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Introduction and Motivation




Old Problems, New Challenges

Classical statistical learning and testing problem:

e Distribution learning

— Estimating the bias of a coin
e Hypothesis testing

— Testing whether a coin is fair
e Property estimation

— Estimating the Shannon entropy

Small domain, many samples, asymptotic analysis




The Era of Big Data

1

2.5 quintillion(2.5 x 10'8) bytes of data are generated everyday?.

Huge success for ML and statistics, but new challenges.

‘Data Never sleeps 6.0 by Domo, 2018




Privacy

Data may contain sensitive information.

Medical studies:

e Learn behavior of genetic mutations

e Contains health records or disease history
Navigation:

e Suggests routes based on aggregate positions of individuals

e Position information indicates users' residence




Private Inference

We want to explore privacy-sample complexity tradeoff.

e Sample complexity of non-private algorithm

e Additional cost due to privacy

Question: Is privacy expensive, cheap or even free?




Differential Privacy (DP) [Dwork et al., 2006]

f is e-DP for any X" and Y", with dpam(X",Y") < 1, for all
measurable S,

DP is widely adopted by the industry, e.g., Microsoft, and Google.




From Non-private Algorithm to Private Algorithm

Sensitivity. The sensitivity of a non-private estimator f is

Apgi= F(X") — F(Y™).
f dHam(f;,%")Sl!( )= £(Y")]

Laplace Mechanism [Dwork et al., 2006]:

e Design a non-private estimator with low sensitivity

e Privatize this estimator by adding Laplace noise
X ~ Lap(An.f/f)




Our Results

This talk will contain the following two works:

e Jayadev Acharya, Ziteng Sun, Huanyu Zhang, Differentially
Private Testing of ldentity and Closeness of Discrete Distributions,
Spotlight presentation at NeurlPS 2018.

e Jayadev Acharya, Gautam Kamath, Ziteng Sun, Huanyu Zhang,
INSPECTRE: Privately Estimating the Unseen, ICML 2018.




Differentially Private ldentity

Testing




Motivating Example

Polish lottery Multilotek

e Choose “uniformly” at random distinct 20 numbers out of 1
to 80.
e |s the lottery fair?




Motivating Example

No! Probability of 50 — 59 too small!

Distribution of first 300 drawings of Polish Multilotek
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The plot credits to " Statistics vs Big Data” by Constantinos Daskalakis.




Identity Testing (IT), Goodness of Fit

[k] :=40,1.2;...; k—1}
g : a known distribution

Given X" := Xj ... X, independent samples from unknown p

Is p = g7
Tester: A : [k]" — {0,1}, which satisfies the following:

With probability at least 2/3,

1. ifp=gqg

A(X™) =
0, if |p—qlrv > a

Sample complexity: Smallest n where such a tester exists




Previous Results

Non-private:

S(IT) = e(-féﬁ) (Paninski, 2008]

e Lower bound intuition: Birthday Paradox

=-DP algorithms: S(IT ) = O( ¥k + YXPEK) [Cai et al., 2017]

/D
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Problem: based on a y?-test, which has high sensitivity.
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e When k is large, S(IT,¢) = @(‘/Z e ) which is strictly

better than the previous result!




Identity Testing (IT), Goodness of Fit
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q : a known distribution
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Is p = g7
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Our Results
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New algorithms for achieving upper bounds

New methodology to prove lower bounds for hypothesis testing




Reduction from lIdentity Testing to Uniformity Testing

Uniformity Testing (UT): Identity testing when g is a uniform

distribution over [k].
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Reduction from Identity Testing to Uniformity Testing

Uniformity Testing (UT): Identity testing when g is a uniform

distribution over [k].
|Goldreich, 2016] In the non-private case: Up to constant factors,

S(IT) = S(UT)

We proved this also hold for the private case: Up to constant

factors,

S(IT,e) =S(UT,e¢)

It would be sufficient to only consider uniformity testing.




Warm Up - Binary Case (Non-private)

Let g = B(0.5), p = B(b). Test whether b = 0.5 or o away.
Algorithm (hard threshold):

1. Let M1(X") be the number of 1's in the samples,
2. If £ |My(X") — 2| < %, output b= 0.5,
3. Else, output b # 0.5.

Analysis:
e Expectation Gap:
Exn~B(0.5+a) [Mi(X")] = Exnvp(o.5) [M1(X")] = an.

e Variance of M;(X"): Var (My(X")) = O(n).

e By Chebyshev's inequality, the sample complexity is O(ﬂ%)




Warm Up - Binary Case (Private)

Let g = B(0.5), p = B(b). Test whether b = 0.5 or o away.
Algorithm (soft threshold):

. Let Z(X") = My(X") — 2,
. Generate Y ~ B(o (e - (|Z(X™)| — %))), o sigmoid function,
. It Y =0, output b=0.5,

. Else, output b # 0.5.




Algorithm Analysis

Lemma

The Algorithm 1s e-DP. It has error probability at most 0.1, with

O(=5 + =) samples.

o %
Reminder: Y ~ B(o (e - (lMl(X") o _g_‘

Proof idea:

e Privacy: For all x,v € R, exp(— |7|) < "STX(;)’) < exp(|7]).

e Sample complexity :

. Consider the case when b = 0.5,
. Z(X") = O(y/n) with high probability (Chebyshev),
. Given n= O(3;), & — |Z(X")| = O(an),

(

. Given n= 0(=-), £(]Z(X")| — %) < —1000.

. Similar argument works for the case when |b — 0.5| > a.




Upper Bound - General Case

Idea: Privatizing the statistic used by [Diakonikolas et al., 2017].

Let M, be the number of samples of x,

k n
S(X"):=3 -3 ’V’x(nx L 1‘.

k

e Sample optimal in the non-private case.

e [ his statistic also has a small sensitivity!




Upper Bound - General Case

S5(X") has the following two properties:

e Expectation gap [Diakonikolas et al., 2017]:

let /l,(p) = Exn,\.p [S(Xn)], if dT\/(U[k]. ,D) >

)~ ulull) > ca?min { T2\ 7. L1

e Small sensitivity:

VX", Y™ with dyam(X", Y") < 1, we have:

IS(X") — S(Y")| < min (




Upper Bound - General Case

Algorithm 1: Private Uniformity Testing

Input: =, o, i.i.d. samples X" from p
Let Z(X") be defined as follows:
; >
k(S(X") — p(ulK]) - 1co? - T ) when n < k,
n(S(X") — u(ulk]) — 5ca?- /2 ), when k <n< fs

n(S(X") — u(ulk]) — Fca), when n > %

—— £X=

\

Generate Y ~ B(o(e - Z(X"))), o is the sigmoid function.

if Y =0, return p = u[k|, else return p # u[k]

Similar analysis also works here!




Lower Bound - Coupling Lemma

Lemma

Suppose there is a coupling between p and q over X" (not
necessarily i.i.d.), such that E [dy.m(X", Y")] < D.

Then, any e-differentially private hypothesis testing algorithm

satisfies




Lower Bound - Binary Case

For any distribution p; and py over X' with drv(p1. p2) = «a, if we
draw n samples 1.i.d., there exists coupling with expected
Hamming distance O(an). Then we have n = Q(%)

If we take p; = B(0.5) and p» = B(0.5 + «), we get the exact
lower bound for binary case.

Problem: This bound doesn’t contain any dependency on k!
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Lower Bound - Binary Case

For any distribution p; and py over X’ with drv(p1, p2) = «a, if we
draw n samples i.i.d., there exists coupling with expected

Hamming distance O(an). Then we have n = Q().

(813

If we take p; = B(0.5) and p» = B(0.5 + ), we get the exact
lower bound for binary case.

Problem: This bound doesn't contain any dependency on k!




Lower Bound - General case

Lemma

Suppose there is a coupling between p and q over X" (not
necessarily i.i.d.), such that E [dy.m(X",Y")] < D.

Then, any e-differentially private hypothesis testing algorithm
satisfies

Use LeCam’s two-point method.
Construct two hypotheses and a coupling between them with small
expected Hamming distance.




Lower Bound - Proof Sketch

e Design the following hypothesis testing problem,
q: draw n i.i.d. samples from u|k].
p: a mixture of distributions:
1. generate the set of 2%/2 distributions, where for each
z € {£1}%/2,
1+ 2z - 2a 1 -2z -2«

’ and p2(2l) =

2i — 1) =
Pe(2i = 1) k k
2. uniformly pick up one distribution, and generate n i.i.d.
samples according to it.
e Bound the coupling distance of uniform to mixture,

4 N
22 32

k'’ k1/2
\

E [diam(X"™, Y™)] < C - o min <

/

e Prove a lower bound by our coupling theorem.
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Lower Bound - Proof Sketch

e Design the following hypothesis testing problem,
q: draw n i.i.d. samples from u[k].
p: a mixture of distributions:

1. generate the set of 2%/2 distributions, where for each
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e Prove a lower bound by our coupling theorem.




Some Intuition when Sparse

Consider the following two distribution:

2. p» is a uniform mixture of B(5 — ) and B(5 + «).

If we draw (t > 2) samples, drv(p1, p2) < 2ta? and the

expected hamming distance is bounded by 2t%a?.

Now we consider the coupling between p and g, for every pair

of symbols, roughly appear 2n/k times in total.

. . - 2,2
Therefore, the total coupling distance is g : 4"k2“ =




Closeness Testing (CT), Two Sample Test

k] = {0,1,2,...,k — 1} is a discrete set of size k.

p, g two unknown distributions over [k|.

X" = (X1, Xa,..,X,) : nindependent samples from p.
Y" = (Y1, Ya,.., Ys) : nindependent samples from q.
Tester: A : [k]" x [k]" — {0, 1}, which satisfies the following:
With probability at least 2/3,

1. ip=
A(X", Y™ = S
0, if Ip = q’T\/ > )




Closeness Testing (CT), Two Sample Test

k] = {0,1,2,..., k — 1} is a discrete set of size k.

p, g two unknown distributions over [k].

X" = (X1, X2, .., X,) : nindependent samples from p.
Y" = (Y1, Y2,.., Yy) : nindependent samples from q.
Tester: A : [k]" x [k]" — {0, 1}, which satisfies the following:
With probability at least 2/3,

U tE p=
A(X", Y™) = Ak
0, if|p—q’7'\/ >

S(CT)=© (k2/3/(r4/3 1 \//?/(1'2) [Chan et al., 2014]




Our Results

Theorem

S(€CT )= 0 (max 4
Q

e When ¢ = o0, S(CT,¢) = O(k

o When k is large, S(CT,¢) = @(




Conclusion

e \We establish a general coupling method to prove lower bounds
in DP.

e We derive the optimal sample complexity of DP identity
testing for all parameter ranges.

e We also give the sample complexity of DP closeness testing,
which is optimal in sparse case.

This work was accepted as spotlight presentation at NeurlPS 2018.




Property Estimation

p: unknown discrete distribution

f(p): some property of distribution, e.g. entropy
(v: accuracy

Input: i.i.d. samples X" from p

Output f : X" — R such that w.p. at least 2/3:

f(X™) — f(p)| < a.

Sample complexity: least n to estimate f(p)




Private property estimation

Given i.i.d. samples from distribution p, the goals are:

e Accuracy: estimate f(p) up to £« with probability > %

e Privacy: estimator must satisfy e-DP




Property Estimation

p: unknown discrete distribution

f(p): some property of distribution, e.g. entropy
(v: accuracy

Input: i.i.d. samples X" from p

Output f : X" — R such that w.p. at least 2/3:

F(X™) — f(p)| < .

Sample complexity: least n to estimate f(p)




Private property estimation

Given i.i.d. samples from distribution p, the goals are:

e Accuracy: estimate f(p) up to £« with probability > %

e Privacy: estimator must satisfy e-DP




Private property estimation

Properties of interest:

e Entropy, H(p): the Shannon entropy

e Support Coverage, S,,(p): expected number of distinct

symbols in m draws from p

e Support Size, S(p): # symbols with non-zero probability




Support Coverage - Motivating Example

e Corbett collected butterflies in Malaya for 1 year.

1 2 4 | 5 | 6 | 7
118 | 74 24 | 29 | 22 | 20

e Number of seen species = 118 + 74 + 44 + 24 + ...

How many new species can be found next year?
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negligible.
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Main results

Theorem 1. Sample complexity of support coverage:

mlog(1/a) . mlog(1/a)
o< )

log m b log(2 + em)

Furthermore,

C(Smase) =@ "B 4 ),

log m Qe

Privacy is free unless ¢ 71,:”— Similar bounds hold for other

properties.




Laplace mechanism

Sensitivity. The sensitivity of an estimator f is

D= F(X™) — F(Y™)].
f dHam(r;'?)\(/")SIH )= E(Y)]

Our algorithms use Laplace Mechanism [Dwork et al., 2006].

e Compute a non-private estimator with low
sensitivity [Acharya et al., 2017]

e Privatize this estimator by adding Laplace noise
X ~ Lap(An.f/E)




Main results

Theorem 1. Sample complexity of support coverage:

mlog(1/a)  mlog(1/a)
o )

log m b log(2 + em)

Furthermore,

C(Sm, v, €) = Q('"'Og(l/”) + i).

log m QLE

Privacy is free unless ¢ \—/17—77— Similar bounds hold for other

properties.




Laplace mechanism (support coverage)

We borrow the following non-private estimator
(SGT) [Orlitsky et al., 2016] with low sensitivity:

Sm(X") =L ,®:(1+ (—2) -Pr(Z > 1)),

where ® is the profile of X", Z ~ Poi(r) and t = (m — n)/n.

Lemma 1. When t > 1, the sensitivity of the estimator satisfies

A(g”’(n)fn)> < % - (1 it e’(f—l)).




Lower Bound - Coupling Lemma

Lemma

Suppose there is a coupling between p and q over X", such that

E [diam(X™, Y™)] < D

Then, any s-differentially private hypothesis testing algorithm must
satisfy




Support Coverage - Lower bound

Consider the following two distributions:

e 1y is uniform over [m(1 + «)].

e uy is distributed over m + 1 elements [m] U {A} where

upi] = m(11+“).¥//' € [m] and w2[A] = 3.

We know
Sm(ul) — Sm(U2) — Q((’lfm).

O
14+

Moreover, their total variation distance is So the coupling

Imcox

distance is 7~




Support coverage estimation on synthetic data

e Given n = 10000 samples, then estimate the support coverage
atm=n-t t=1,2. ..

e Comparison on performance (RMSE) of private and

non-private estimator.




Conclusion

1. Our upper bounds show that the cost of privacy in these

settings is often negligible compared to the non-private
statistical task.

. We derive lower bound for these problems by reducing them

into binary hypothesis testing.

. Our methods are realizable in practice, and we demonstrate
their effectiveness on several synthetic and real-data examples.

This work was accepted by ICML 2018.




Thank you!




