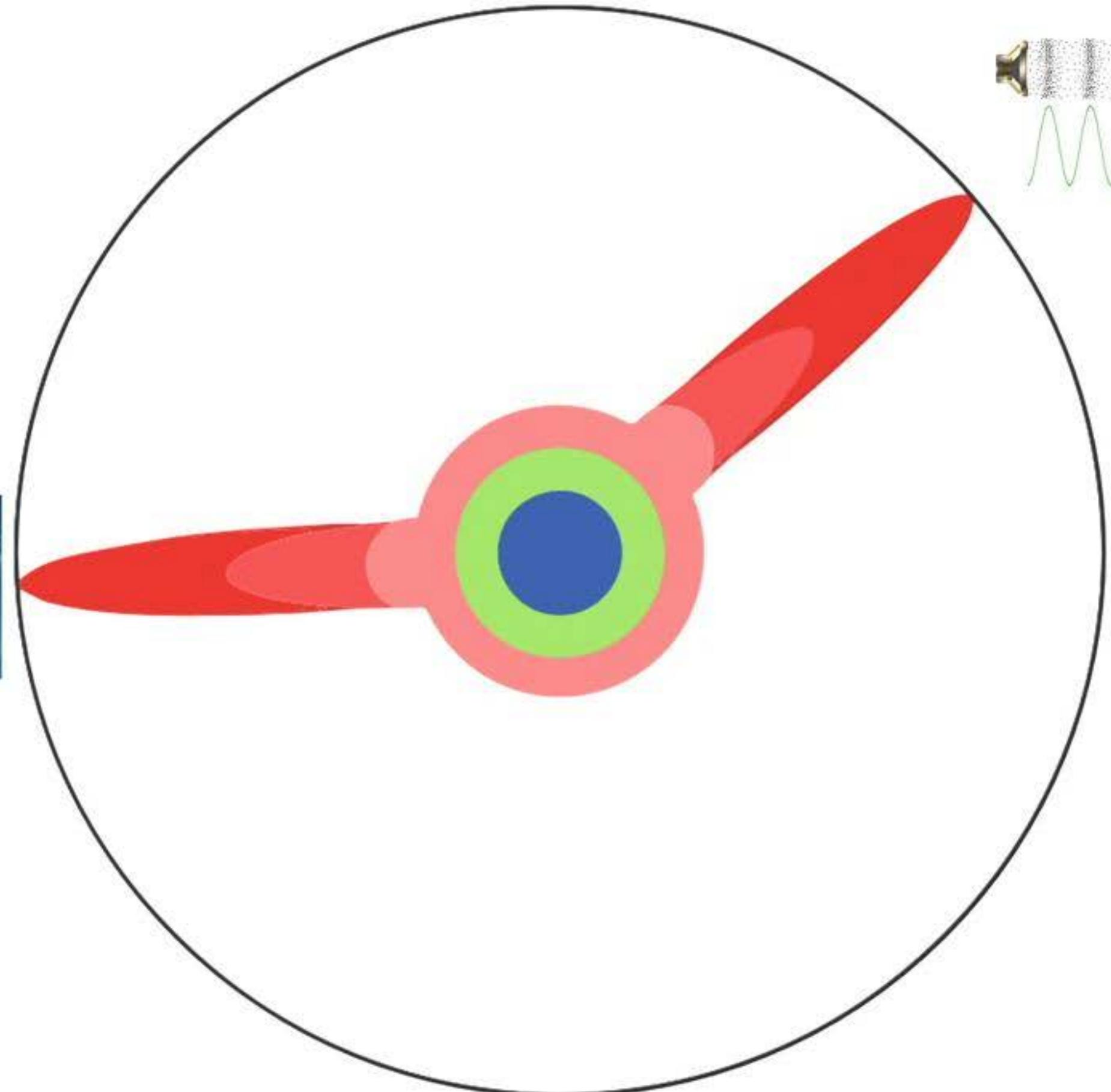
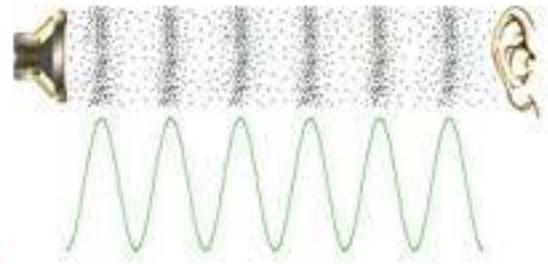
Ph.D.

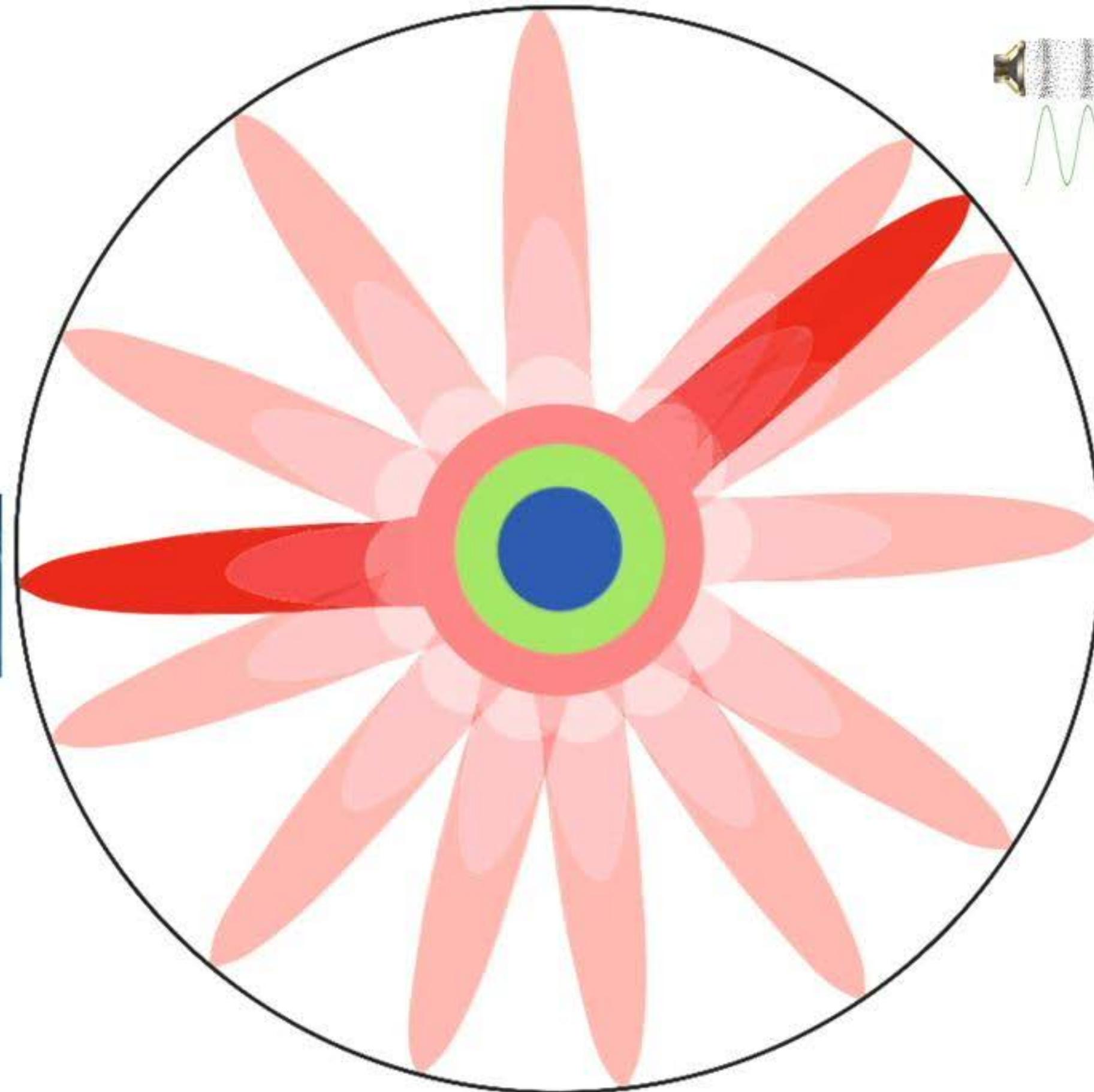
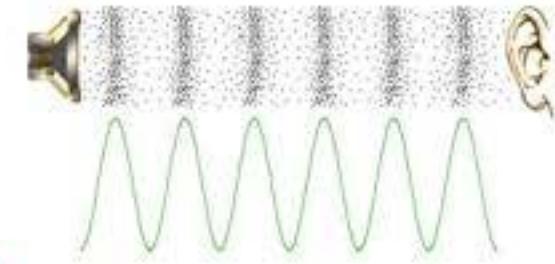


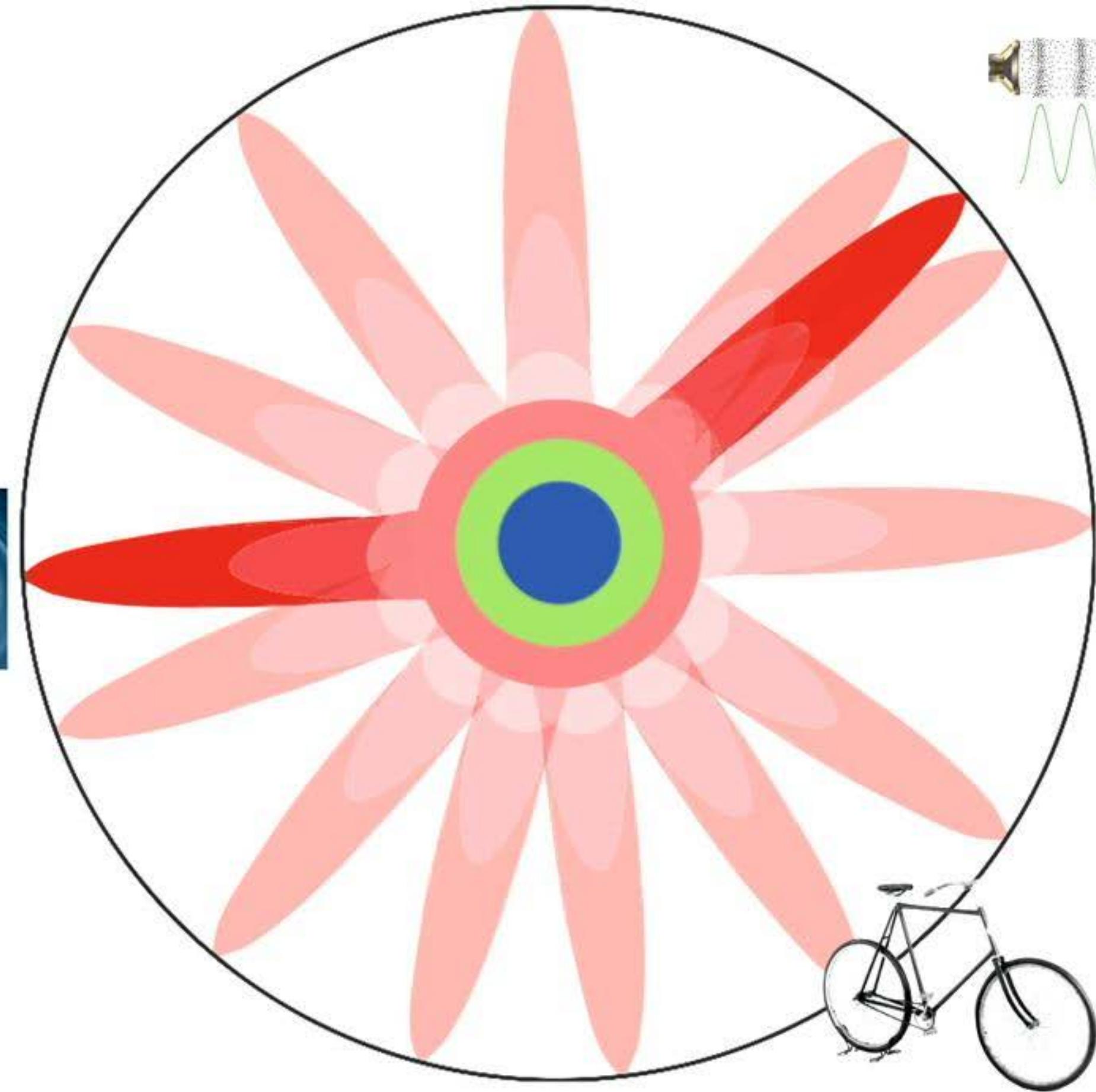
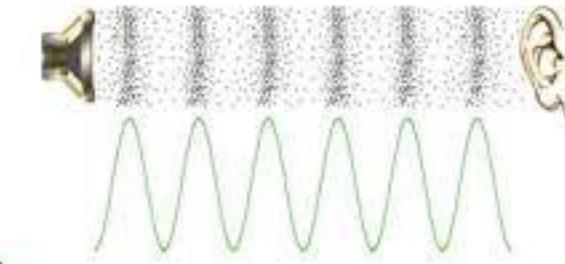


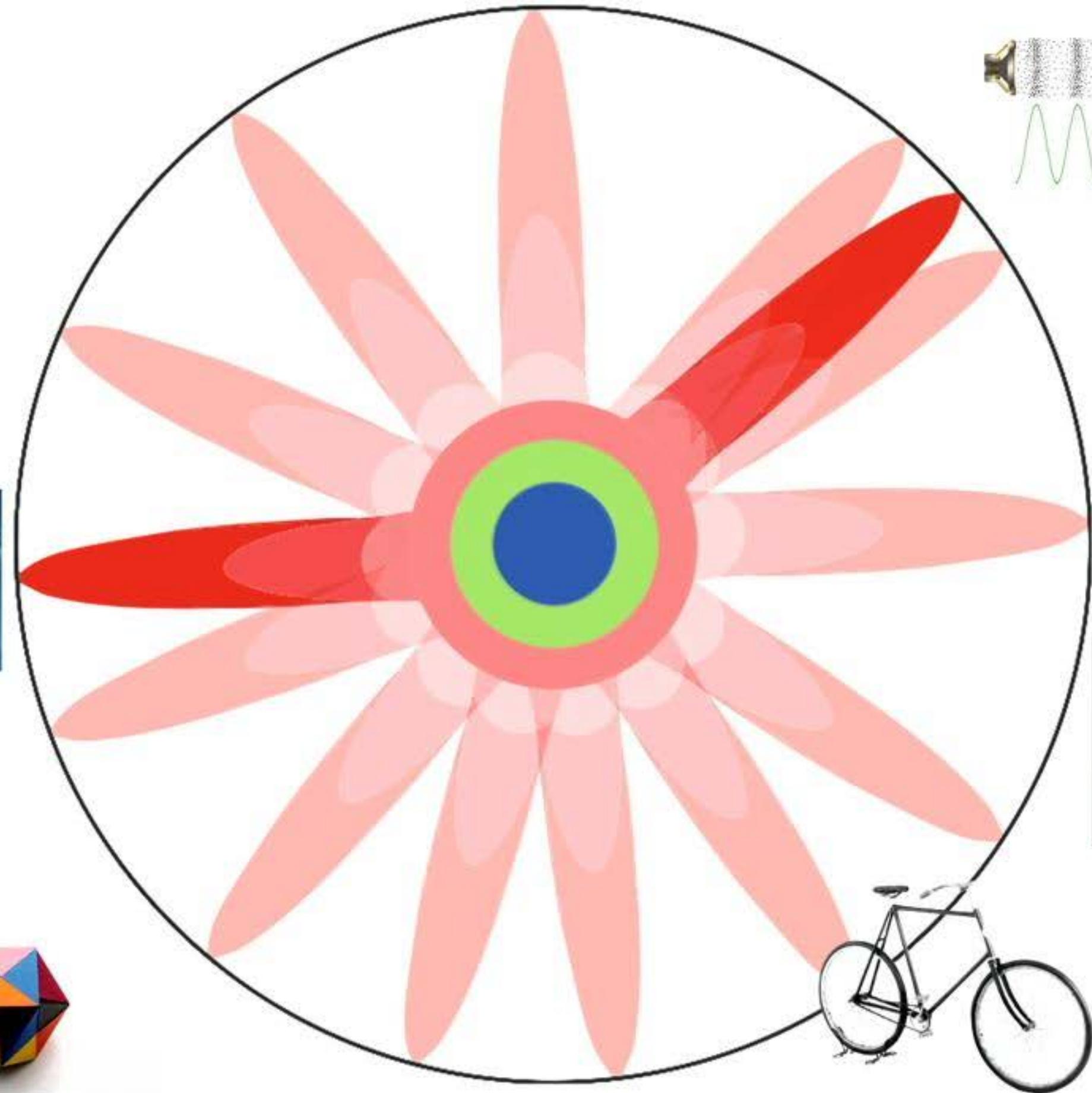


Chrysippus, 279 B.C.



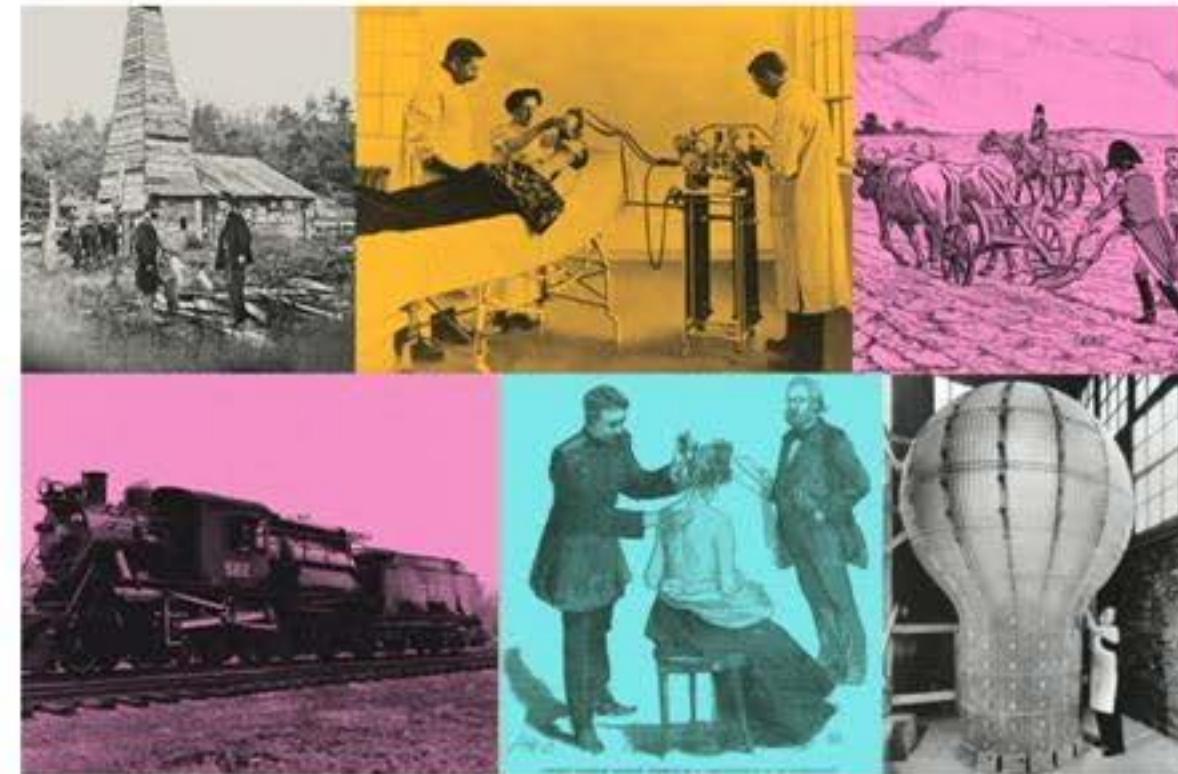






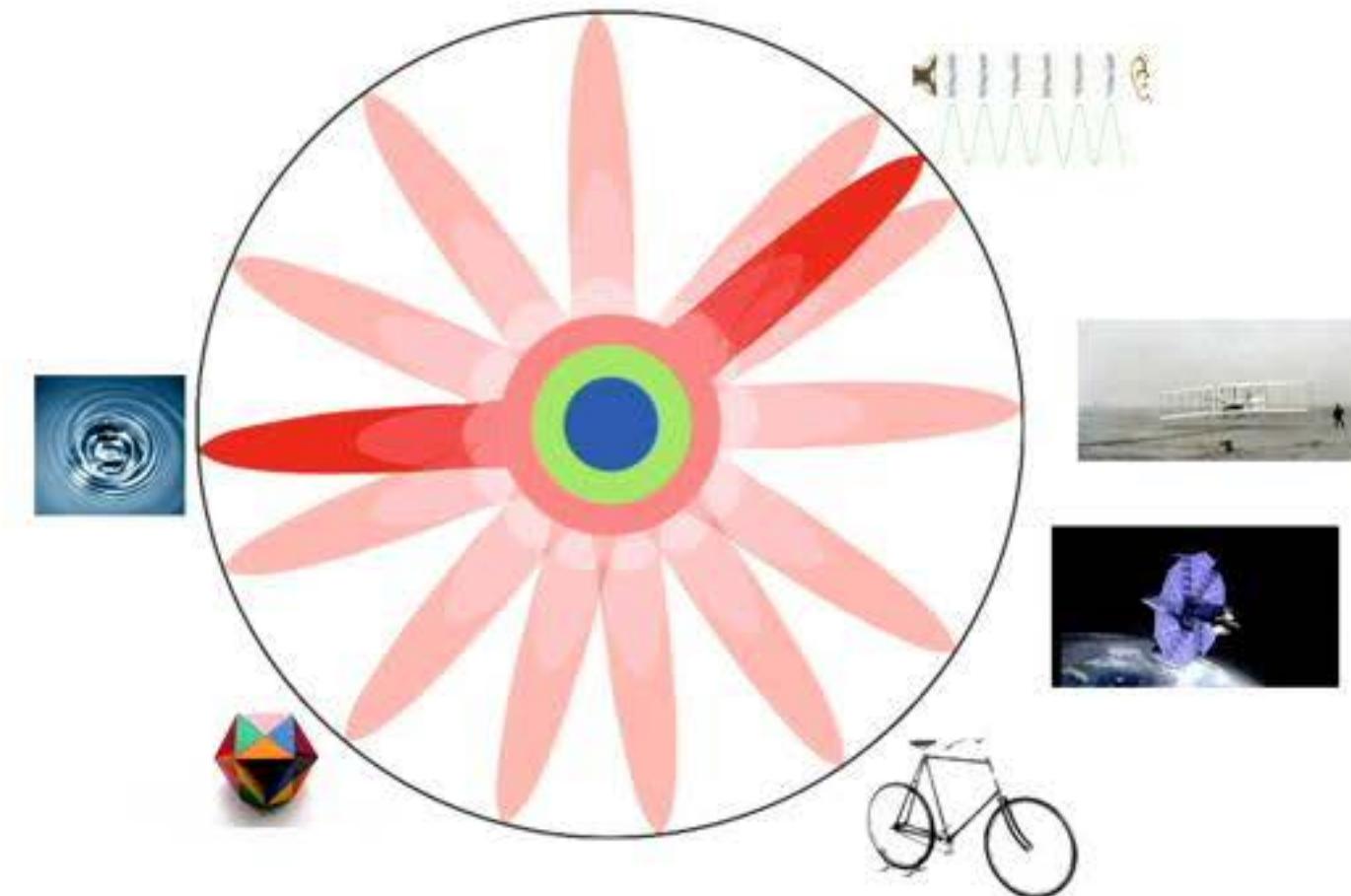
Online data: Big opportunity

- Large **idea repositories**
 - USPTO (millions of patents)
 - Scientific publications
 - Kickstarter, InnoCentive, Quirky
 - ...
- **Opportunity ***
 - Accelerate problem solving, innovation and discovery
 - Inspirations, analogies, identify promising new directions...
- **Challenge**
 - Large, messy datasets – daunting for humans
 - How can we help automate discovery and innovation?



In this talk

- Boosting **creativity** with analogies
- Identifying **novel ideas** with weak supervision



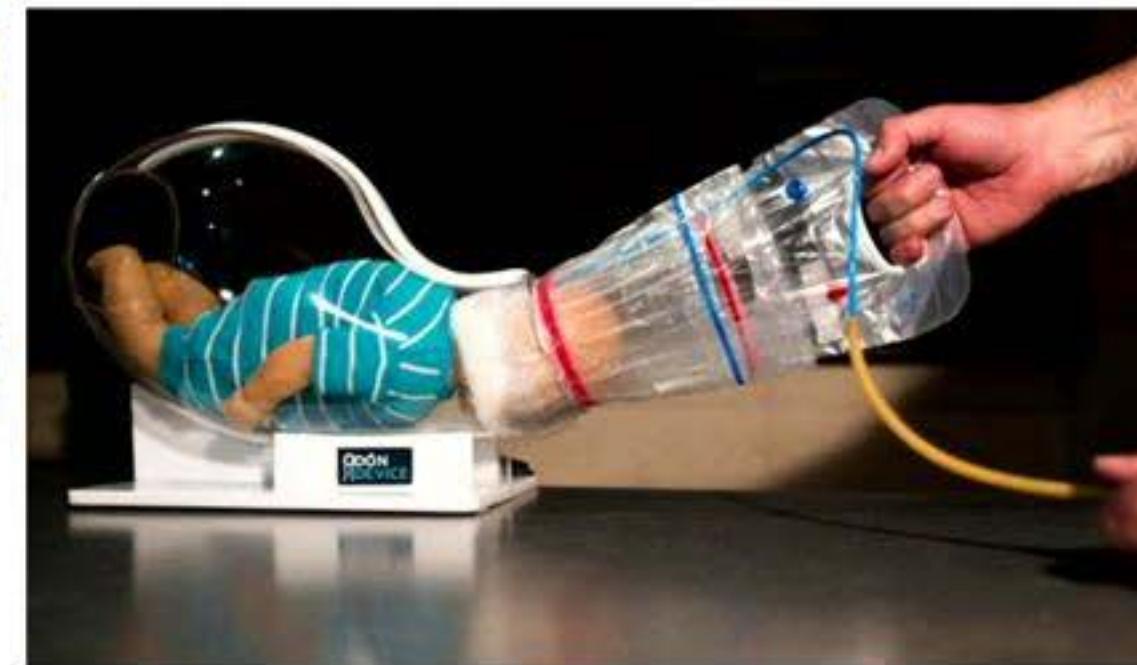
Innovation through analogies

- Lots of important inventions involved **analogies**
 - Thomas Edison: “*A logical mind that sees analogies*”
 - Salvador Luria: Slot machines -> bacteria mutations (**Nobel**)
 - Genetic algorithms, simulated annealing...

Innovation through analogies

- Lots of important inventions involved **analogies**
 - Thomas Edison: “*A logical mind that sees analogies*”
 - Salvador Luria: Slot machines -> bacteria mutations (**Nobel**)
 - Genetic algorithms, simulated annealing...
- A car mechanic: extracting babies stuck in birth canal

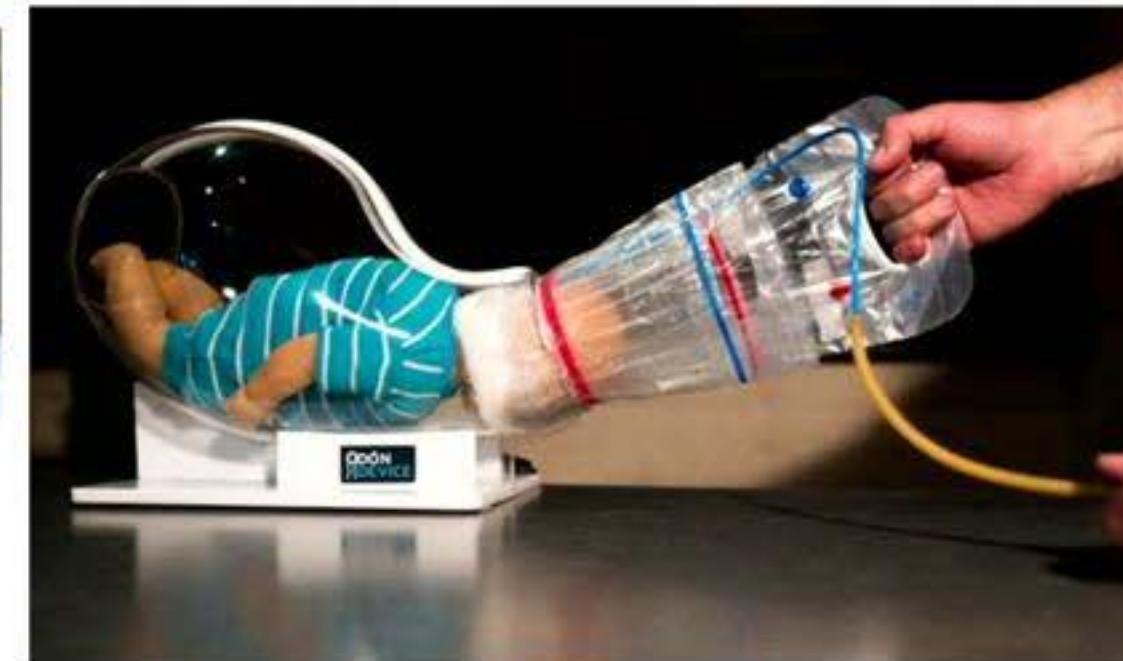
“For many years, there has been no innovation in this area”



Innovation through analogies

- Lots of important inventions involved **analogies**
 - Thomas Edison: “*A logical mind that sees analogies*”
 - Salvador Luria: Slot machines -> bacteria mutations (**Nobel**)
 - Genetic algorithms, simulated annealing...
- A car mechanic: extracting babies stuck in birth canal

“For many years, there has been no innovation in this area”



Removing a cork from the bottle trick

Over 18+ Unlicensed

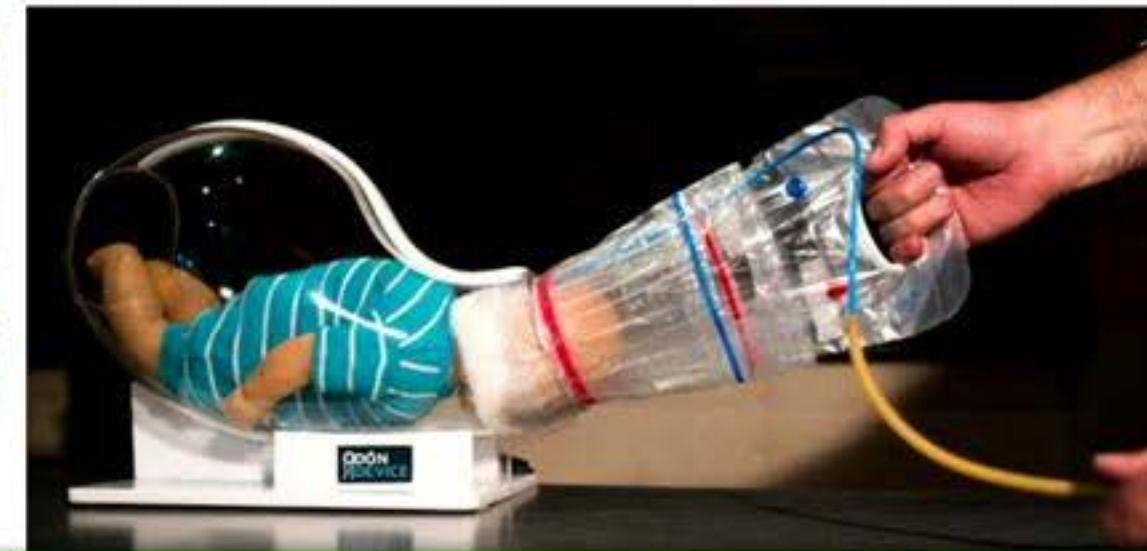
Subscribe

1,056,592

Innovation through analogies

- Lots of important inventions involved **analogies**
 - Thomas Edison: “*A logical mind that sees analogies*”
 - Salvador Luria: Slot machines -> bacteria mutations (**Nobel**)
 - Genetic algorithms, simulated annealing...
- A car mechanic: extracting babies stuck in birth canal

“For many years, there has been no innovation in this area”



Our Goal: Automatically discover analogies
in large, unstructured data sets

Analogy: Hard for machines (1)

- NLP/IR methods excel at **surface similarity**
 - Especially with same source and target domains

Analogy: Hard for machines (1)

- NLP/IR methods excel at **surface similarity**
 - Especially with same source and target domains

Heavy duty and hard ice scraper blade is capable of pushing the wettest, deepest snow from your entire vehicle...

Burnt on oil can attach itself to the pan in a permanent fashion. Remove the oil easily with...

Analogy: Hard for machines (2)

- Hand-created databases, **high relational structure**

```
ENABLE( ENABLE( ENABLE(  
    SMALLER_THAN(UNINFLATED(plastic_bag), bottle_opening),  
    INSERT_INTO(person, plastic_bag, bottle)),  
    CAUSE(CAUSE(  
        INSERT_INTO(person, air, plastic_bag),  
        EXPAND(air, plastic_bag))  
    ENCLOSE(plastic_bag, cork)) ),  
    CAUSE(  
        PULL(person, plastic_bag),  
        NOT_IN(cork, bottle)))
```

- Difficult to obtain, **does not scale**

- 40-100 person-hours for complex products [Vattam '11]

Attempt 1: Supervised learning

- Data: ~10,000 crowdsourced product ideas from Quirky.com
 - Many categories
 - Natural (messy) language

123 4FUN .

An Educational Math Mat 4 Kids.

numbers in any configuration 4 learning to De / Composing Numbers.

Folds Up Perfect For Carrying.

you can walk-on , put your mouth on and or hands on.

Learn & play games on with 4 single or multiple players hands on.

A mix between "Twister", "Simon Says", and "Whac-A-Mole".

A mat with Number Blocks.

A mat with numbers in any configuration 4 learning Place Values.

Give commands like "what 2 numbers added together will give you 10".

Hypo-allergenic.

Have a whac-a-mole type mallet to hit the numbers.

A mat with any shape and color with a number.

A mat that lights up numbers in any type of order and or formula.

Search interface

Target document

No good matches. Give me a new document.

Pandora/Spotify Headphones

- Wired headphones with mic and buttons that can be used to "thumbs up" or "thumbs down" a Pandora/Spotify song
- Wifi/4g capability to stream songs
- A mic to listen for commands. EX "play song name"
- Bluetooth capability so it will work across all OS
- I'd go wireless
- help curate better playlists easier
- Saves having to pull your phone out of your pocket

Recent search queries

control 488

stream 69

Search for matches

control

Submit match(es)

487 results

[Not match](#) [Match](#)

Wall Awl

- A simple hand tool to produce a precise size tapered hole needed for plastic wall anchors.
- Alternative to stopper disks: sized & colored set of Wall Awls each with collar
- Colour coded disks with centre hole slide on tapered tool to **control** hole size
- Hexagonal Shank fits any 1/4" driver/handle
- A 4-sided tapered tool for punching a hole in Drywall
- Pointed tip allows precise placement at desired spot on wall
- easy to use hand tool for punching precise anchor holes in drywall

[Not match](#) [Match](#)

Building protection/automation

1 selected match(es)

Not match Match

Connected Dehumidifier

- A connected dehumidifier to your home to set speeds, turn on and off and to receive notifications to your app.
- Easy to change out or empty water
- Mildew growth sensor inside the collection bucket. Notifies owner when it needs
- Be on wheels so it's easy to move around.
- Sends you a message when it's full.
- Sync with smart thermostat (Norm, Nest) to sync temp and humidity **control**
- Stainless steel look
- Warning light to indicate bucket max level of fullness and auto shut off feature
- Long tray hose to run to drain so can run longer in high humidity situations.
- be notified of effectiveness and rate of de-

Search interface

Target document

No good matches. Give me a new document.

Search for matches

control

487 results

Not match Match

Pandora/Spotify Head

- Wired headphones with mic and ability to "thumbs up" or "thumbs down" a song
- Wifi/4g capability to stream songs
- A mic to listen for commands. I'd go wireless
- Bluetooth capability so it will work with my phone
- help curate better playlists easier
- Saves having to pull your phone out

Recent search queries

control 488 stream 69

1 selected match(es)

Submit match(es)

Not match Match

Connected Dehumidifier

- A connected dehumidifier to your home to set speeds, receive notifications to your app, or empty water or inside the collection bucket. It needs to be easy to move around. Change when it's full. Connect to smartstat (Norm, Nest) to sync temp and humidity
- Set collection bucket max level of fullness
- Change when it's full
- be notified of effectiveness and rate of dehumidification

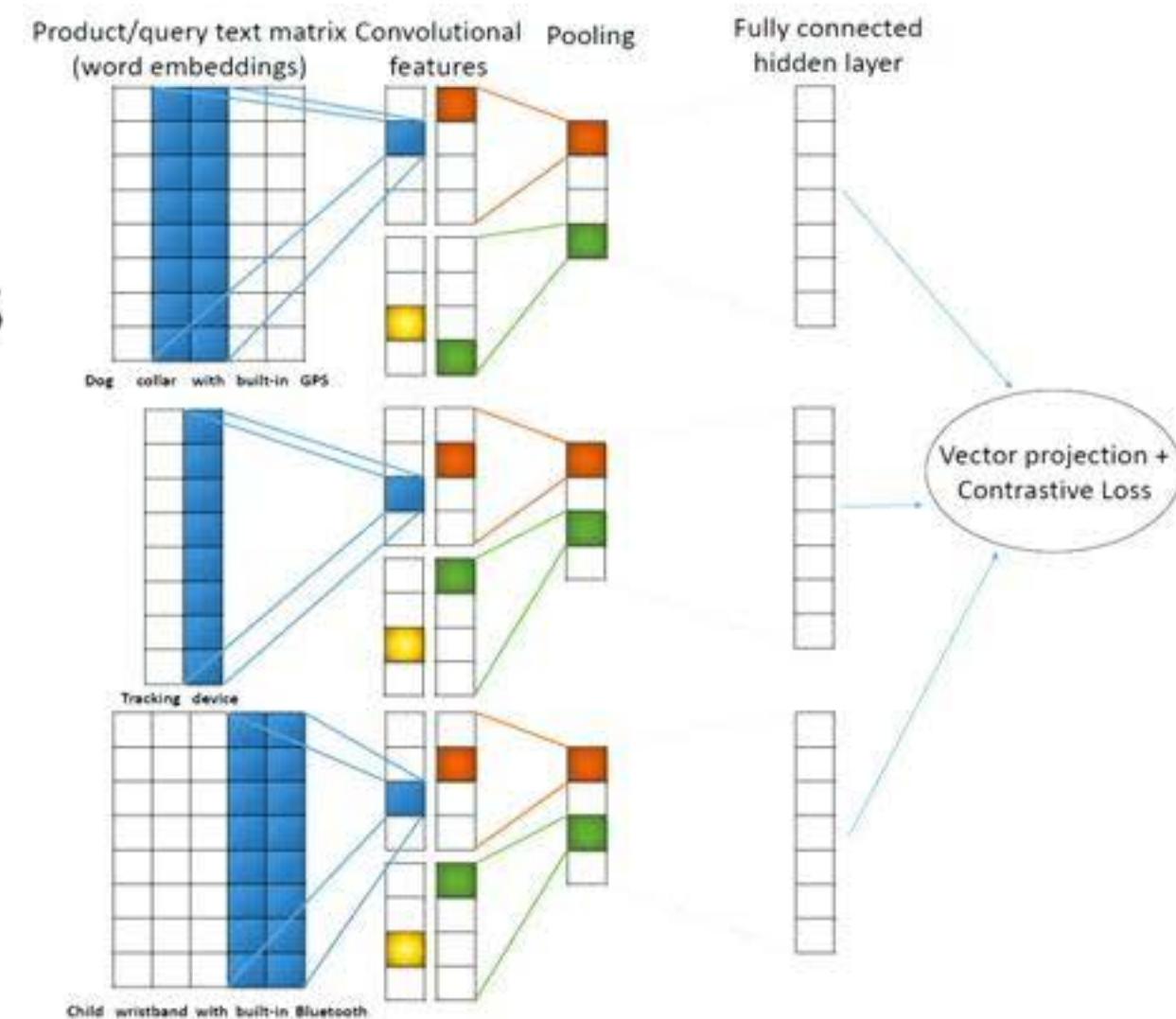
Building protection/automation

Behavioral traces:

- Positive examples
- Negative examples (implicit)
- Query

Supervised model

- Learn a similarity metric reflecting analogy
 - CNN-based network, contrastive Loss
- Incorporate user queries
 - Helps model focus on non-surface features

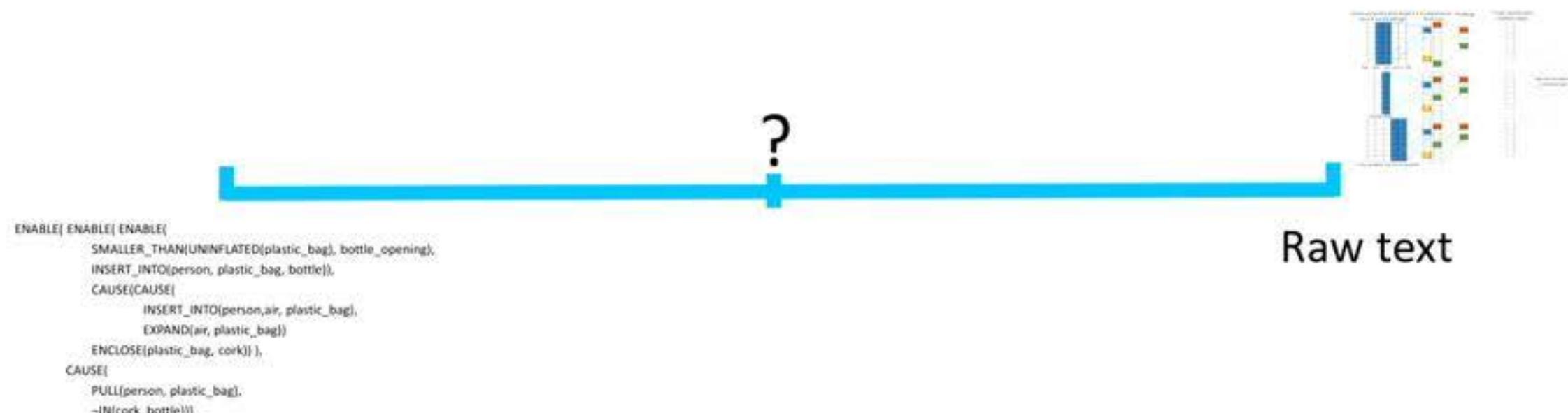


Results: The good and the bad

- Precision, Recall@K: **beat standard retrieval baselines**
 - Baselines: TFIDF-based, embedding based
 - With **query**: better!
- Labels **costly, noisy, slow** (hard for humans)
 - **Superficial matches**, near analogies
 - Data **scarcity**
- Model blind to **rich structures**
 - Hard to learn from data

Attempt 2: Weak structural representations

- Goal: find **weak structural representations**
 - Expressive enough for analogy mining
 - Can be learned



**Accelerating Innovation Through Analogy Mining*
KDD '17 Best Research Paper + Best Student Paper

Purpose and mechanism

- Rooted in cognitive psychology (schema induction)
- Analogies deeply related to **purpose/mechanism**
 - Purpose: what it does, what it is used for
 - Mechanism: how it does it, how it works

Purpose and mechanism

- Rooted in cognitive psychology (schema induction)
- Analogies deeply related to **purpose/mechanism**
 - Purpose: what it does, what it is used for
 - Mechanism: how it does it, how it works

Purpose and mechanism

- Enables core analogical tasks:

- *Same purpose, different mechanism*

$$\operatorname{argmin}_{\tilde{\mathbf{i}} \in \mathcal{P}} d_p(\mathbf{p}_i, \mathbf{p}_{\tilde{i}})$$

$$s.t. d_m(\mathbf{m}_i, \mathbf{m}_{\tilde{i}}) \geq \text{threshold}$$

- *Same mechanism, different purpose (Repurposing)*

$$\operatorname{argmin}_{\tilde{\mathbf{i}} \in \mathcal{P}} d_m(\mathbf{m}_i, \mathbf{m}_{\tilde{i}})$$

$$s.t. d_p(\mathbf{p}_i, \mathbf{p}_{\tilde{i}}) \geq \text{threshold}$$

Purpose and mechanism

- Enables core analogical tasks:
 - *Same purpose, different mechanism*

$$\underset{\tilde{\mathbf{i}} \in \mathcal{P}}{\operatorname{argmin}} d_p(\mathbf{p}_i, \mathbf{p}_{\tilde{i}}) \\ \text{s.t. } d_m(\mathbf{m}_i, \mathbf{m}_{\tilde{i}}) \geq \text{threshold}$$

- *Same mechanism, different purpose (Paraphrasing)*

Our Goal: Learn vector representations capturing the **purposes** and **mechanisms** of inventions

Collecting purpose/mechanism

- Mechanical Turk annotations
- 4 workers per product

How does the product work? What is the product good for?

Amazing Pillow

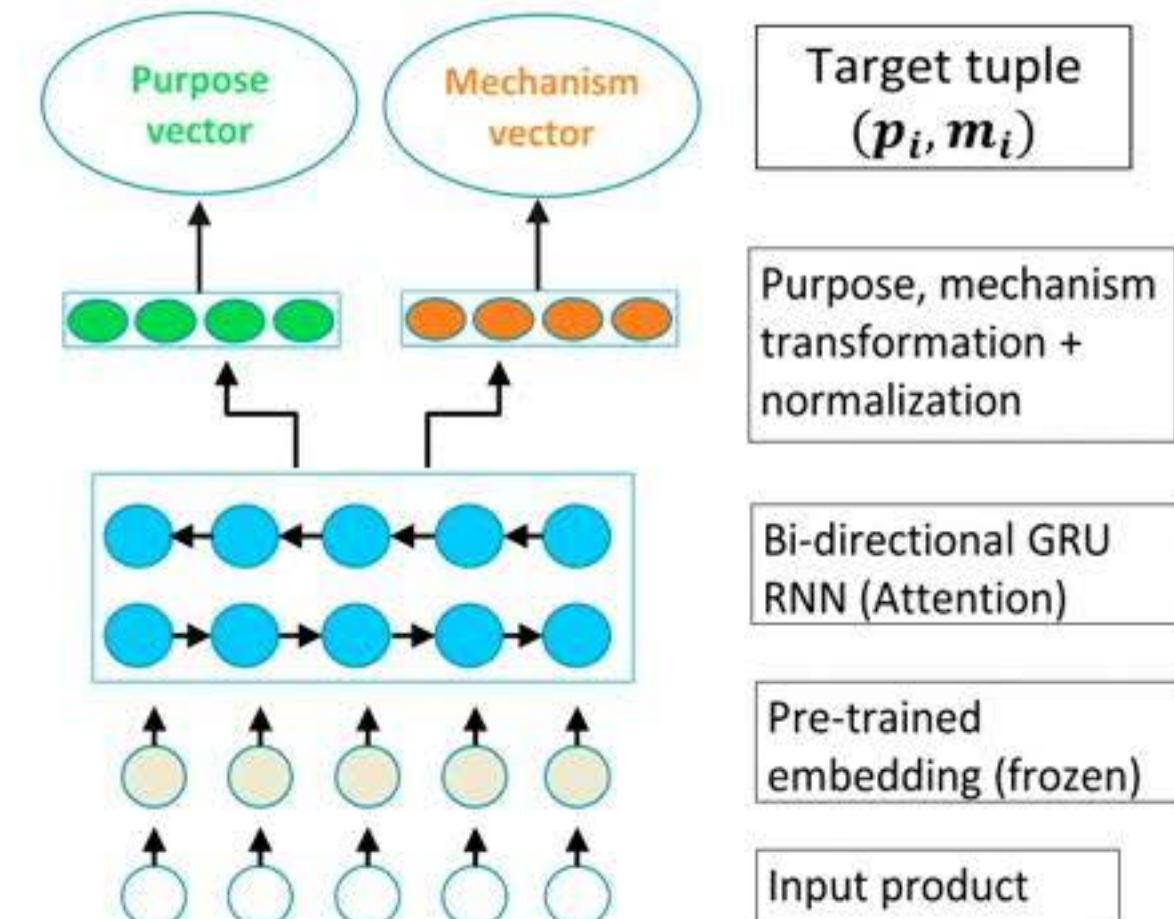
- A pillow combined with alarm clock, bluetooth, sensors and more features to improve and monitor sleep.
- Wake up comfortably with built in alarm clock
- Track sleep patterns
- Built in blind fold with led lights and sensors
- Full support for any kind of sleeper
- Alarm includes led lighting, vibrations and built in headphones for comfort.

Amazing Pillow

- A pillow combined with alarm clock, bluetooth, sensors and more features to improve and monitor sleep .
- Wake up comfortably with built in alarm clock
- Track sleep patterns
- Built in blind fold with led lights and sensors
- Full support for any kind of sleeper
- Alarm includes led lighting, vibrations and built in headphones for comfort .

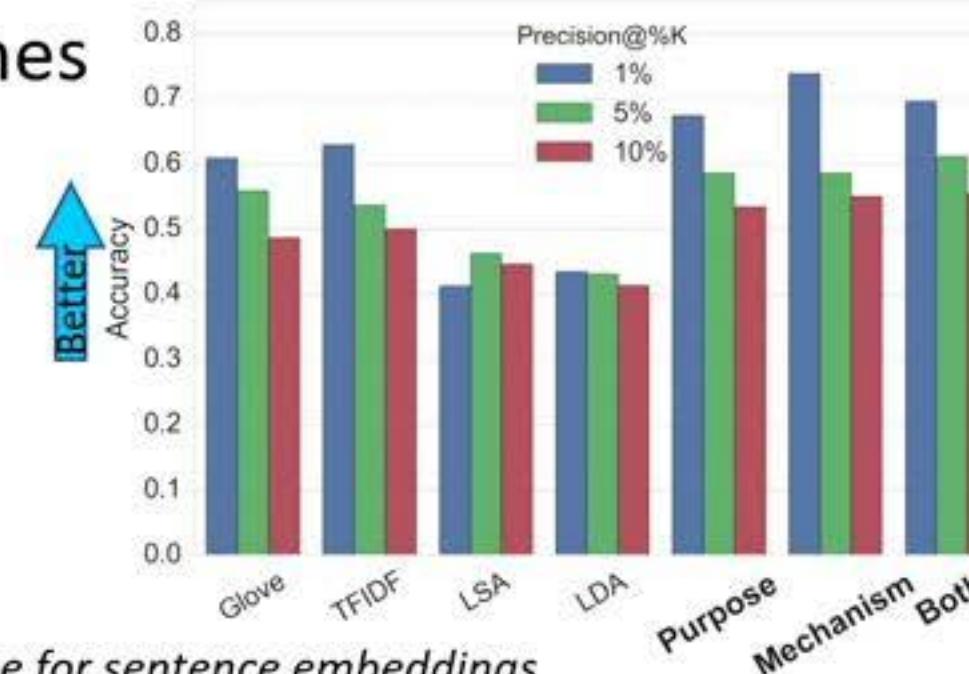
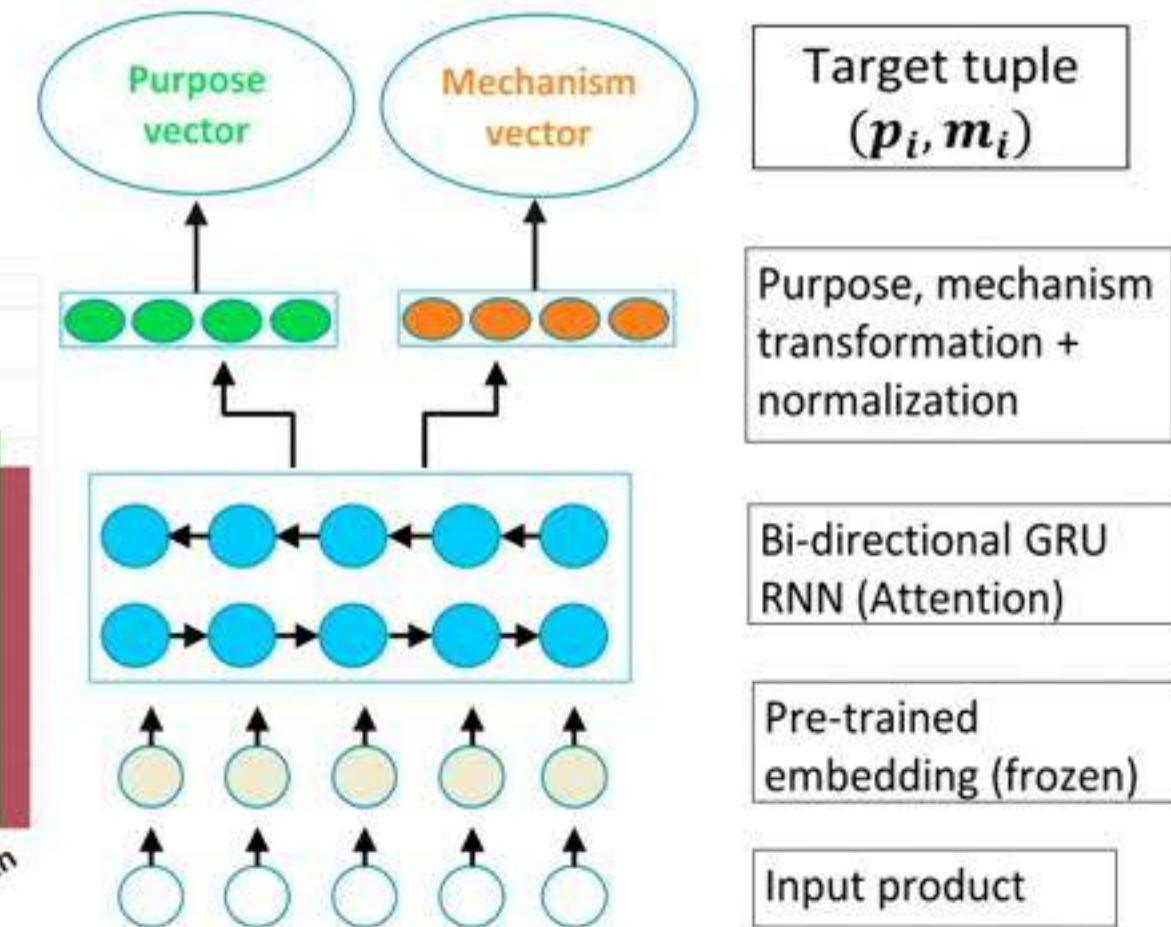
Purpose/mechanism targets: Soft vectors

- Aggregate across K annotations:
 - Purpose/mechanism TF-IDF weights
 - Weighted average of pre-trained word vectors (GloVe) *
Purpose: $[1.5*sleep + 0.9*support...]$, *Mechanism*: $[2.3*pillow + 1.1*sensors...]$
- Train model to predict soft purpose/mechanism **vectors**



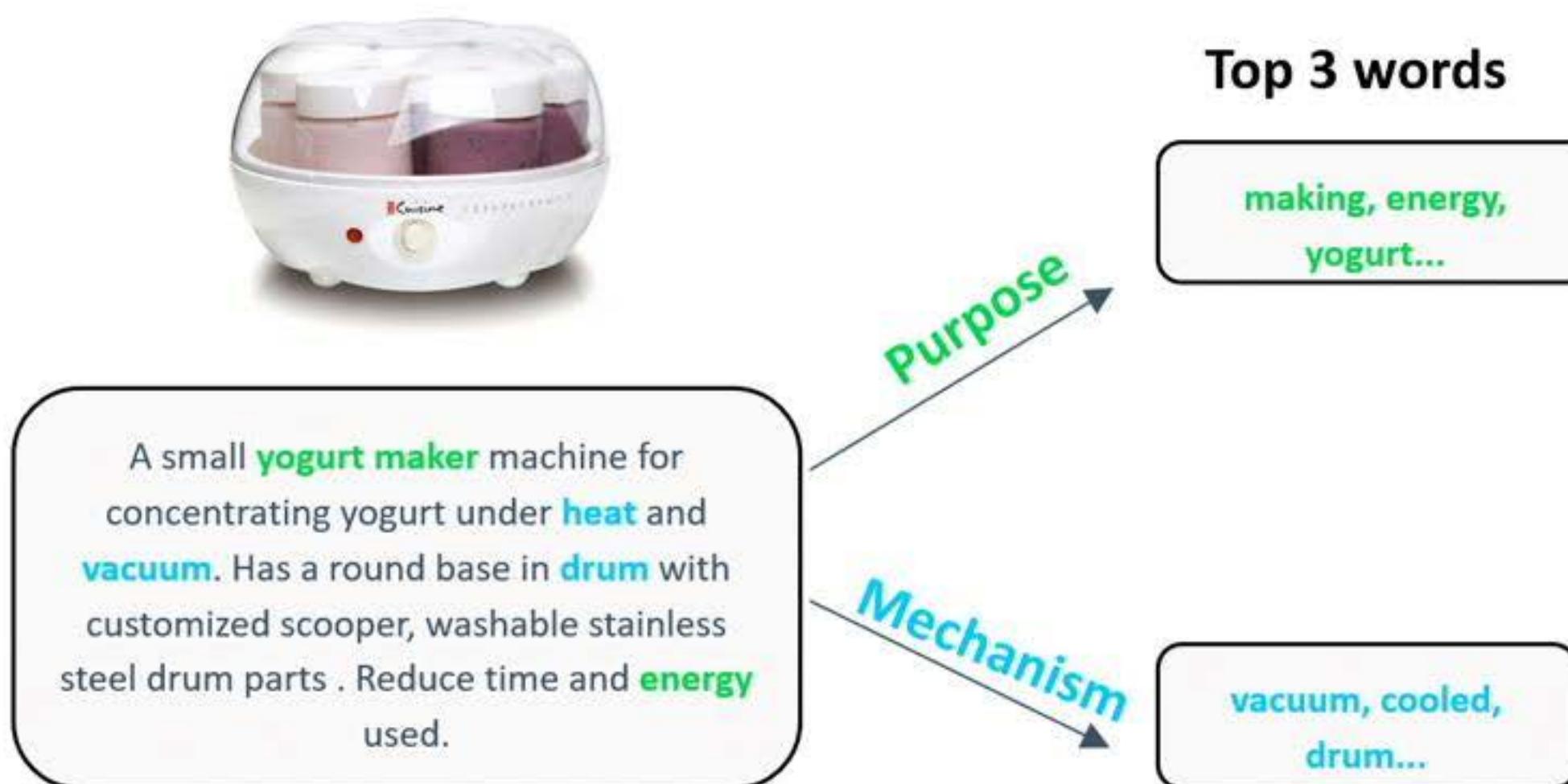
Purpose/mechanism targets: Soft vectors

- Aggregate across K annotations:
 - Purpose/mechanism TF-IDF weights
 - Weighted average of pre-trained word vectors (GloVe) *
Purpose: $[1.5 * \text{sleep} + 0.9 * \text{support} \dots]$, *Mechanism*: $[2.3 * \text{pillow} + 1.1 * \text{sensors} \dots]$
- Train model to predict soft purpose/mechanism **vectors**
- **Outperforms standard retrieval**
 - Despite noisy annotations and surface analogies favoring baselines



Reality Check: Interpreting Vectors

- Sparse linear model of output vectors as combination of words *
 - Mechanism words indeed of more mechanical nature



Application: Ideation!

SEED

Cell Phone Charger Case

Cell phone case that acts as a secondary battery for your phone when charge is running low. It protects your phone while charging it. Simple design would allow easy replacement of the flat battery pack. Continue using your phone or tablet well after the battery is dead.

- Ideation common creative task - **redesign** an existing product
- Find other ways to **solve same problem**
- **Inspiration:** random, surface (TFIDF-based), ours
 - Ours: Near-purpose, far-mechanism (MAX-MIN diversification)
 - **Assumption:** our approach will help explore more diverse parts of the design space
 - Random: highly diverse, non-relevant
 - Surface: highly relevant, non-diverse
 - Ours: diverse, still relevant?

Ideation task: Inspirations

OUR APPROACH

Flash Charge Carabiner

USB tower with backup battery

Human pulley-powered generator suit

SURFACE (TF-IDF)

Multi-adapter case

Cell phone battery with GPS

Cell phone case with GPS

RANDOM

Solar pool skimmer

Shampoo pods

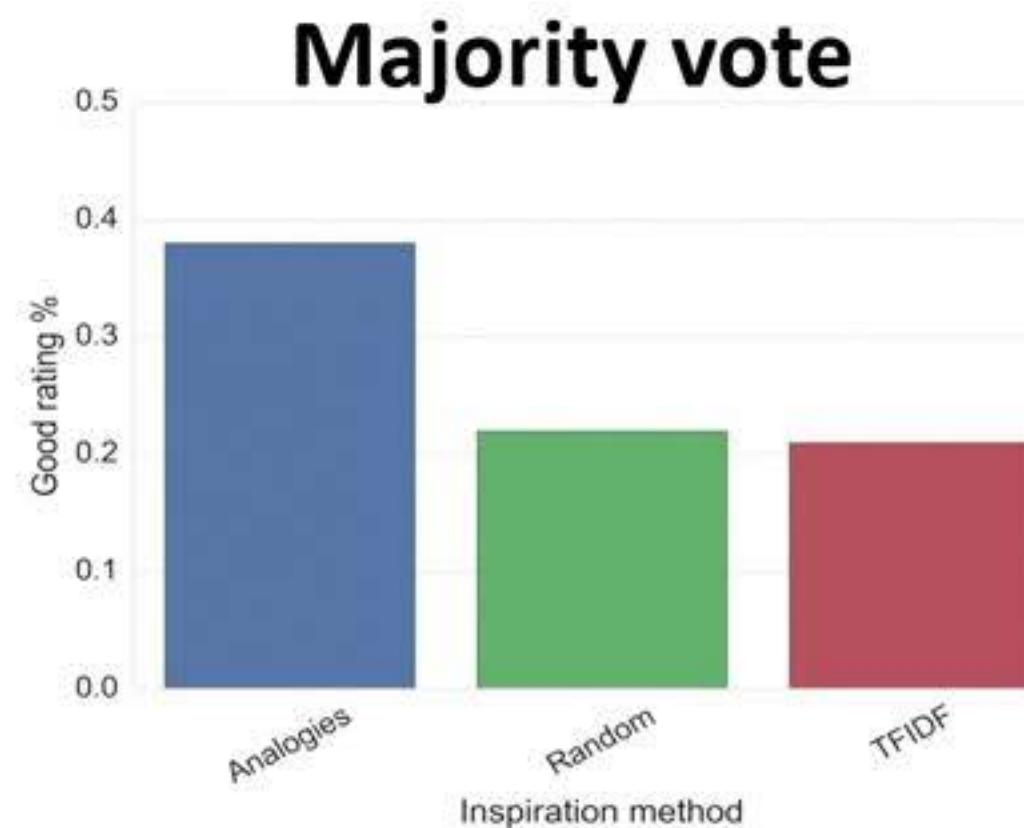
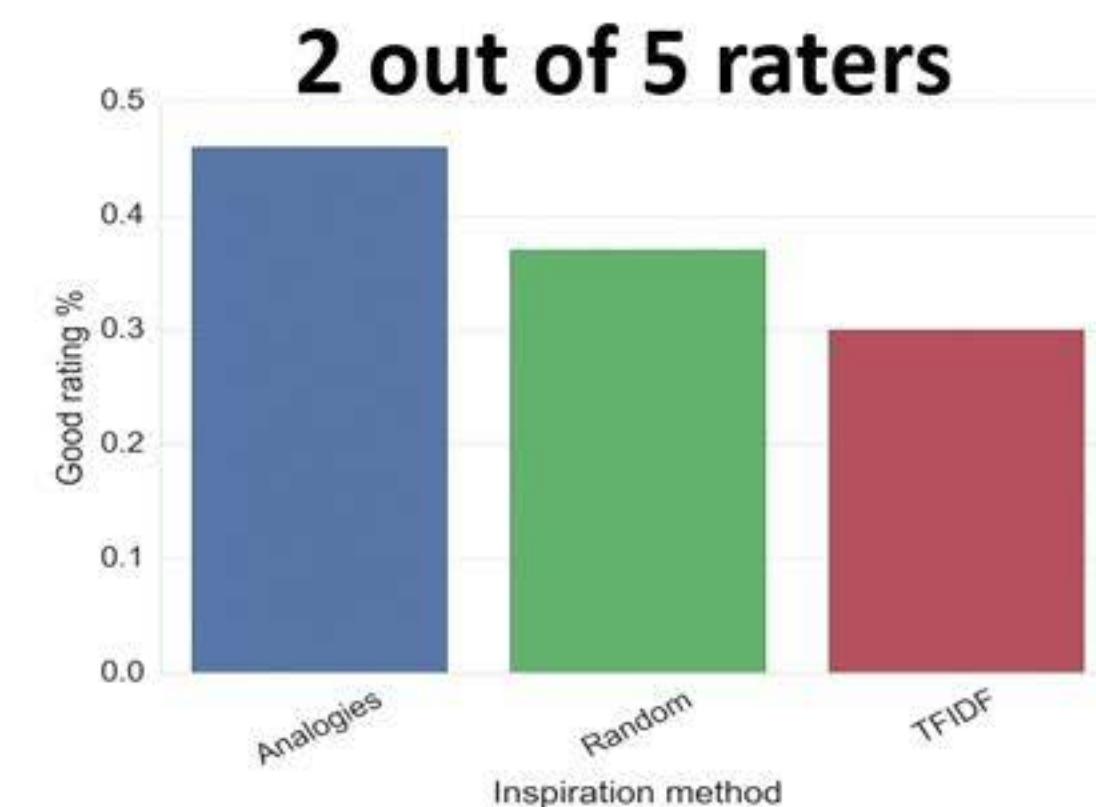
Dog meetup app

Results

- Ideas externally rated by 5 judges. Criteria:
 - **Novelty:** Different technology than original product
 - **Quality:** Technology achieves same purpose as original product
 - **Feasibility:** Could be implemented, does not defy physics
- Substantial judge agreement (Fleiss kappa 0.51)

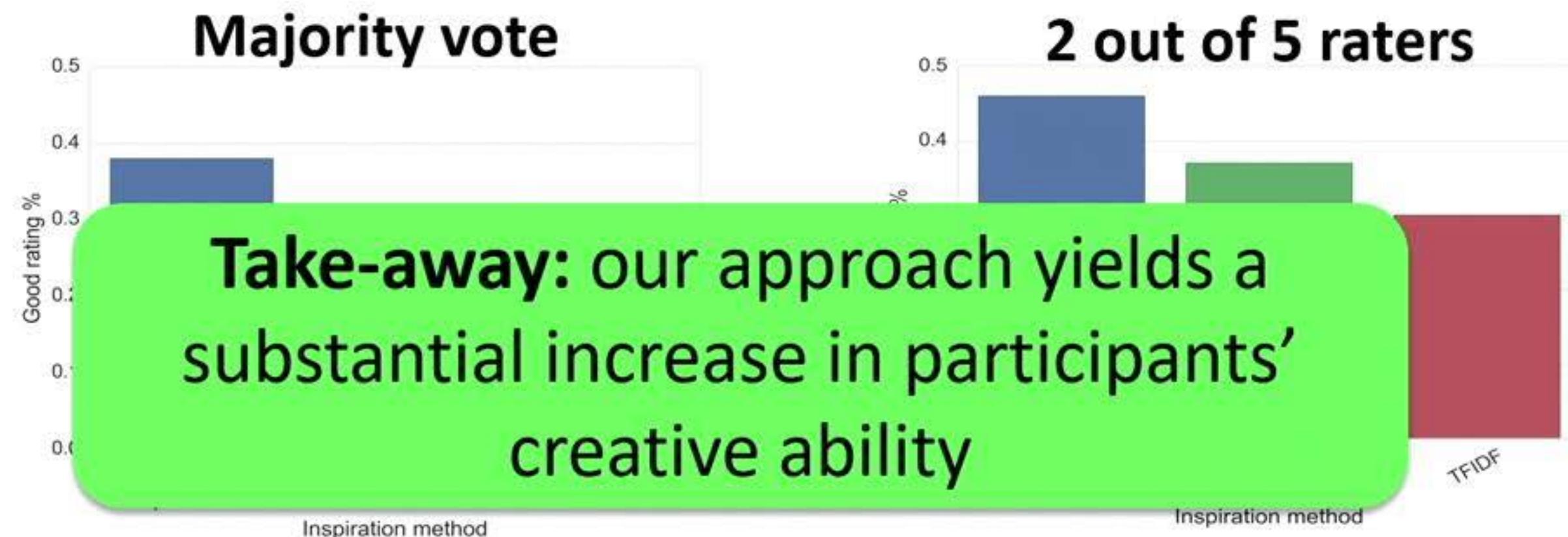
Results

- Both in terms of proportions and absolute number, our approach generates a considerably large relative positive effect



Results

- Both in terms of proportions and absolute number, our approach generates a considerably large relative positive effect



Application: Boosting science

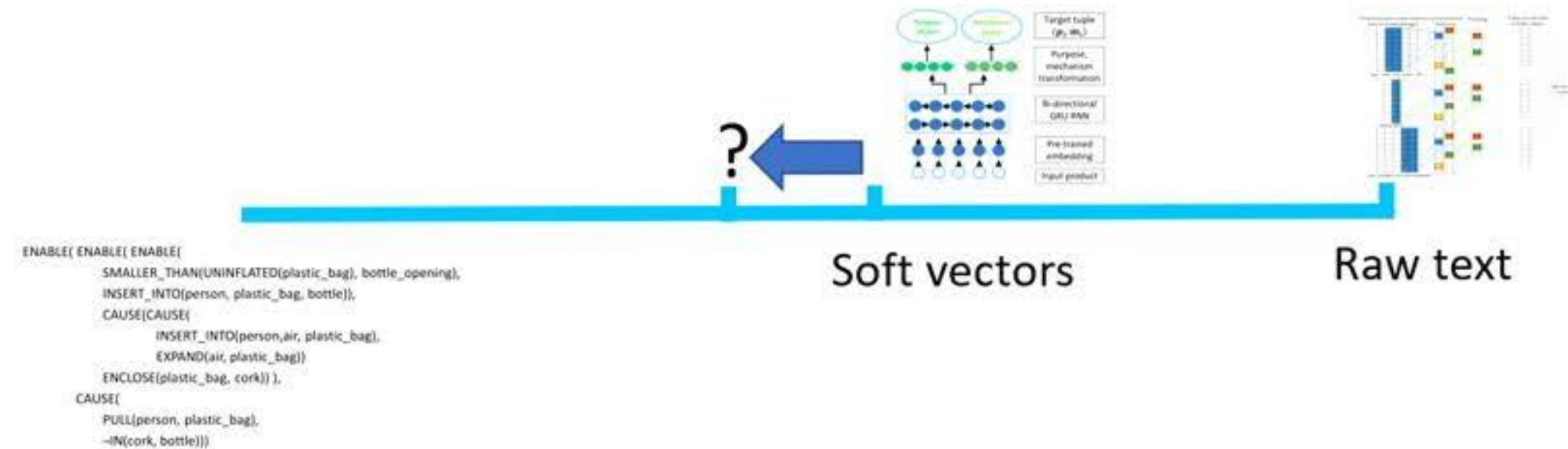
- Find analogies between **scientific papers**
- Extend annotation scheme: background, findings
- Help biomechanical engineering research group
 - Find inspirations, novel applications
- Most relevant matches found by **standard search**:
 - **Near-direct replication** of lab's work
- Most relevant matches with **our approach**:
 - Our detected analogies judged as **relevant and new**
 - Out-of-domain, alternative approaches **never seen by the lab**

Scientific discoveries are often driven by finding analogies in distant domains, but the growing number of papers makes it difficult to find relevant ideas in a single discipline, let alone distant analogies in other domains. To provide computational support for finding analogies across domains, we introduce SOLVENT, a mixed-initiative system where humans annotate aspects of research papers that denote their background (the high-level problems being addressed), purpose (the specific problems being addressed), mechanism (how they achieved their purpose), and findings (what they learned/achieved), and a computational model constructs a semantic representation from these annotations that can be used to find analogies among the research papers. We demonstrate that this system finds more analogies than baseline information-retrieval approaches; that annotators and annotations can generalize beyond domain; and that the resulting analogies found are useful to experts. These results demonstrate a novel path towards computationally supported knowledge sharing in research communities.¹

CCS Concepts: • Human-centered computing → Collaborative and social computing systems and tools.

Additional Key Words and Phrases: Scientific discovery; computer-supported cooperative work; analogy; crowdsourcing

A stronger structural representation



From soft vectors to fine-grained functional models

mechanism	purpose	Untag

What everyone wants to have is a **comfortable** way to **sleep** while **traveling**. A **neck pillow** filled with **soft material** that **supports** your **neck**. It's unique because it has **sensors** to **track** your **sleep**.

- Objective: Extracting **spans of text** corresponding purposes, mechanisms
- Enables new applications:
 - Fine-grained faceted search
 - Ontology
 - Interpretability (for search users)

Patent data – a (messy) treasure trove of innovation

- Important, large-scale source of engineering innovation
- Common guideline for patent examiners/writers:
 - *“The subject matter of the invention should be described in one or more clear, concise sentences or paragraphs...”*
 - *One patent sentence:*

An absorptive article containing a surface material comprising a combined non-woven fabric comprising at least two layers of a long fiber non-woven fabric and a short fiber non-woven fabric joined together and an absorbing body for retaining a body fluid is disclosed in which the short fiber non-woven fabric is composed of hot-melt-adhesive composite short fibers having at least two kinds of thermoplastic resin components of a high melting point component and low melting point component, and the hot-melt-adhesive composite short fibers are hot-melt-adhered together, the crossing angle of the short fibers at least preferably at least 45%, preferably at least 50% of the total contact points in the short fiber non-woven fabric are occupied by an angle of 60 degree to 90 degree in the analysis of the distribution of the crossing angle at the contact points of the fibers.

Patent 2001100012 (circa 2001)

- “circular transportation facilitation device”...

Patent 2001100012 (circa 2001)

- “circular transportation facilitation device”...

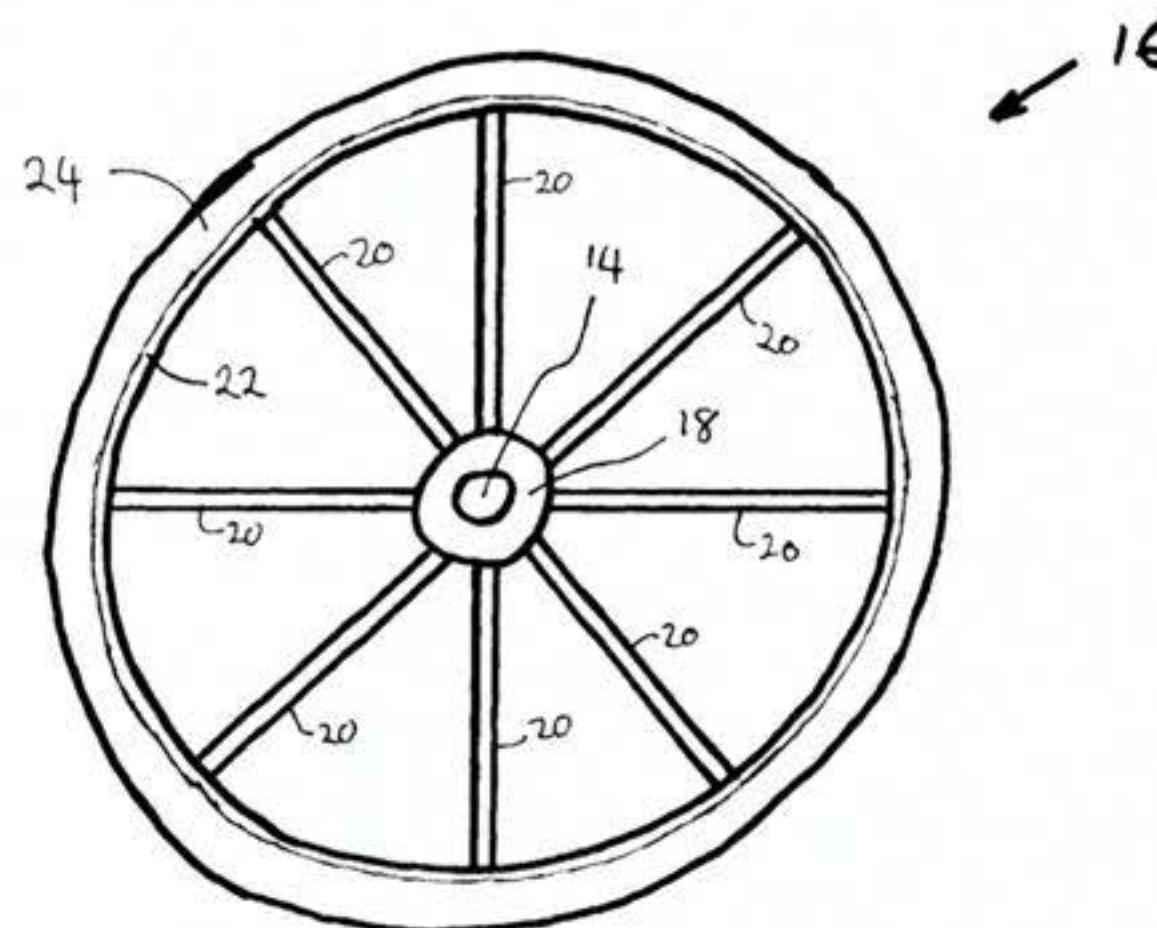


FIGURE 2

Annotating purposes and mechanisms in patents

- Hard task for workers
 - Long, obfuscated sentences
 - Complex technical jargon
 - Often skirt around the purpose of the invention
 - Median completion time: 1 minute 40 seconds
- Sample from domains easier for crowds to understand (relatively)
 - Vehicles, games, television, music, exercise, surgery, robotics...
- Noisy annotations
 - Partial tagging – workers skip sentences

Building a graph representation

- **Syntactic relations**

- Capture purpose/mechanism syntactic patterns*
- Dependency parse tree

- **Semantic relations**

- Information propagation across long spans
- Patents: long sentences with repetitions
- Embedding similarity (tuned threshold)

This invention relates to a digital electronic still-video camera for imaging a subject, converting the video signal thus obtained into digital image data and recording the image data in a memory cartridge capable of being loaded and ejected at will, and to a playback apparatus for playing back and displaying the image data resulting from the imaging operation of the digital electronic still - video camera.

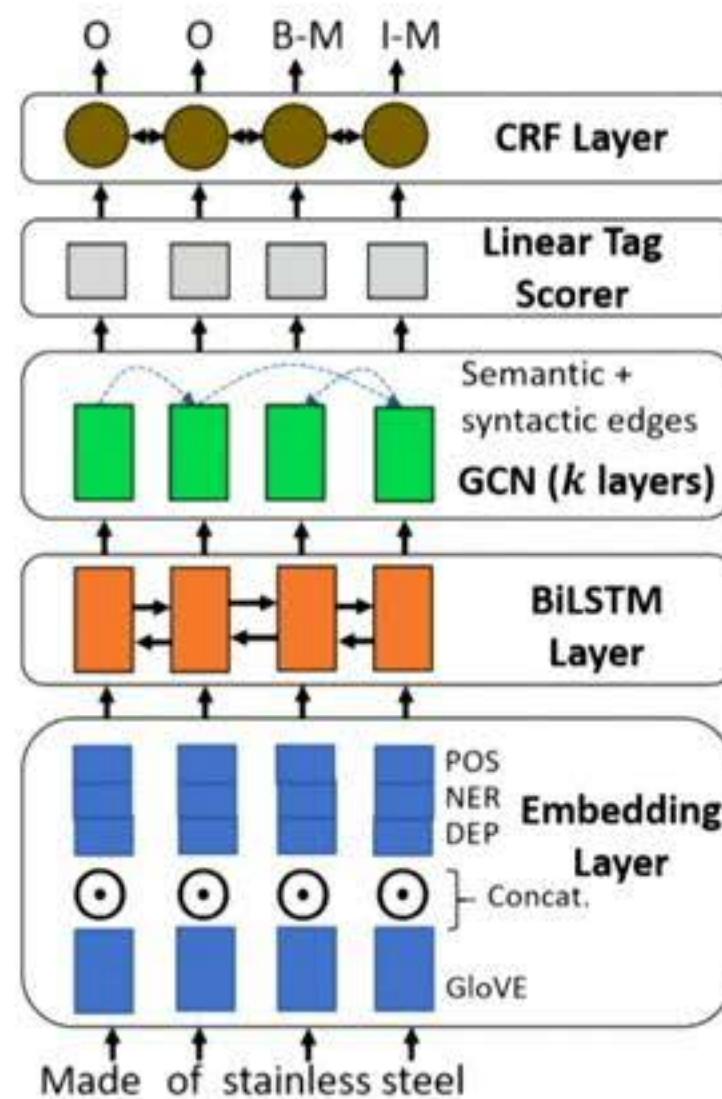
Purpose

Mechanism

Syntactic Relation
Semantic Relation

Model - contextualized graph convolution net

- Multi-channel input embeddings* (GloVE, POS, NER, DEP)
- BiLSTM to capture **sequential context**
- Relational GCN over **graph**
 - Add edge-wise gating for attention
- **CRF** layer to capture tag dependencies
- Baseline:
 - BiLSTM-CRF enriched with same multi-channel input
 - Ablation study for different edge types in graph



Evaluation: Accuracy

- Quirky(~23K sentences), patents (~10K)
- Graph model significantly **improves results**
 - Longer-range semantic edges helps in patents
 - Overall accuracy is low – noisy training annotations!
 - Model predictions often better than workers
 - Gold-standard test set

Configuration	P	R	F_1
Quirky			
BiLSTM	45.24	39.01	41.90
Syn GCN	47.85	47.93	47.89
Syn+Sem GCN	50.55	36.20	42.19
Patents			
BiLSTM	52.07	12.27	19.86
Syn GCN	57.77	10.31	16.24
Syn+Sem GCN	53.52	16.02	24.66

Evaluation: Accuracy

- Quirky (~23K sentences), patents (~10K)
- Graph model significantly **improves results**
 - Longer-range semantic edges helps in patents
 - Overall accuracy is low – noisy training annotations!
 - Model predictions often better than workers
 - Gold-standard test set

Configuration	P	R	F ₁
Quirky			
BiLSTM	45.24	39.01	41.90
Syn GCN	47.85	47.93	47.89
Syn+Sem GCN	50.55	36.20	42.19
Patents			
BiLSTM	52.07	12.27	19.86
Syn GCN	57.77	10.31	16.24
Syn+Sem GCN	53.52	16.02	24.66

Purpose	Mechanism
HotCup. Warm your drink up in your cup!! It's Solar Powered! It is made out of stainless steel. The Dual Heated Travel Mug is prepared to keep your coffee warm wherever you go. Has USB attachments as alternative power source for heating at desk. It could have a cooling feature as well. HotCup warms up the drink inside, when your hot beverages become cold!!	HotCup. Warm your drink up in your cup!! It's Solar Powered! It is made out of stainless steel. The Dual Heated Travel Mug is prepared to keep your coffee warm wherever you go. Has USB attachments as alternative power source for heating at desk. It could have a cooling feature as well. HotCup warms up the drink inside, when your hot beverages become cold!!

(a) Mechanical Turk Annotation

(b) Semantic + Syntactic relations model

Evaluation: Accuracy

- Quirky (~23K sentences), patents (~10K)
- Graph model significantly **improves results**
 - Longer-range semantic edges helps in patents
 - Overall accuracy is low – noisy training annotations!
 - Model predictions often better than workers
 - Gold-standard test set

Configuration	P	R	F ₁
Quirky			
BiLSTM	45.24	39.01	41.90
Syn GCN	47.85	47.93	47.89
Syn+Sem GCN	50.55	36.20	42.19
Patents			
BiLSTM	52.07	12.27	19.86
Syn GCN	57.77	10.31	16.24
Syn+Sem GCN	53.52	16.02	24.66

Purpose Mechanism

Crowd annotations:

The Dual Heated Travel Mug is prepared to keep your coffee warm wherever you go.

Model:

The Dual Heated Travel Mug is prepared to keep your coffee warm wherever you go.

Evaluation: Accuracy

- Quirky (~23K sentences), patents (~10K)
- Graph model significantly **improves results**
 - Longer-range semantic edges helps in patents
 - Overall accuracy is low – noisy training annotations!
 - Model predictions often better than workers
 - Gold-standard test set
- Adding **self-training** boosts results
 - Many training sentences (erroneously) un-annotated
 - New patents **F1 32.5** (up from 24.6, recall up from 16 to 23); Quirky **50.5** (47.9)

Configuration	P	R	F_1
Quirky			
BiLSTM	45.24	39.01	41.90
Syn GCN	47.85	47.93	47.89
Syn+Sem GCN	50.55	36.20	42.19
Patents			
BiLSTM	52.07	12.27	19.86
Syn GCN	57.77	10.31	16.24
Syn+Sem GCN	53.52	16.02	24.66

Purpose Mechanism

Crowd annotations:

The Dual Heated Travel Mug is prepared to keep your coffee warm wherever you go.

Model:

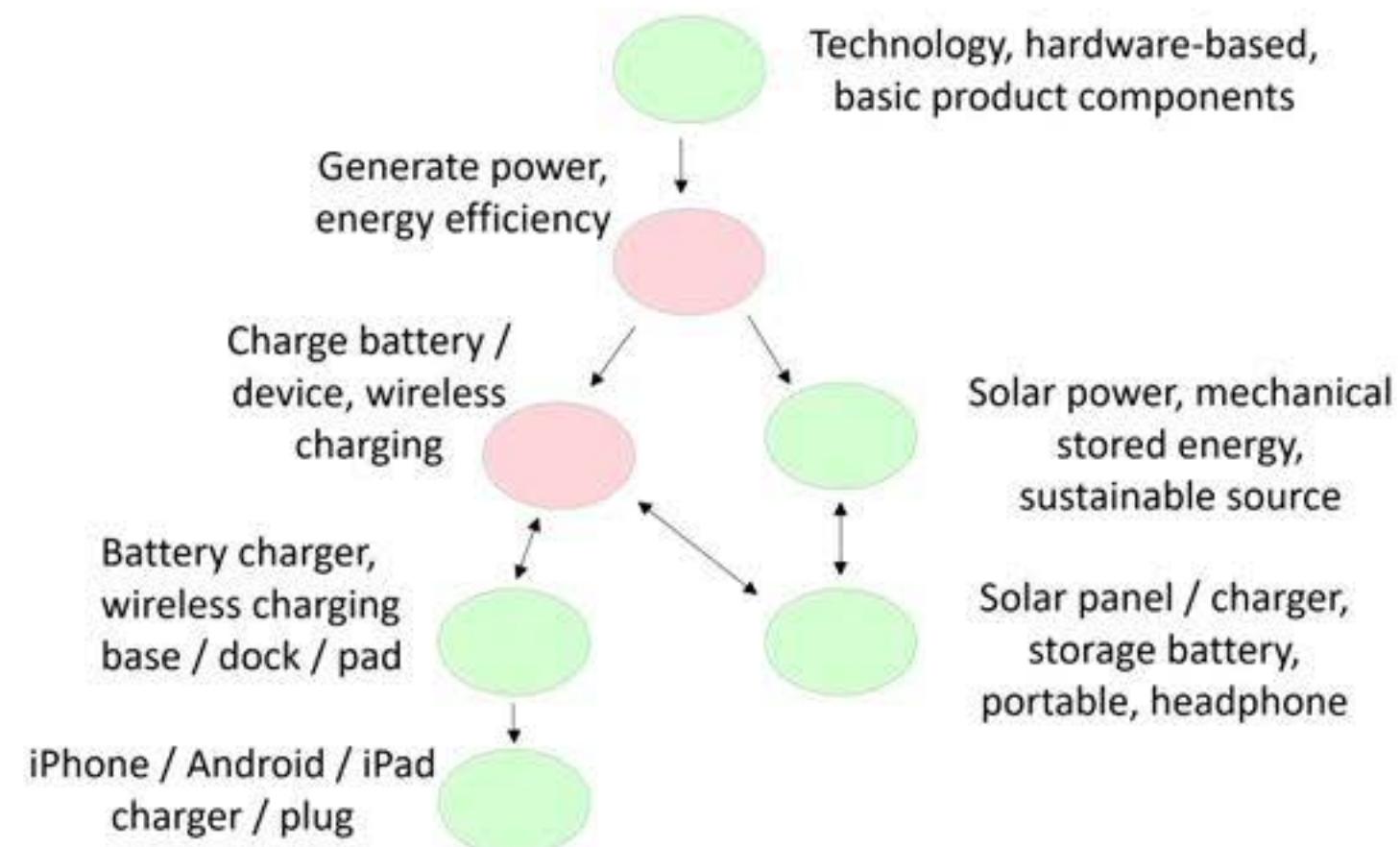
The Dual Heated Travel Mug is prepared to keep your coffee warm wherever you go.

The advantage of purpose/mechanism spans

- Unlike soft aggregate vectors – finer granularity, interpretability
- Applications:
 - Purpose-mechanism ontology
 - Expressive search

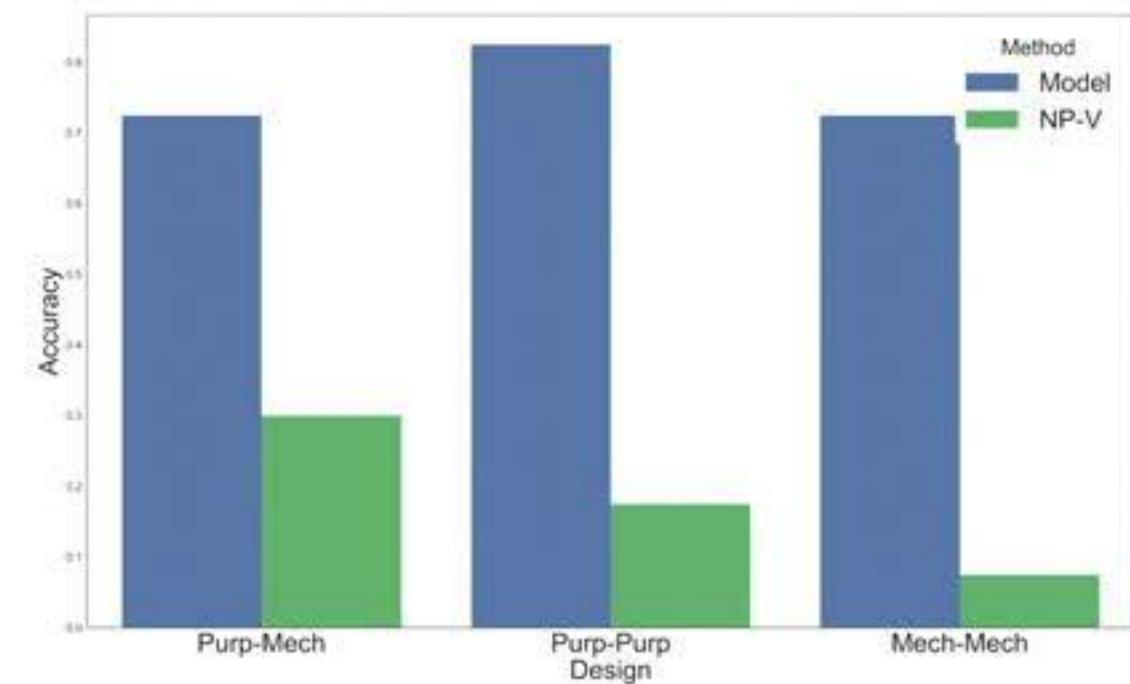
Application: Commonsense functional ontology

- Mapping the landscape of ideas with a purpose-mechanism hierarchy
- Implications for engineering – **functional ontologies (handcrafted)**
 - **Abstraction:** Allow problem-solvers to “break out” of fixation
 - **Reasoning:** Understanding the inter-relatedness of purposes and mechanisms



Ontology construction

- Discrete representation of *concepts*
 - Cluster purpose/mechanism chunks
 - Example cluster: *Solar power, stored energy, sustainable energy source*
- Hierarchical *relations*
 - Rule-mining (Antecedent => Consequent)
 - “protect head” => “safety”, “charge” => “charger”
- Baseline: Using clusters of based on POS *
- Large improvement over baseline
 - Good performance in absolute terms
 - Substantial judge agreement (47%)



Application: Expressive search engine to boost innovation

- Example: lightbulb manufacturer, wants to expand to other markets
 - Find products **using** light, but where light is **not** the main **purpose**

Application: Expressive search engine to boost innovation

- Example: lightbulb manufacturer, wants to expand to other markets
 - Find products **using** light, but where light is **not** the main **purpose**

Mechanisms	Light
Must not include	-
Purposes	-
Must not include	Light

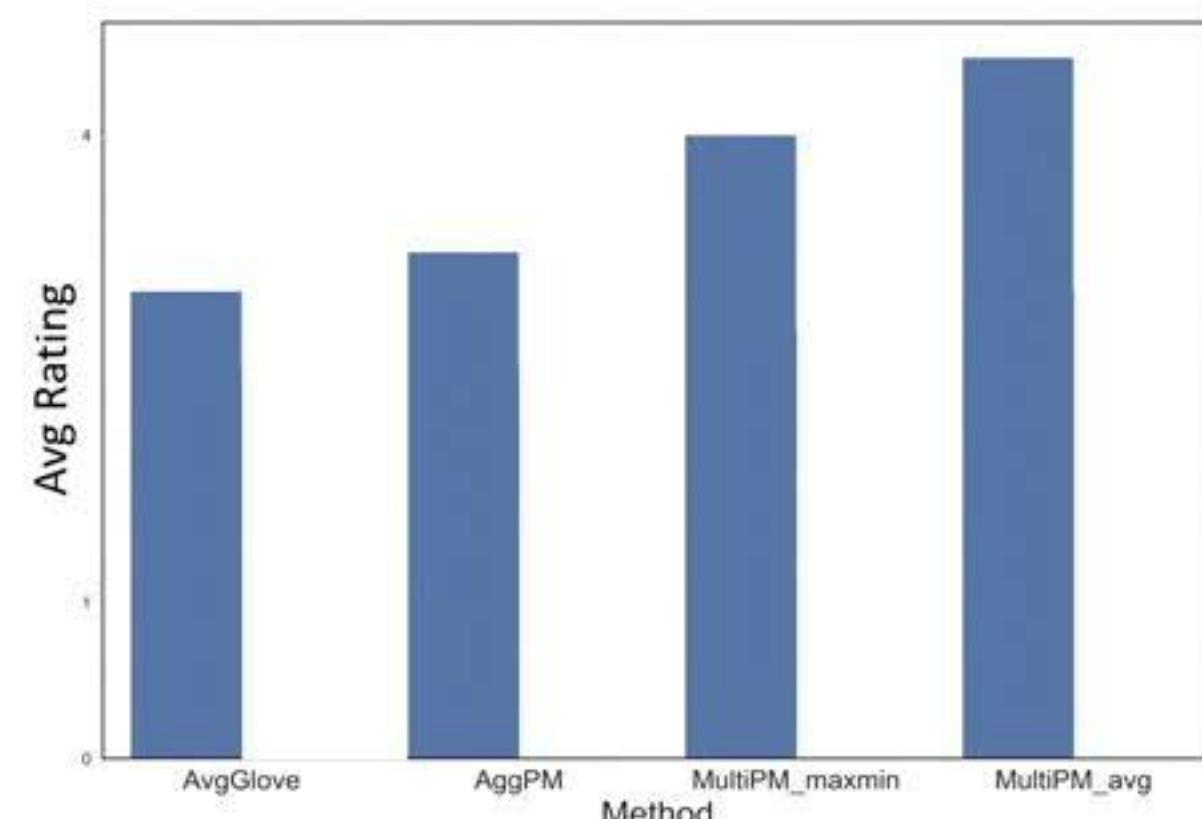
warning signs on foods . Using the word " Hurt " to alert young kids to certain foods causing strong allergies . Put sound , light or colour on the package to get kids attention to the warning . Less accidents may happen if caution used in words they can understand too . Some people so allergic to peanuts can die . I say more safty at younger ages in Young kids yet learning english need simple words on food pkgs that warn .
Purposes: warning signs foods alert young kids foods causing strong allergies kids attention die younger ages need simple words food pkgs
Mechanisms: light colour

- Sets of purposes (P), mechanisms (M), query (Q) terms
- Distance metric over sets

$$\begin{aligned} & \operatorname{argmin}_i d_p(\{\mathbf{q}^{\text{"locate dog"}}\}, \mathcal{P}_{\tilde{i}}) \\ & \text{s.t. } d_m(\{\mathbf{q}^{\text{"GPS"}}\}, \mathcal{M}_{\tilde{i}}) \geq \text{threshold} \\ & d_m(\{\mathbf{q}^{\text{"RFID"}}\}, \mathcal{M}_{\tilde{i}}) \leq \text{threshold} \end{aligned}$$

Search evaluation

- Four search scenarios
 - Example: Use **light** for the purpose of **cleaning**
- Compare against standard search, our own previous work
- Retrieval (distance) metrics based on purpose/mechanism chunks
 - Average over terms, MinMax (query matches small subset of chunks)
- Finer-grained purposes/mechanisms lead to **better search expressivity**

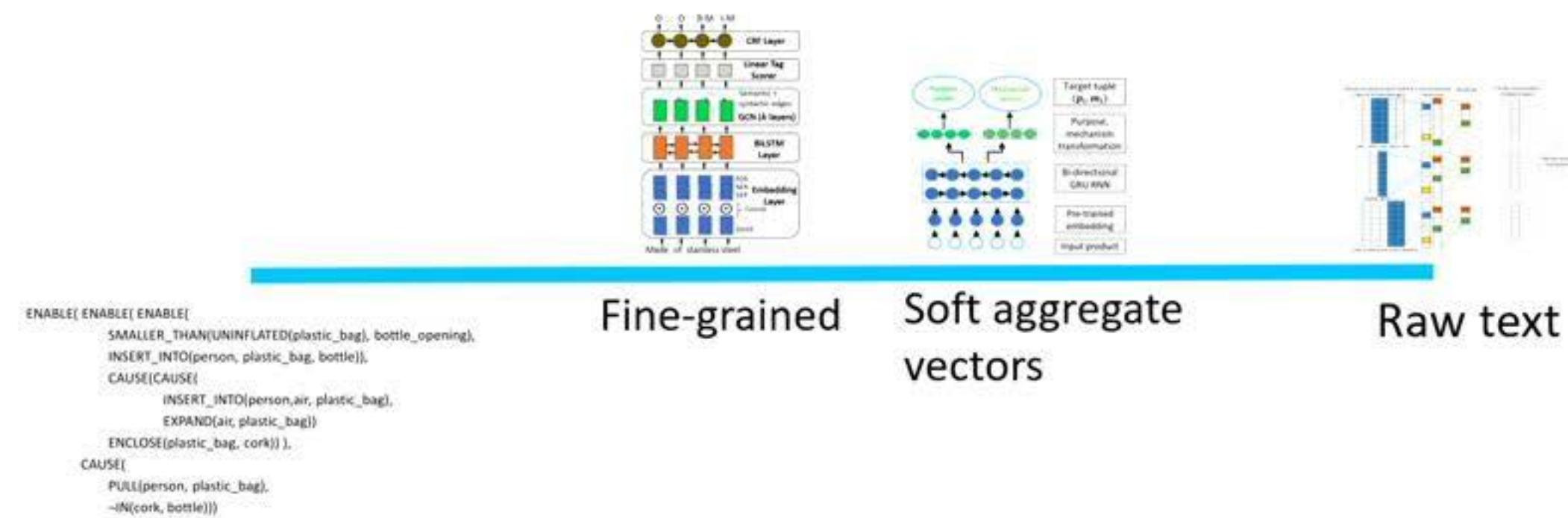


Summary: Analogies

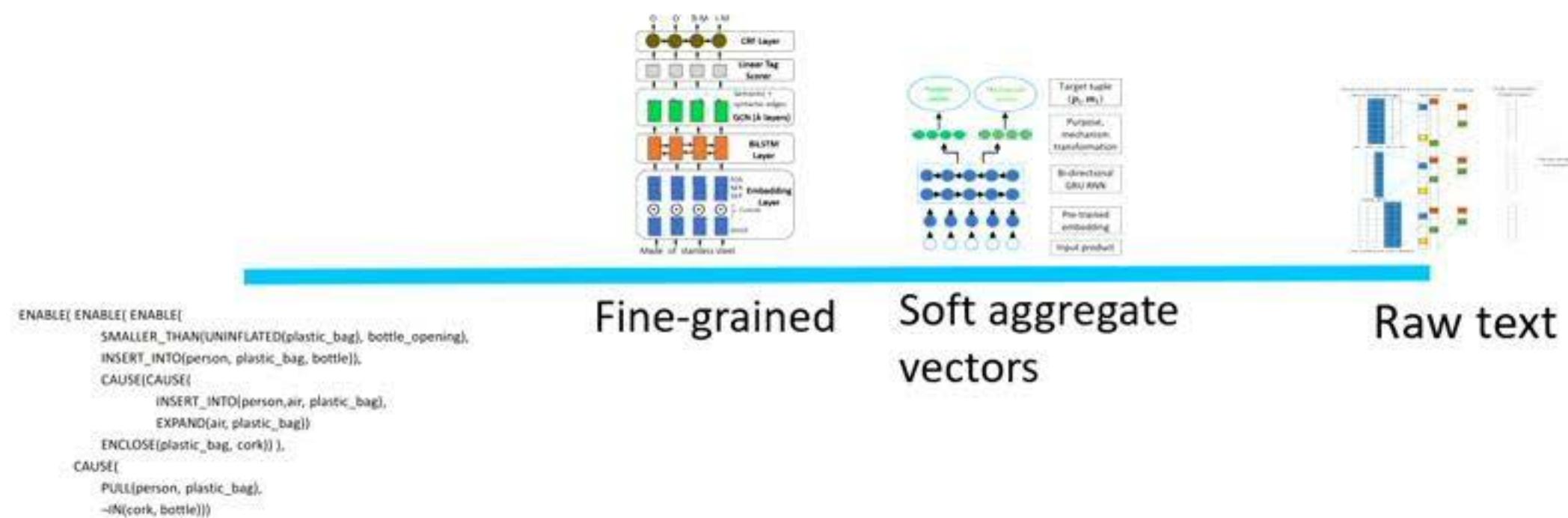
```
ENABLE( ENABLE( ENABLE(  
    SMALLER_THAN(UNINFLATED(plastic_bag), bottle_opening),  
    INSERT_INTO(person, plastic_bag, bottle));  
    CAUSE(CAUSE(  
        INSERT_INTO(person,air, plastic_bag),  
        EXPAND(air, plastic_bag))  
        ENCLOSE(plastic_bag, cork)));  
    CAUSE(  
        PULL(person, plastic_bag),  
        ~IN(cork, bottle)))
```

Raw text

Summary: Analogies



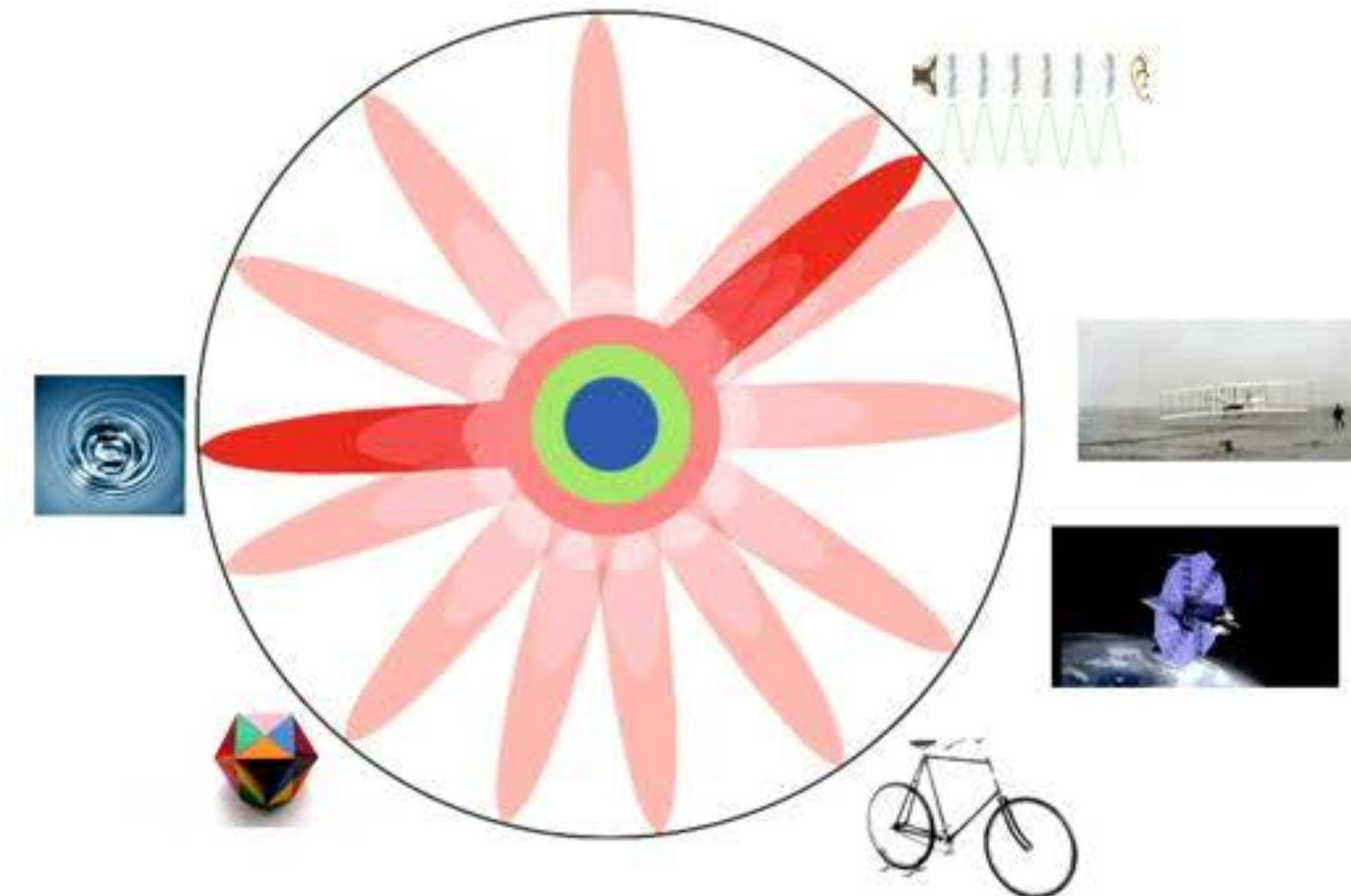
Summary: Analogies



- Applications:
 - Ideation – boosting creativity with analogies
 - Boosting science
 - Purpose/mechanism commonsense functional ontology
 - Expressive search for inspiration queries
- With Joel Chan, Ronen Tamari, Daniel Hershcovich, Hyeonsu Kang, Niki Kittur, Dafna Shahaf

In this talk

- Boosting **creativity** with analogies
- Identifying **novel ideas** with **weak supervision**



Identifying novel patents with weak supervision (work in progress)

- **Problem:** Labels are extremely hard to obtain
 - Citations are a (very) weak proxy... *

Identifying novel patents with weak supervision (work in progress)

- **Problem:** Labels are extremely hard to obtain
 - Citations are a (very) weak proxy... *
- Weak supervision over aggregate **patent portfolio** information:
 - Average proportion of novel patents < %1
 - Some organizations are **more innovative than others!**
 - Higher average proportion of novel patents in their portfolio

Identifying novel patents with weak supervision (work in progress)

- **Problem:** Labels are extremely hard to obtain
 - Citations are a (very) weak proxy... *
- Weak supervision over aggregate **patent portfolio** information:
 - Average proportion of novel patents < %1
 - Some organizations are **more innovative than others!**
 - Higher average proportion of novel patents in their portfolio

Obtaining labels is often hard

- No access to ground-truth information
- Examples: Who did a user vote for? User health conditions?
- **Privacy** issues
- Crowdsourcing: Not a cure-all
 - Workers are not domain experts
 - Can be a difficult, noisy, **costly** process
- But **rough aggregate information** is often much easier to obtain!

Ballpark Learning

Ballpark figure: An educated guess or estimation within acceptable bounds.

*“No more stalling. Give me a **ballpark figure** of our projected losses.”*

https://en.wiktionary.org/wiki/ballpark_figure

Ballpark Learning – learning from rough constraints on groups

- Training instances $X = \{x_1, \dots, x_N\}$ with **unknown** labels y_i
- Our instances are divided into K **bags** $\{B_1, B_2, \dots, B_K\}$
 - Example: Patent portfolios
- **Constraints** on **unknown** **label averages** within bags $\{y_i : x_i \in B_k\}$
 - Bag **upper/lower** bounds $l_k \leq \text{Avg}(B_k) \leq u_k$
 - $0.01 \leq \text{Avg}(\text{Stanford}) \leq 0.05$
 - **Differences** (additive) $l_{k_{12}} \leq \text{Avg}(B_{k_1}) - \text{Avg}(B_{k_2}) \leq u_{k_{12}}$
 - $\text{Avg}(\text{Stanford}) - \text{Avg}(\text{Greendale}) \geq 0.03$
 - **Differences** (multiplicative) $l_{k_{12}} \leq \text{Avg}(B_{k_1}) / \text{Avg}(B_{k_2}) \leq u_{k_{12}}$
- Learning goal: Predict **instance-level** labels from **rough constraints** on label averages given for each bag / pairs of bags

Problem formulation – classification *

- Discrete (binary) label space $y_i \in \{-1, 1\}$
- Bi-convex optimization problem:

$$\operatorname{argmin}_{\mathbf{y}, \mathbf{w}, \xi} \frac{1}{2} \mathbf{w}^T \mathbf{w} + \frac{C}{N} \sum_{i=1}^N \max(0, 1 - y_i \mathbf{w}^T \varphi(\mathbf{x}_i)) + \frac{C_L}{L} \sum_{j=N+1}^{N+L} \xi_j$$

$$s.t. -1 \leq y_i \leq 1 \quad \forall i \in 1, \dots, N$$

$$y_j \mathbf{w}^T \varphi(\mathbf{x}_j) \geq 1 - \xi_j \quad \forall j \in \{N+1, \dots, N+L\}$$

$$\xi_j \geq 0 \quad \forall j$$

$$l_k \leq \hat{p}_k \leq u_k \quad \forall \{k : \mathcal{B}_k \in \mathcal{R}\}$$

$$l_{k_{12}} \leq \hat{p}_{k_1} - \hat{p}_{k_2} \leq u_{k_{12}} \quad \forall \{k_1 \neq k_2 : (\mathcal{B}_{k_1}, \mathcal{B}_{k_2}) \in \mathcal{D}\},$$

where $\hat{p}_k = \frac{1}{2|\mathcal{B}_k|} \sum_{i \in \mathcal{B}_k} y_i + \frac{1}{2}$

Problem formulation – classification *

- Discrete (binary) label space $y_i \in \{-1, 1\}$
- Bi-convex optimization problem:

$$\operatorname{argmin}_{\mathbf{y}, \mathbf{w}, \xi} \frac{1}{2} \mathbf{w}^T \mathbf{w} + \frac{C}{N} \sum_{i=1}^N \max(0, 1 - y_i \mathbf{w}^T \varphi(\mathbf{x}_i)) + \frac{C_L}{L} \sum_{j=N+1}^{N+L} \xi_j$$

Objective:

1. Hinge Loss: Matching \mathbf{y}, \mathbf{w}
2. Slack vars: For known y_j

$$s.t. -1 \leq y_i \leq 1 \quad \forall i \in 1, \dots, N$$

$$y_j \mathbf{w}^T \varphi(\mathbf{x}_j) \geq 1 - \xi_j \quad \forall j \in \{N+1, \dots, N+L\}$$

$$\xi_j \geq 0 \quad \forall j$$

$$l_k \leq \hat{p}_k \leq u_k \quad \forall \{k : \mathcal{B}_k \in \mathcal{R}\}$$

$$l_{k_{12}} \leq \hat{p}_{k_1} - \hat{p}_{k_2} \leq u_{k_{12}} \quad \forall \{k_1 \neq k_2 : (\mathcal{B}_{k_1}, \mathcal{B}_{k_2}) \in \mathcal{D}\},$$

where $\hat{p}_k = \frac{1}{2|\mathcal{B}_k|} \sum_{i \in \mathcal{B}_k} y_i + \frac{1}{2}$

Problem formulation – classification *

- Discrete (binary) label space $y_i \in \{-1, 1\}$
- Bi-convex optimization problem:

$$\operatorname{argmin}_{\mathbf{y}, \mathbf{w}, \xi} \frac{1}{2} \mathbf{w}^T \mathbf{w} + \frac{C}{N} \sum_{i=1}^N \max(0, 1 - y_i \mathbf{w}^T \varphi(\mathbf{x}_i)) + \frac{C_L}{L} \sum_{j=N+1}^{N+L} \xi_j$$

$$s.t. -1 \leq y_i \leq 1 \quad \forall i \in 1, \dots, N$$

$$y_j \mathbf{w}^T \varphi(\mathbf{x}_j) \geq 1 - \xi_j \quad \forall j \in \{N+1, \dots, N+L\}$$

$$\xi_j \geq 0 \quad \forall j$$

$$l_k \leq \hat{p}_k \leq u_k \quad \forall \{k : \mathcal{B}_k \in \mathcal{R}\}$$

$$l_{k_{12}} \leq \hat{p}_{k_1} - \hat{p}_{k_2} \leq u_{k_{12}} \quad \forall \{k_1 \neq k_2 : (\mathcal{B}_{k_1}, \mathcal{B}_{k_2}) \in \mathcal{D}\},$$

where $\hat{p}_k = \frac{1}{2|\mathcal{B}_k|} \sum_{i \in \mathcal{B}_k} y_i + \frac{1}{2}$

Objective:

1. Hinge Loss: Matching \mathbf{y}, \mathbf{w}
2. Slack vars: For known y_j

Proportion constraints

1. Bag upper/lower bounds
2. Bag difference bounds

- Objective helps find assignment to latent \mathbf{y} that accurately “matches” \mathbf{w} , vice versa
- Linear constraints ensure a “correct” assignment to \mathbf{y}

Problem formulation – regression

- **Continuous** label space $y_i \in \mathbb{R}$

$$\underset{\mathbf{y}, \mathbf{w}}{\operatorname{argmin}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + \frac{C_N}{N} \sum_{i=1}^N \|y_i - \mathbf{w}^T \varphi(\mathbf{x}_i)\|_2^2$$

MSE loss

$$+ \frac{C_L}{L} \sum_{j=N+1}^{N+L} \|y_j - \mathbf{w}^T \varphi(\mathbf{x}_j)\|_2^2$$

$$\text{s.t. } l_k \leq \hat{y}_k \leq u_k \quad \forall \{k : \mathcal{B}_k \in \mathcal{R}\}$$

$$l_{k_{12}} \leq \hat{y}_{k_1} - \hat{y}_{k_2} \leq u_{k_{12}} \quad \forall \{k_1 \neq k_2 : (\mathcal{B}_{k_1}, \mathcal{B}_{k_2}) \in \mathcal{D}\}$$

Average
constraints

where $\hat{y}_k = \frac{\sum_{i \in \mathcal{B}_k} y_i}{|\mathcal{B}_k|}$

- **Convex** (quadratic w.r.t \mathbf{y}) problem

Formulation as feasibility problem

- Alternative formulation: Optimize only for \mathbf{w} under constraints

$$\operatorname{argmin}_{\mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + \frac{C_L}{L} \sum_{j=N+1}^{N+L} \|y_j - \mathbf{w}^T \varphi(\mathbf{x}_j)\|_2^2$$

$$s.t. \quad l_k \leq \frac{\sum_{i \in \mathcal{B}_k} \mathbf{w}^T \varphi(\mathbf{x}_i)}{|\mathcal{B}_k|} \leq u_k \quad \forall \{k : \mathcal{B}_k \in \mathcal{R}\}$$

$$l_{k_{12}} \leq \frac{\sum_{i \in \mathcal{B}_{k_1}} \mathbf{w}^T \varphi(\mathbf{x}_i)}{|\mathcal{B}_{k_1}|} - \frac{\sum_{i \in \mathcal{B}_{k_2}} \mathbf{w}^T \varphi(\mathbf{x}_i)}{|\mathcal{B}_{k_2}|} \leq u_{k_{12}}$$

$$\forall \{k_1 \neq k_2 : (\mathcal{B}_{k_1}, \mathcal{B}_{k_2}) \in \mathcal{D}\}$$

Feasibility
constraints

- No optimization for latent labels – less parameters, **faster**
- PAC** formulation
- More details, discussion in paper *

Hyperparameter optimization

- How do we find regularization **hyperparameter**?
- No labeled examples, so **standard cross-validation (CV) grid search won't work**

Constraint-violation CV (CVCV) grid search

- Run K-fold CV, splitting each bag B_k into training and held-out subsets
- Due to uniform sampling, assume approximately unchanged proportions
- We measure **constraint violation** on the held-out data
- Pick C with minimal average violation

Evaluation: Learning from rough group constraints

Recidivism among prisoners released in 2005



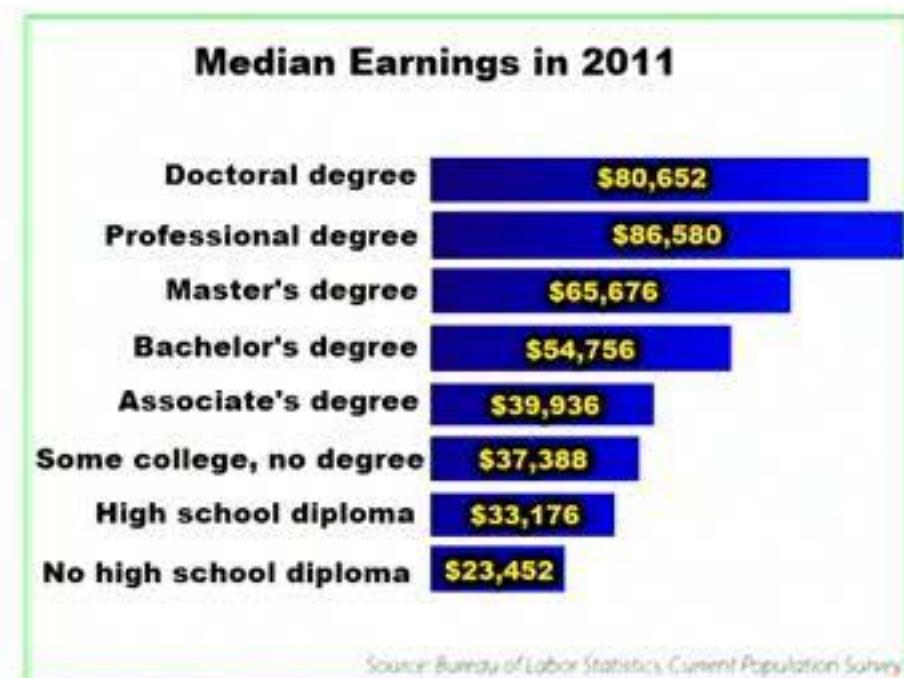
Source: Bureau of Justice Statistics

Median Earnings in 2011

Source: Bureau of Labor Statistics, Current Population Survey

Evaluation example: Predicting income from basic groups

- Predict income = {high,low} in census dataset
- No labels, but can build **bags of people** based on **education level + gender**
- Ballpark constraints (surveys, previous census, sampling...):
 - $p_{PhD} \geq u$ [*PhDs have higher income than overall population*]
 - $p_{Some\ college} \leq p_{Bachelor's} \leq p_{PhD}$
 - ...
- Bags are not used as features
 - Model can predict label without knowing education level



Evaluation example: Learning from basic intuition

- Need 900 labels in SVM to match ballpark model
 - We use **no labels!**

Ballpark	0.77
Supervised SVM	900 labels (0.77)

- Comparison to **Learning from Label Proportions** baselines *
- Exact label proportions assumed known!

Mean Map	Kernel Density Estimation	Discriminative Sorting	MCMC Sampling
0.81	0.75	0.77	0.81

Where do we get constraints?

- Ballpark crowdsourcing: Pooling noisy crowd guesses on intuitive groups

Person A has a serious problem with alcohol in his record. Person B does not. Both have been in prison and were released.

1. Which person is *more likely* to return to prison within a year?

A
 B
 No difference between them

2. How much more likely is it?

Move slider to select answer

1.1 times more likely

1.1

3. Consider the following group:
Apartments with TV

In what **range** would you put the **average** price of an apartment in this group? Pick **lower** and **upper** values by dragging the handles.

Feel free to give a wide range if you are not sure.

70 360

Where do we get constraints?

- Ballpark crowdsourcing: Pooling noisy crowd guesses on intuitive groups

Person A has a serious problem with alcohol in his record. Person B does not. Both have been in prison and were released.

1. Which person is *more likely* to return to prison within a year?

- A
- B
- No difference between them

2. How much more likely is it?

Move slider to select answer

1.1 times more likely

1.1

3. Consider the following group:

Apartments with TV

In what **range** would you put the **average** price of an apartment in this group? Pick **lower** and **upper** values by dragging the handles.

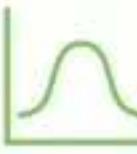
Feel free to give a **wide** range if you are not sure.

70

360

- Results rival supervised models that use many **true labels**
- Crowd guesses on **individual** instances yield poor results
- Total cost **3X** less than standard labeling
 - Questions on groups “cover” many instances

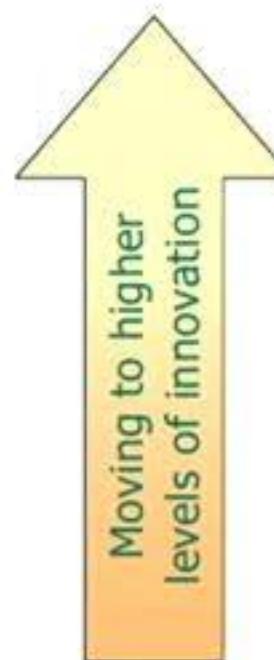
When to go to the Ballpark

- When we have no labels, only rough information on groups
- When crowdsourcing for individual labels is hard
 - Less need for domain **experts**: Human intuition on groups & comparisons *
 - Fewer questions – cutting **cost**
 - No **privacy** concerns
- Also helps with:
 - **Continuous** targets, crowd **bias**, **outliers**... 
 - Can **complement** standard crowdsourcing

* Thurstone, L.L. (1927). *A law of comparative judgement*. *Psychological Review*

Ballpark for discovery (work in progress)

- Goal: Identify **interesting/novel/groundbreaking** patents
- Where do get our aggregate constraints?



Level 5: Discovery (1%)

Level 4: Invention outside the paradigm (4%)

Level 3: Invention inside the paradigm (18%)

Level 2: Improvement (45%)

Level 1: Apparent solution (no innovation) (32%)

#1 Salesforce.com

#2 Tesla

#3 Amazon.com

#4 Shanghai RAAS Blood Products

Company rankings

United States	25.87%	82.46%
United States	73.01%	78.43%
United States	27.08%	72.78%
China	15.27%	71.72%

TRIZ Level of Invention (Fey & Rivlin 2005; Savransky 2000)

Ballpark + analogy for discovery

- Combining **distant mechanisms**, mechanisms for **new/far purposes...**
 - Rich economic literature: Recombination + innovation...
- Enrich with patent citation **network/text** embeddings...

Non-convex constraints to control distribution

- Challenge: Only top-1% of patents by companies might be novel...
- We want to gain finer **control on distribution**
 - Constrain sum_of_top_k (convex function)
 - $\text{sum_top_k}(\text{Microsoft}) > \text{sum_top_k}(\text{ACME})$
- Leads to violation of convex programming

• Initial eyeballing:

- Higher recombination indicators and citation counts (not used as features)
 - Better than anomaly detection on same features
- Next-up: **Patent examiners** evaluation

A. Difference of convex programming

Difference of convex (DC) problems have the form

$$\begin{aligned} & \text{minimize} && f_0(x) - g_0(x) \\ & \text{subject to} && f_i(x) - g_i(x) \leq 0, \quad i = 1, \dots, m, \end{aligned} \tag{1}$$

where $x \in \mathbf{R}^n$ is the optimization variable, and the functions $f_i : \mathbf{R}^n \rightarrow \mathbf{R}$ and $g_i : \mathbf{R}^n \rightarrow \mathbf{R}$ for $i = 0, \dots, m$ are convex.

Looking forward

Future work and broader interests

Looking forward: Future work

- Analogies:
 - Richer NLP models/representations for analogies
 - Graph extraction
 - External commonsense KG
 - [Live search engine](#) for researchers, engineers, designers, public
- Ballpark:
 - Non-convex extension for patents (in progress)
 - Learning deep neural networks from rough aggregate constraints

Looking forward: Broader interests

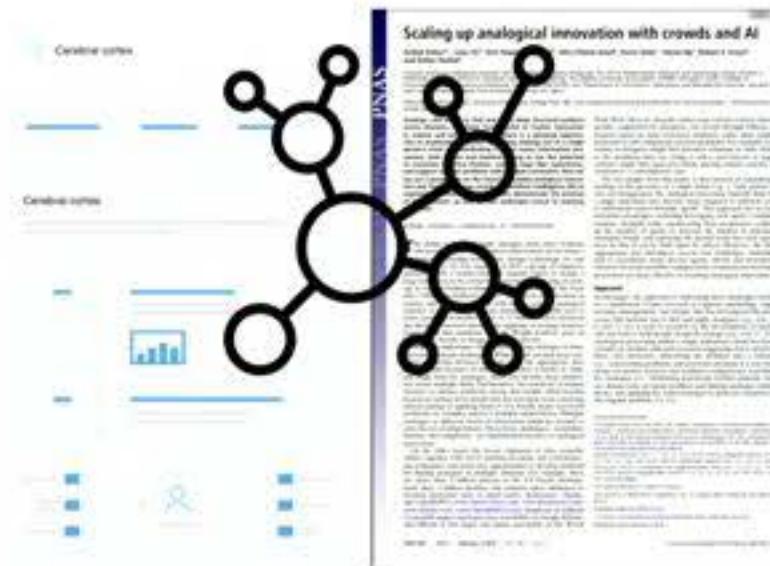
Developing new models for complex texts and behavioral data in the domains of scientific knowledge discovery, health, social science, psychology

Looking forward: Modelling complex texts

- Modelling complex long texts with **hierarchical graph neural nets** *
- Scientific, patents, conversations, medical, books, legal, websites, film scripts...

Looking forward: Modelling complex texts

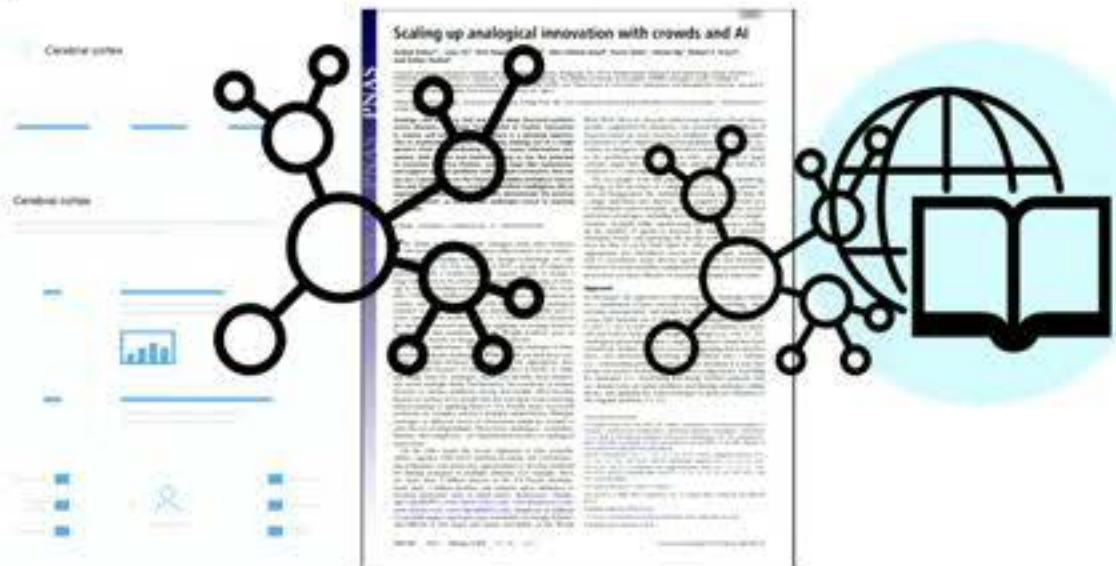
- Modelling complex long texts with **hierarchical graph neural nets** *
- Scientific, patents, conversations, medical, books, legal, websites, film scripts...
- **Multimodal** fusion of **search behavior** with **scientific paper content**
 - Example: How do we **search for new ideas**? Idea search beyond scientific domain
 - Graphs: Matching behavior with fine-grained information



* Peng, Poon et al. (2017), *Cross-Sentence N-ary Relation Extraction with Graph LSTMs*

Looking forward: Modelling complex texts

- Modelling complex long texts with **hierarchical graph neural nets** *
- Scientific, patents, conversations, medical, books, legal, websites, film scripts...
- **Multimodal** fusion of **search behavior** with **scientific paper content**
 - Example: How do we **search for new ideas**? Idea search beyond scientific domain
 - Graphs: Matching behavior with fine-grained information
- Incorporating external world knowledge graphs / databases into NLP models
 - **Medical** KG / EHR data **



* Peng, Poon et al. (2017), *Cross-Sentence N-ary Relation Extraction with Graph LSTMs*

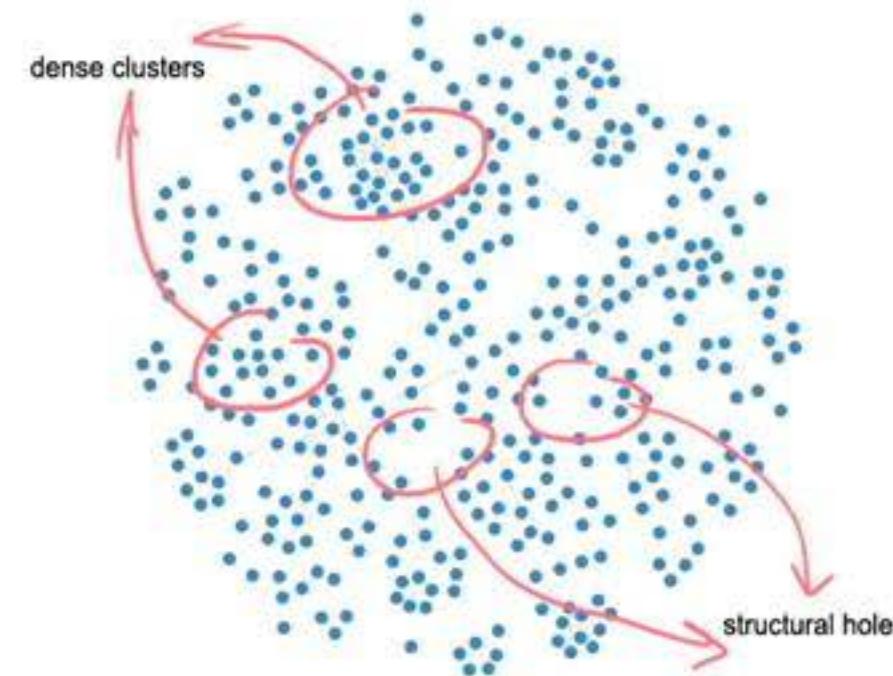
** Nordon, Horvitz et al. (2019) *Separating Wheat from Chaff: Joining Biomedical Knowledge and Patient Data for Repurposing Medications*

Looking forward: Scientific discovery

- Predicting the trajectories of science
 - Emerging trends across dynamic heterogeneous graph of scientific knowledge*
 - Predicting the **path of experts** (“*what will your next paper be about*”?)

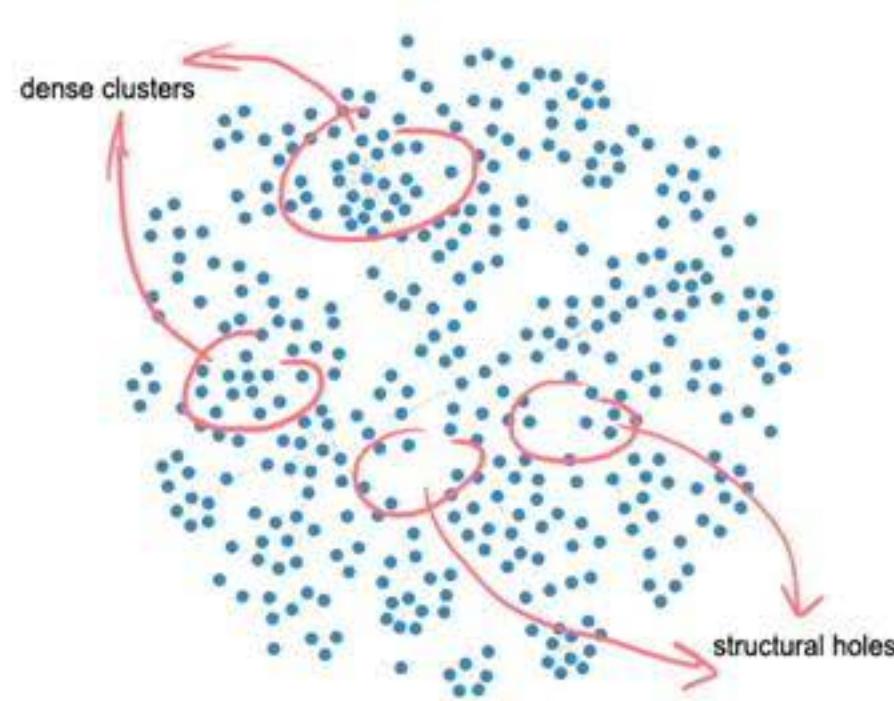
Looking forward: Scientific discovery

- Predicting the trajectories of science
 - Emerging trends across dynamic heterogeneous graph of scientific knowledge*
 - Predicting the **path of experts** (“*what will your next paper be about*”?)
 - Can we identify **structural holes** with **high-value** research potential?



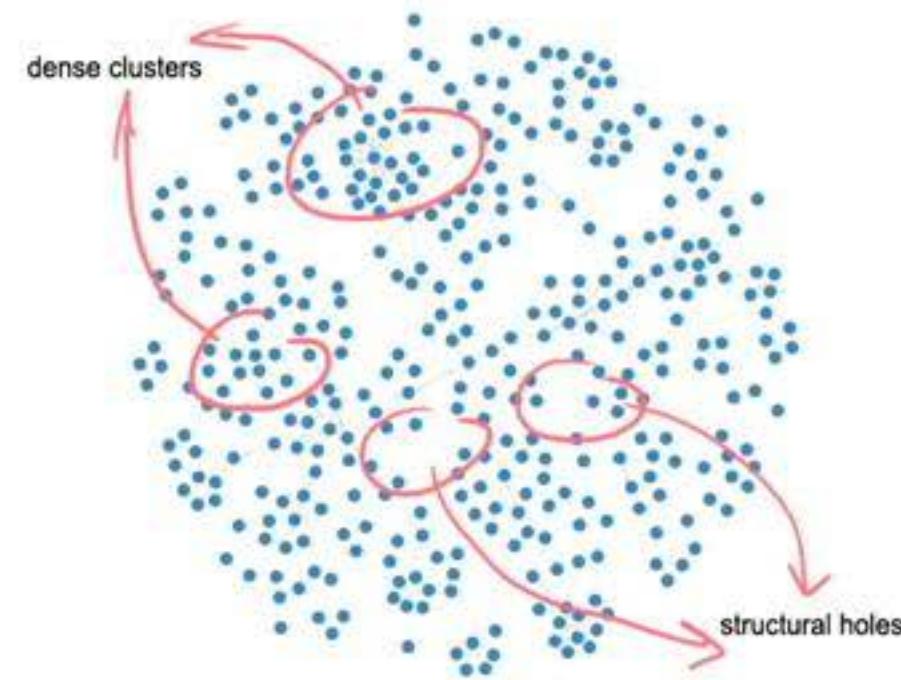
Looking forward: Scientific discovery

- Predicting the trajectories of science
 - Emerging trends across dynamic heterogeneous graph of scientific knowledge*
 - Predicting the **path of experts** (“*what will your next paper be about*”?)
 - Can we identify **structural holes** with **high-value** research potential?



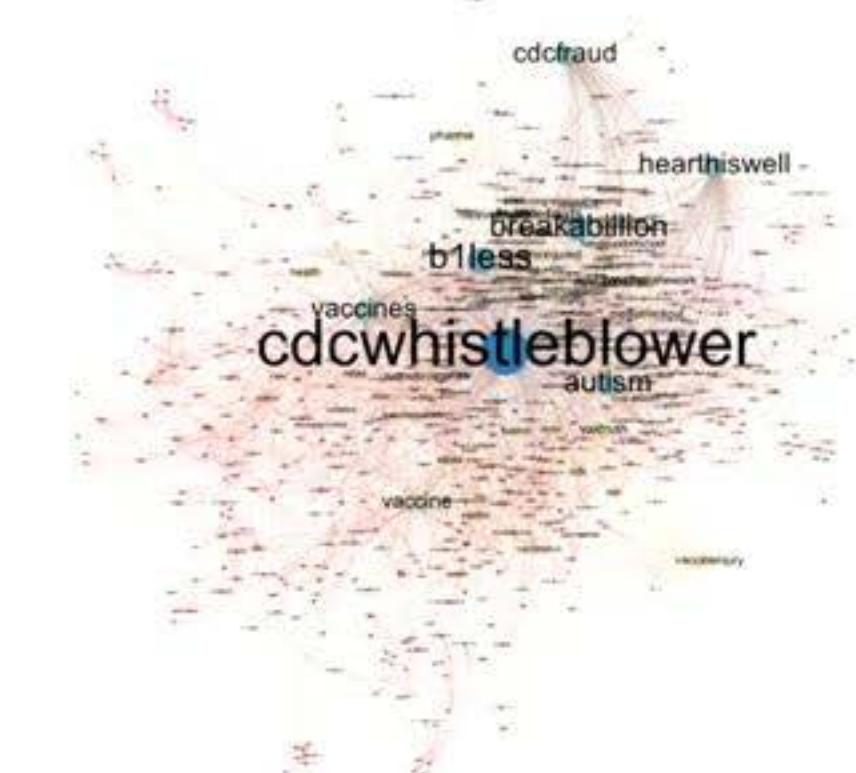
Looking forward: Scientific discovery

- Predicting the trajectories of science
 - Emerging trends across dynamic heterogeneous graph of scientific knowledge*
 - Predicting the **path of experts** (“*what will your next paper be about*”?)
 - Can we identify **structural holes** with **high-value** research potential?
 - Can we learn **generative models of ideas**, and then “sample” from them?



Looking forward: Social & health insights

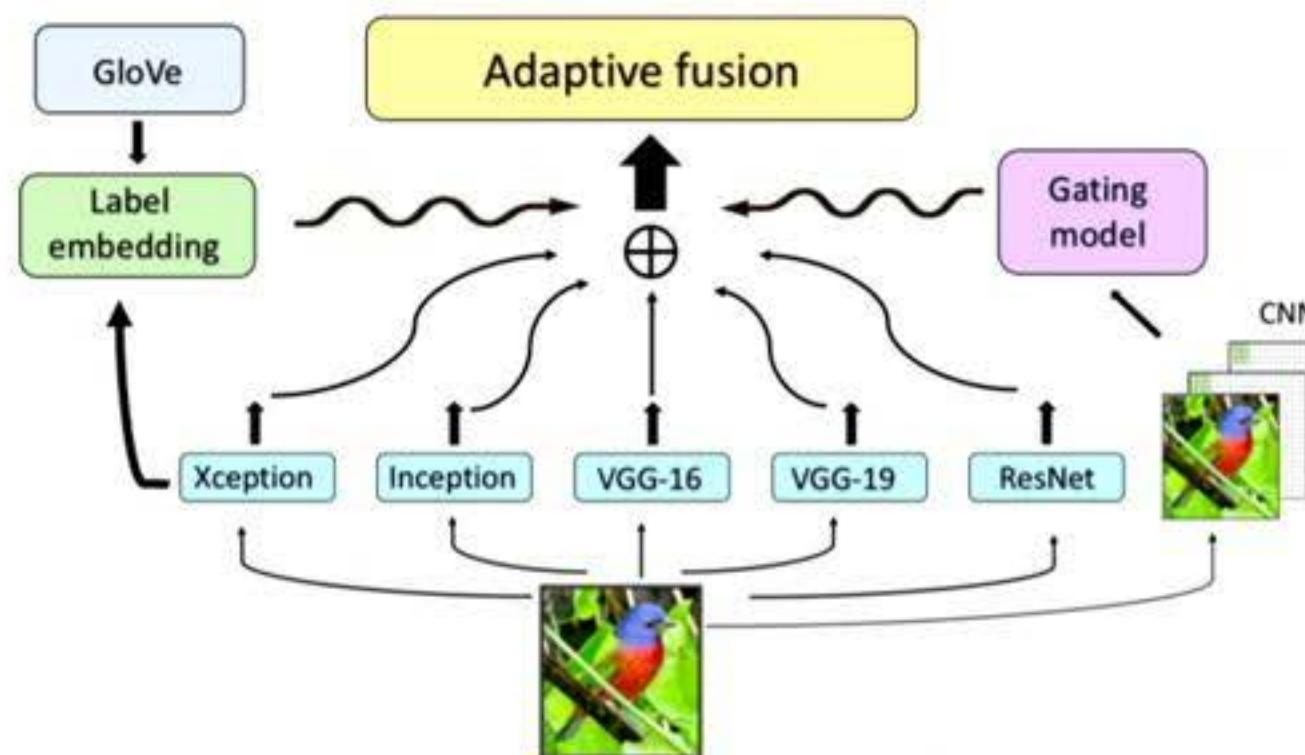
- Emergent/novel **social** phenomena, new concepts, misconceptions
 - Anti-vaccination movement from online discussions
 - Predicting **collective behavior** and decision-making from group conversations
 - Can we identify group dynamics and latent individual roles? [*]
- Discover new **health/psychological** behaviors, symptoms, causes
 - Learn knowledge graph of health-related activities, psychological states in context



[*] [Roles People Play in Groups](#), Stanford

Research in health and social knowledge discovery

- Lead applied research team – NLP, CV, graph ML
 - Healthcare, knowledge discovery from social media and web
 - **Adaptive fusion** of pre-trained vision + NLP models for transfer learning



*Altogether now! The Benefits of Adaptively Fusing Pre-trained
Deep Representations, ICPRAM '19 Best Research Paper*

Conclusion

- Boosting **innovation** with analogies
 - Extract purposes/mechanisms from noisy real-world texts
 - **Products, patents, science**
 - Enhancing creativity, expressive search, commonsense functional ontology
- Weak supervision with rough group information
 - New learning framework based on **coarse label average constraints**
 - Evaluate across many domains
 - Identifying **novel ideas**: Non-convex extension for patents (in progress)

Conclusion

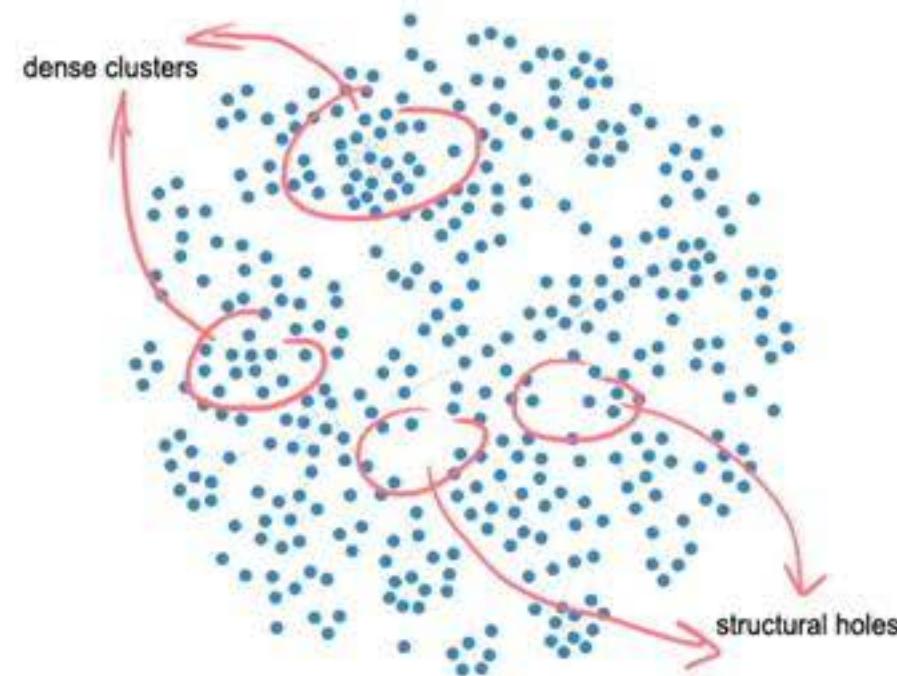
- Boosting **innovation** with analogies
 - Extract purposes/mechanisms from noisy real-world texts
 - **Products, patents, science**
 - Enhancing creativity, expressive search, commonsense functional ontology
- Weak supervision with rough group information
 - New learning framework based on **coarse label average constraints**
 - Evaluate across many domains
 - Identifying **novel ideas**: Non-convex extension for patents (in progress)
- Broader interests:
 - Modelling complex texts + behavioral data for knowledge discovery in science, health, novel social phenomena

Conclusion

- Boosting **innovation** with analogies
 - Extract purposes/mechanisms from noisy real-world texts
 - **Products, patents, science**
 - Enhancing creativity, expressive search, commonsense functional ontology
- Weak supervision with rough group information
 - New learning framework based on **coarse label average constraints**
 - Evaluate across many domains
 - Identifying **novel ideas**: Non-convex extension for patents (in progress)
- Broader interests:
 - Modelling complex texts + behavioral data for knowledge discovery in science, health, novel social phenomena

Looking forward: Scientific discovery

- Predicting the trajectories of science
 - Emerging trends across dynamic heterogeneous graph of scientific knowledge*
 - Predicting the **path of experts** (“*what will your next paper be about*”?)
 - Can we identify **structural holes** with **high-value** research potential?
 - Can we learn **generative models of ideas**, and then “sample” from them?

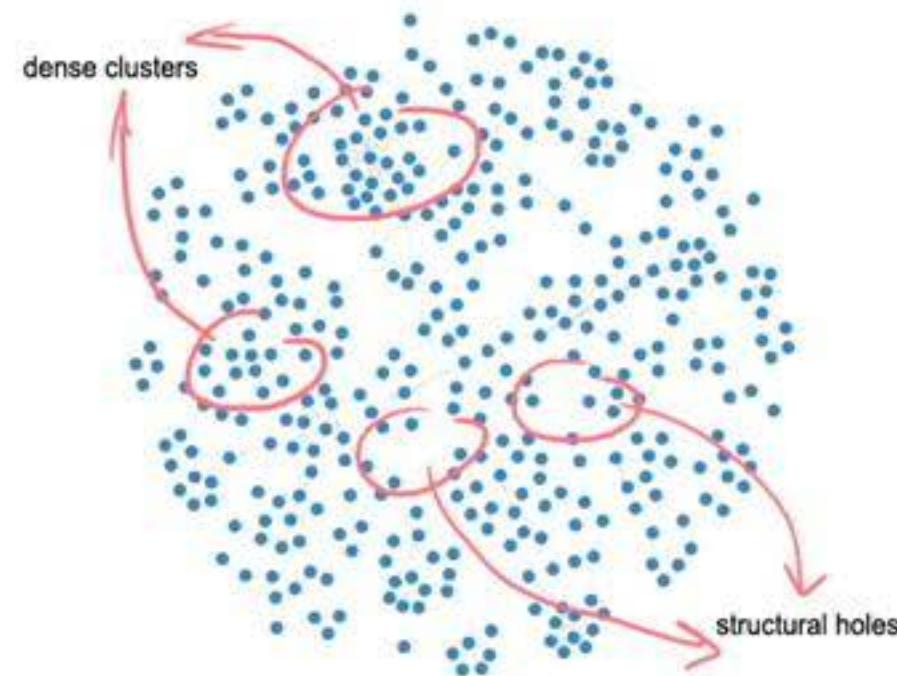


Ballpark + analogy for discovery

- Combining **distant mechanisms**, mechanisms for **new/far purposes...**
 - Rich economic literature: Recombination + innovation...
- Enrich with patent citation **network/text** embeddings...

Looking forward: Scientific discovery

- Predicting the trajectories of science
 - Emerging trends across dynamic heterogeneous graph of scientific knowledge*
 - Predicting the **path of experts** (“*what will your next paper be about*”?)
 - Can we identify **structural holes** with **high-value** research potential?
 - Can we learn **generative models of ideas**, and then “sample” from them?



Ballpark + analogy for discovery

- Combining **distant mechanisms**, mechanisms for **new/far purposes...**
 - Rich economic literature: Recombination + innovation...
- Enrich with patent citation **network/text** embeddings...