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against this conventional wisdom, at least in
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2. Interpolation via local prediction
3. Interpolation via neural nets



Supervised learning

Training data (labeled examples)
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Supervised learning
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Observations from the field

(Zhang, Bengio, Hardt, Recht, & Vinyals, 2017, | - - S o
Belkin, Ma, & Mandal, 2018) e

80

Neural nets & kernel machines:
 Can interpolate any training data. -
* Can generalize even when

60
training data has substantial &
amount of label noise. i
40 -
—e— (Gauss, interpolation
30 A -=-—- Laplace, interpolation
—— 2-layer FCNN : zero loss
20 A - - Bayes optimal
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More observations from the field

(Wyner, Olson, Bleich, & Mease, 2017)

AdaBoost + large decision trees / Random forests:
* Interpret as local interpolation methods
* Flexibility -> robustness to label noise




Existing theory about local interpolation

Nearest neighbor (Cover & Hart, 1967) Hilbert kernel (Devroye, Gyorfi, & Krzyzak, 1998)

* Predict with label of nearest * Special kind of smoothing kernel
training example regression (like Shepard's method)

* |Interpolates training data * Interpolates training data

* Risk—=> 2-R(g") (sortof)  Consistent’, but no convergence rates
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FIG. 2. The Hilbert kernel regression estimate with a = |



Our goals

* Further counter the "conventional wisdom" re: interpolation
Show interpolation methods can be consistent (or almost consistent)
for classification & regression
* Simplicial interpolation
* Weighted & interpolated nearest neighbor
* Neural nets / linear models



Our goals

* Further counter the "conventional wisdom" re: interpolation
Show interpolation methods can be consistent (or almost consistent)
for classification & regression
e Simplicial interpolation
* Weighted & interpolated nearest neighbor
* Neural nets / linear models

* |dentify some useful properties of good interpolation methods
* Suggest connections to practical methods



Interpolation via local prediction



Preliminaries

* Construct estimate 71 of the regression function
n(x) =Ely' |x" =x]
* For binary classification Y = {0,1}:
nx)=Pr(y'=1|x" =x)
» Optimal classifier: f*(x) =1

n(x)>>

1 based on estimate 7

* Plug-in classifier: f (x) = I 1
2

n(x)>

* Questions:
What is the risk as n = o0? At what rate does it converge?
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. Simplicial interpolation

* |ID training examples (x1, V1), ..., (5, ¥,) € R%x[0,1]
* Partition C := conv(xy, ..., X,) into simplices with x; as vertices via Delaunay.
* Define 77(x) on each simplex by affine interpolation of vertices' labels.
* Result is piecewise linearon C. (Punt on what happens outside of ()




. Simplicial interpolation

* |ID training examples (x1, V1), ..., (X5, ¥,) € R%x[0,1]

e Partition C := conv(xy, ..., X,) into simplices with x; as vertices via Delaunay.

 Define 1j(x) on each simplex by affine interpolation of vertices' labels.
* Result is piecewise linearon C. (Punt on what happens outside of ()

* For classification (y € {0,1}), f is plug-in classifier based on 7.

/ \
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What happens on a single simplex

* Simplex on x4, ..., X441 With corresponding labels y4, ..., V441
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What happens on a single simplex

* Simplex on x4, ..., X441 With corresponding labels y4, ..., V441
e Test point x in simplex, with barycentric coordinates (wy, ..., Wg41).
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What happens on a single simplex

* Simplex on xy, ..., X441 With corresponding labels y4, ..., V441
e Test point x in simplex, with barycentric coordinates (wy, ..., Wg41).
* Linear interpolation at x (i.e., least squares fit, evaluated at x):

X1 d+1
n(x) = Z W; Vi
i=1

X3
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What happens on a single simplex

* Simplex on x4, ..., X441 With corresponding labels y4, ..., V441
* Test point x in simplex, with barycentric coordinates (wy, ..., Wg4+1).
* Linear interpolation at x (i.e., least squares fit, evaluated at x):

X1 d+1

n(x) = Z Wiy
i=1
X3 Key idea: aggregates information

from all vertices to make prediction.
X2 (C.f. nearest neighbor rule.)
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Comparison to nearest neighbor rule

* Supposen(x) =Pr(y =1 1| x) < 1/2 for all points in a simplex

* Optimal prediction of f™ is O for all points in simplex.
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* Simplex on x4, ..., X441 With corresponding labels y4, ..., V441
* Test point x in simplex, with barycentric coordinates (w4, ..., Wg41).
* Linear interpolation at x (i.e., least squares fit, evaluated at x):

X1 d+1

n(x) = Z Wiy
i=1
X3 Key idea: aggregates information

from all vertices to make prediction.
X2 (C.f. nearest neighbor rule.)
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Comparison to nearest neighbor rule

* Supposen(x) =Pr(y =1 | x) < 1/2 for all points in a simplex

* Optimal prediction of ™ is O for all points in simplex.
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Comparison to nearest neighbor rule

* Supposen(x) =Pr(y =1 1| x) < 1/2 for all points in a simplex

* Optimal prediction of f™ is O for all points in simplex.

* Suppose y; = - =y4 =0, but yz,1 =1 (due to "label noise")

L1 I
f(x) = 1 here

i)
) X3 i,

Z3

Nearest neighbor rule Simplicial interpolation
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Comparison to nearest neighbor rule

* Supposen(x) =Pr(y =1 1| x) < 1/2 for all points in a simplex

* Optimal prediction of f™ is O for all points in simplex.

* Suppose y; = -+ =y; = 0, but yz,, = 1 (due to "label noise")

L1 L1
f(x) = 1 here

| Effect is exponentially

more pronounced in

| high dimensions!

1

L2 I3 L2

Z3

Nearest neighbor rule Simplicial interpolation



Asymptotic risk for simplicial interpolation

[Belkin, H., Mitra, '18]

Theorem (classification): Assume distribution of x’ is uniform on some
convex set, and n is bounded away from 1/2. Then simplicial

interpolation's plug-in classifier f satisfies
limsup E[zero/one loss] < (1 + e‘“(d)) - OPT

n

14




Asymptotic risk for simplicial interpolation

[Belkin, H., Mitra, '18]

Theorem (classification): Assume distribution of x’ is uniform on some
convex set, and n is bounded away from 1/2. Then simplicial

interpolation's plug-in classifier f satisfies

limsup E[zero/one loss] < (1 + e“ﬂ(d)) - OPT

n

* C.f. nearest neighbor classifier: limsup
n

* For regression (squared error):

n

(R = 2-R(F)

1
d

limsup E[squared error| < (1 + 0 (—)) - OPT

14




Il. Weighted & interpolated NN scheme

* For given test point x, let x(1), ..., X(x) be k nearest neighbors in
training data, and let y(4), ..., Y (k) be corresponding labels.

Define
X(1) {'(=1 w(X, X)) Yi)

> ikl = Vi wix, X))
\x where

X -0
; v Wrxp)=|x—xp| . §>0

Interpolation: 7(x) = y; as x — x;

15



Comparison to Hilbert kernel estimate

Weighted & interpolated NN Hilbert kernel (pevroye, Gysrfi, & Krzyzak, 1998)
\ Y w(x Xw) Yo ooy D=1 WX, Xp) Y
n(x) = =% %) == w(x, x;)
Z:i=1 W(x: x(i)) 1=1 R |
w(x, x@) = |Ix — x| ~° w(x, x;) = [lx — x| 7°

Optimal non-parametric rates Consistent, but no non-asymptotic rates
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Comparison to Hilbert kernel estimate

Weighted & interpolated NN Hilbert kernel (pevroye, Gysrfi, & Krzyzak, 1998)
Ax) = Z?:iw(x» X)) Vi) ACe) = ?=n1 w(x, X;) ¥
=1 W(x, xp)) i=1 W (%, X;)
w(x, X)) = ||x — x(i)||‘5 w(x, x;) = ||lx — x;]|~°
Optimal non-parametric rates Consistent, but no non-asymptotic rates

Localization is essential to get non-asymptotic rate.
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Convergence rates for WiNN (Belkin, H, Mitra, 18]

Theorem: Assume distribution of x' is uniform on some compact set
satisfying regularity condition, and n is a-Holder smooth.

For appropriate setting of k, weighted & interpolated NN estimate 7

satisfies
E [ (ﬁ(X) = n(X))Z] < O(n—Za/(2a+d))

e Consistency + optimal rates of convergence for interpolating method.

* Follow-up work by Belkin, Rakhlin, Tsybakov '19: also for Nadaraya-
Watson with compact & singular kernel.

17




Interpolation via neural nets



Two layer fully-connected neural networks

Test (%)

Train (%)
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MNIST, Zero-one loss
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Random first layer
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[Belkin, H., Ma, Mandal, '19]
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"Double descent” risk curve Pl 1o . el 98

under-parameterized

Test risk

“classical”
regime

over-parameterized

“modern”
interpolating regime

Risk

-~ Training risk:
T R . _interpolation threshold

i T S -2k -
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Approximating a kernel machine?

[Belkin, H., Ma, Mandal, '19]
TIMIT, Zero-one loss

* Effectiveness of interpolation 97 -
o1 . . ~§= RFF
depends on ability to align with —_ . orm st .

the "right" inductive bias
* E.g., low RKHS norm

Test (%)

= RFF
- Min. norm solution h, .

1 1 1 1 I |
0 10 20 30 40 50 60



Linear regression w/ weak features et x, 194 xu, 1, 194

&

Gaussian design linear model with D features
All features are "relevant” but equally weak il
B © -
Only use p of the features (1 < p < D) <+ -

Least squares (p < n) or least norm (p = n) fit

O —

Theorem: Under certain eigenvalue condition, | ' | | l |

S . . " . 0.0 0.2 0.4 0.6 0.8 1.0
minimum is beyond point of interpolation (p > n). ,
Fraction of total features chosen

Concurrent work by Hastie, Montanari, Rosset, Tibshirani '19 (also for some non-linear models!).

Other analyses of linear models: Muthukumar, Vodrahalli, Sahai, '19; Bartlett, Long, Lugosi, Tsigler, '19.
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Conclusions/open problems

1. Interpolation is compatible with good statistical properties

2. They work by relying (exclusively!) on inductive bias: e.g.,
1. Smoothness from local averaging in high-dimensions.
2. Low function space norm

Open problems:
* Characterize inductive biases of other learning algorithms

* Benefits of interpolation?

23



Two layer fully-connected neural networks
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Linear regression w/ weak features e, i xu, 194 xu, 1, 194

o _

Gaussian design linear model with D features
All features are "relevant” but equally weak il
B © -
Only use p of the features (1 < p < D) < -

Least squares (p < n) or least norm (p = n) fit

o —

Theorem: Under certain eigenvalue condition, | ' | | l |
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Concurrent work by Hastie, Montanari, Rosset, Tibshirani '19 (also for some non-linear models!).
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On learning methods that memorize data

Sasha Rakhlin
MIT

Aug 26, 2019

Based on (Belkin, R., Tsybakov '18), (Liang and R. ’18), (R. and Zhai ’18),
(Liang, R., Zhai "19)




Can a learning method be successful if it memorizes the training data?




OUTLINE

Warmup: The Nadaraya-Watson Estimator

Kernel Ridgeless Regression (minimum-norm interpolation)
d = O(1) regime
d x n” regime, x € (0,1)
d < n regime

Application to Wide Neural Networks

Extra




AN EMPIRICAL EXAMPLE

Kernel Regression on MNIST

digits pair [i,j]

" —o— [2,5]
o — [2,9]
2 —&— [3,6]
S -4 [3,8]

- [4,7]

L L4 Ll

0.0 0.2 0.4 0.6 0.8 1.0 1.2
lambda

A = 0: the interpolated solution, perfect fit on training data.




[SOLATED PHENOMENON? NO

To Understand Deep Learning We Need to Understand

Kernel Learning

Mikhaal Belkin, Siyuan Ma, Soumuk Mandal
Department of Computer Science and Enginecning
Ohio State University

{mbelkin, masi]@ cse.obio-stare.edu, mandal. 32 @ oxw.edu
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A STUDY OF GENERALIZATION IN THE MEMORIZATION REGIME

“local” kernel

“global” kernel

neural
networks

methods methods
—> -
Nadaraya-Watson kernel “ridgeless”
estimator regression

(min-norm interpolation)




OUTLINE

Warmup: The Nadaraya-Watson Estimator




WARMUP

Data Yi =" (Xi)+€;,1=1,...,n, and f* is “smooth”.

Classical Nadaraya-Watson estimator:

fn(x) = ) YiWi(x)
i=1

where

i K((x-Xi)/h)
Wl() Zn K((X—Xl)/h)

i=1

 K(2) = Ijj2)1<1) 4 K(z) = (1 —2°), 4 K(z) =e®

N
I/

Figure 5.1. Examples for univariate kernels.

(figure from Gyorfi et al)




NB: “fit to data” controlled by kernel height at 0.

Example:
K(x) = min{1/ ||x|",T}

We get ;‘\,I(Xi) - Y; as T — oo.
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Data Y =f"(Xi)+€;,1i=1,...,n, and f* is “smooth”.

Classical Nadaraya-Watson estimator:

fn(x) = ) YiWi(x)
i=1

where

K((x - Xi)/h)

W)= S KG XM

p K(z) = Ijjz) <1 tK(x) = (1—-2?), 4K(z) =e"

N
I/

Figure 5.1. Examples for univariate kernels.

(figure from Gyorfi et al)




NB: "t to data” controlled by kermel heaght at o

Example

Kix] =mm<l \ 1
Weagd f.0X 1Y as 1T+ o
Nadarava-Watson with kemel Kix ) | X! 18
* consistent: || ! v 0 m probabilty if x has density )

* pointwise convergence occurs nowhere: there exsts a
dstnbuton such that for all x m suppart, f,(x) does not convege to

fIx) almost surely a8 11—+ o

Problem: kernel 5 too ghbal [h cancels) and nas cannot be contral led




BELKIN, RAKHLIN, TSYBAKOV 18 (SEE ALSO BELKIN-HSU-MITRA "18)

Our fix: truncate kernel as K (u) = |u/ " I{|u| < 1}.

Informal theorem: can choose bandwidth h in a minimax-optimal way
such that

2B

- * 2 ey TSl S
IE, fn = < Cn 2B+d \

under the assumption that f* is f-Hélder. Note that f,, is interpolating.

Summary:
» Fit to data does not necessarily say anyting about overfitting.

» Data fitting part (governed by parameter T) is decoupled from the
bias-variance trade-off (as given by parameter h).




CLASSICAL PICTURE: U-SHAPED CURVE

Uiy Wy ol v o) Poda s

High Bias Low Bias
[Low Variance High Variance
- - e mEEm. - Jre—

Test Sample

./‘

Prediction Error

A

Training Sample

Low High

Model Complexity

FIGURE 2.11. Test and training error as a function of model complexity.
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OUTLINE

Kernel Ridgeless Regression (minimum-norm interpolation)




Kernel Ridge Regression:

l n ‘ o : 9
min — Z(f(xi) -Yi)" +A|f||%
feH TL i=1

Conventional wisdom: explicit regularization A # 0 added when the
Reproducing Kernel Hilbert Space H is high- or infinite-dimensional

Puzzle: Interpolated solutions (A = 0) often perform very well in practice




AMincnorm interpolaton

yremun L. fIx4] U, 1L<n

* "Smphaty s still enlaroed, so 1t 5 conocvable that mom mnwm norm
mterpolant generalmes
* GD/SGD started from O converges to munmum-norm solution

* Abko GD far wide neural netwarks can be related to keme ] rideeless

e sTesssian




OUTLINE

Kernel Ridgeless Regression (minimum-norm interpolation)

d = O(1) regime




(RAKHLIN AND ZHAI ’18)

Take Laplace kernel

Ko(x,x") =0 Y exp{- Hx -~ x'H /o}

—_—

fn 1s minimum norm interpolation, as before.

. . . . .y - - 2 .
Theorem: for odd dimension d, with probability 1 — O(n Y/ ), for any
choice of o,
2
>04(1).

Effo -+

Hence, interpolation with Laplace kernel does not work in constant d.




LOWER BOUND FOR LARGE ©




(RAKHLIN AND ZHAI '18)

Take Laplace kernel

Ko(x,x')=0 d

exp{-[x-x|| o}

—_—

fn 1s minimum norm interpolation, as before.

- . - - _ o : ~1/2 Sz o
Theorem: for odd dimension d, with probability 1 — O(n / ), for any
choice of o,

E|f. -] 20Q4(1).

Hence, interpolation with Laplace kernel does not work in constant d.




LOWER BOUND FOR LARGE ©




LOWER BOUND FOR SMALL O




Interestingly, the two lower bounds cover the range of all o, showing that
Laplace interpolation cannot succeed in low dimension.




OUTLINE

Kernel Ridgeless Regression (minimum-norm interpolation)

d xn® regime, x € (0,1)




(LIANG, RAKHLIN, ZHAI ’19)

Upper bound on risk of minimum-norm interpolant has “multiple-descent”

shape.

174 173 1/2 1

rate = n

1/2

Note: we do not make assumptions on low effective rank of data (unlike
(Bartlett et al '19) and (Liang and R. '18)).




Assumptions:
» Kernel is of the form k(x,x") = h({x,x")/d)
oy d ¢ » ) 1 7 i : e

> X1.....Xn € RY are i.i.d. from P®% and P is sub-Gaussian

» Taylor expansion
m .

1 :
h(z) =) aiz (1)

i=0

converges for all z € R with all coefficients o; > 0.

> Regression function f.«(x) = E[Y|X = x] satisfies

o
S’

f*(x):v/‘K(x.z)pfr(z)dz (:

with p.(z) bounded.




(LIANG, RAKHLIN, ZHAI '19)

i S SR 1 | hi e
Let d =n® with « ¢ [k“”, k”] for integer ko > 1.

[Theorem (Informal).) e

With probability with high probability over draw of X,

= iy d*e B
E[If—f*I%X|X]SC-( o )xn"

n dko+l

where B :=min{(ko+1)x—-1,1—-koa}.




BI1AS-VARIANCE

Min-norm interpolant has closed form
f(x) = K(x, X)K(X)Y

where K(x,X) = [K(x,x1),...,K(x,xn)] and [K(X)]i; = K(xi,%;) is the
kernel matrix.

Bias-variance decomposition, conditionally on X
2 —~

e =By [ -Ev[RlL |+ B, @)

(. =7 o >
— =L oA

Ey | [T - f.

variance Mias <

Up to var(Y), the variance term is
W -1 32
Ex [K(x, X)K(X) ™|

: i, L9 . ;
and under our assumptions bias® is dominated by variance.




Assumptions:

» Kernel is of the form k(x,x") = h({x,x") /d)

H) (i

> X1.....Xn € RY are i.i.d. from P®¢ and P is sub-Gaussian

» Taylor expansion
o .
h(z)=) oz (1)
i=0

converges for all z € R with all coefficients o; > 0.

> Regression function f.(x) = E[Y|X = x] satisfies

)
p R

f*(x):fK(x.z)p*(z)dz (2

with p.(z) bounded.




BiAs-VARIANCE

Min-norm interpolant has closed form
f(x) = K(x, X)K(X)Y

where K(x,X) = [K(x,x1),...,K(x,xn)] and [K(X)]i; = K(xi,%;) is the
kernel matrix.

Bias-variance decomposition, conditionally on X

gl 0 oM 2 o 28 | 1 2 8 Y O )

N - N —
= B N

Ey [ [T - £

variance bias<

Up to var(Y), the variance term is
- -1 2
Ex [|[K(x, X)K(X) |

. . 2 . .
and under our assumptions bias® is dominated by variance.




ROADMAP OF THE PROOF (I):

Consider truncated kernel




ROADMAP OF THE PROOF (I):

Consider truncated kernel

W) = Yo, K = h¥ (i, %) fd)/n.

- ‘[Proposition (Restricted Lower Isometry Property for Kernel).}-

2 : , v _ k : 1+k _ : - :
With high prob, for any k < kg, K™ has (‘ . ) nonzero eigenvalues,

AT . —k _ _ k] .
all of them larger than Cd ™, and the range of KUk i

{(p(x1),,p(xn)) : p is a multivar. polynomial of deg. < k}.




ROADMAP OF THE PROOF (II):

1 : 1 < ‘Kg+d
> Let (r1+7a)k, be index in {1,2,, (%)}

: . ko+d \
» Taylor expansion gives an n x ( = ‘) matrix @ as

B o N Ja(rp et ) /2
(Di-(rl"'rd)k() = \/Cryomg &ry bt g Pryoorg (xi)/d

such that
K[kn] - i(D(DI
n
» Hard to analyze because of correlations.

N——— . ; 2 :
» Gram-Schimdt Process to orthogonalize 1,z,z°,... with respect to

L>(7). This gives q1,q2,... on R.

== (l‘1+-~~+1'd)/2
\yi.(rl---rd)k“ = \/Crl'”rd (x'!'l +“'+Td q!'! -'-I‘d (xl)/d

: o d .
where G, «ry (%) 5= [Tis; Ge; (X[1])-
» Prove that this process gives ® = WA with bounded A in operator
norm.




ROADMAP OF THE PROOF (III):

> Let fy(x) = Xy, Yrirqgri-rq(x), then

I}Efv(x)fl S (H:ifw/(x)z)2

» Show a “small-ball” property for functions

fu()() s Z U(rl..-rd .)k‘() \/Crl"”'d Krg+trg ql'l"'l'd(X)/d(]-l+..-+'].(l)/2

r1,esTa 20,24 ri<ko

That is, there exist 0,0, such that for any u

P(fu(x)? > OE[fu(x)*]) 2 &

> Lower bound eigen-values of

YY/n > Cd "o
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OUTLINE

Kernel Ridgeless Regression (minimum-norm interpolation)

d X n regime
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ASSUMPTIONS

» (A.1) High-dim regime: both d,n large, c<d/n<C
Ya=E.[xx"] satisfies |Zq4| < C and tr(Z4)/d > c.

. =1/2
> (A.2) (8+ m)-moments: z; := L 2
each entries of z; are i.i.d. mean zero, with bounded (8 + m)-moments.

» (A.3) Noise condition: E[(f.(x) —y)*|x=x] < 0° for all x € Q.
> (A.4) Non-linear kernel: for a non-linear smooth function h(-)

Ki{x, %)= h(%(x.x’))

NB: (A.4) can be replaced with h ( Lflx = x’




OUTLINE

Application to Wide Neural Networks




One-hidden-layer NN

f(x; W,a) = — > aio(w;X), (¥
i £

] . , ™ . ~ T I\ T
where W = (Wy, -, W) € RAHI>*M iatrix and a e R™ and X = (%", \/(—1) .

it
p

Square loss:

l n 9 ‘
L= = > (f(x;; W, @) - y5) (6)
n -
Gradient: ( 2 )
oL 1 &0 X
o 3 W. — fd
aal n ]:Zl /—rn ( (X) a_) Ul) (‘ )
and




Gradient flow yields

df(x; W(t), a(t)) 1

> h™(x,%;) (f(x; W, a) - y;)
)=1

dt T
for
m / l o T ~ T~ 1 Tisaf Ui & T ~ / T ~7 ,
ho(x,x)=— Z o(w;X)o(w;X ) +x X z a;o (w;x)o (w;x') (9)
| m \;5 i=1 |

and f converges to the minimum-norm interpolant.




With N(0,1) independent init, as m — oo, H™ converges to

x| [|%x"|U(cos Oz x+)

1
!/
h™(x,x") = —
A7t
where 05 z- is the angle between X and X’ and

U(t) - 3t(71 = 'c‘l,I‘(ZT(':()s('t)) + m

The theorem stated earlier in the talk for the d < n® regime can be
extended to this kernel.




A STUDY OF GENERALIZATION IN THE MEMORIZATION REGIME

“local” kernel

“global” kernel

neural
networks

methods methods
—> = =
Nadaraya-Watson kernel “ridgeless”
estimator regression

(min-norm interpolation)
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Assumptions:

» Kernel is of the form k(x,x") = h({x,x")/d)

) (l

: i : :
> X1.....Xn € RY are i.i.d. from P®¢ and P is sub-Gaussian

» Taylor expansion

h(z) = io«lzi (1)

1=0

converges for all z € R with all coefficients o; > 0.

> Regression function f.(x) = E[Y|X = x] satisfies

Do
g’

f*(x):‘/K(x.z)p*(z)dz (:

with p.(z) bounded.




(LIANG, RAKHLIN, ZHAI ’'19)

i = & <Y, | 1 s SO SO
Let d =n" with x ¢ [k(,+-l’ k”] for integer ko > 1.

[Theorem (Informal) j S —

With probability with high probability over draw of X,

S 2 dk” mn —B
i[lf—f*lp\|X]_<_C( )XTI[

+

where B :=min{(ko+1)x—-1,1—-koo}.




Assumptions:
» Kernel is of the form k(x,x") = h({x,x")/d)
m d ¢ » _ 1 & tw

> Xi.....Xn € RY are i.i.d. from P®¢ and P is sub-Gaussian

» Taylor expansion
w .

1 :
hi(z) =) iz (1)

i=0

converges for all z € R with all coefficients «; > 0.

» Regression function f.«(x) = E[Y|X = x] satisfies

o
S

f*(x):v/‘K(x.z)p,-r(z)dz (

with p.(z) bounded.
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“. ..PRECISE ASYMPTOTICS AND DOUBLE DESCENT”

arXiv:1908.05355
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“LINEARIZED TWO-LAYERS NEURAL NETWORKS..."”

Behrooz Ghorbani Theodor Misiakiewicz

arXiv:1904.12191
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“SURPRISES IN HIGH-DIMENSIONAL RIDGELESS ...”

ES

Trevor Hastie Saharon Rosset Ryan Tibshirani

arXiv:1903.08560
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Motivation

60

T
|
= ]
& ]
n 40=- !
) 1
o I
v I
c 1
? 20+
o I
Y
N I
0~ —-
T T T T T T
T
0.6 —— Tes
- Tramn
a [
o 0.4+ I
o I
et
5 |
C:T 0.2+ 1 e <
' |
I
29 T T ; T T T
3 10 40 100 300 800

Number of parameters/weights (x10%)

Belkin, Hsu, Mandal, 2019
Two-layers fully connected, MNIST

Do we understand these curves?
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Defining the question |
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Desiderata

Zero-one loss {9%)

o>

Squared loss

—— - -

| |
3 10 40 100 300 800

Number of parameters/weights (x107)

v/ Peak at the interpolation threshold
v/ Global minimum in the overparametrized regime
v/ Monotone decreasing in the overparametrized regime

v/ Vanishing (explicit) regularization
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Ideally: Two-layers neural networks

fNNE{f(fB):ZaN(Wz’,m)) : aiéR,wieRdViSN}-

» Train by SGD until TrainingError= 0

» Compute TestError for this network

» Perhaps in a couple of years

Andrea Montanari (Stanford) - Random features models I August 26, 2019 9 /43




Two linearizations. .. i
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Rahimi-Recht 2008

az-ERWSN}.

» W = [wy,...,wy]| random; w; ~ Unif(S4~1(1)), i.i.d.

Andrea Montanari (Stanford)
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Jacot-Gabriel-Hongler 2018

Fnt(W) = {f(z) = Y _(ai, @) o'((wi, @) : ai ERVi< N}

» W =[wy,...,wy] random; w; ~ Unif(S¢-1(1)), i.i.d.

» Linear expansion of NN around random initialization

Andrea Montanari (Stanford) | Random features models ) August 26, 2019 12 / 43
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The rest of this talk

1. A stylized (Gaussian) model

2. Nonlinear features: Approximation in high dimension

3. Nonlinear features: Generalization curve
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A stylized (Gaussian) model |
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Setting
» Data {(vi, i) }i<n, 2i = ¢(x;) € RP

yi = (Bg, i) + €&, € ~ N(0,77)

» ‘Ridgeless regression’

= — - 2 2
B(X) = arg min { |ly — ZB3 + N|BI3 |,

_~

(0) = lim B(X)

A— 0+

@)

» Test error

Andrea Montanari (Stanford) | Random features models August 26, 2019 15 / 43




A stylized model

» (zaussian features

zi ~ N(0, X)
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Setting
» Data {(yz, :Bz')}z'gn, b — (]5(337,) c RP

Ui = By 2¢) &, E; v N(O,TZ)

» ‘Ridgeless regression’

a — - 2 2
B(X) = arg min { |ly — ZB3 + N8I3 |

_~

(0) = lim B(A)

A— 0+

@)

» Test error

-
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Precise asymptotics

Theorem (Hastie, M., Rosset, Tibshirani, 2019)
Ifp/n—7, £ =1, |Bolla = 2, then

2.9
1=y

R(Bo) — 2—1—1+r2( _l> for vy > 1.

T
T
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Setting
» Data {(yz, ajz')}z'gn, P — ¢(£BZ) c RP

yi = (Bg, i) + €&, € ~ N(0,7°)

» ‘Ridgeless regression’

o . 2 2
B(X) = arg min { |ly — ZB]3 + N|BI1 |,

_~

(0) = lim B())

A— 04

@)

» Test error
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Precise asymptotics

Theorem (Hastie, M., Rosset, Tibshirani, 2019)
If p/n — 7, X = I, ||Bollz = 72, then

R(Bo) —

Further:
> If X £ 1,

> If z; = Y22, x; with 1id components . . .

[Belkin, Hsu, Xu, 2019, Bartlett, Long, Lugosi, Tsigler, 2019]
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> =1,, SNR = HﬁoH%/TQ

Isotropic features

l

= 7 — SNR=1
- SNR =233
-~ SNR = 3.66
—_— SNR=5
m —
(o —
-
L
c
T —
N
o —
l | | I I | | T
0.1 0.2 0.5 1.0 2.0 5.0 10.0
b
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Isctropic features

9 7| e— SNR =1 ‘
— SNR=233

SNR =366
— SNR=5

|
¥ f :
= PER cees®
1 [\~
,\“.‘,
R
o~ - R ...............
b SO
b . b e T a—
o ~
=1 T ! T
0.1 0.2 0 1.0 290 0 10.0
b 4

v/ Peak at the interpolation threshold
X Global minimum in the overparametrized regime
X Monotone decreasing in the overparametrized regime

v/ Vanishing (explicit) regularization
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% = Ip, SNR = [|Bf3/7

Isotropic features

= | = SNR=1
- SNR =233
-~ SNR = 3.66
— SNR=5
m —
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.
D
s
T —
N
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l | | | [ T | T
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7
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Precise asymptotics

Theorem (Hastie, M., Rosset, Tibshirani, 2019)
If p/n— 7, B =1, ||Bolla = r°, then

R(Bo) —

Further:
» If X #£1,

i — 21/2332-, x; with 11d components . ..

[Belkin, Hsu, Xu, 2019, Bartlett, Long, Lugosi, Tsigler, 2019]
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Isotropic features

o . |
v — ONR =1
— SNAR=233
SNR=366
— CNA - 5
Sl SNAR=5 J
. f
|
o | -
< - f % '.-".
—
4
a0 R ...............
. . “““’“m“..._
o -
1 1 | T
0.1 02 05 1.0 20 4] 10.0
v

v/ Peak at the interpolation threshold

X Global minimum in the overparametrized regime

X Monotone decreasing in the overparametrized regime
v/ Vanishing (explicit) regularization

» Dimension — Number of parameters

Andrea Montanari (Stanford) Random features models I August 26, 2019 19 / 43




Misspecified model

Y, — <1603 zi) i <BO) 22) T €4, Eq ™ N(O) T2)

» ‘Ridgeless regression’

3 = - 2 2
B(\) = arg min {|ly — ZBI3 + AlIBI3} .

Andrea Montanari (Stanford) e ) ?—j—i{ﬁ' models i August 26, 2019 20 / 43




Misspecified Gaussian model

Misspecified model, SNR=5

& | — a=05
— =
a=2
— g =5
. R
v o |
m 2 2
— =4 el . T
0 e ._.,,;‘;;;;;g_—.:
&.*."-
R S S
o ——
| | ! | I : |
0.1 0.2 05 1.0 2.0 50 10.0
Y

v/ Global minimum i1n the overparametrized regime
X Monotone decreasing in the overparametrized regime

» Dimension # Number of parameters
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Nonlinear features: Approximation in high dimension |
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Setting

Nonparametric regression
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Setting
> {(vi, o) bi<n 1id. zi ~ Unif(S1(Vd)),

y; = fi(xs) +&;  &; ~ N(0O,7°)

» Random features W, ~ Unif(Sd"l(l)),

N

Fre(W) = {f(a:) =Y g 0((wi,x)) : @ ERVi< N}.
i=1
» Ridge
N
a(A) = argmin,gw {f@n [(y — Z a;o({w;, ;,;))2] n % ‘all%} .
i=1
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Setting

» Test error

Rre(f; f) = E{(f(z) - f(z))*}.

» First question

What can I fit with infinite data n = oc0?
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An experiment
d = 20 d = 30
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An experiment

3.0 ' v 2 3.0 -
" [ i * Nw100| 1
' 8 N-20|

-
-

® N=300{ 2.5k
A N 400 | * A ?

R/R
-
w
L2
>
>
o
®» !
R/R
-
w
L 2 4
"o
-
L
“sHe »

10L'Q R e B o 0 1 || e S SIS CED: HEI N
L

» RF no better than trivial predictor fy(x) = 0O
» A ‘difficult’ target £.7

d/2 d

fe2(z) = Zmzz — Z 333
=1

1=d/2+1
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A theorem (P<¢ projects on low degree)

Theorem (Ghorbani, Mei, Misiakiewicz, M. 2019)

Assume N < d¥*1-9 for a fized integer £ and some § > O.
Then, with high probability:

Rrr(fe) = Rre(P<efi) + ||IPsefillZ2 + o(||£122) -

Example: If # neurons N < d?, then

RRF(]C*, W) 2 Rlin. reg.(f*)

= Ig{iﬁnE{(f*(w) —b— (8, 2)) }:

[Bach 2017;...]

August 26, 2019 28 / 43
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An experiment

3.0/ , 3.0 =
: [ l :
2.5 254 N
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) 5 | |
2.0f—- g 2.0F—g 2 =
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~1.5‘ ; o BA :155‘- : R i
S ¥l e & L. S8
t b 2
1.0k 1.0
0 (io" T 107 0‘%"— ___________ 10° 10°
{ n/d

» RF no better than trivial predictor fy(x) = 0
» A ‘difficult’ target f.7

d/2 d
— 2 2
fe2(T) = _E 33z - _S_ , Ly
=1 1=d/2+1
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A theorem (P<¢ projects on low degree)

Theorem (Ghorbani, Mei, Misiakiewicz, M. 2019)

Assume N < d¥*1-9 for a fized integer £ and some § > O.
Then, with high probability:

Rre(fi) = Bre(P<efi) + |IPsefill22 + o(||£llZ2) -

Example: If # neurons N < d?, then

RRF(f*; W) 2, R]in. reg.(f*)

= rg{iﬁnE{(f*(w) — b~ (8,2)) }

[Bach 2017;...]
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Similar theorem for NT
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1.0

0.8

X 0.6F-~—

7\ NSRRI SRDTRROIeY. SO | S

0.0 ' | ] |
0 1 2 3 5

log N/logd

Andrea Montanari (Stanford) | dom features models I August 26, 2019 30 / 43




1.2

log N /logd

What happens at finite n?
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Nonlinear features: Generalization curve y
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Setting

» Random features ridge regression (as above.)

» Proportional regime n, N, d — 00,

N n
T — >
> flz) ={Bg: T) (Higher order terms & noise)
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Precise asymptotics

Theorem
Assume f,(x) = (B, ) and define (for G ~ N(0,1))

_ b

b2 = Elo(G)? - Eo(G)|* -, (=15

Then, for any A > 0, we have

Rre (o fe) = 1Bl ZB(C, 1, W2y A B2) + T2H (¢, 91, %2, A/B2) + 04(1),

where B((,91,%2,A), Y ((, %1, Y2, A) are explicitly given below.

: = e A e e =
Andrea Montanari (Stanford) I Random features models August 26, 2019 33 / 43




BExplicit formulae

Let (v1(£), v2(€)) be the unique solution of

- Czl/g 1

V1—¢1(—$—V2—1_C2u11/2) :

B (2 -2

V2—¢2(—€—V1—1_C2V1V2) ,

Lot ) —.1/2 ; —.1/2
X = vi(8(Y192A) ' 7) - va(i(P19ar) ),

and
Eo(Co 91, %2, A) = — x2C% + 3% + (W12 — ¥2 — 1 + 1)x>¢% — 2x3¢? — 3532

+ (Y1 + %2 — 31 + Dx2C 4+ 2x%¢% + %2 + 3¢1¢ax(? — Y19a,
E1(C, %1, Y2, A) = Pax C¢* — vax?¢® + Y19axC® — Y192,
E2(C, 91, %2, 2) = x°¢ = 3x ¢t + (91 — DX +2x3¢* +3x3 ¢ + (—y1 — 1Pt — 253 - X2,

We then have

E2(C, Y1, %2, N)
é’aO((:) ¢l»¢2;.;)

éol(C»‘(Pl,‘wz,X)
(g’oO(C) 11’1,“#2,;) ,

Y(C, 1,92, A) =

B(Cy 1, P2, A) =
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Random matriz theory for kernel inner product random matrices

[Cheng, Singer, 2013; Do, Vu 2013; Fan, M. 2019; ...]
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BExplicit formulae

Let (v1(£), v2(€)) be the unique solution of

(:21/2 -1

V1_¢1(—£_V2_1—C2U1V2) :

B (2 .

V2—¢2(—£—V1—1_C2V1V2) :

e —.1/2 —.1/2
X = vi(t(P192A) ' 7)) cva(i(yp192A) %),

and
Eo(C, 91, %2, M) = — xC% +3x* ¢ + (Y192 — ¥2 — ¥1 + 1)x3¢® — 2x3¢? — 3x3¢?

+ (1 + P2 — 319 + 1)x2¢? + 2x2¢% + %2 + 3919ax(? — Y192,
E1(C, %1, %2, A) = Yax ¢ — Yax?¢? + P1vax(® — Y192,

Ea(C, Y1, %2, 2) = x°¢% =3¢ + (91 — 1) + 23 ¢ +3x3¢% + (—y1 — 1)x2¢? — 2x%¢% — X2,

We then have

E1(C, %1, %2, A) &2(C, Y1, %2, A)

2

B((,P1, %2, ) = —,  Y(( ¥1,9%2,0) = - — .
Eo(C, %1, ¥2, ) Eo(C, ¥1,¥2,2)
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Insigths
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» Singularity at the interpolation threshold

» Minimum risk at extreme overparametrization N/n — 0.
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» Same at A > 0 fixed: Minimum at N/n — oo.
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» High SNR: Minimum at A = 0+.
» Low SNR: Minimum at A > 0.
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» High SNR: Minimum at A = 0+.
» Low SNR: Minimum at A > 0.
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Conclusion )
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Overparametrization % Poor generalization

» Mechanism #1: Early stopping/mean field
[Mei, M, Nguyen 2018; Chizat, Bach 2018]

» Mechanism #2: High dimension/interpolation
[This talk]

» Open questions:

» Fully trained networks?
» When is extreme overparametrization optimal?
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[This talk]

» Open questions:

» Fully trained networks?
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BExplicit formulae

Let (v1(£), v2(€)) be the unique solution of

- Czl/g 1

V1—¢1(—£—V2—1_CQUIV2) ;

B ¢2vy -

V2—¢2(—€—V1—1_C2V1V2) ,

Lret ) —.1/2 ; —.1/2
X = vi((P192A) 7)) - va(i(192A) ' 7),

and
Eo(C, %1, %2, 0) = — xC% +3x* ¢ + (W12 — ¥2 — ¥1 + 1)x3¢® — 2x3¢? - 3x3¢?

+ (Y1 + 2 — 3192 + )¢ + 2x2¢% + x° + 3y192axC? — Y192,
E1(C, %1, Y2, 2) = Pax - C* — vax?¢® + Y192xC — Y192,
E2(C, 1,92, 2) = x°¢% —3x ¢t 4 (w1 — DxCC® +2x3¢H + 3532 + (—y1 — )3t — 2% - X2

We then have

&2(C, Y1, %2, A)
Eo(C, Y1, %2, A)

E1(C, %1, %2, A)
<:‘>°0(C,1l)1,¢2,§),

YV, P1, P2, ) =

B, P2, A) =
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Precise asymptotics

Theorem
Assume f.(x) = (B, ) and define (for G ~ N(0,1))

_ b

b2 = Elo(G)?] - Elo(G))* -, (=15

Then, for any A > 0, we have

RRF(fA)f*) = H/@OHg‘@(C) ¢1’¢2a A/Ef) + Tznj/(ga'lpl)w.?a A/Ei) =2 Od(l) )

where B((, 91, %2, A), Y ((, %1, Y2, A) are explicitly given below.

* = D Ot e £ Sy L T P ]
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1.2
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What happens at finite n?
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