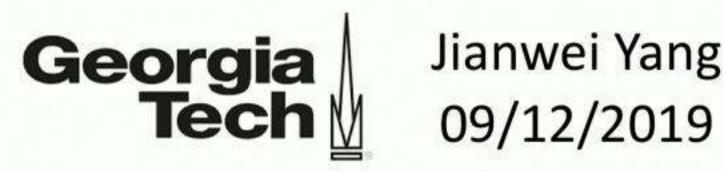
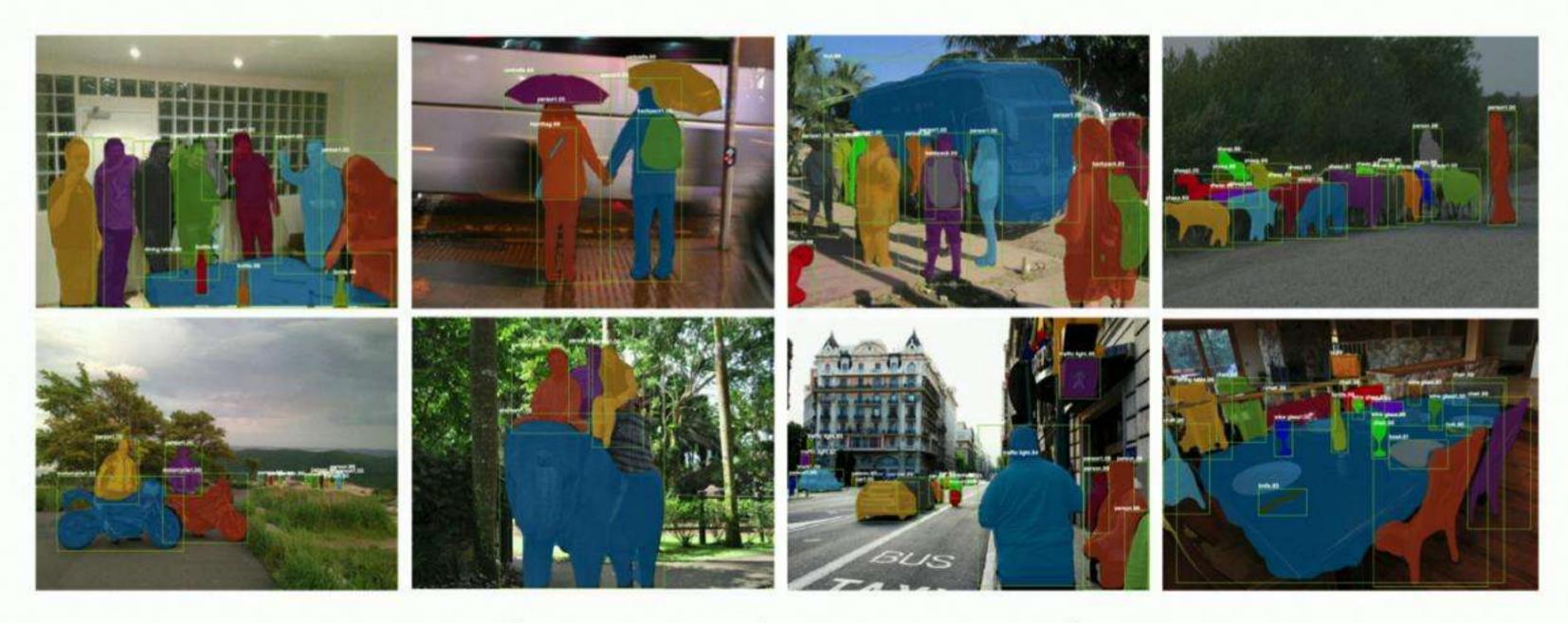
Structured Visual Understanding and Interaction with Human and Environment



Jianwei Yang

The world around us is highly structured

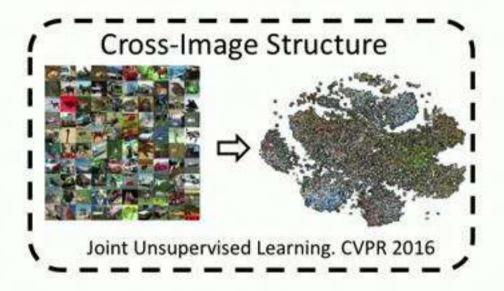
Images are highly structured

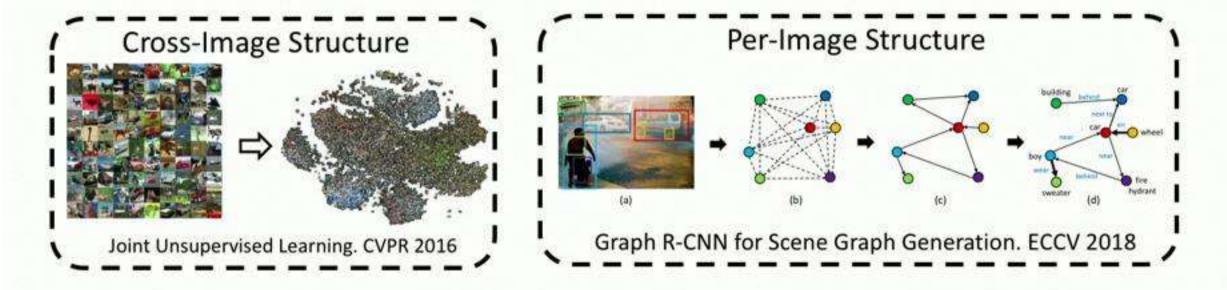


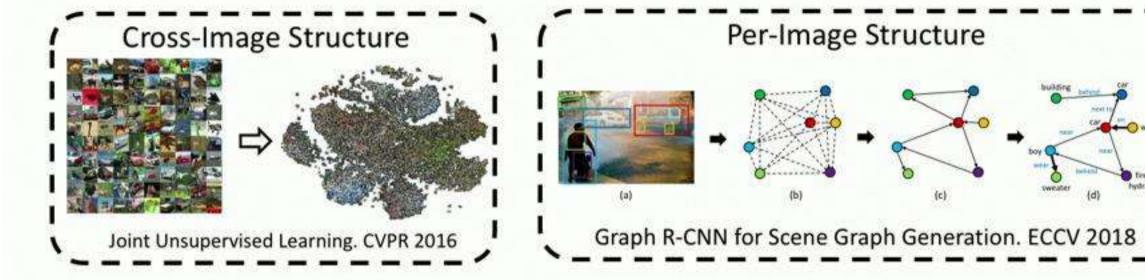
Microsoft COCO: Common Objects in Context. Lin et al. 2014

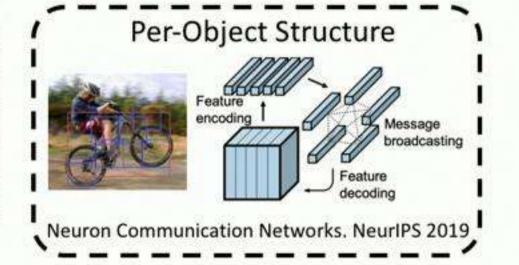
Images are highly structured

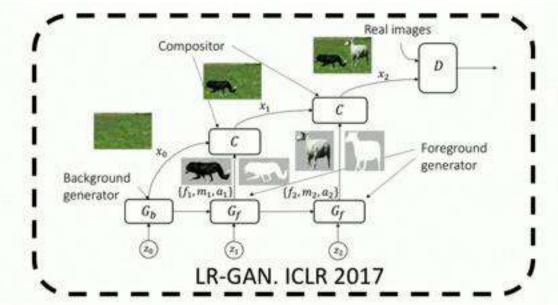
COCO-Stuff: Thing and Stuff Classes in Context. Caesar et al. 2018

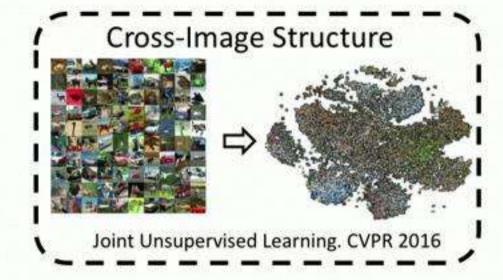


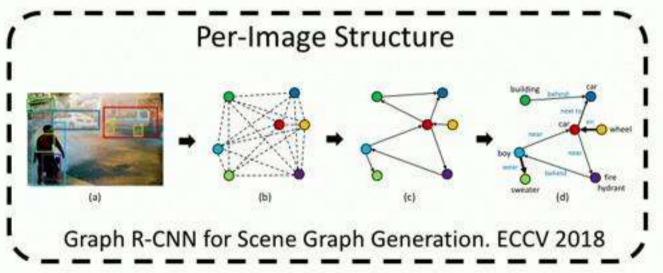


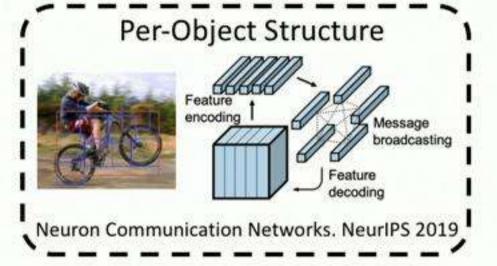


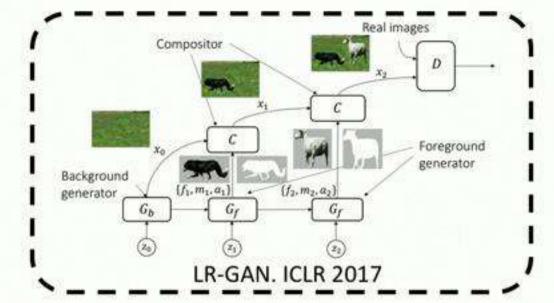


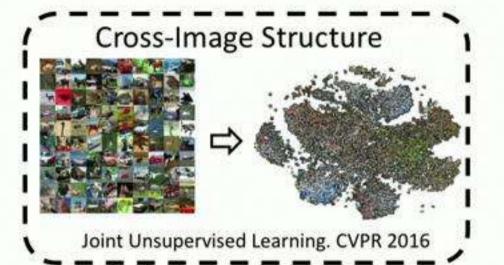


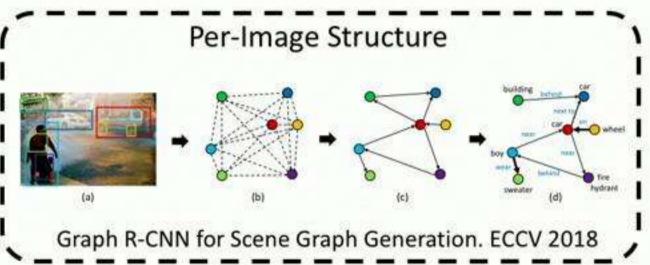


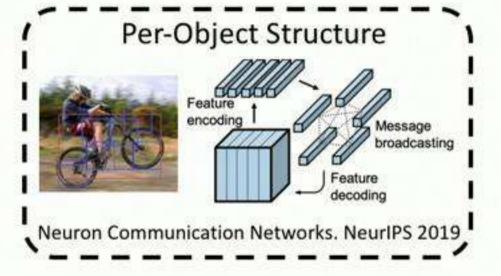


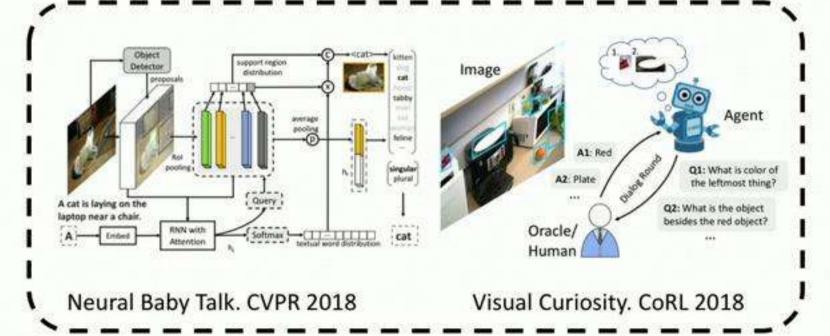




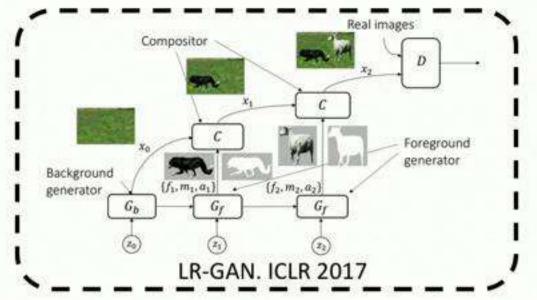


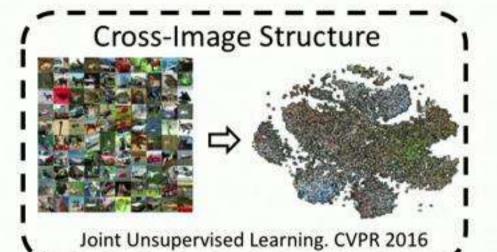


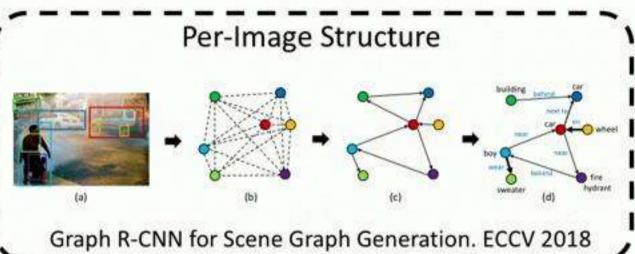


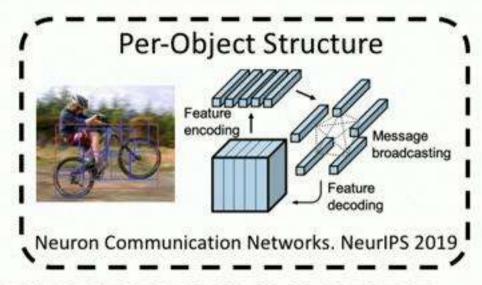


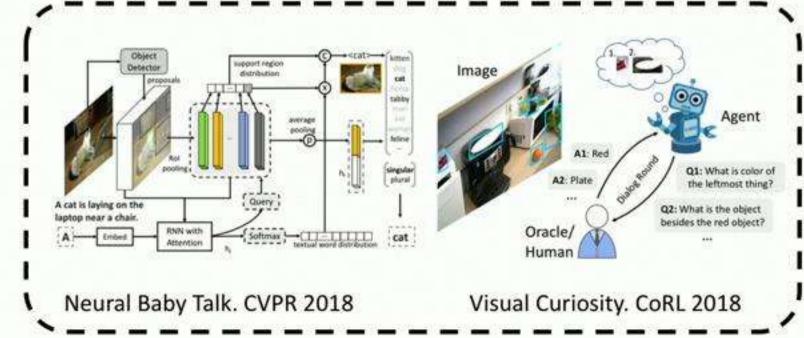
Language

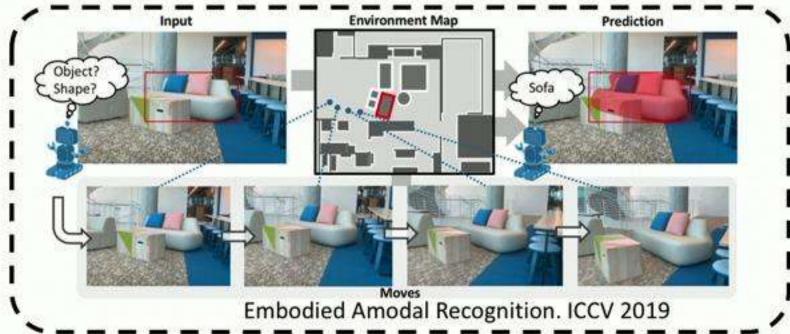






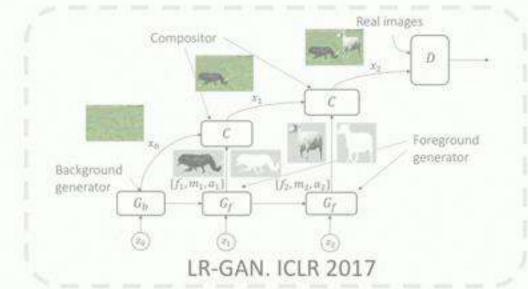


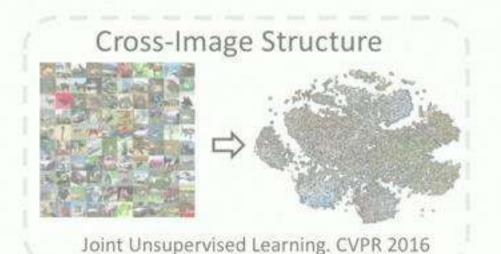


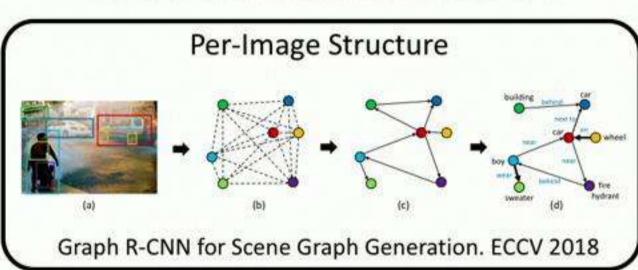


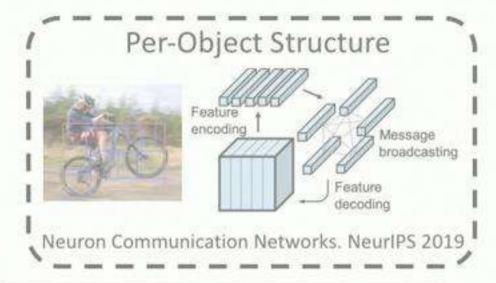
Language

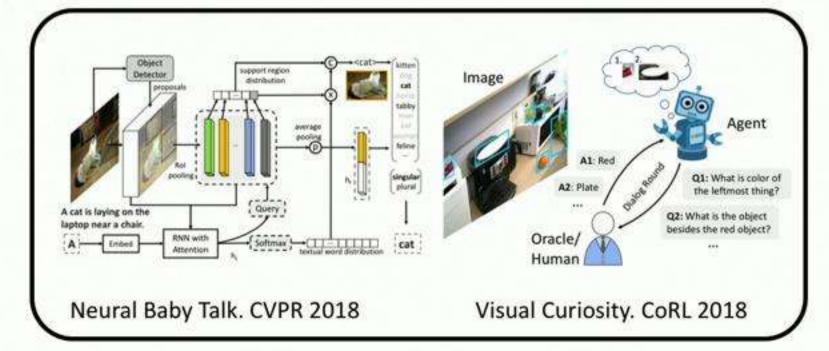
Embodiment

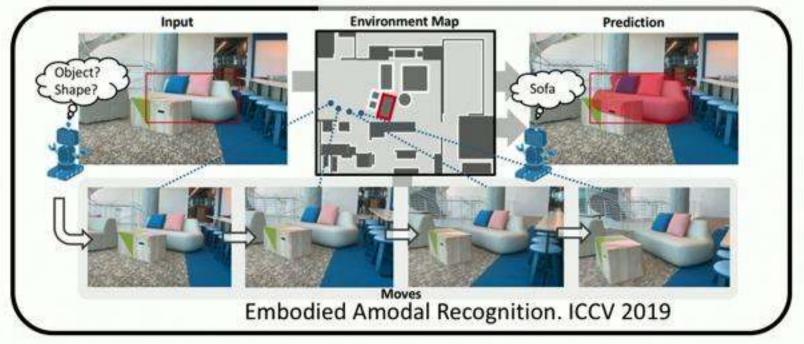




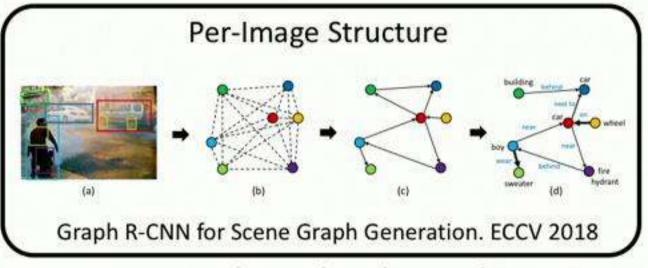




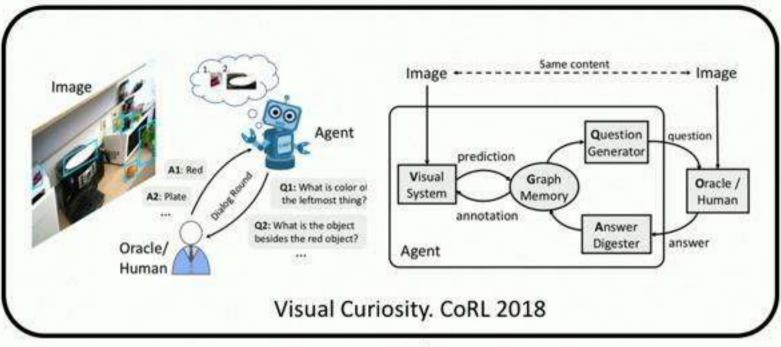




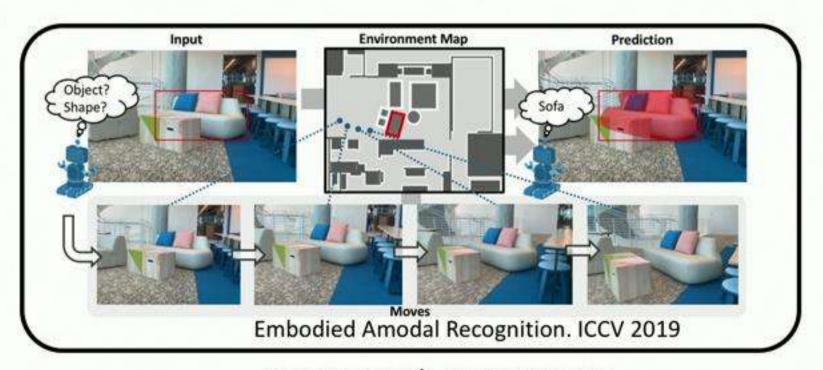
In this talk



Structured Visual Understanding



Interact with Human



Interact with Environment

Structured Visual Understanding

Graph R-CNN for Scene Graph Generation. ECCV 2018

What is scene graph?

Image as a single label

19

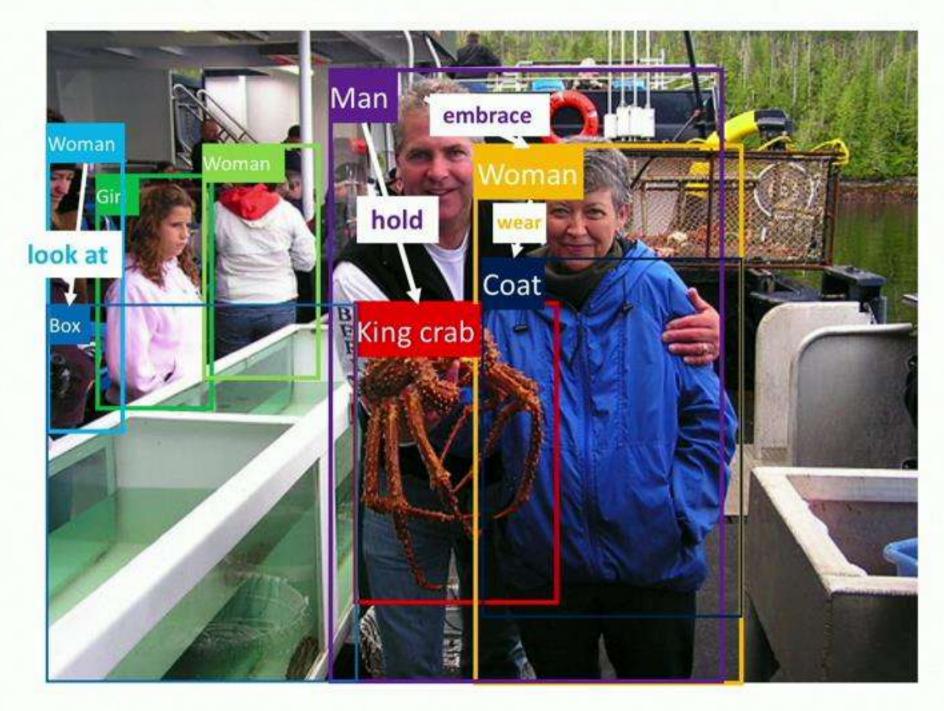
Image as an object set

20

Image as a scene graph

"Woman look at box"

"Man hold king crab"



"Woman wear coat"

"Man embrace woman"

21

Distinguish images more accurately

[1] Image Retrieval using Scene Graphs. Johnson et al. CVPR 2015

Left: https://cals.ncsu.edu/wp-content/uploads/2016/08/horse-1500x931.png

Describe images more grounding

- [1]. Auto-Encoding Scene Graphs for Image Captioning. Yang et al. arXiv 2018
- [2]. Exploring Visual Relationship for Image Captioning. Yao et al. ECCV 2018

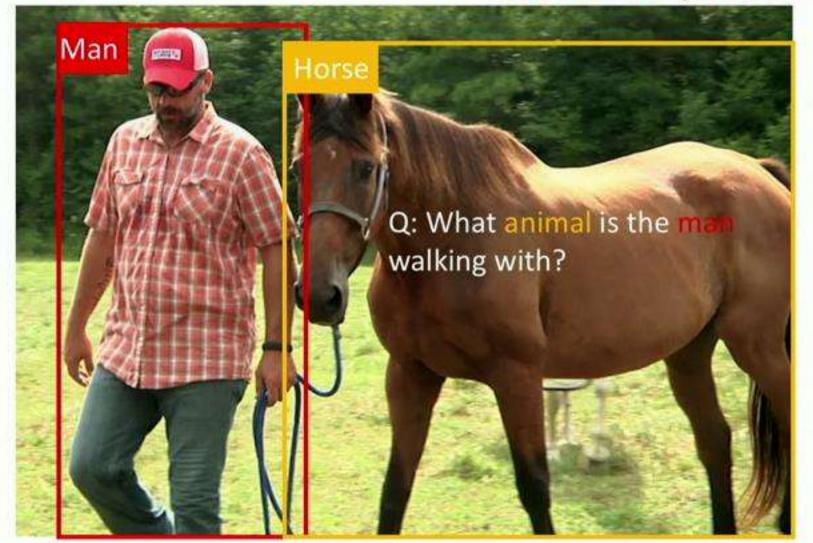
Left: https://cals.ncsu.edu/wp-content/uploads/2016/08/horse-1500x931.png

Answer question more precisely

[1] Graph-Structured Representations for Visual Question Answering. Teney et al. CVPR 2017 [2] Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding. Yi et al. Neurips 2018

Left: https://cals.ncsu.edu/wp-content/uploads/2016/08/horse-1500x931.png

Generate questions more grounding



[1] Visual Curiosity: Learning to Ask Questions to Learn Visual Recognition. Yang et al. CoRL 2018

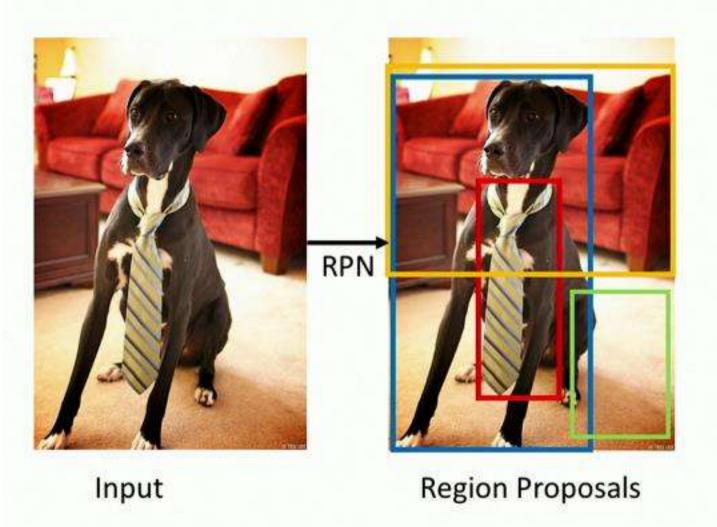
Left: https://cals.ncsu.edu/wp-content/uploads/2016/08/horse-1500x931.png

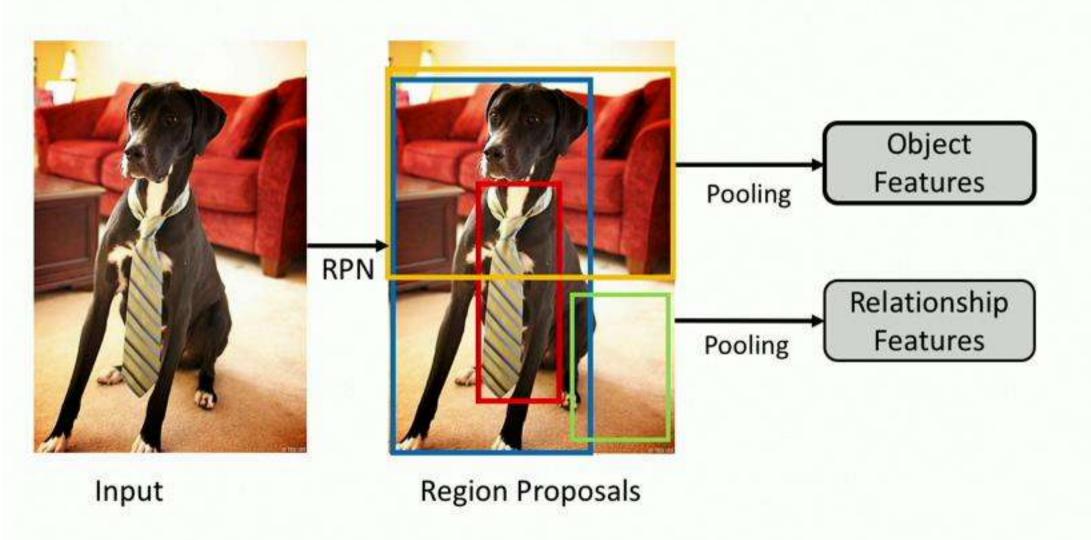
Answer question more precisely

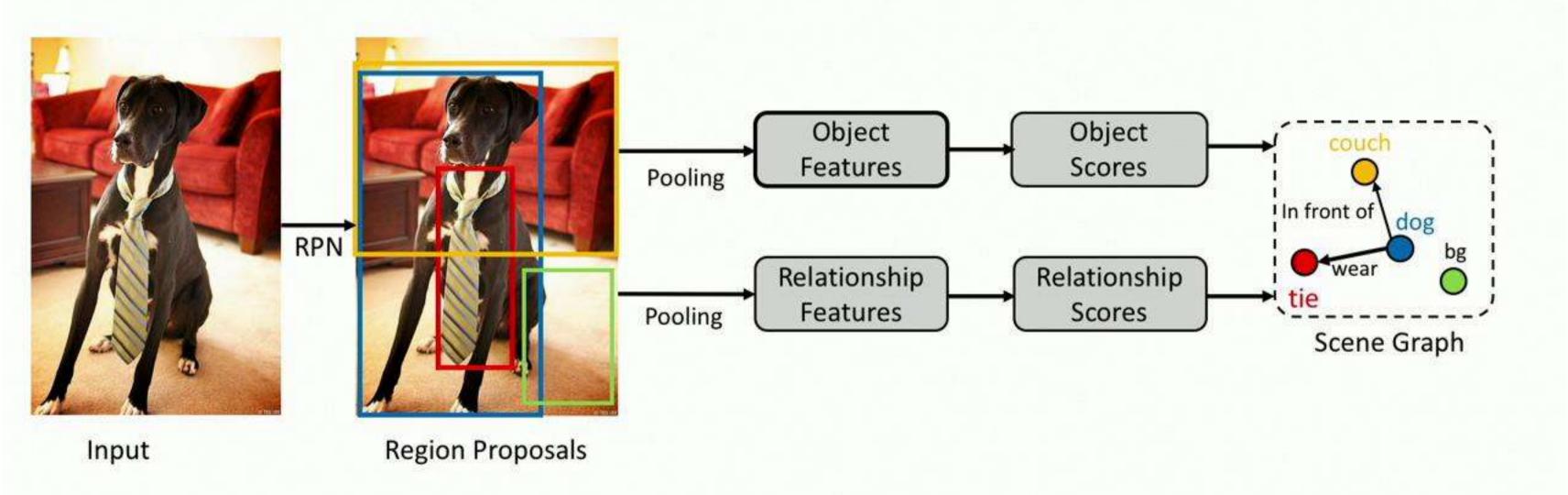
[1] Graph-Structured Representations for Visual Question Answering. Teney et al. CVPR 2017[2] Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding. Yi et al. Neurips 2018

Left: https://cals.ncsu.edu/wp-content/uploads/2016/08/horse-1500x931.png

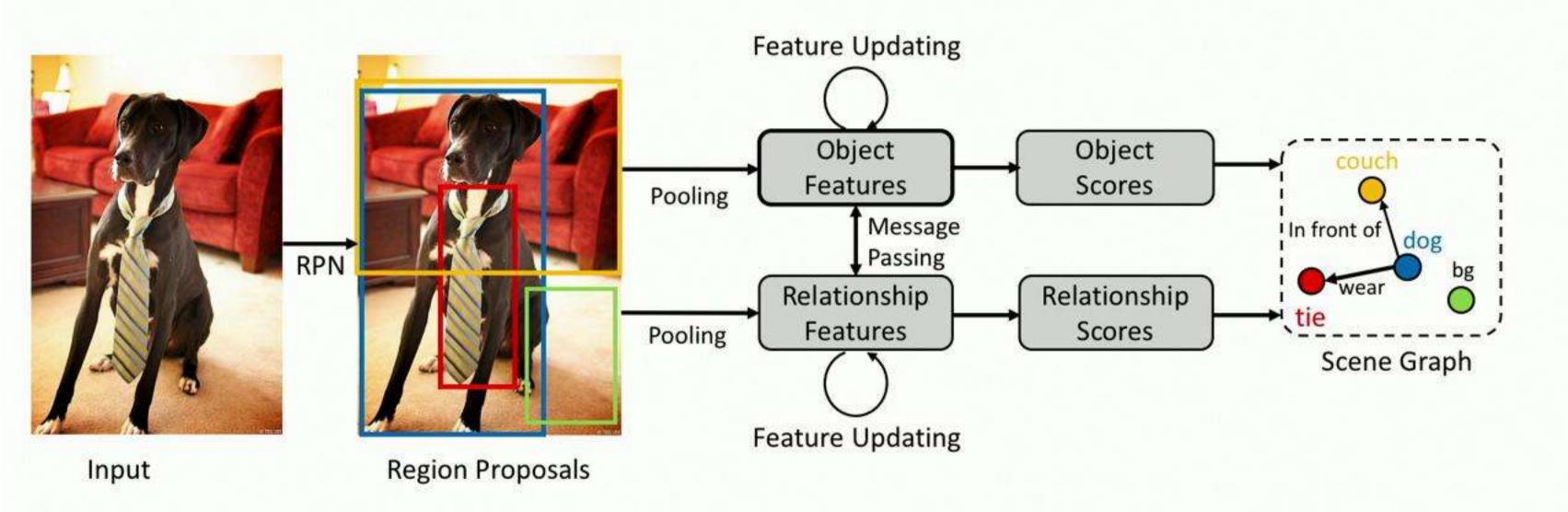
Input





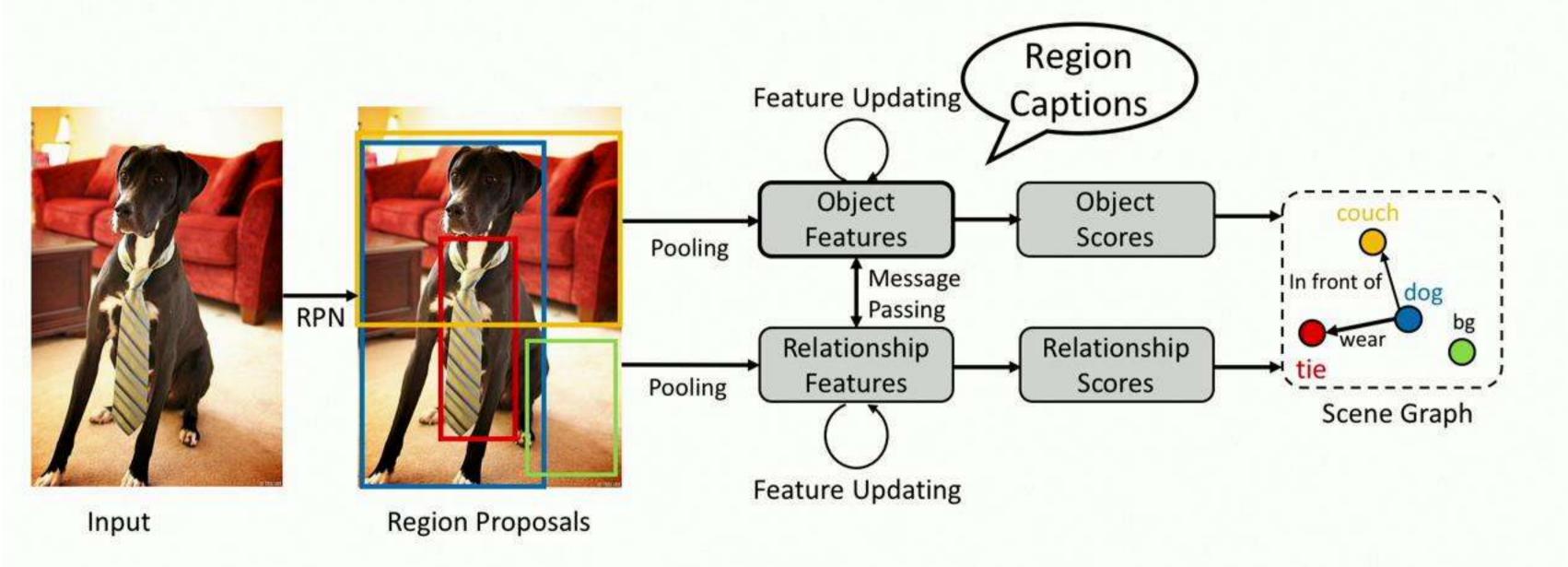


IMP Model



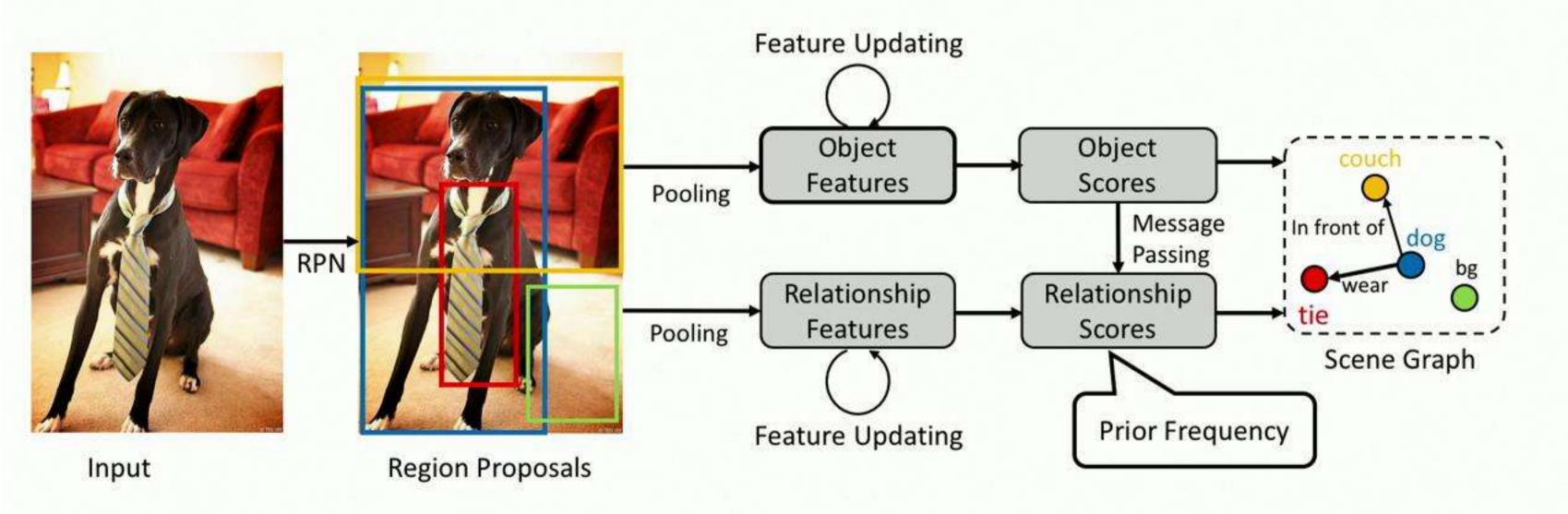
Scene Graph Generation by Iterative Message Passing. Xu et al. CVPR 2017

MSDN Model



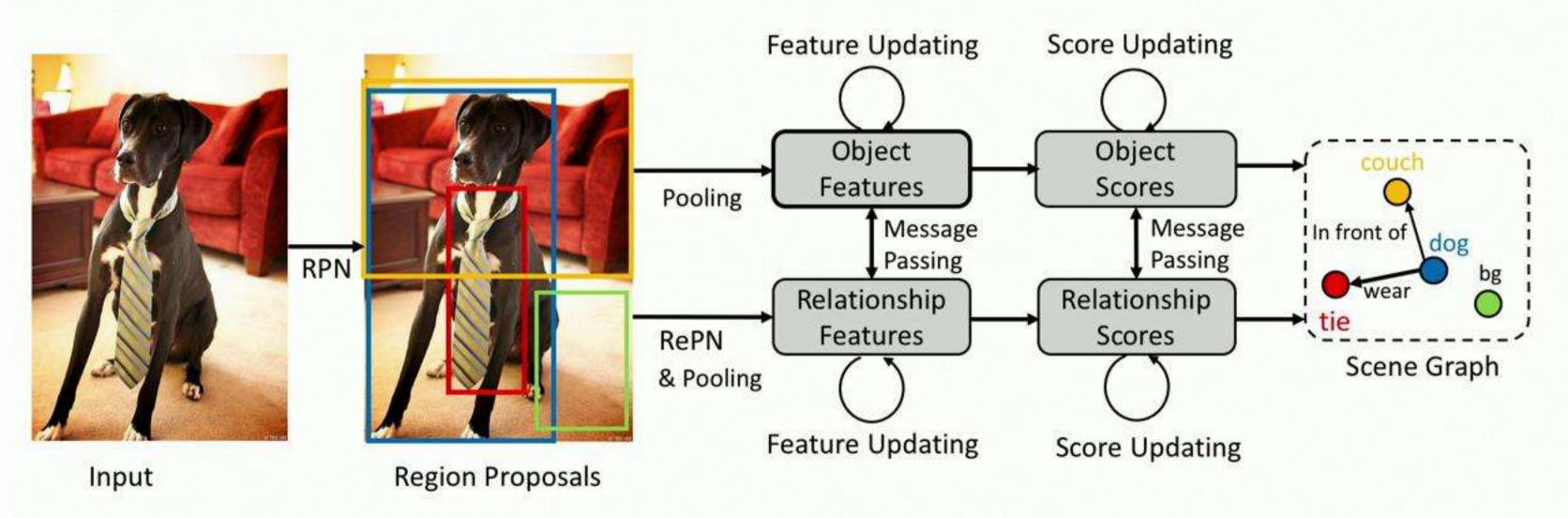
Scene Graph Generation from Objects, Phrases and Region Captions. Li et al. ICCV 2017

Neural Motif Network



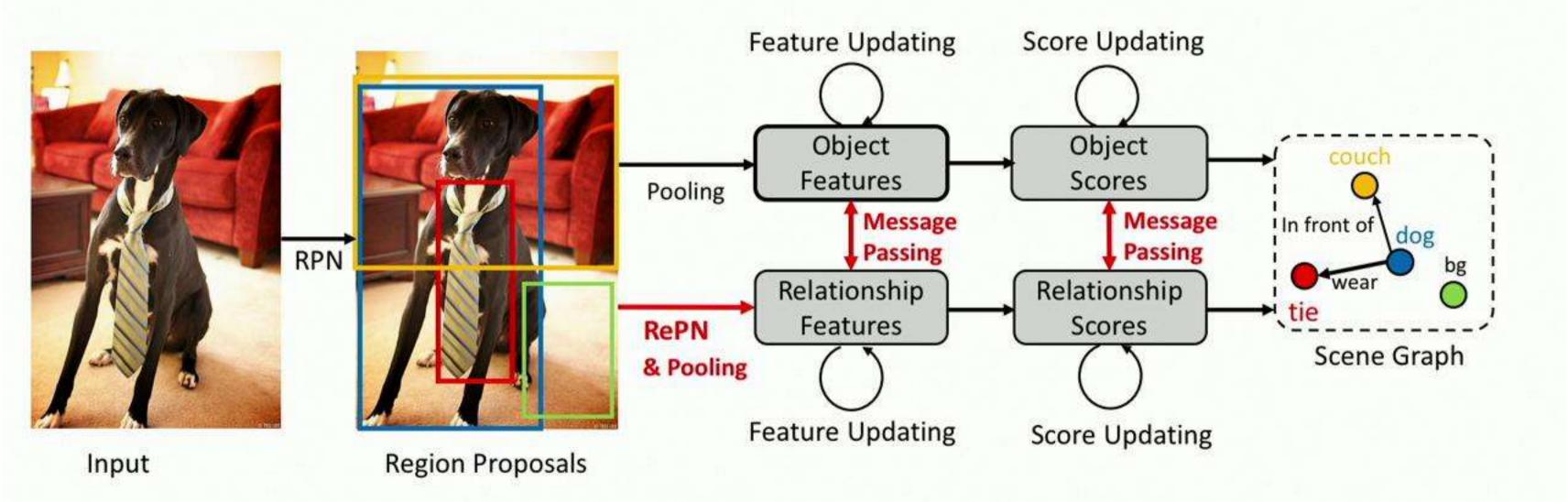
Neural Motifs: Scene Graph Parsing with Global Context. Zellers et al. CVPR 2018

Our model: Graph R-CNN

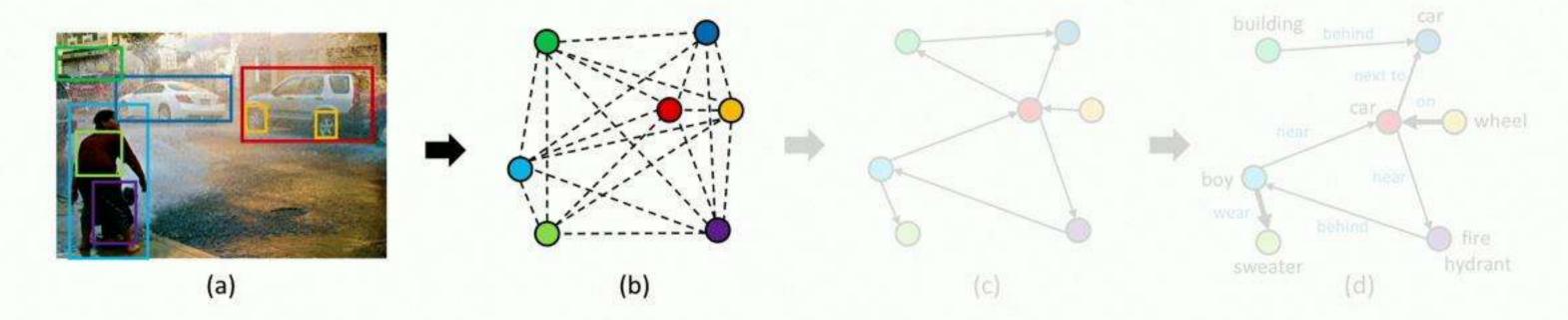


Jianwei Yang*, Jiasen Lu*, Stefan Lee, Dhruv Batra, Devi Parikh. Graph R-CNN for Scene Graph Generation. ECCV 2018.

Our model: Graph R-CNN

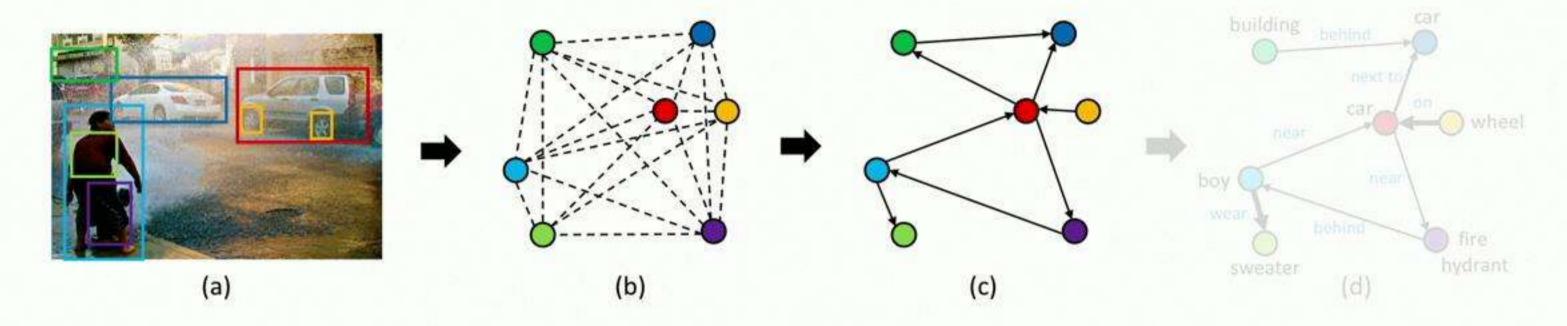


Motivations



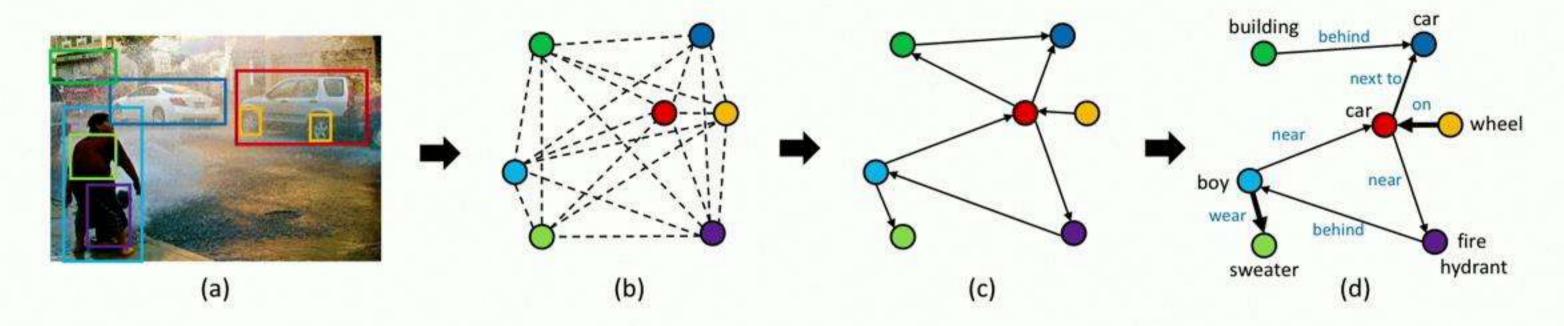
1. Objects in a scene usually have relationships with others;

Motivations



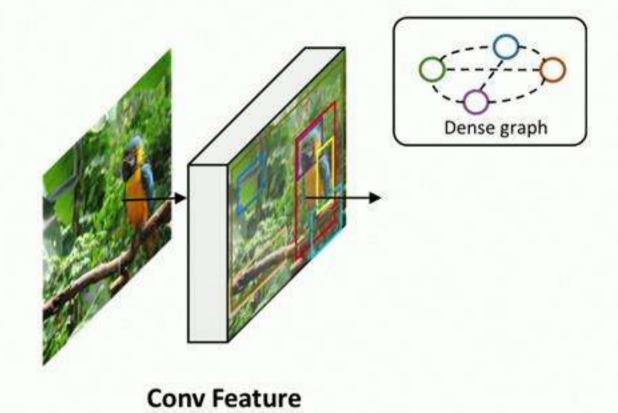
- 1. Objects in a scene usually have relationships with others;
- 2. Not all object pairs have relationships, the scene graph is usually sparse,

Motivations

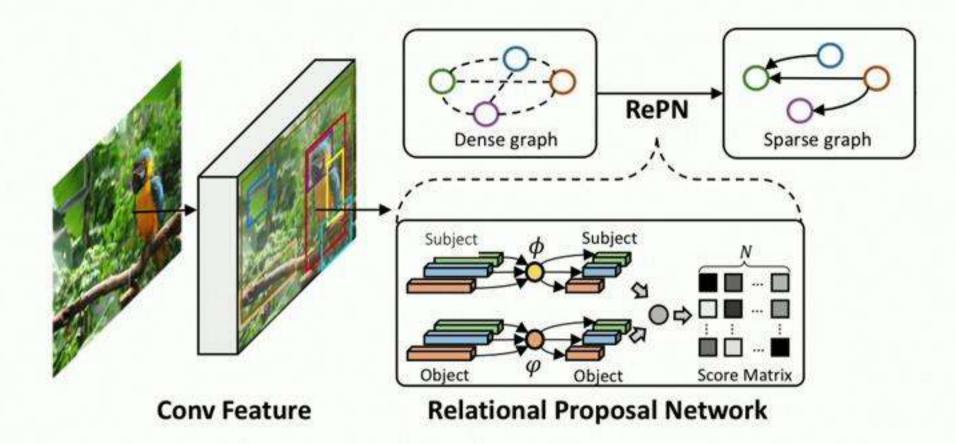


- 1. Objects in a scene usually have relationships with others;
- 2. Not all object pairs have relationships, the scene graph is usually sparse,
- Existence of relationships highly depends on the object categories, and type of relationships highly depends on the context.

Framework

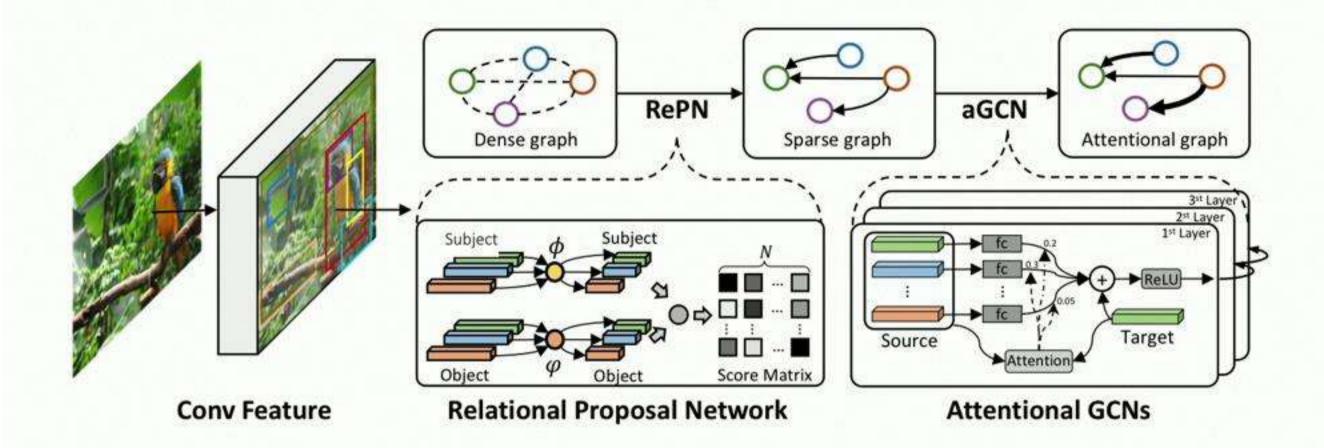


Framework



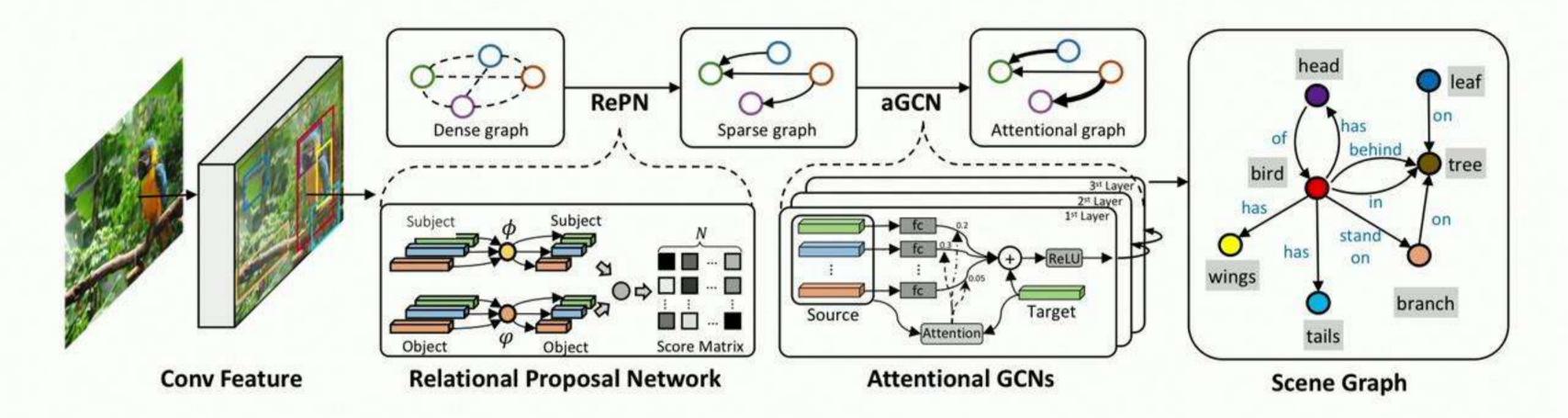
 Relation proposal network (RePN) to learn to prune the densely connected scene graph;

Framework



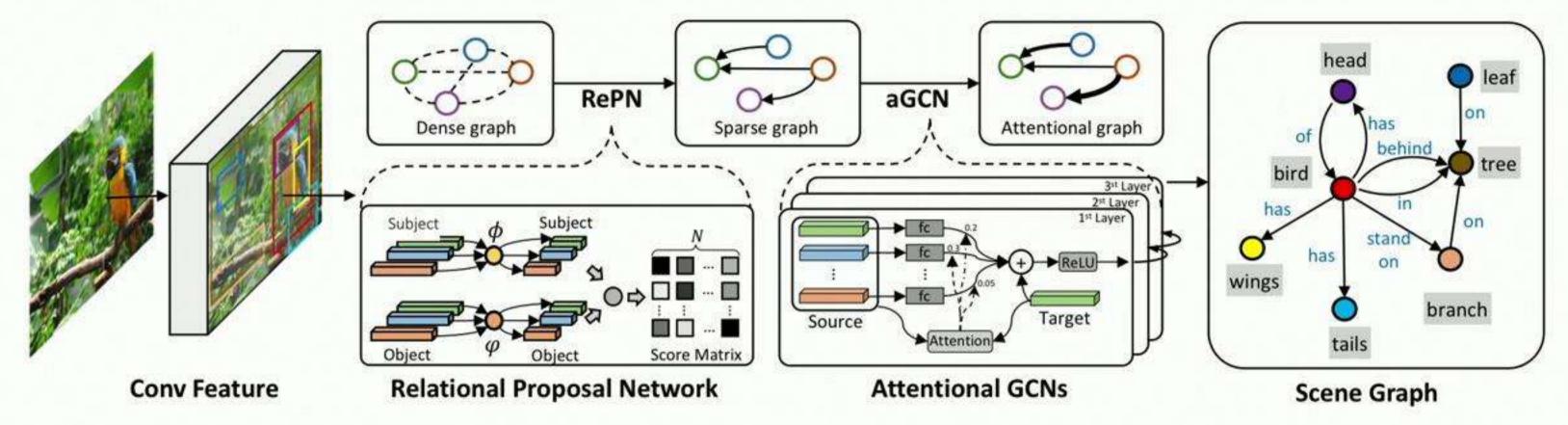
- Relation proposal network (RePN) to learn to prune the densely connected scene graph;
- Attentional graph convolutional networks (aGCN) to incorporate the contextual information.

Framework



- Relation proposal network (RePN) to learn to prune the densely connected scene graph,
- Attentional graph convolutional networks (aGCN) to incorporate the contextual information.

Framework



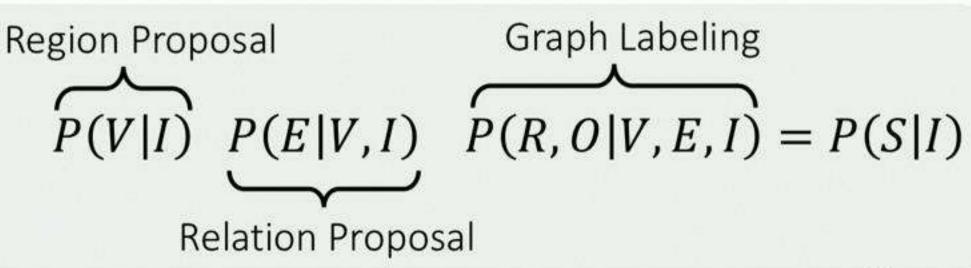
I − Input Image; S: Scene graph

V -Scene graph vertices (object)

E — Scene graph edges (relationship)

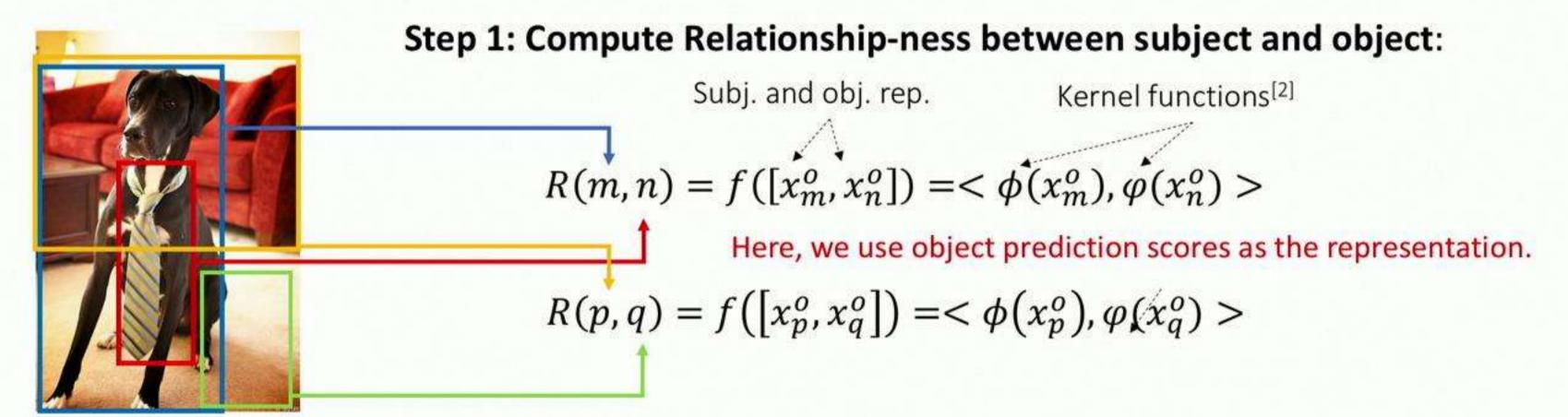
O − Scene graph object labels

R − Scene graph relationship labels



Relation Proposal Network

Inspired by Region Proposal Network[1]:



Step 2: NMS for object pairs based on pair-wise IoU:

$$IoU(\{r_m^o, r_n^o\}, \{r_p^o, r_q^o\}) = \frac{I(r_m^o, r_p^o) + I(r_n^o, r_q^o)}{U(r_m^o, r_p^o) + U(r_n^o, r_q^o)}$$

- [1]. Faster R-CNN. Ren et al. Neurips 2016.
- [2]. Non-local Networks. Want et al. CVPR 2018.

GCN layer with residual connection^[1]:

$$z_i^{(l+1)} = \sigma \left(z_i^{(l)} + \sum_{i \in \mathcal{N}(i)} \alpha_{ij} W z_j^{(l)} \right)$$
 Matrix Computation
$$z_i^{(l+1)} = \sigma \left(W Z^{(l)} \alpha_i \right)$$

Nonlinear function Learnable parameters Inputs from last layer

GCN layer with residual connection^[1]:

$$z_i^{(l+1)} = \sigma \left(z_i^{(l)} + \sum_{i \in \mathcal{N}(i)} \alpha_{ij} W z_j^{(l)} \right)$$
 Matrix Computation
$$z_i^{(l+1)} = \sigma \left(W Z^{(l)} \alpha_i \right) \stackrel{\text{Predetermined}}{\longleftarrow}$$
 Nonlinear function Learnable parameters Inputs from last layer

63

GCN layer with residual connection^[1]:

$$z_i^{(l+1)} = \sigma \left(z_i^{(l)} + \sum_{i \in \mathcal{N}(i)} \alpha_{ij} W z_j^{(l)} \right)$$
 Matrix Computation
$$z_i^{(l+1)} = \sigma \left(W Z^{(l)} \alpha_i \right)$$
 Nonlinear function Learnable parameters Inputs from last layer

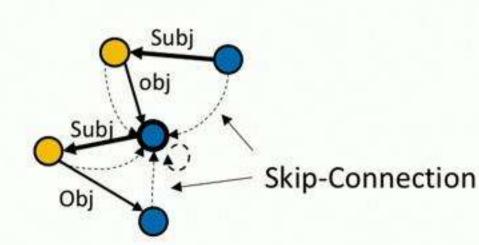
Learning the affinities!
$$u_{ij} = w_h^T \sigma \left(W_a \left[z_i^{(l)}, z_j^{(l)} \right] \right)$$

$$\alpha_i = \operatorname{softmax}(u_i)$$

Attentional GCNs (aGCN) on scene graph:

Update object representations:

$$z_i^o = \sigma \left(W^{\text{skip}} Z^o \alpha^{rs} + W^{sr} Z^r \alpha^{sr} + W^{or} Z^r \alpha^{or} \right)$$



- [1]. Semi-Supervised Classification with Graph Convolutional Networks. Kipf et al. ICLR 2017
- [2]. Graph Attention Networks. Veličković et al. ICLR 2018

GCN layer with residual connection:

$$z_i^{(l+1)} = \sigma \left(z_i^{(l)} + \sum_{i \in \mathcal{N}(i)} \alpha_{ij} W z_j^{(l)} \right)$$
 Matrix Computation
$$z_i^{(l+1)} = \sigma \left(W Z^{(l)} \alpha_i \right) \leftarrow$$

Nonlinear function Learnable parameters Inputs from last layer

Attentional GCNs (aGCN) on scene graph:

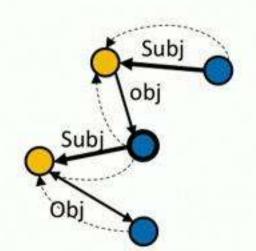
Update predicate representations:

$$z_i^r = \sigma(z_i^r + W^{rs}Z^o\alpha^{rs} + W^{ro}Z^o\alpha^{ro})$$

Learning the affinities!

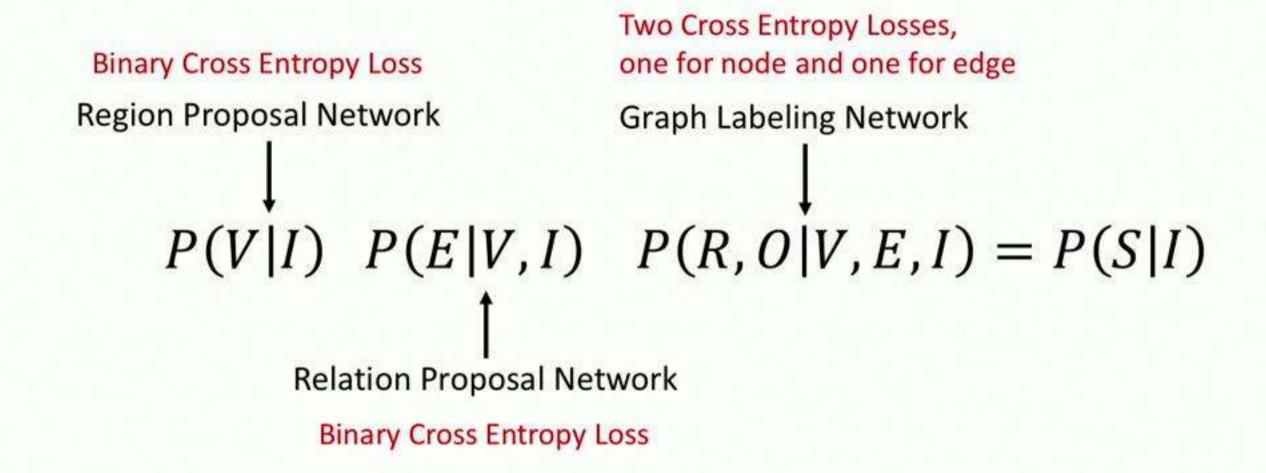
$$u_{ij} = w_h^T \sigma \left(W_a \left[z_i^{(l)}, z_j^{(l)} \right] \right)$$

$$\alpha_i = \text{softmax}(u_i)$$



- [1]. Semi-Supervised Classification with Graph Convolutional Networks. Kipf et al. ICLR 2017
- [2]. Graph Attention Networks. Veličković et al. ICLR 2018

Training



Metrics

Assume there are N objects extracted from an image, then N*(N-1) edges

Step 1: Take maximum for object scores and predicate scores, excluding background class.

Step 2: Compute relationship scores: Rel(i,j) = Subj(i) * Obj(j) * Pred(i,j)

Step 3: Sort the relationship triplets in a descending order:

Step 4: Compute the triplet recalls (Recall@50, Recall@100) based on the ground-truth

SGGen:
$$Recall = \frac{C(T_{pred} \ and \ T_{gt})}{N(T_{gt})}$$
 loU > 0.5

Experiments

Table. Implementation Details.

Dataset	Backbone	#objects	#predicates	Metrics
Visual Genome Train: 75,651 Test: 32,422	VGG-16 Faster R-CNN ^[1]	150	50	PredCls,SGCls, SGGen, mAP

Metrics

Assume there are N objects extracted from an image, then N * (N - 1) edges

Step 1: Take maximum for object scores and predicate scores, excluding background class.

Step 2: Compute relationship scores: Rel(i,j) = Subj(i) * Obj(j) * Pred(i,j)

Step 3: Sort the relationship triplets in a descending order:

Step 4: Compute the triplet recalls (Recall@50, Recall@100) based on the ground-truth

SGGen:
$$Recall = \frac{C(T_{pred} \ and \ T_{gt})}{N(T_{gt})}$$
 loU > 0.5

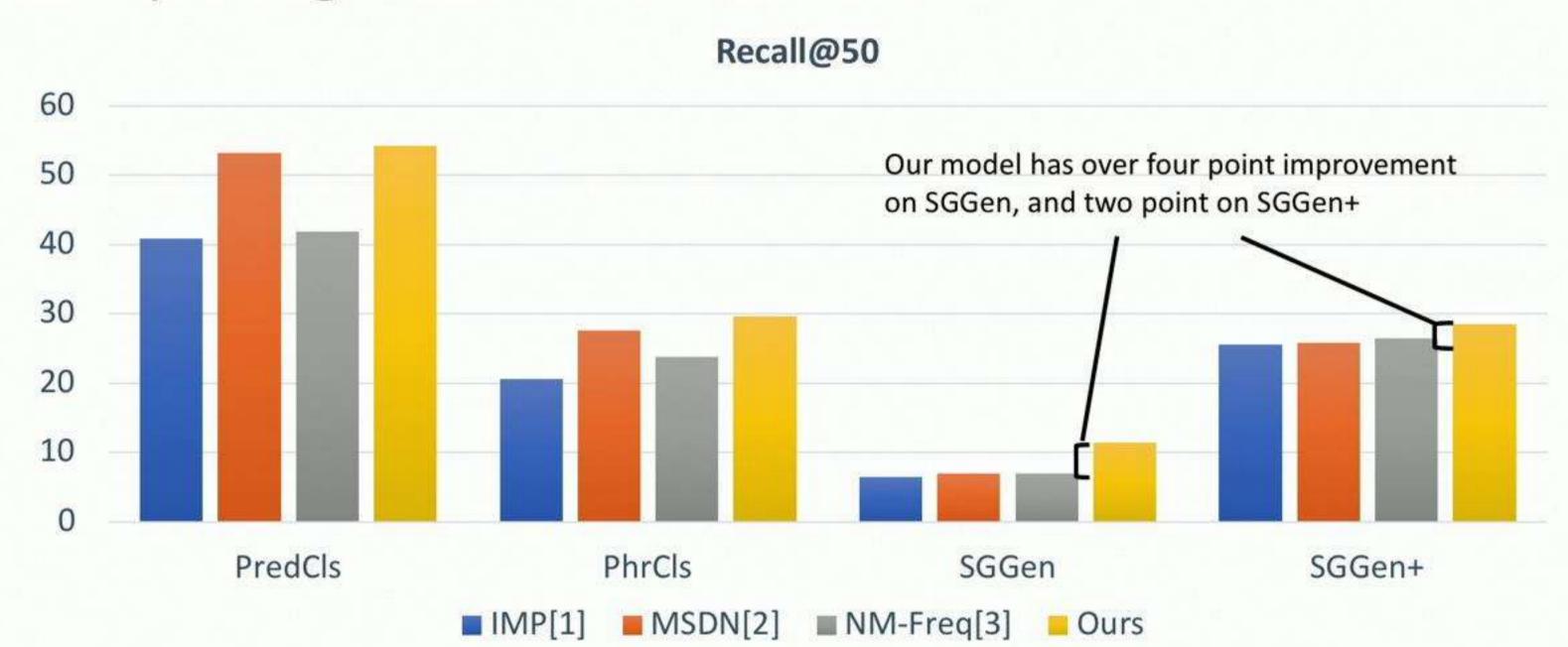
PhrCls: all object locations are known PredCls: all object locations and labels are known

Experiments

Table. Implementation Details.

Dataset	Backbone	#objects	#predicates	Metrics
Visual Genome Train: 75,651 Test: 32,422	VGG-16 Faster R-CNN ^[1]	150	50	PredCls,SGCls, SGGen, mAP

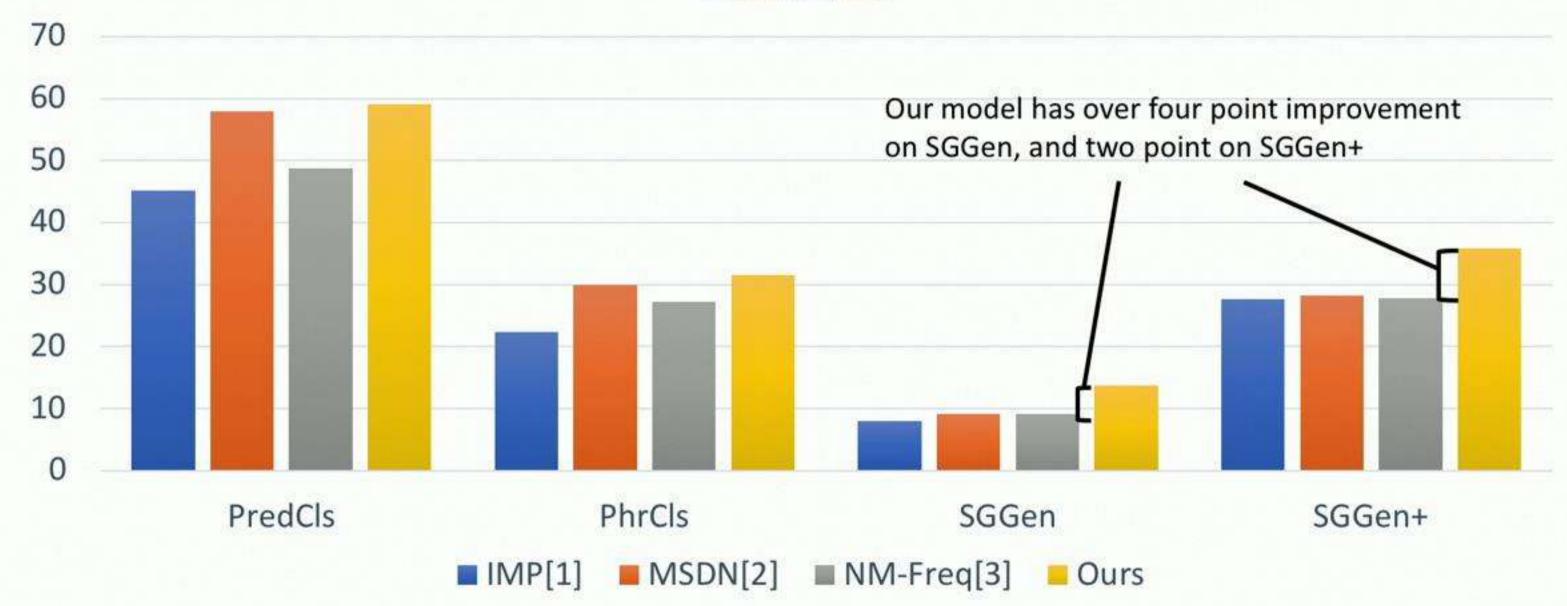
Comparing with Previous Work



- [1] Scene Graph Generation by Iterative Message Passing. Xu et al. CVPR 2017
- [2] Scene Graph Generations from Objects, Phrases and Captions. Li et al. ICCV 2017
- [3] Neural Motif: Scene Graph Parsing with Global Context. Zellers et al. CVPR 2018

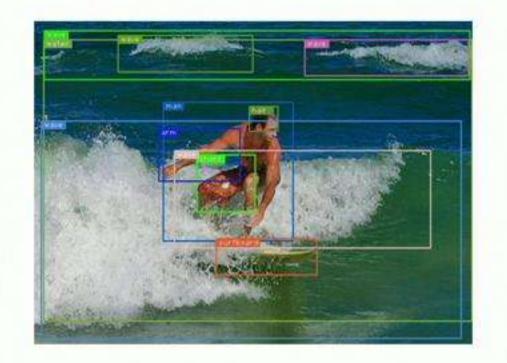
Comparing with Previous Work

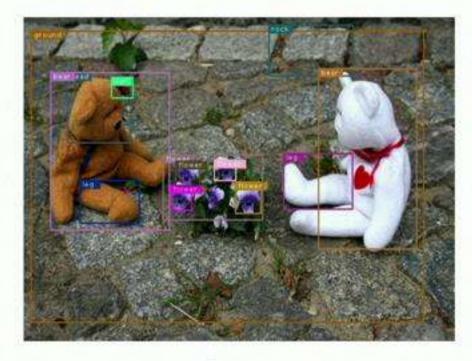
Recall@100

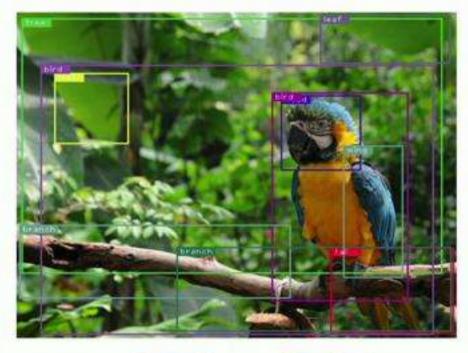


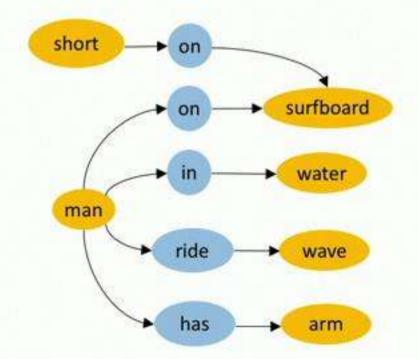
- [1] Scene Graph Generation by Iterative Message Passing. Xu et al. CVPR 2017
- [2] Scene Graph Generations from Objects, Phrases and Captions. Li et al. ICCV 2017
- [3] Neural Motif: Scene Graph Parsing with Global Context. Zellers et al. CVPR 2018

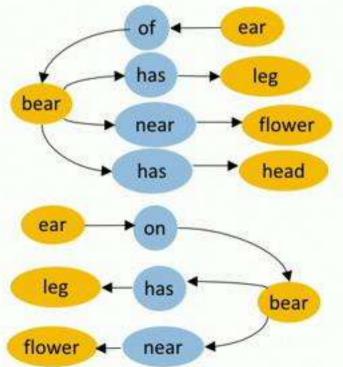
Qualitative Results

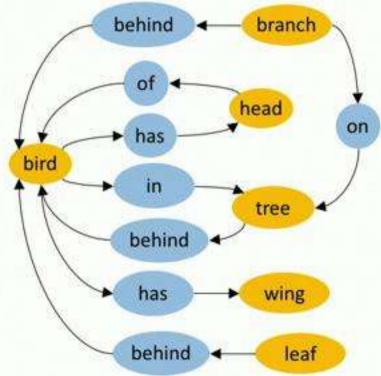












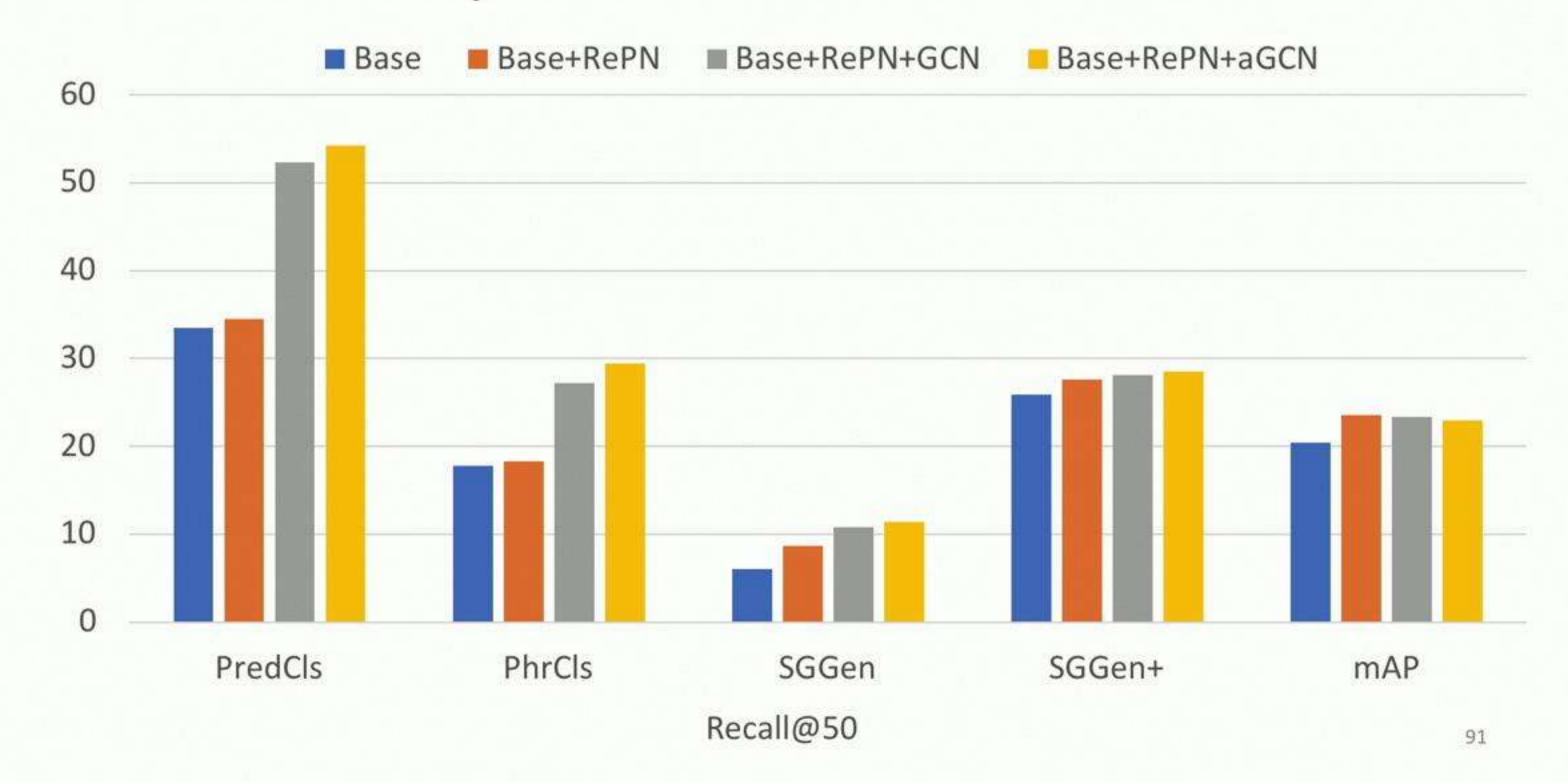
Common Sense Emerges

We extract the weights in the score-level aGCN layer, and sort it in descending order.

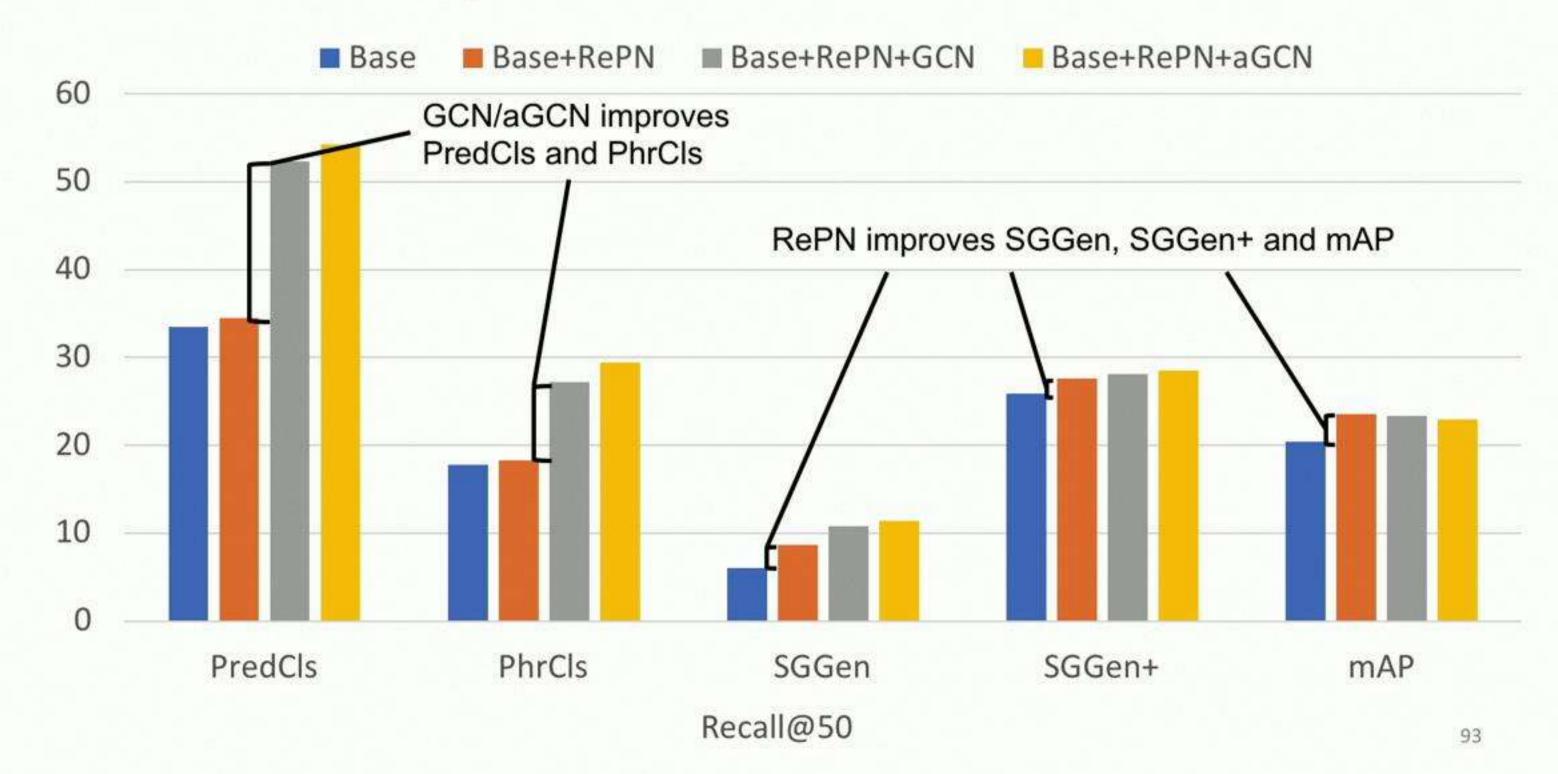
	Object	-Object C	o-Occurrer	nce	
Object	Top-1	Top-2	Object	Top-1	Top-2
boat	water	beach	girl	woman	hair
plane	wing	tail	cow	horse	dog
clock	building	root	sidewalk	street	bus
bottle	cup	glass	handle	plate	food
bus	truck	vehicle	snow	pole	ski

Object	Top-1	Top-2	Object	Top-1	Top-2
hat	hold	wear	kite	watch	look at
boat	in	sit in	girl	look at	watch
umbrella	carry	hold	jacket	wear	with
track	with	on	stripe	on	has
sidewalk	at	walk on	snow	on	near

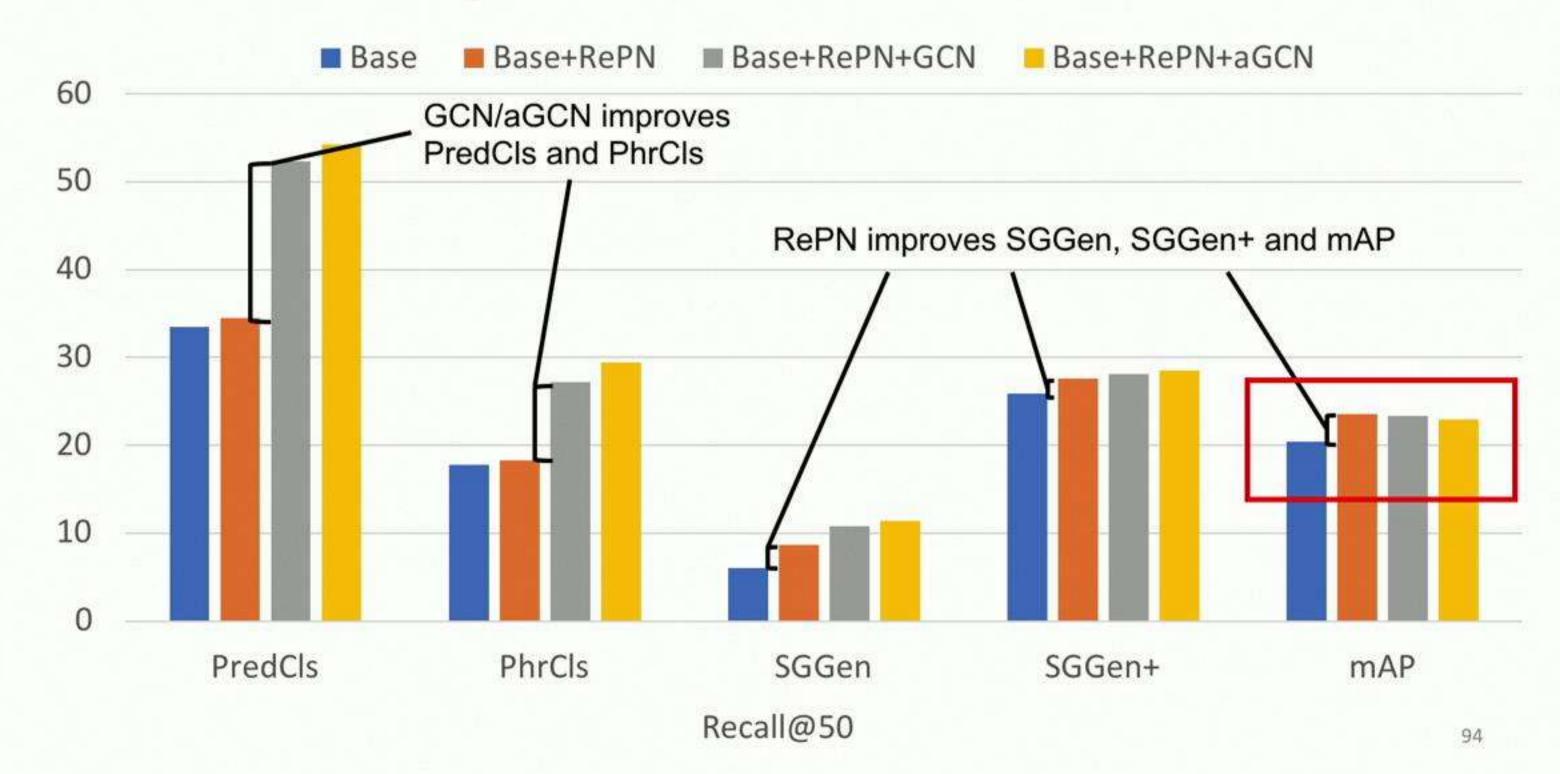
Ablation Study



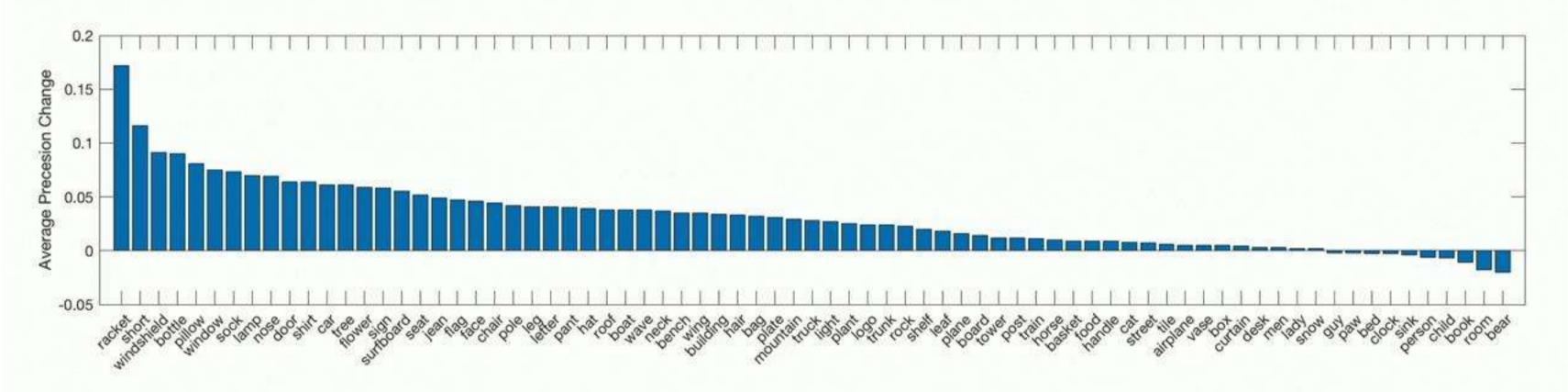
Ablation Study



Ablation Study

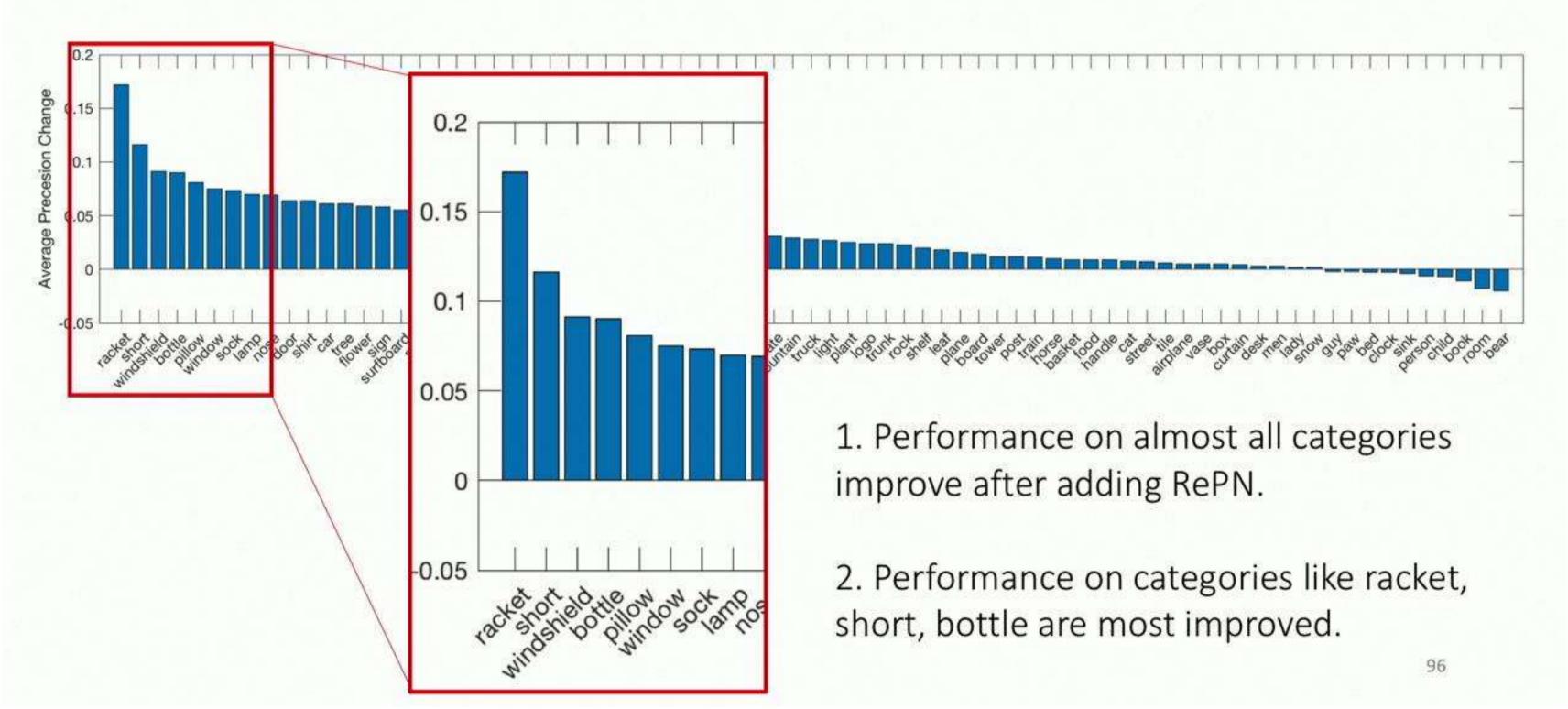


Object Detection Investigation



1. Performance on almost all categories improve after adding RePN.

Object Detection Investigation



Takeaways

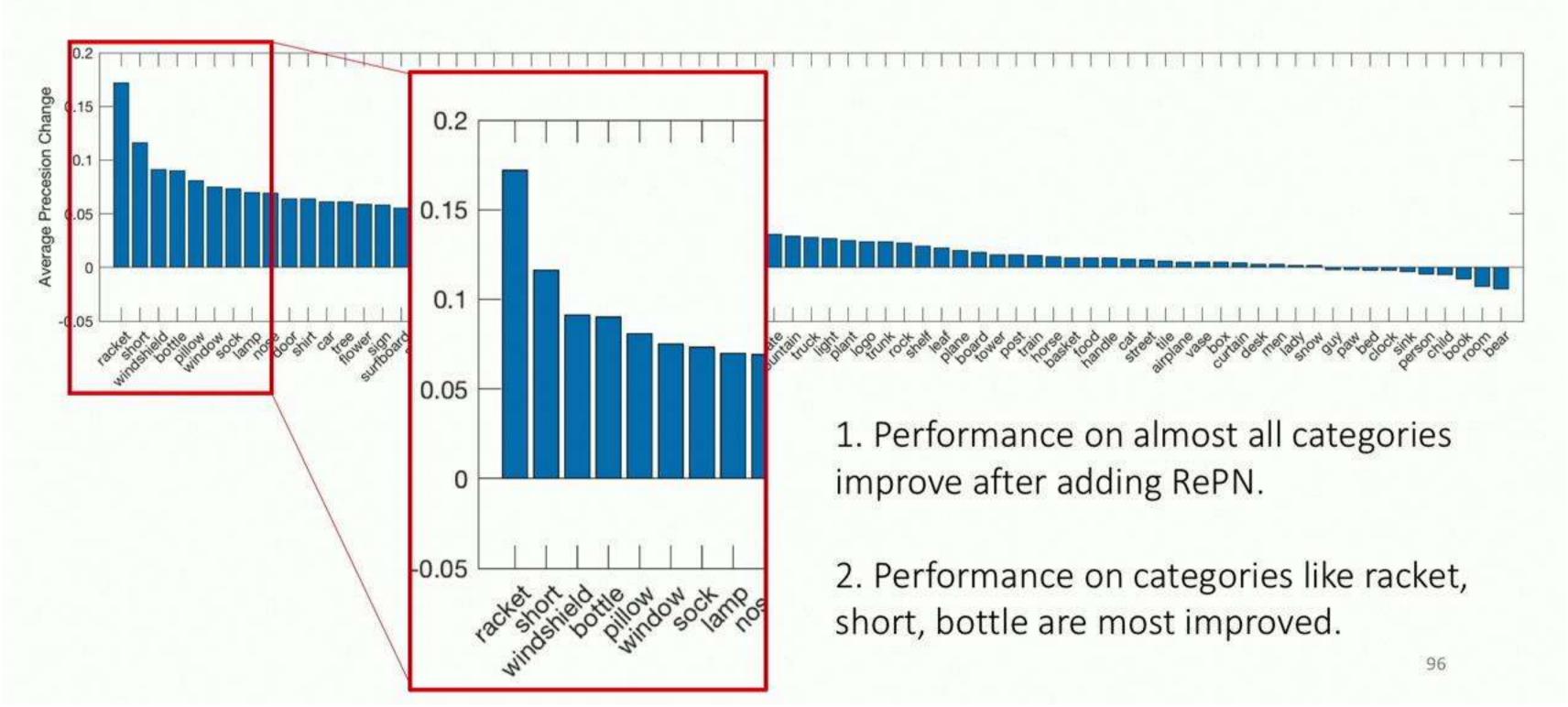
Introducing a general base model for scene graph generation

 Pruning the fully-connected graph is important for scene graph generation

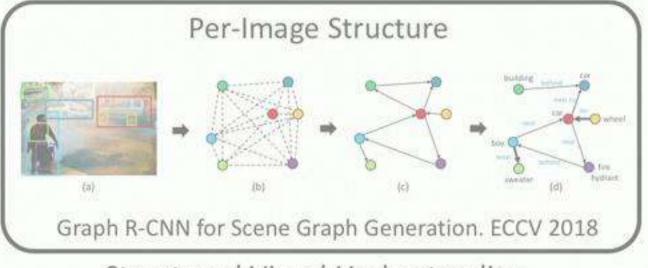
Exploiting the context across objects and predicates is crucial

Scene graph generation helps to improve object detection

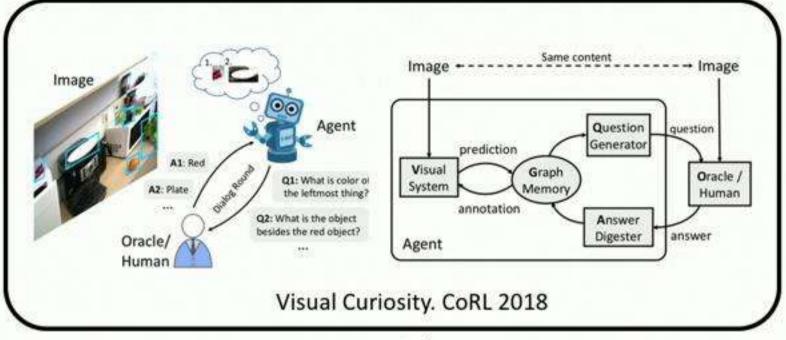
Object Detection Investigation



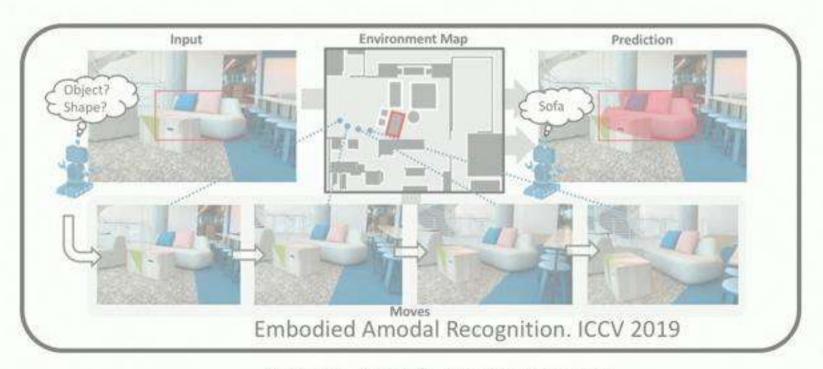
In this talk



Structured Visual Understanding



Interact with Human

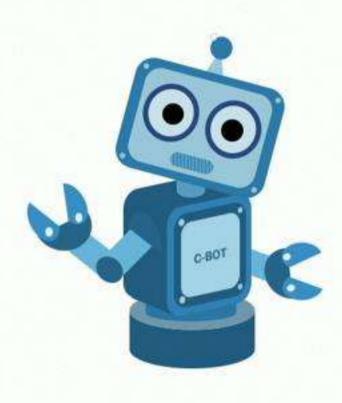


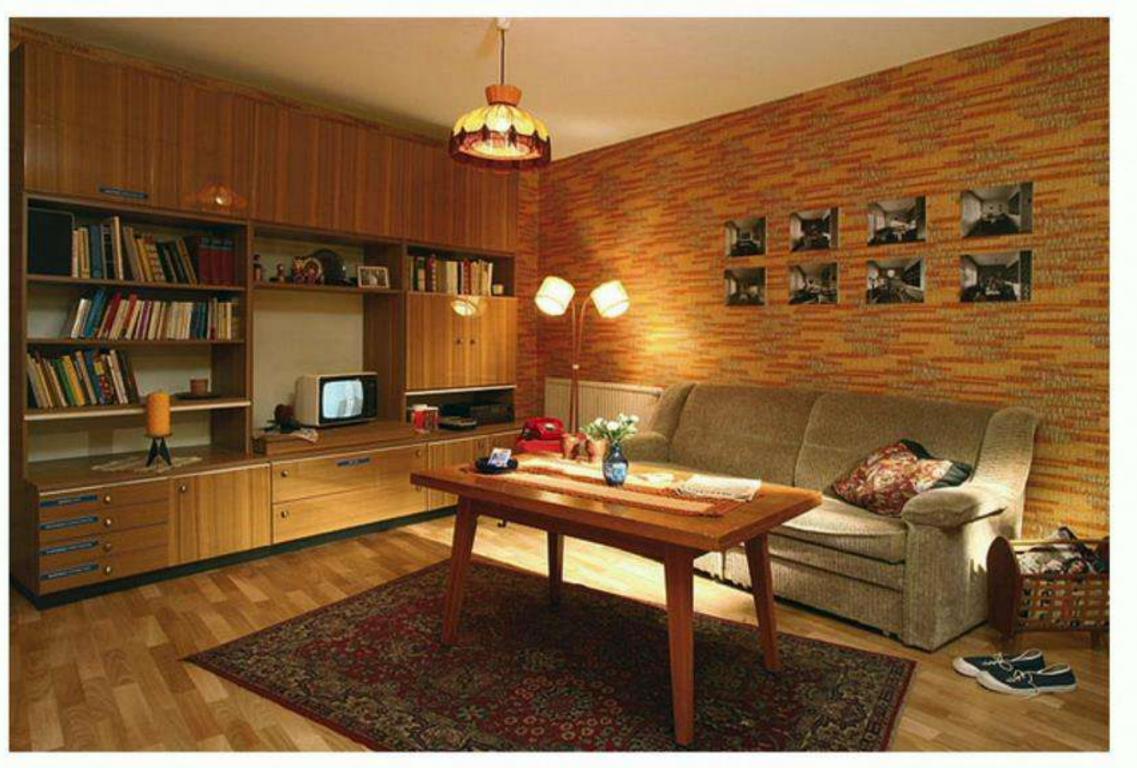
Interact with Environment

Visual Understanding by Asking Questions

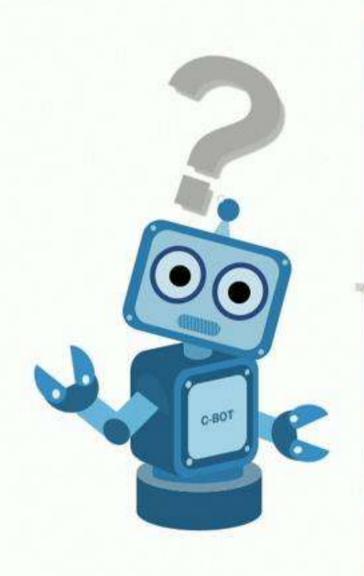
Visual Curiosity: Learning to Ask Questions to Learn Visual Recognition. CoRL 2018.

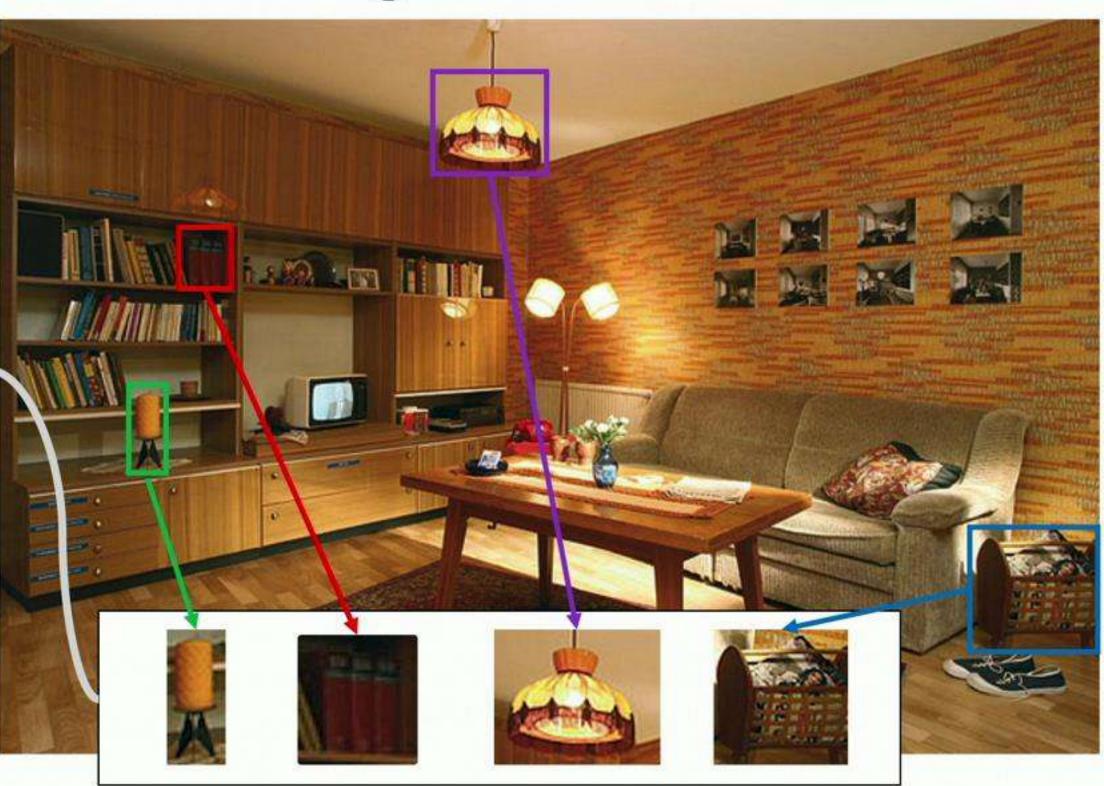
The Open-World Recognition Problem



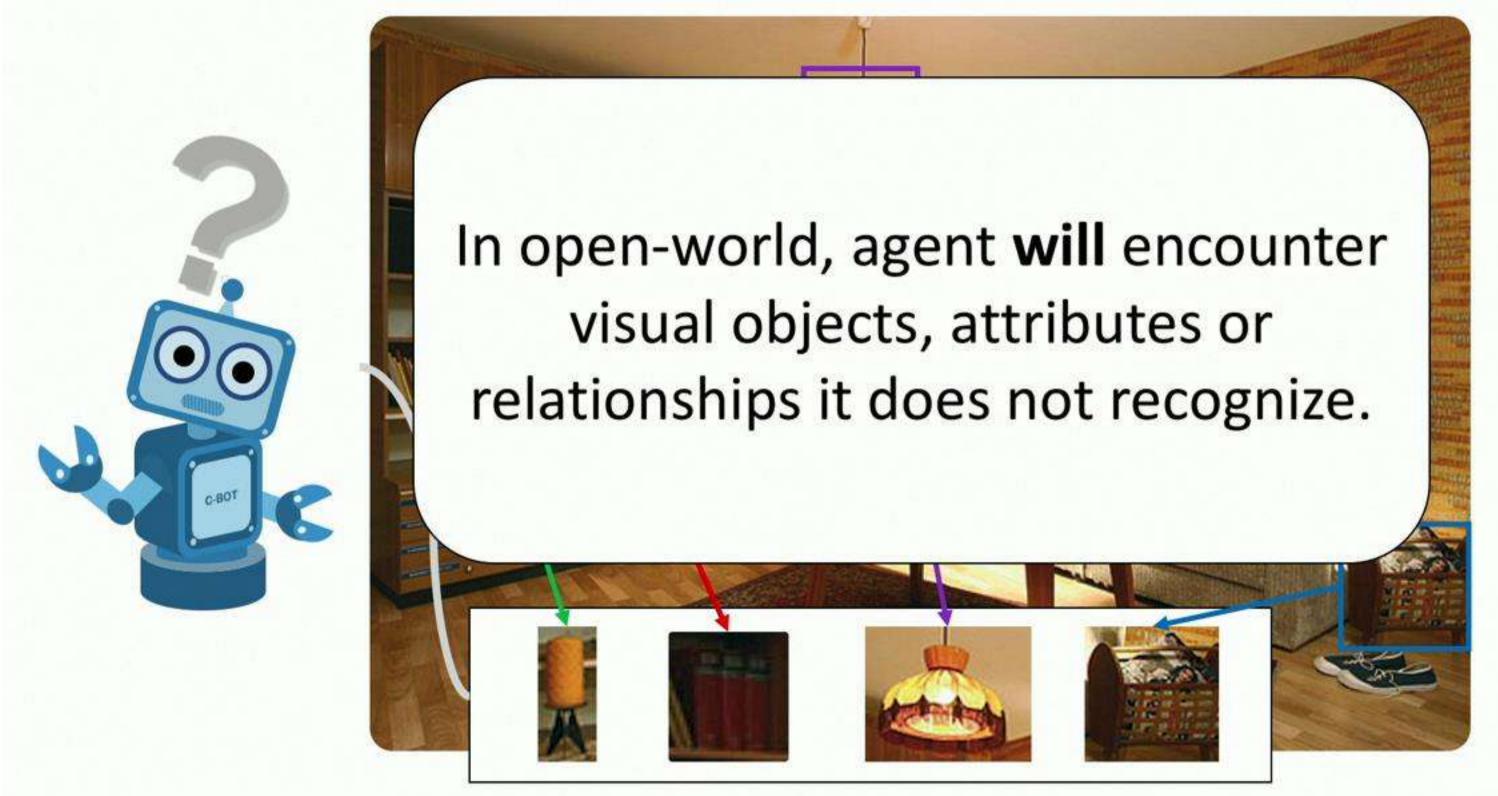


The Open-World Recognition Problem

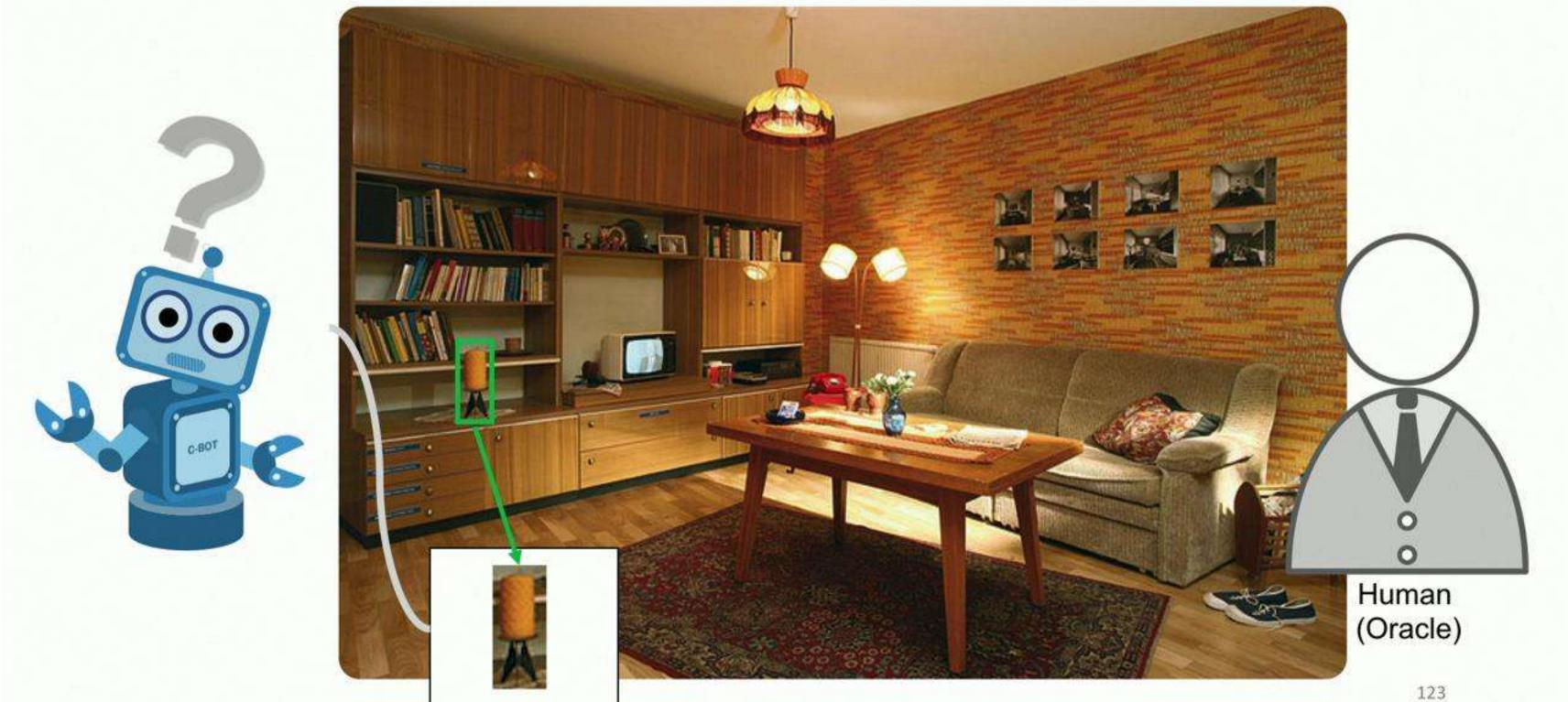




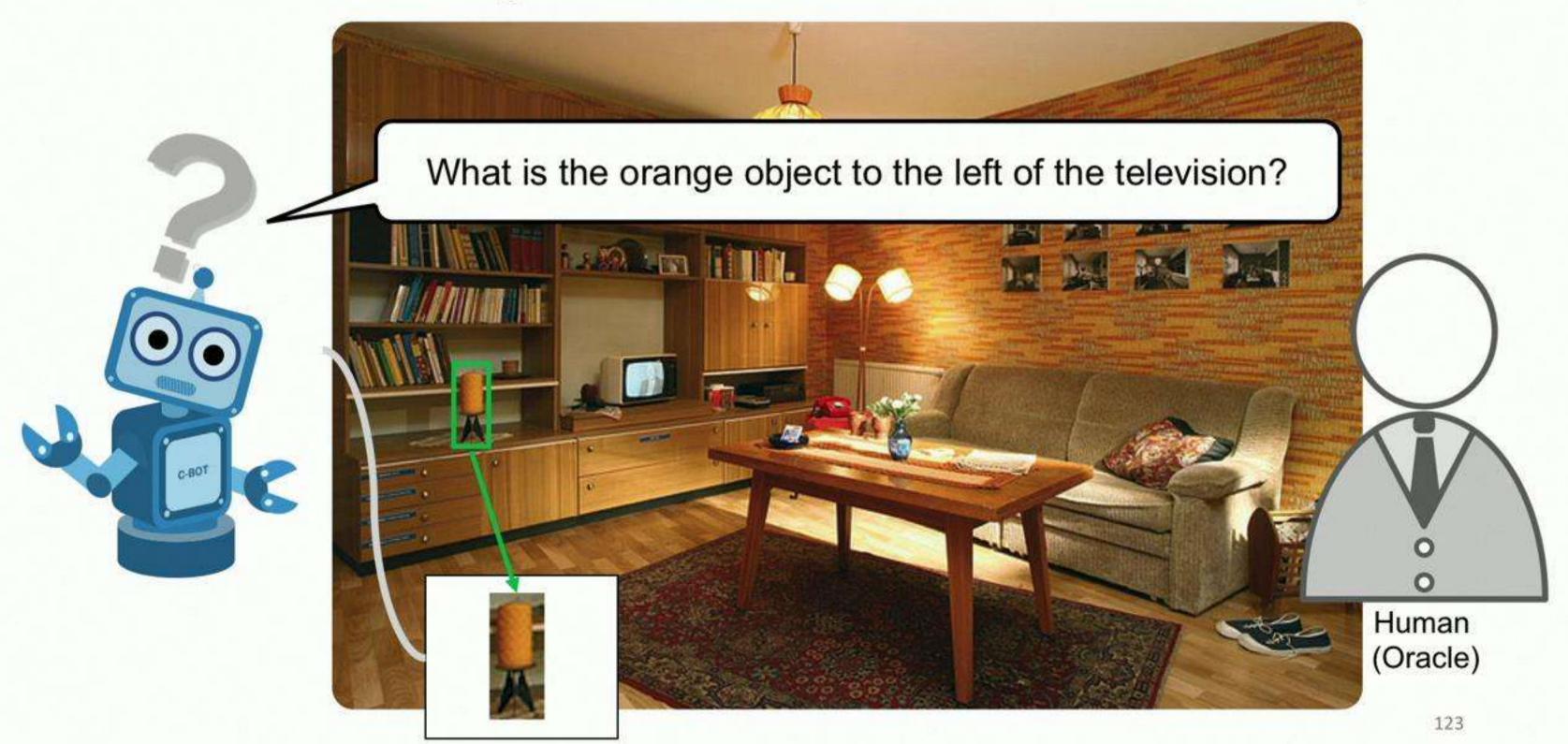
The Open-World Recognition Problem



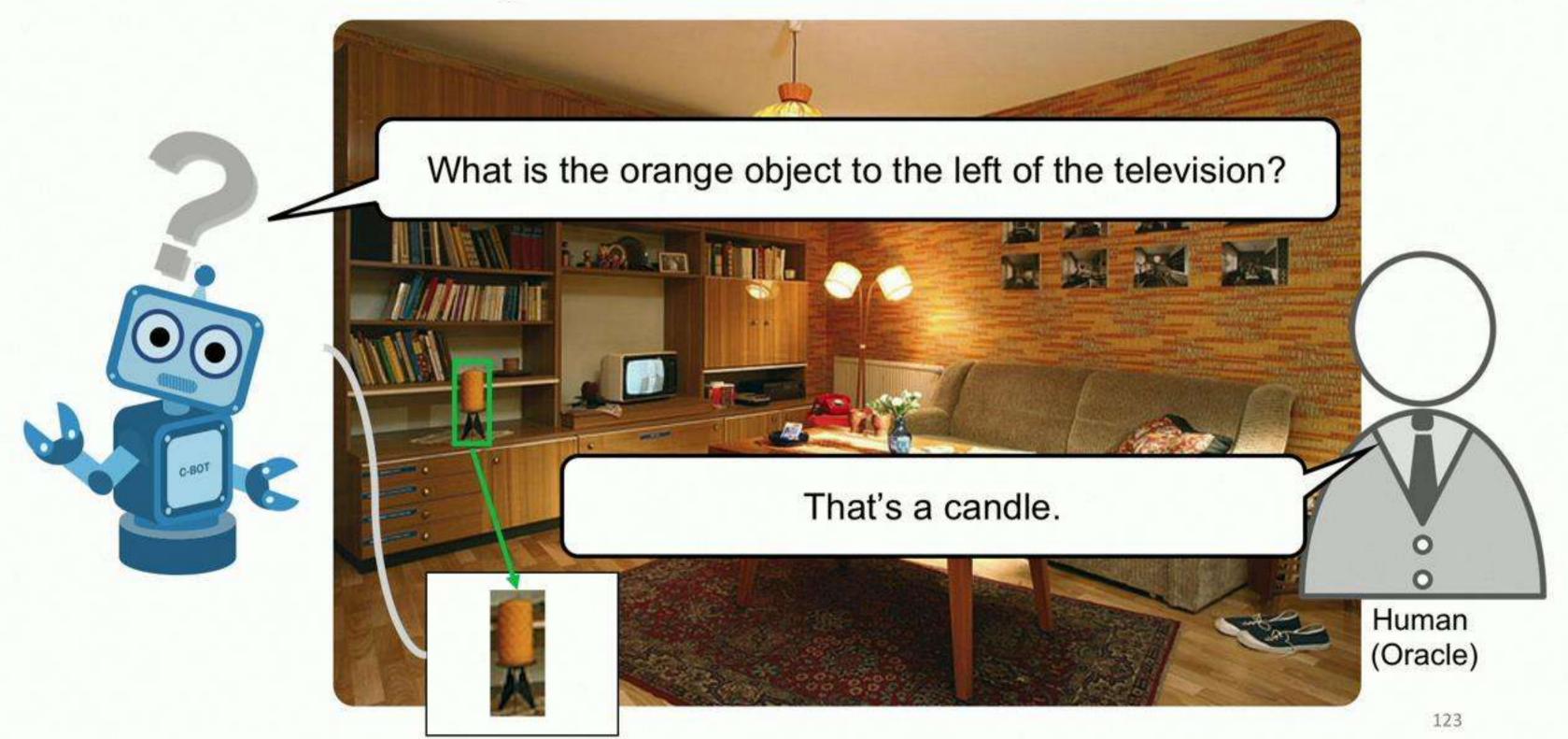
How can an agent learn about these concepts?

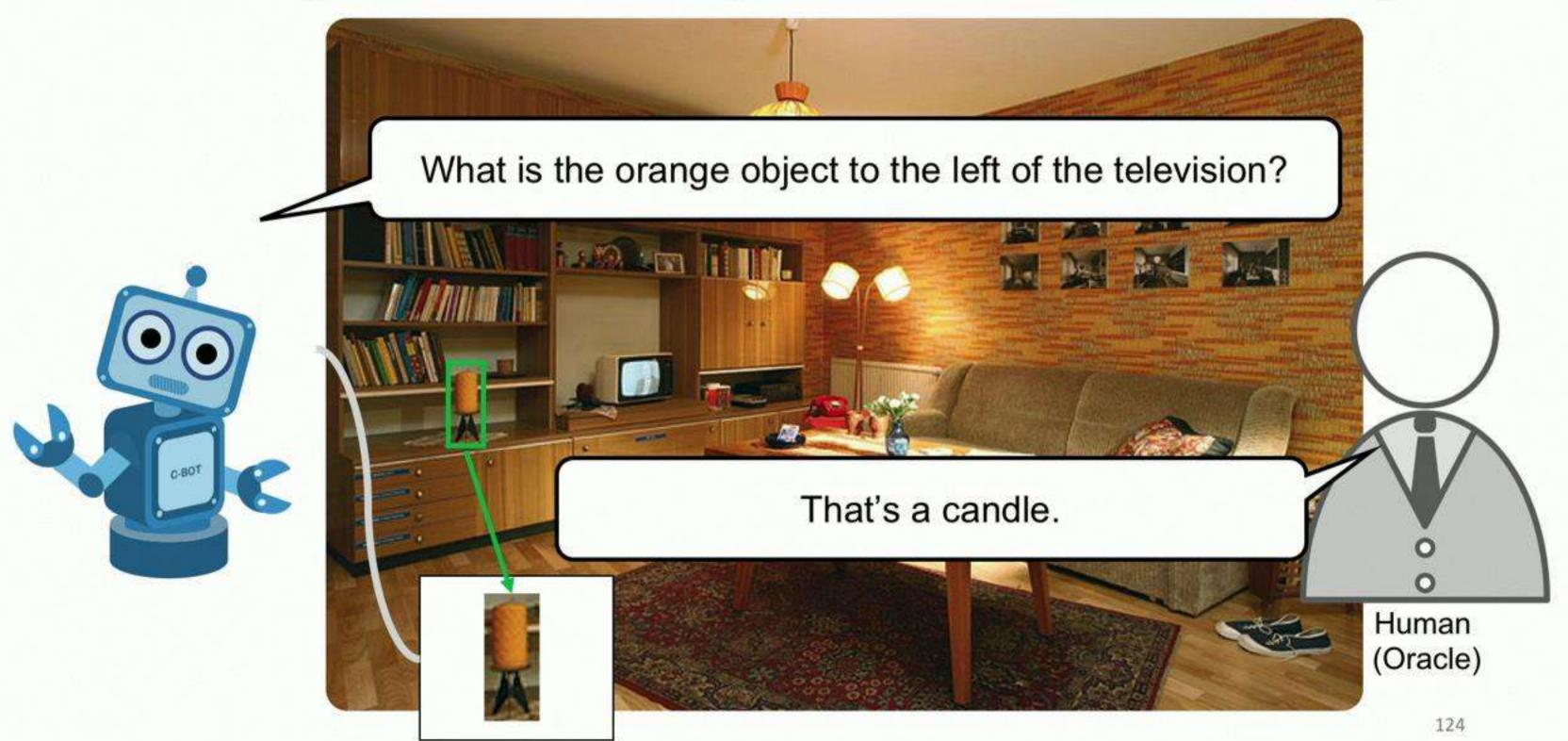


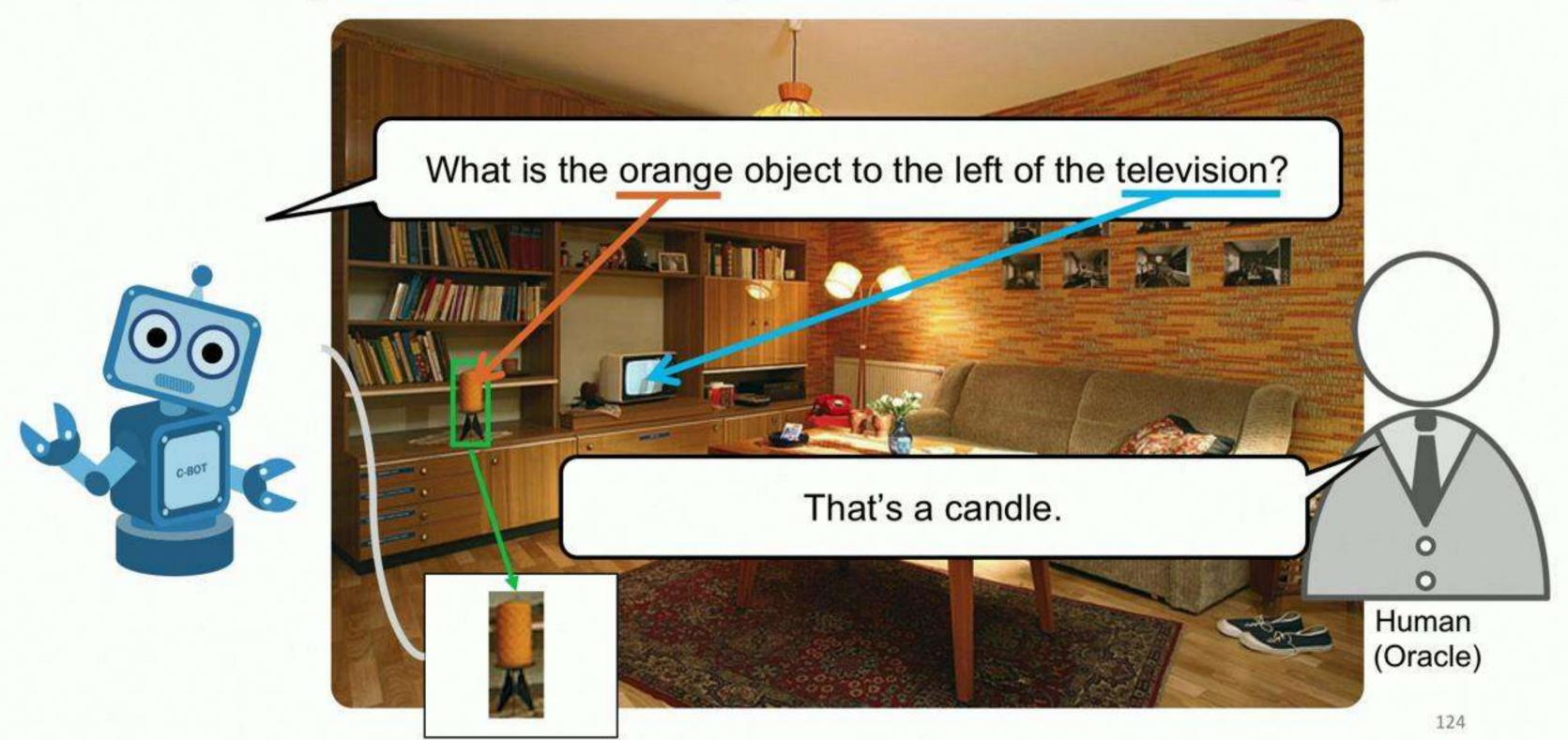
How can an agent learn about these concepts?

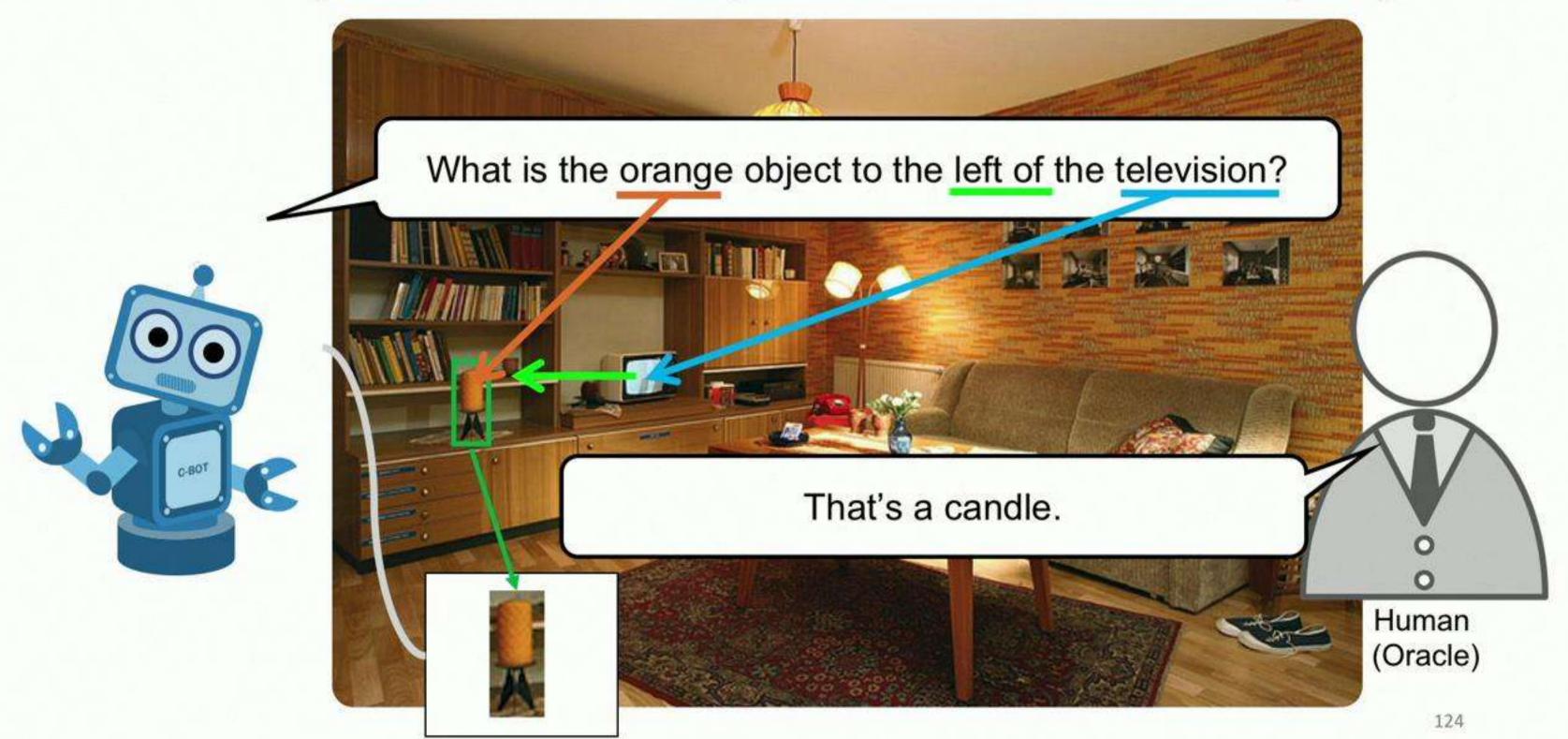


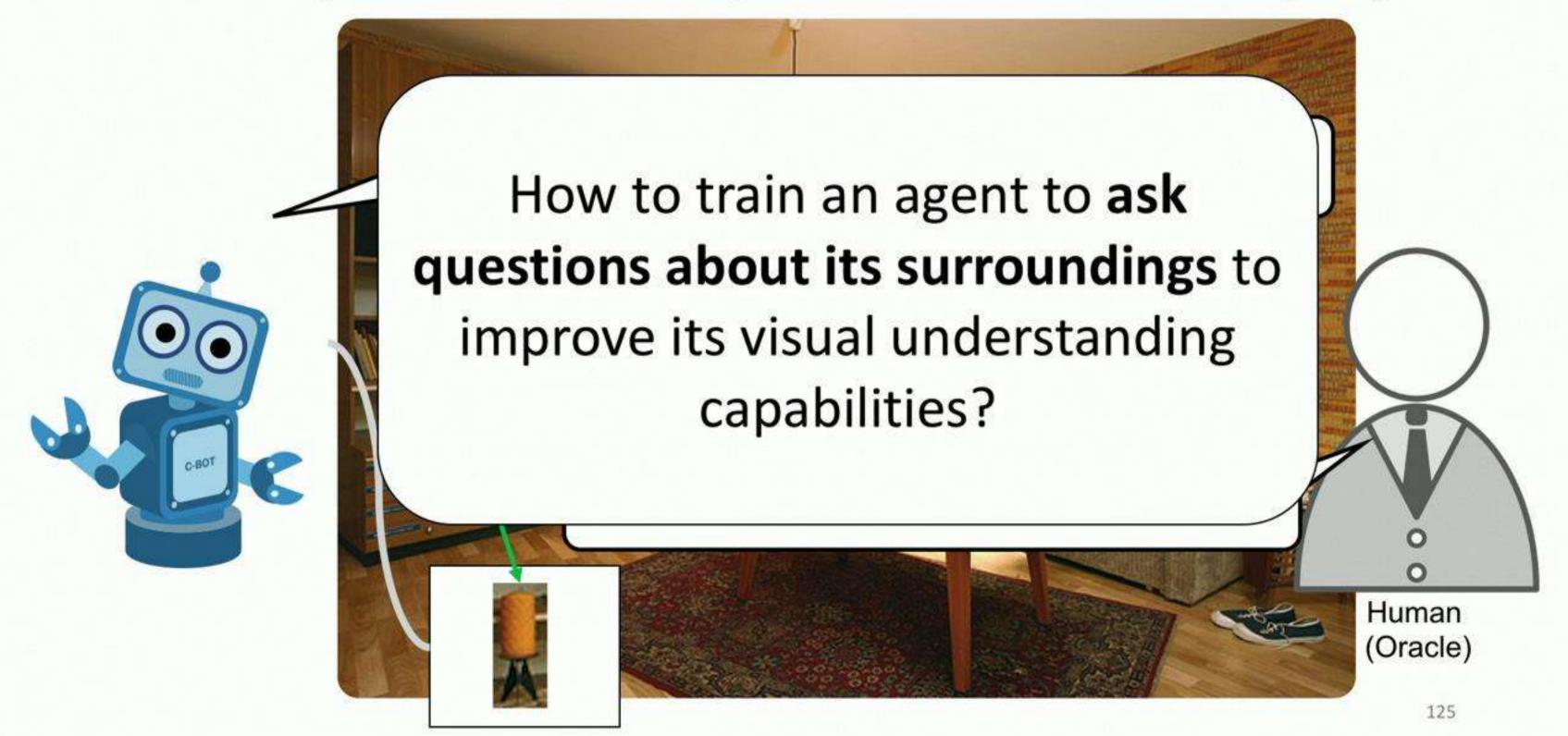
How can an agent learn about these concepts?



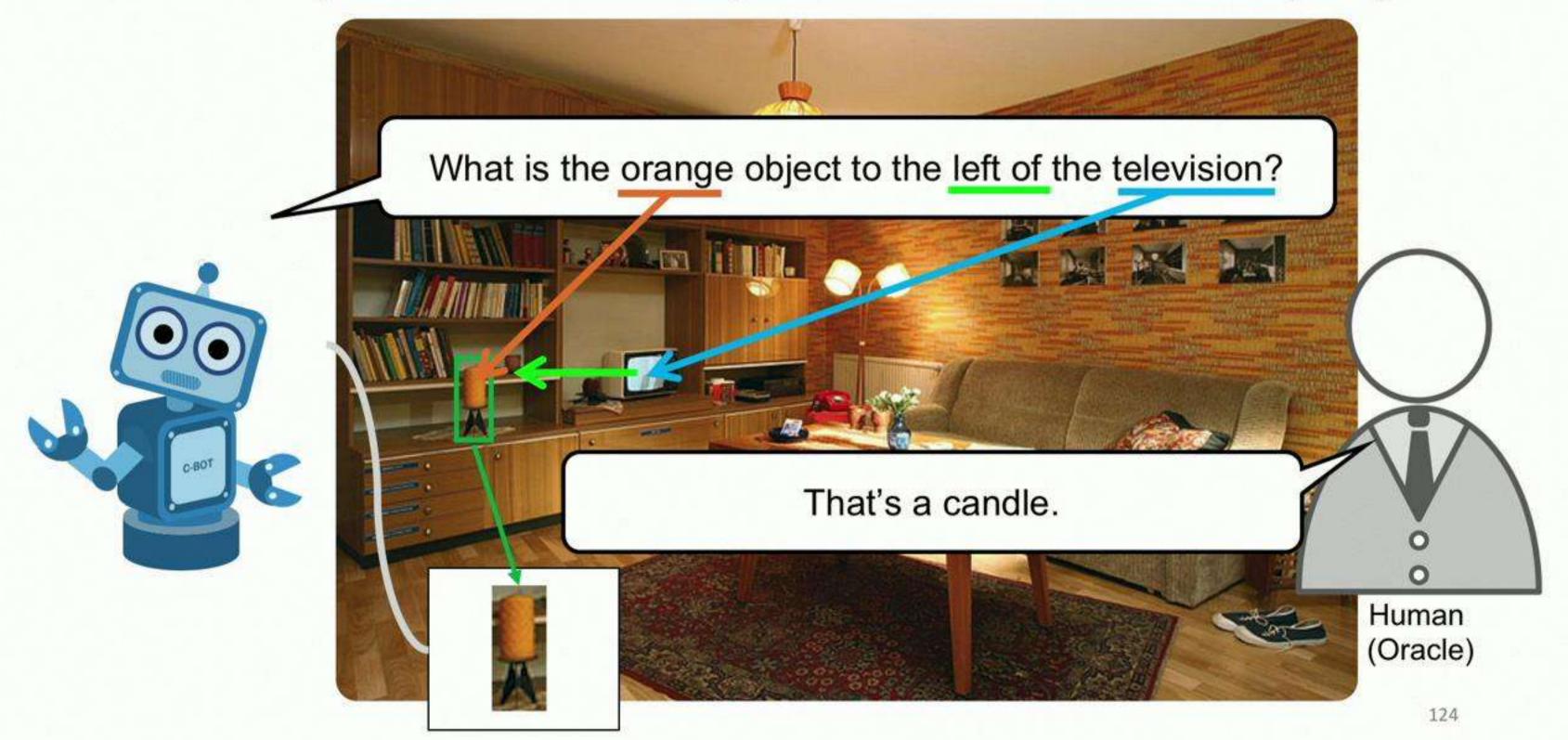


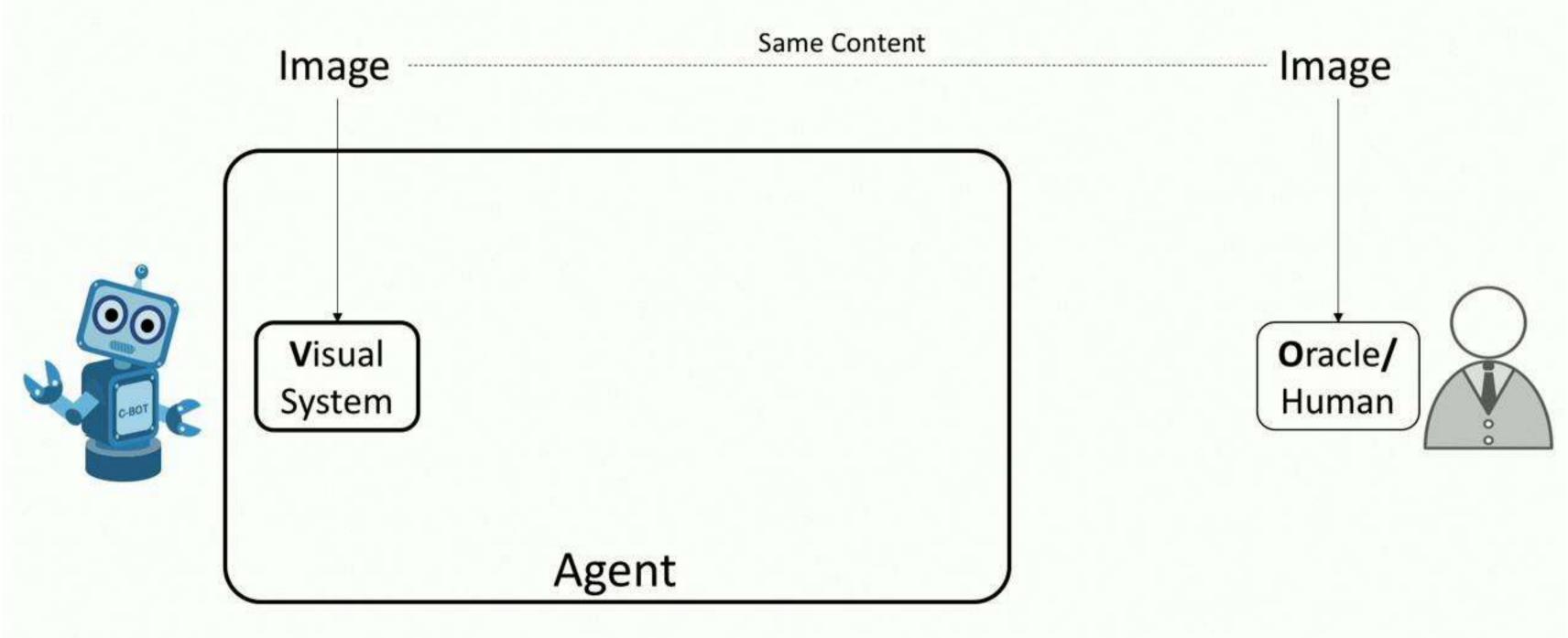


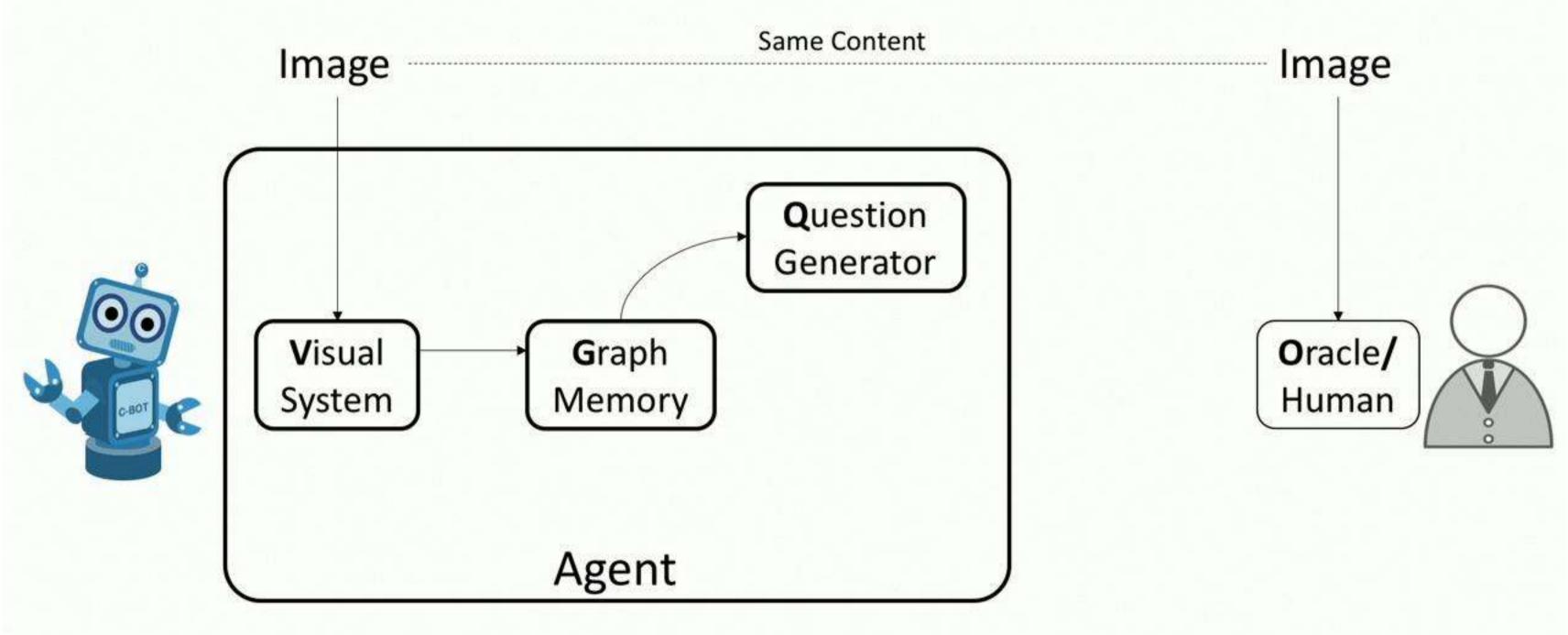


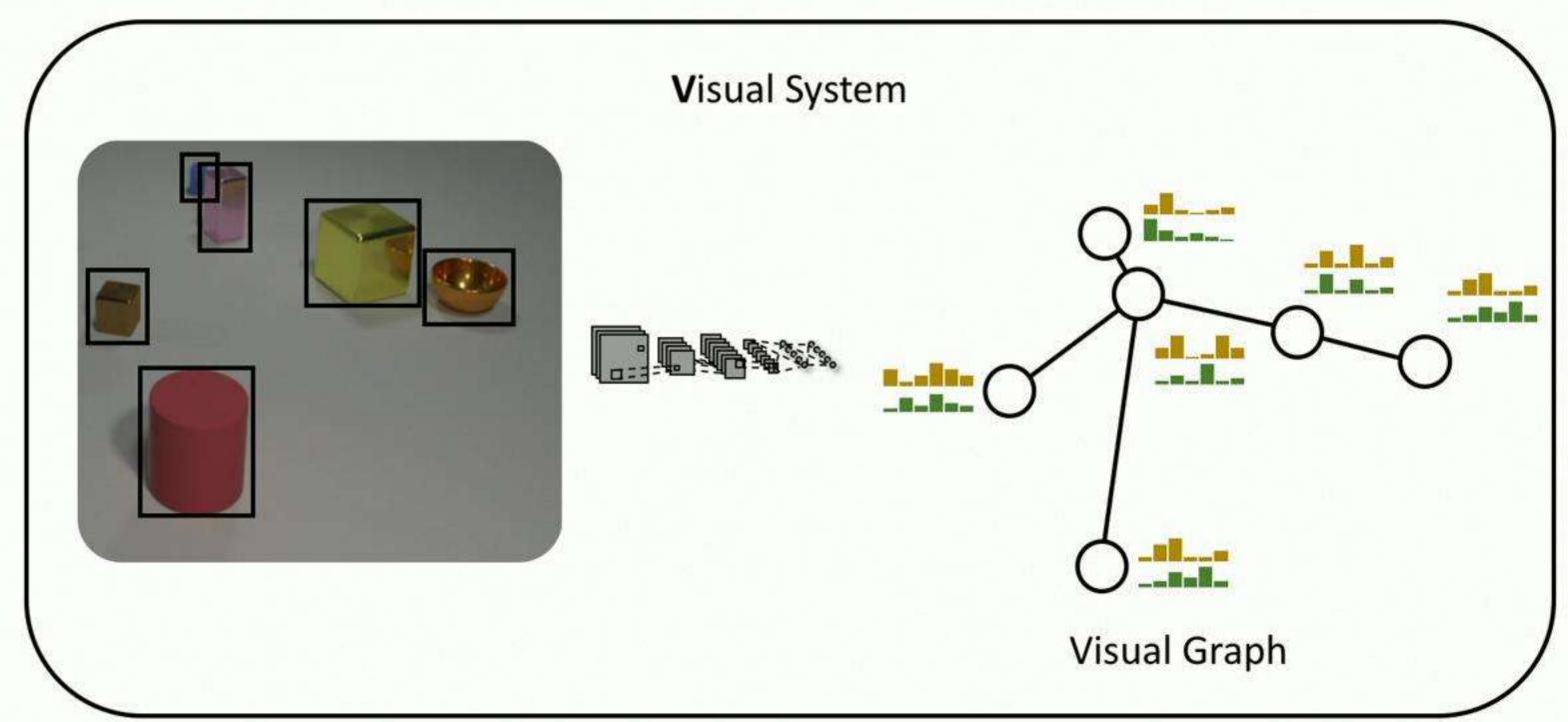


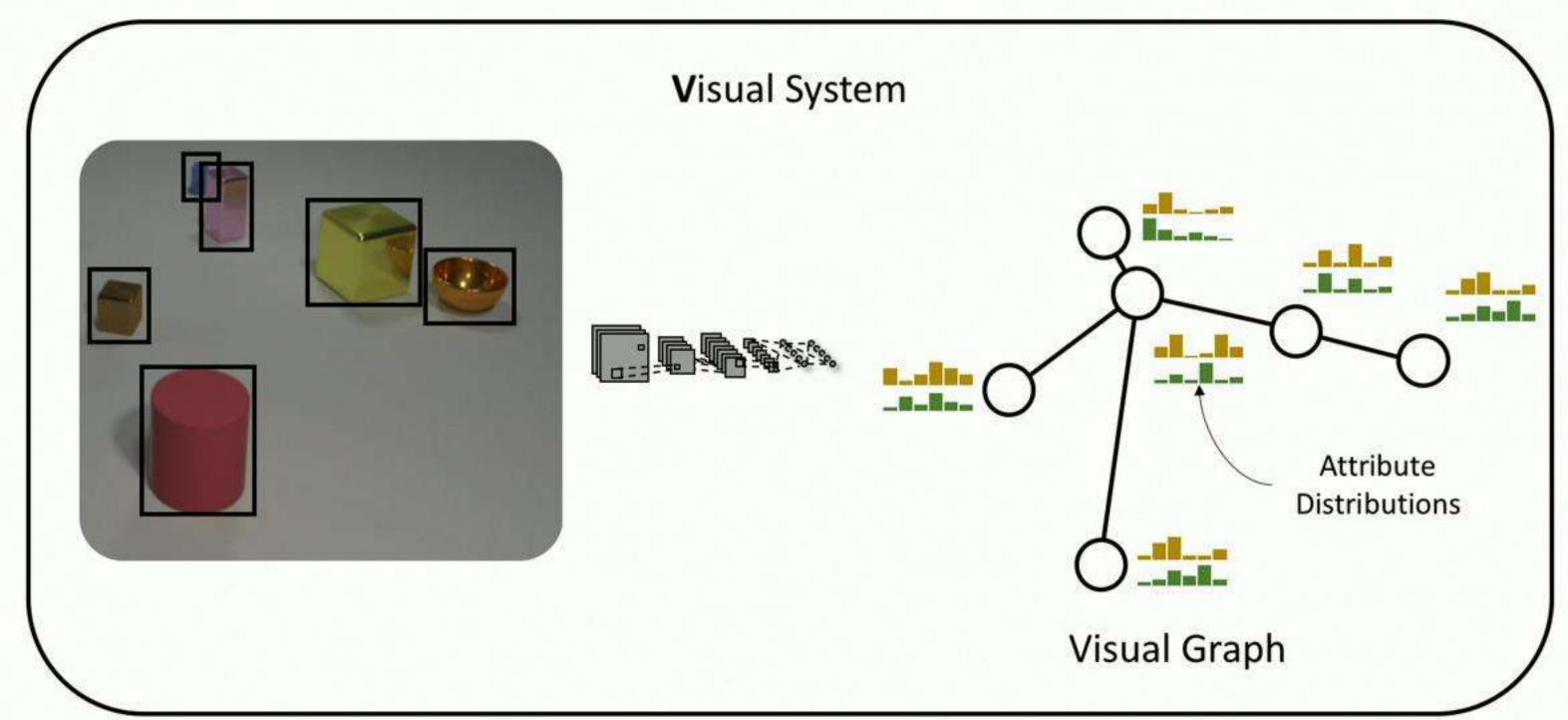
Asking informative questions is challenging!

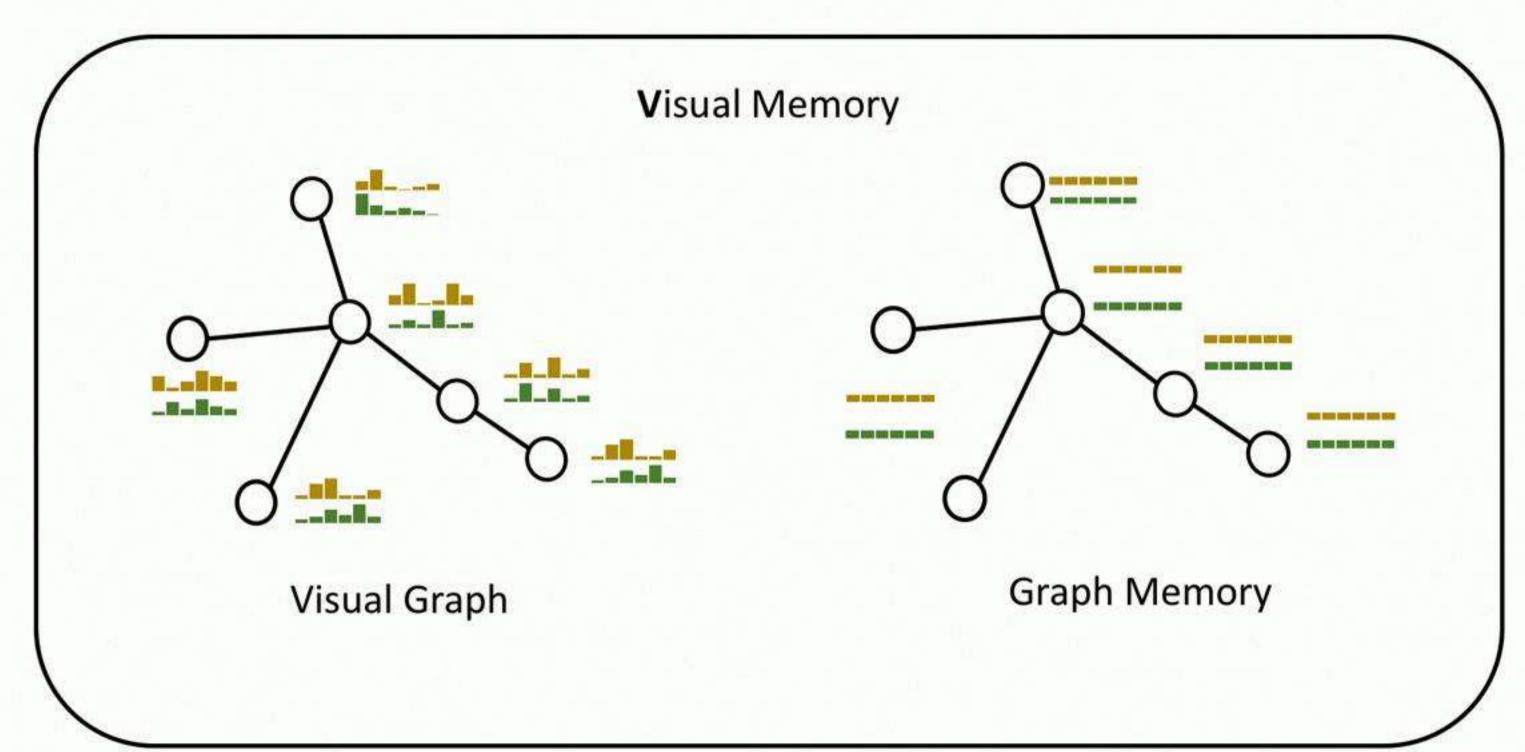




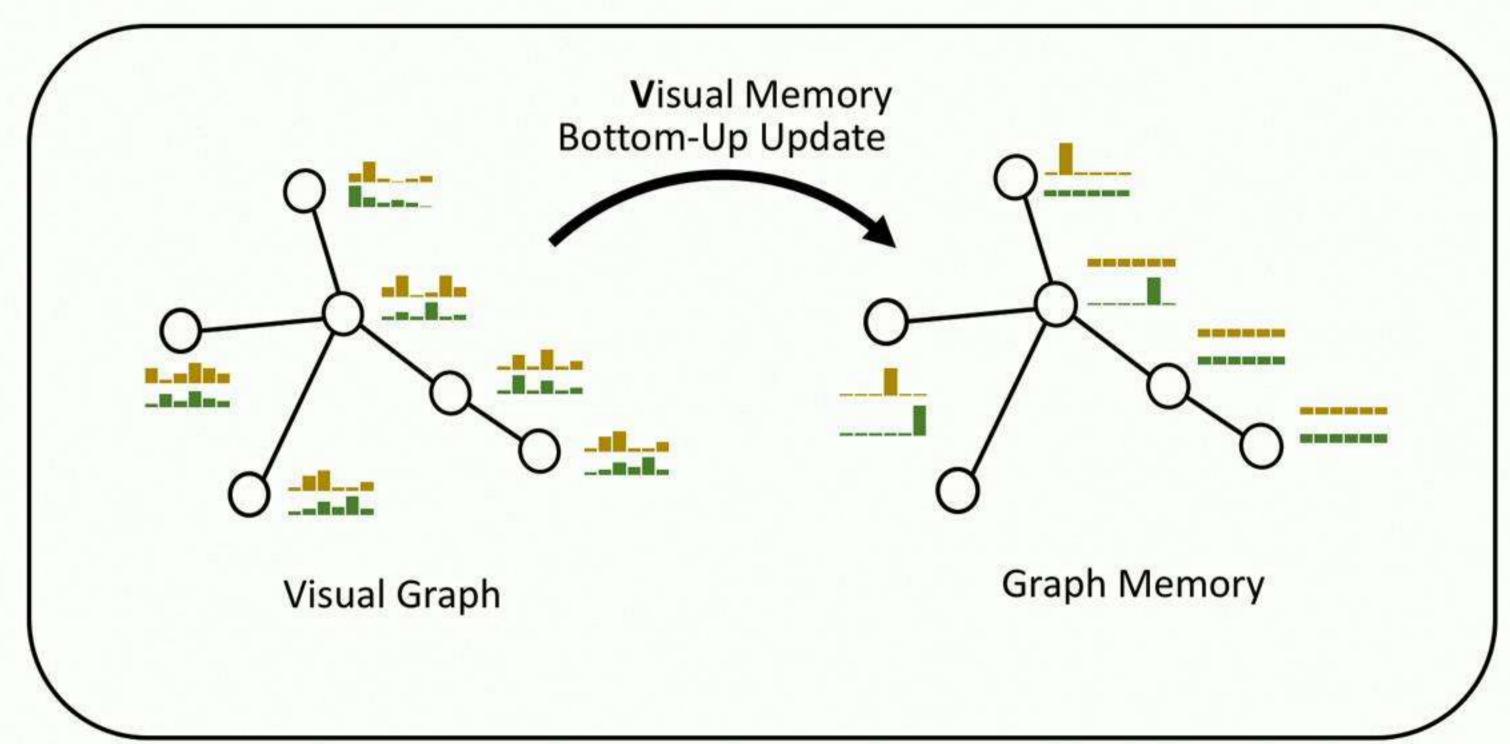




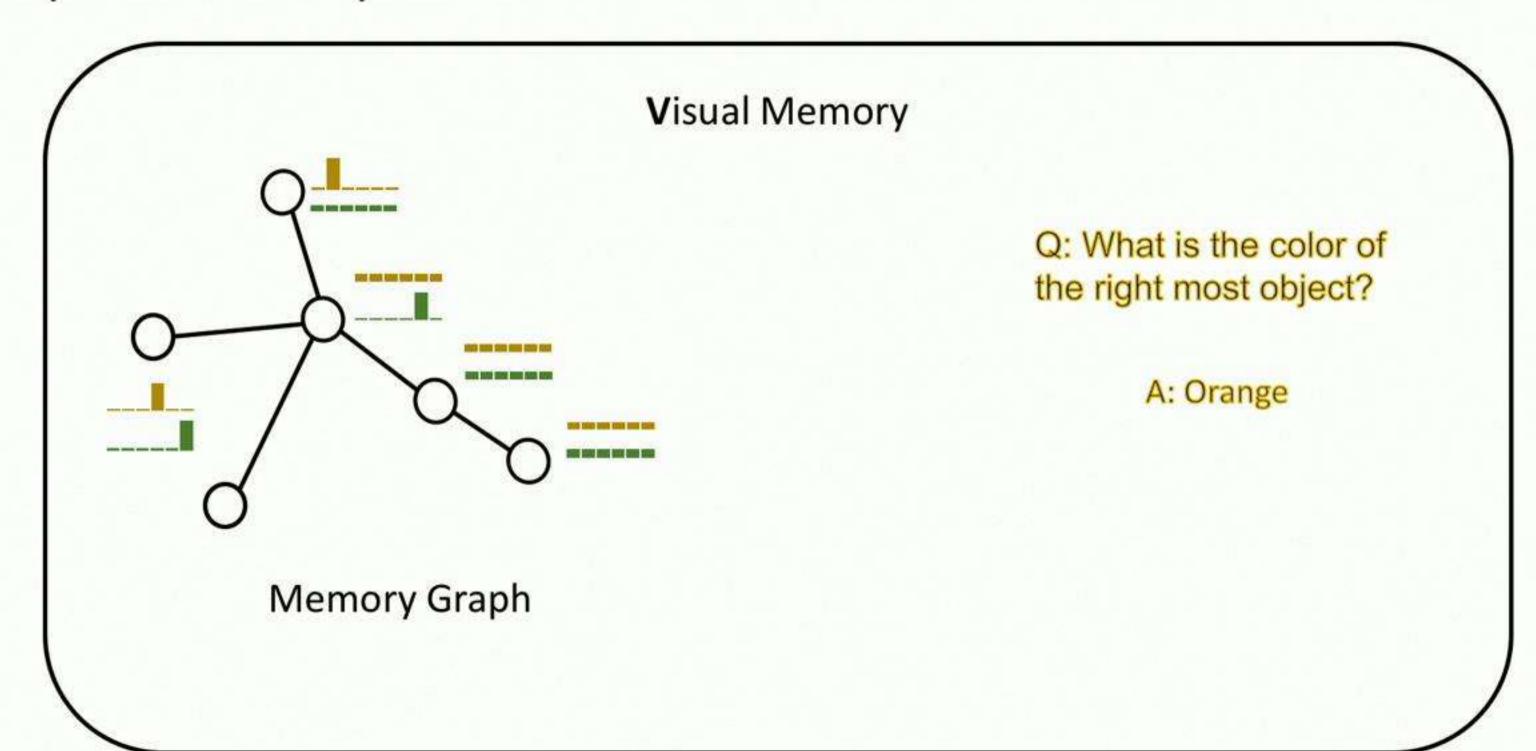




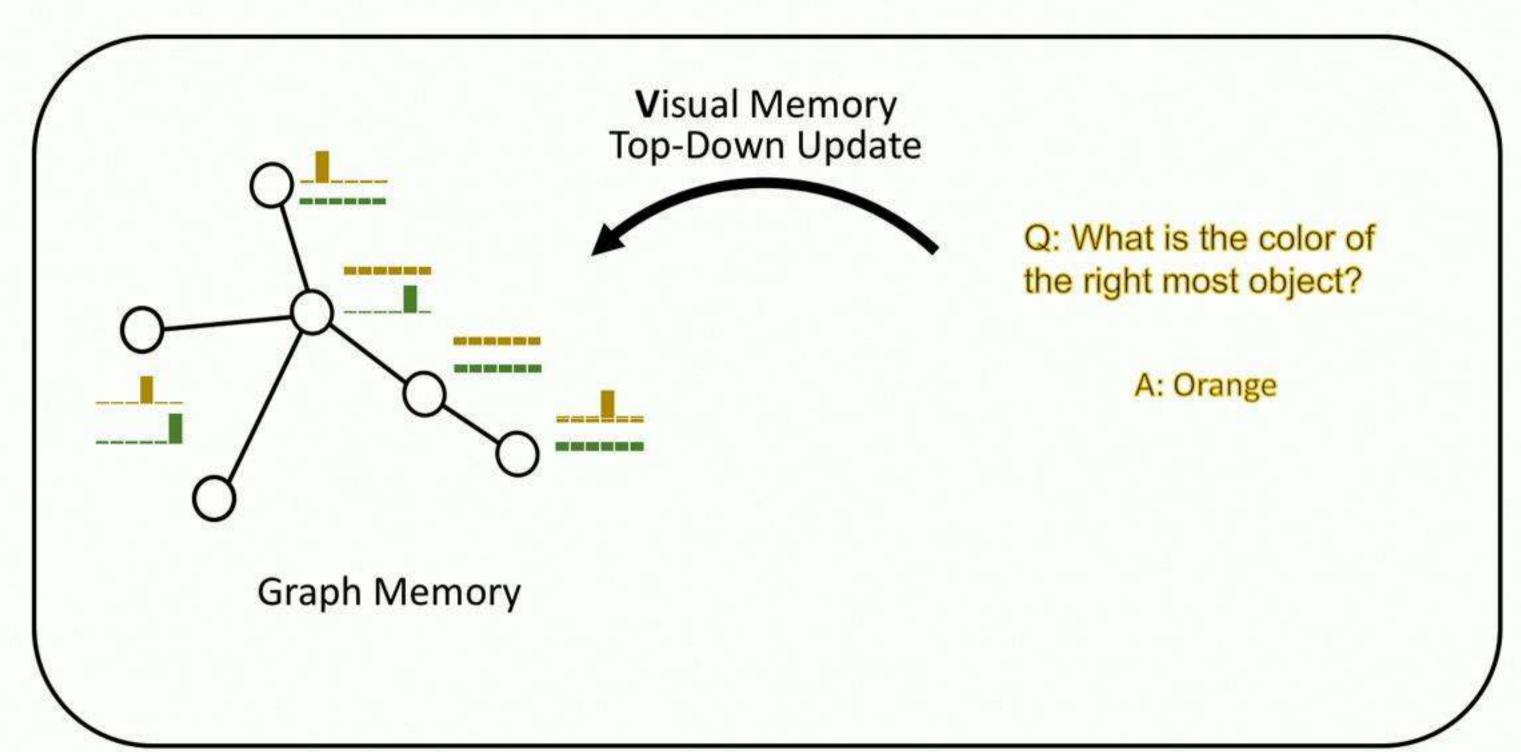
Bottom-up Update

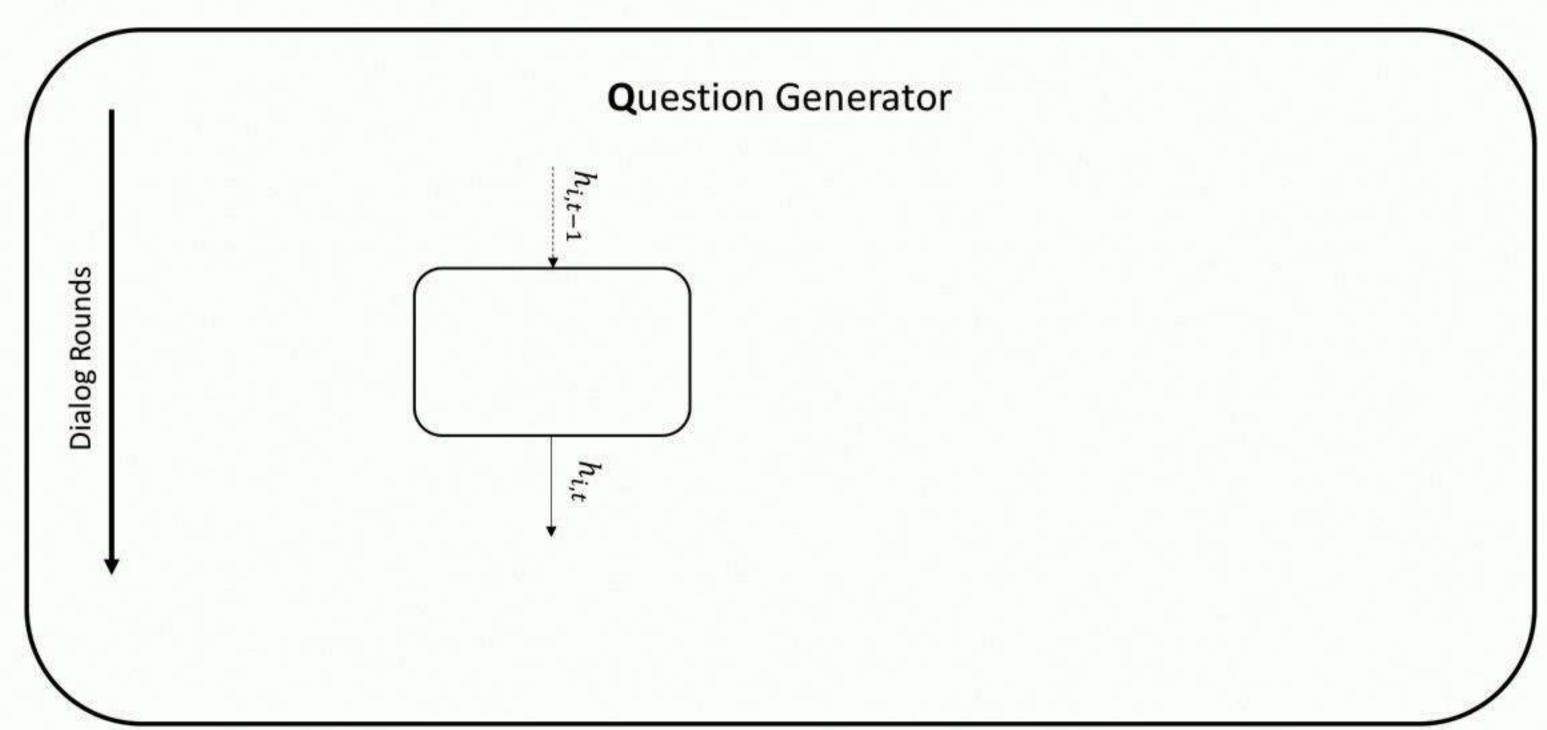


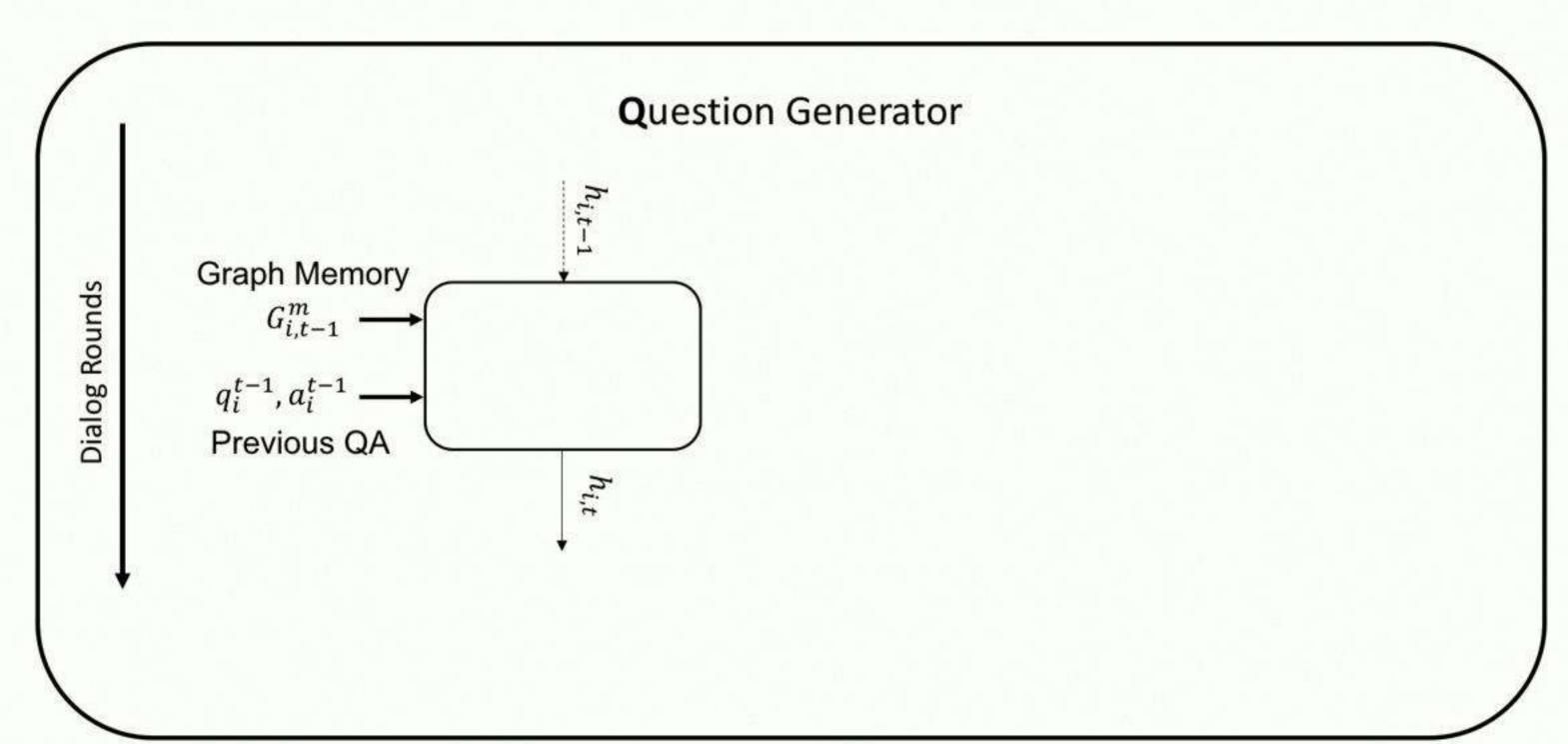
Top-down Update

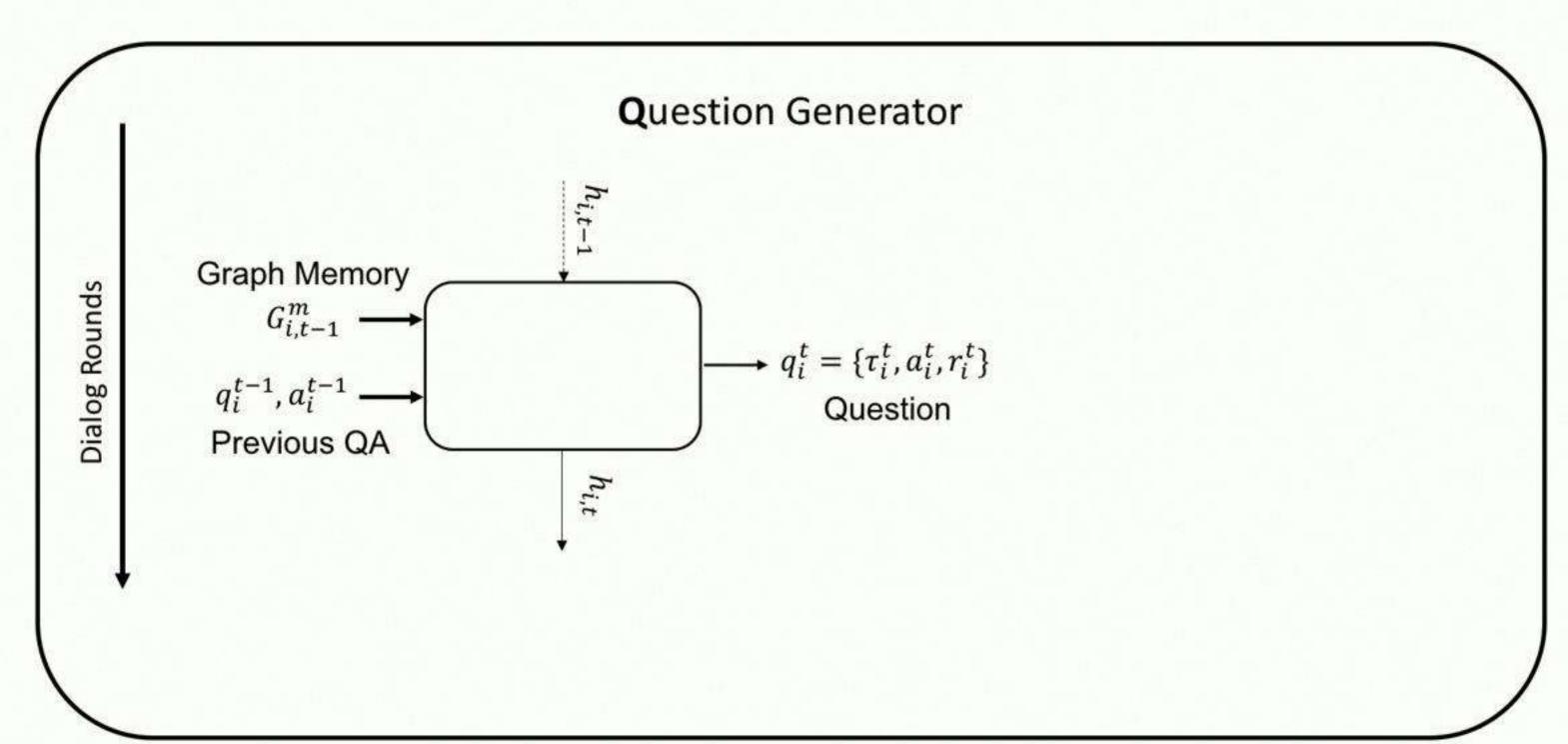


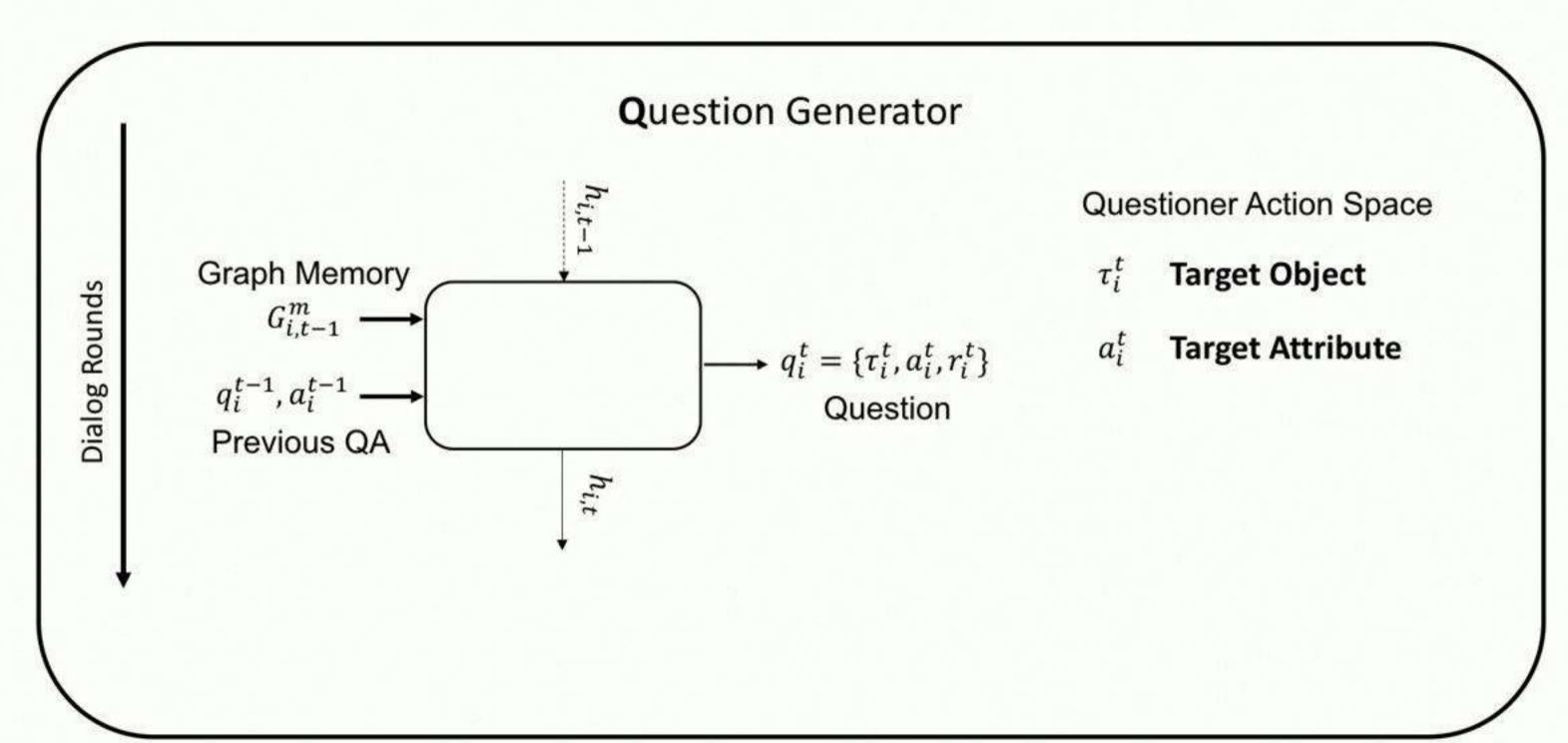
Top-down Update

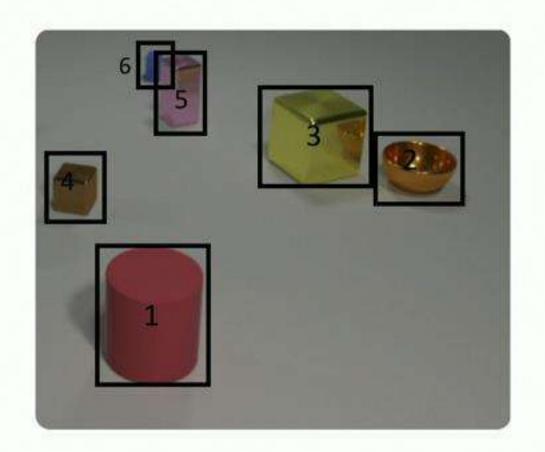


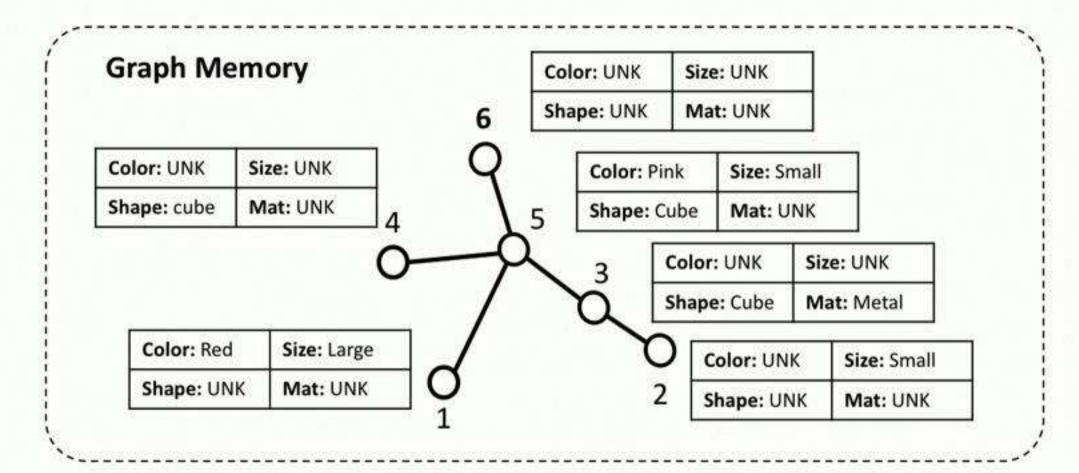


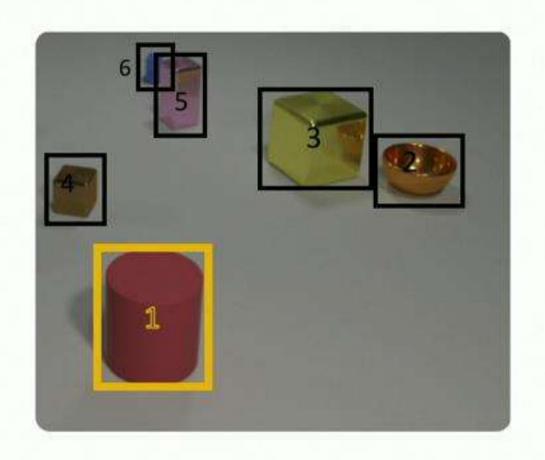


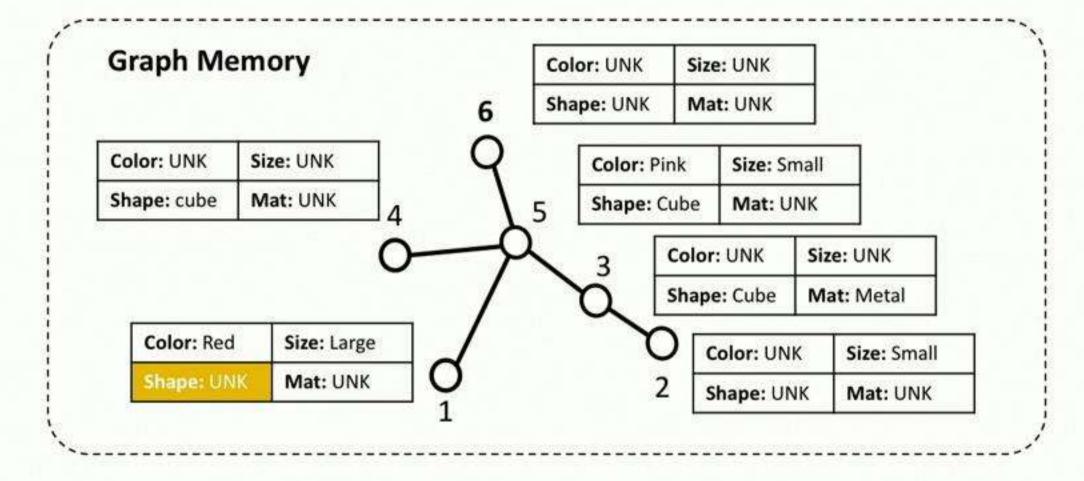










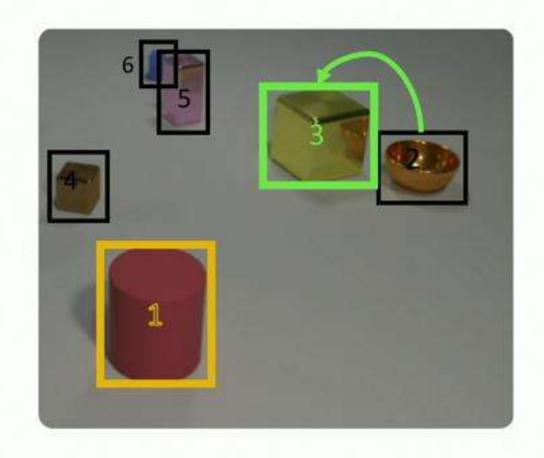


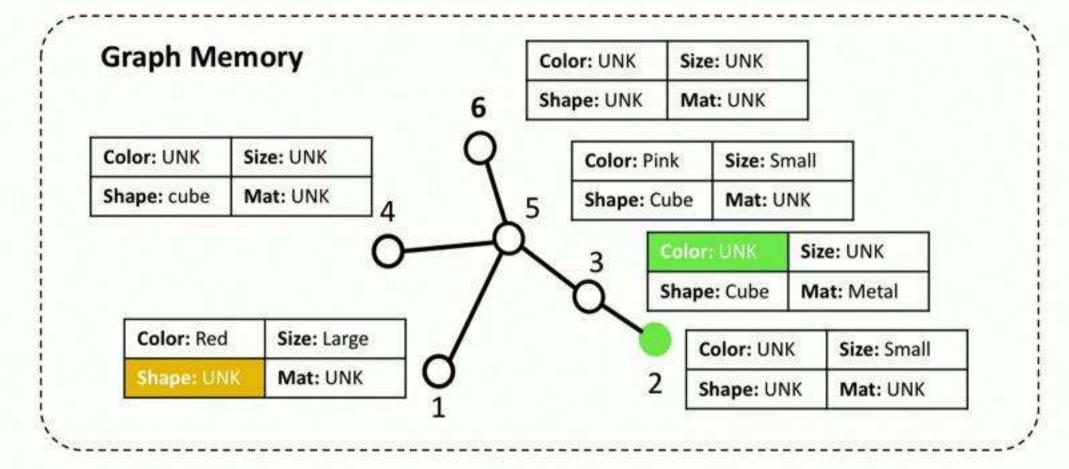
Target 1

Attribute Shape

Reference None

Question What is the shape of the front most large red object?





Target 1

Attribute Shape

Reference None

Question

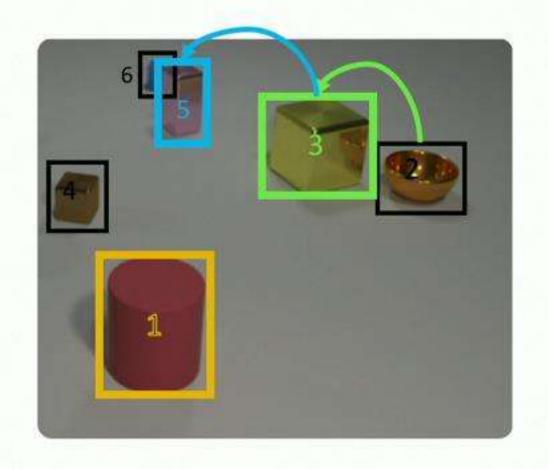
What is the shape of the front most large red object?

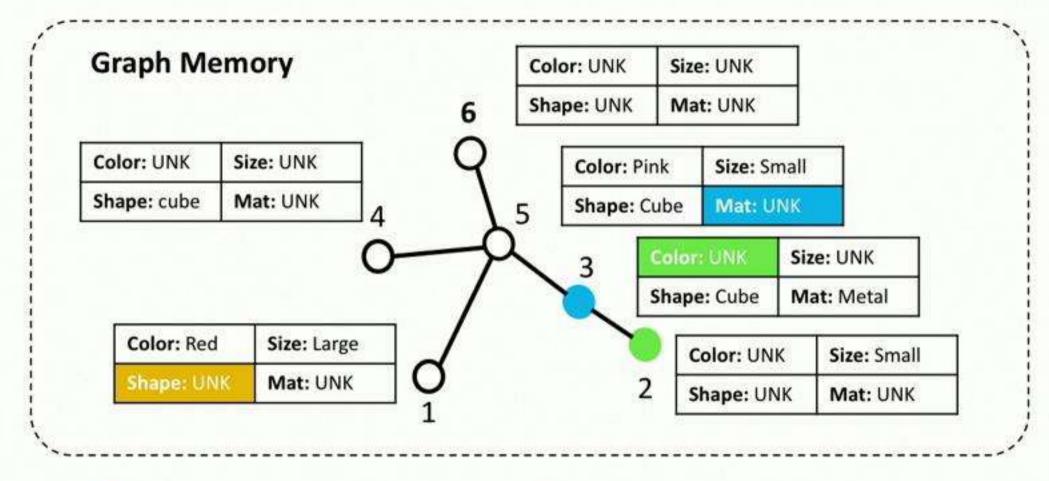
3

Color

2

What is the color of the metal cube on the left side of a small object?





5

Target 1
Attribute Shape
Reference None

What is the shape of the front most large red object?

Color

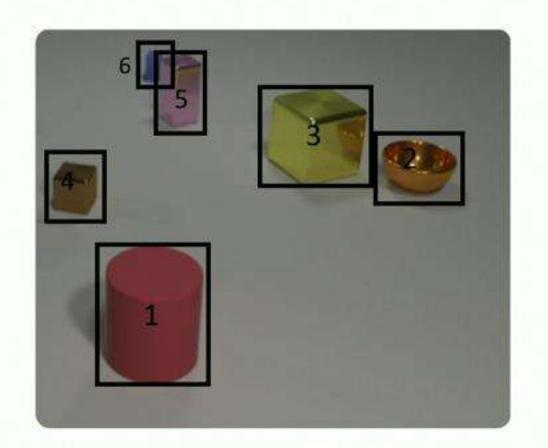
What is the color of the metal cube on the left

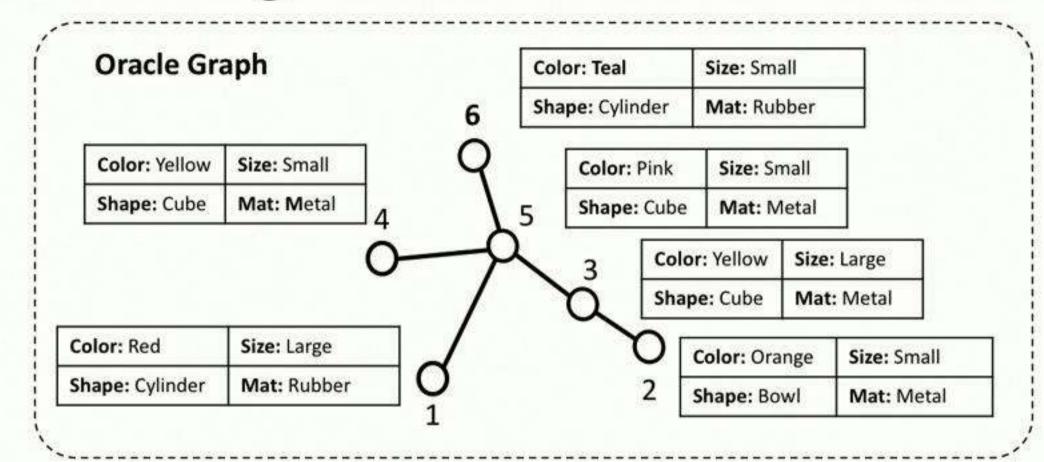
side of a small object?

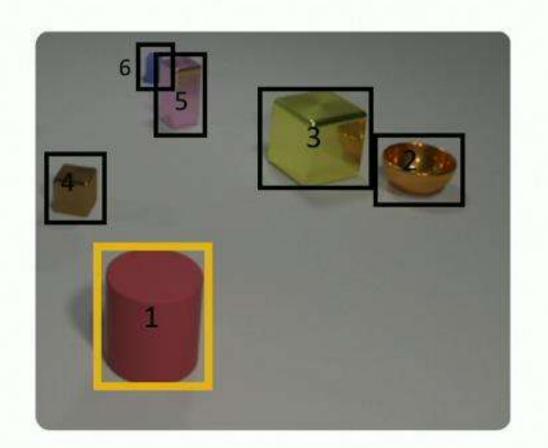
Material

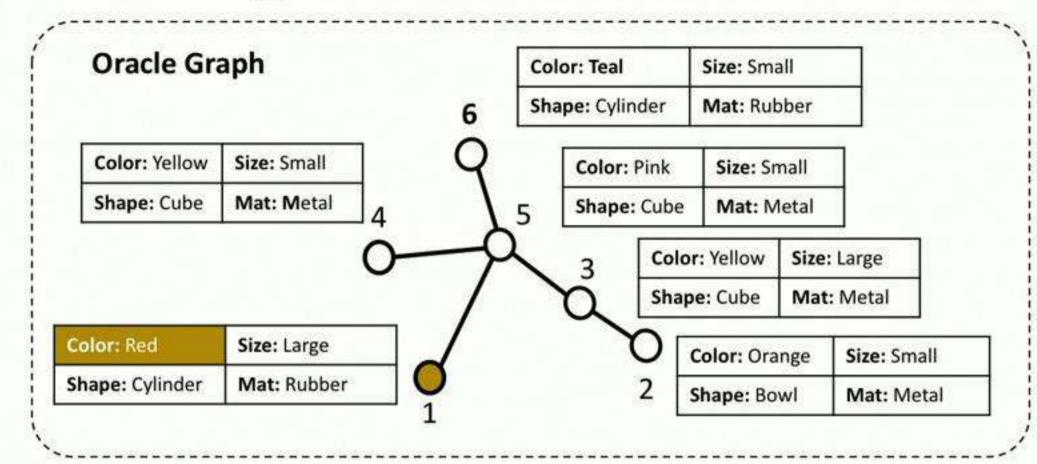
3

What is the material of object at left side of metal cube?

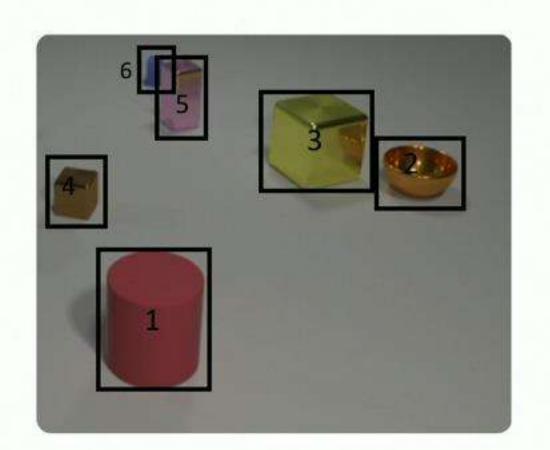


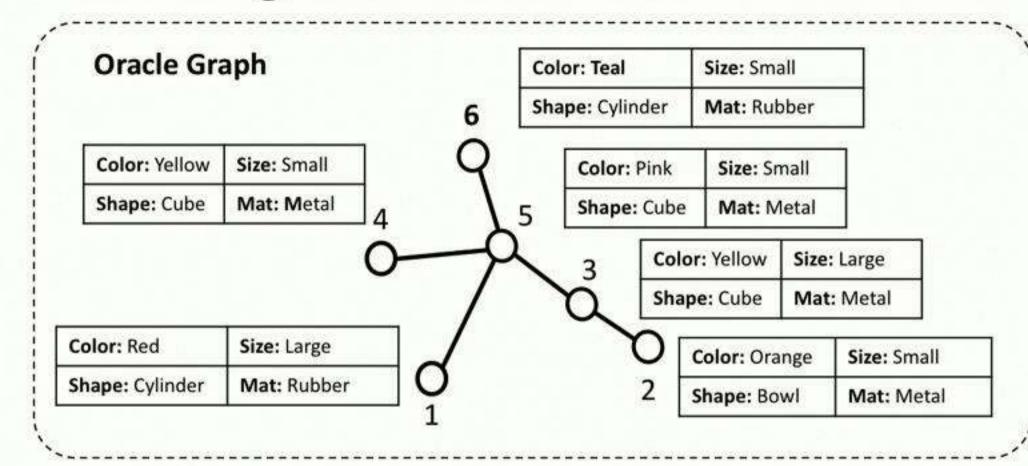






Q: What is the color of the front most object?

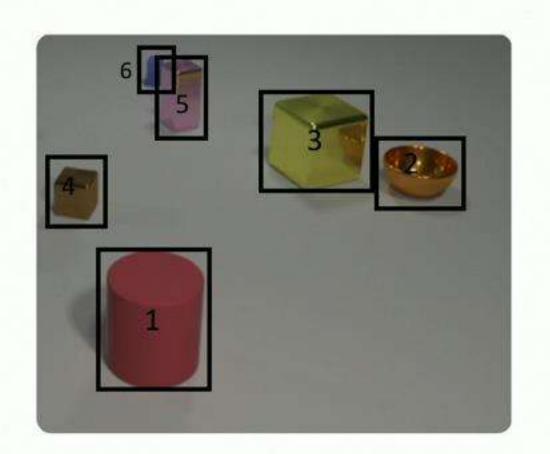


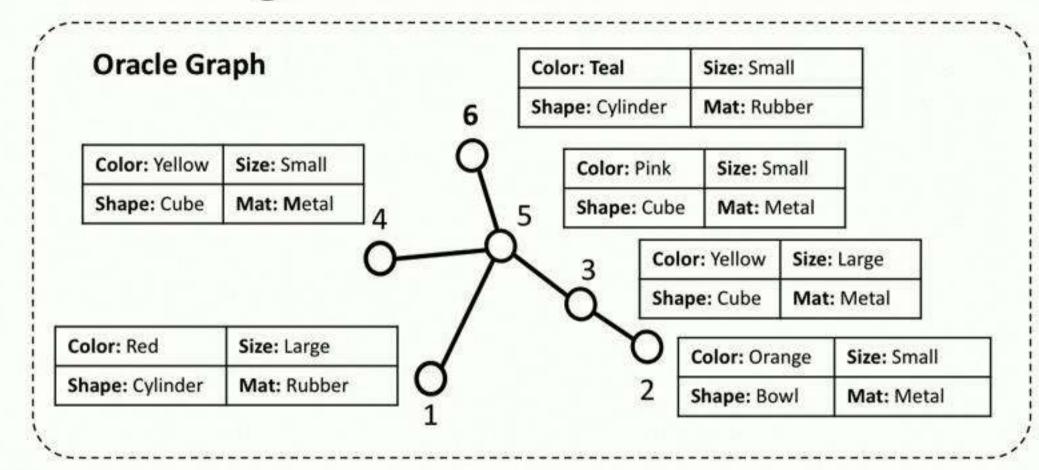


Q: What is the color of the front most object?

A: Red

Q: What is the shape of the object left of the green object?



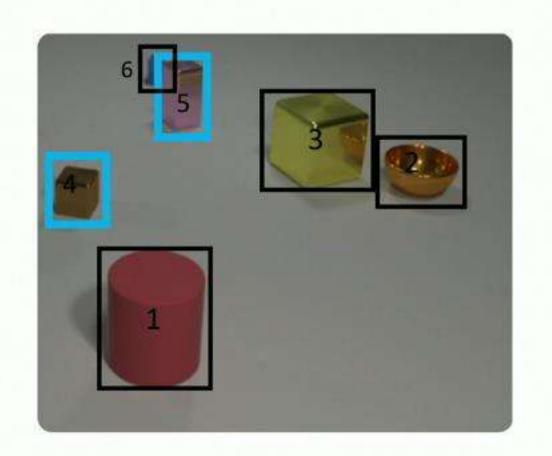


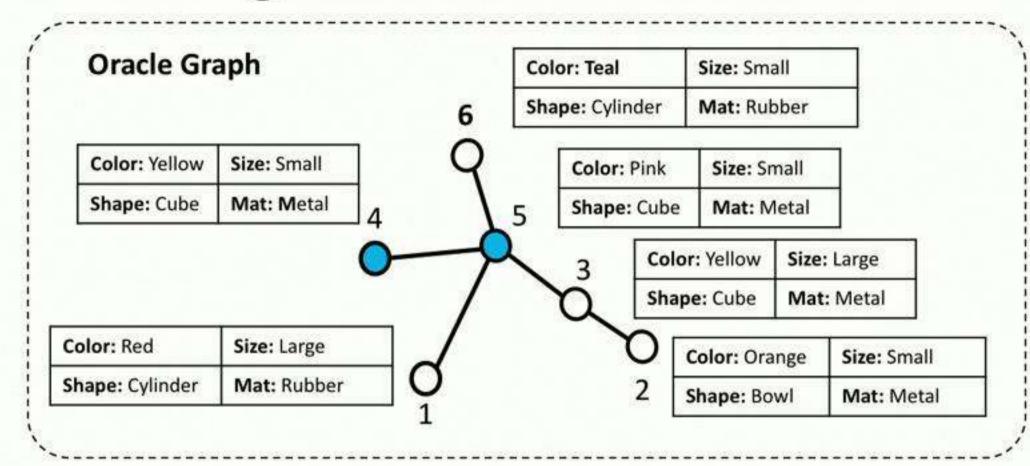
Q: What is the color of the front most object?

A: Red

Q: What is the shape of the object left of the green object?

A: (Invalid)





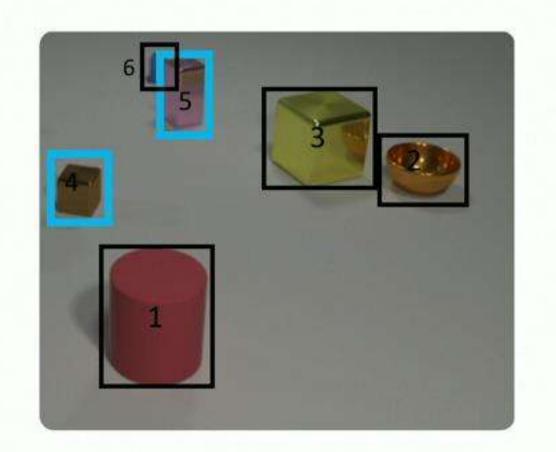
Q: What is the color of the front most object?

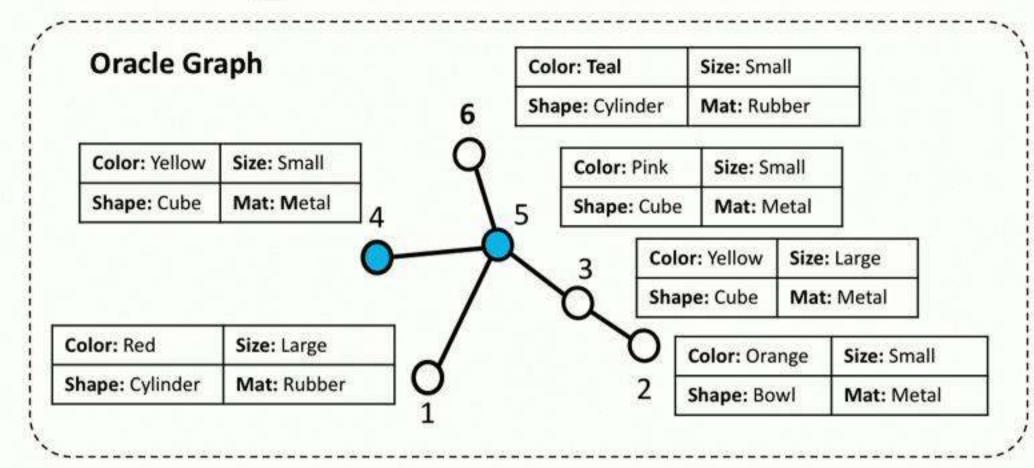
A: Red

Q: What is the shape of the object left of the green object?

A: (Invalid)

Q: What is color is the small cube?





Q: What is the color of the front most object?

A: Red

Q: What is the shape of the object left of the green object?

A: (Invalid)

Q: What is color is the small cube?

A: (Ambiguous)

Training Objective: Visual System

Cross-Entropy loss between the graph memory and the visual predictions over all images, objects, and attributes

Training Objective: Visual System

Cross-Entropy loss between the graph memory and the visual predictions over all images, objects, and attributes

Update visual system after each dialog with stochastic gradient descent

Train the questioner to maximize expected reward over images and dialog rounds in an episode

$$\theta_{\pi}^* = \arg\max E_V E_{I \sim \mathcal{E}} E_{\pi_q} \left[\sum_{i=1}^n \sum_{t=1}^T r_i^t (q_i^t \sim \pi_q(h_i^t; \theta_{\pi})) \right]$$

Train the questioner to maximize expected reward over images and dialog rounds in an episode

Sum of reward over all images and dialog rounds

$$\theta_{\pi}^* = \arg\max E_V E_{I \sim \mathcal{E}} E_{\pi_q} \left[\sum_{i=1}^n \sum_{t=1}^T r_i^t (q_i^t \sim \pi_q(h_i^t; \theta_{\pi})) \right]$$

Expectation over visual systems, episodes, and questions

Use A2C and update policy after each episode based on all rounds

$$r_i^t = S(G_i^t, G_i^*) - S(G_i^{t-1}, G_i^*)$$

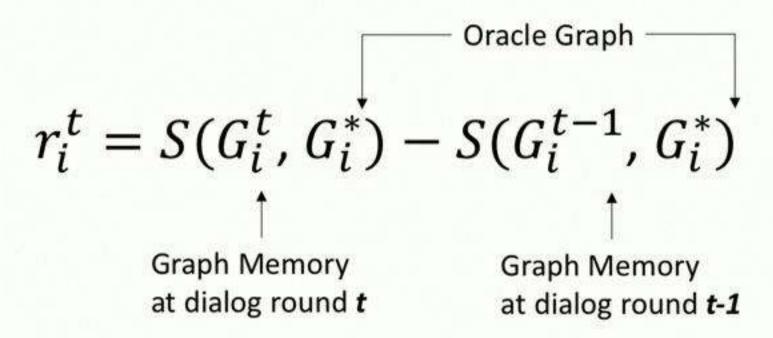
Train the questioner to maximize expected reward over images and dialog rounds in an episode

Sum of reward over all images and dialog rounds

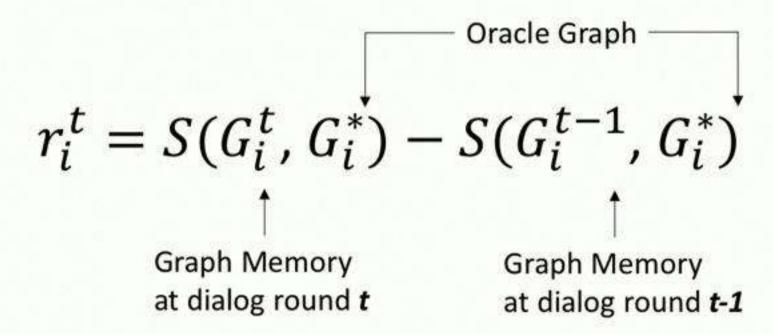
$$\theta_{\pi}^* = \arg\max E_V E_{I \sim \mathcal{E}} E_{\pi_q} \left[\sum_{i=1}^n \sum_{t=1}^T r_i^t (q_i^t \sim \pi_q(h_i^t; \theta_{\pi})) \right]$$

$$r_i^t = S(G_i^t, G_i^*) - S(G_i^{t-1}, G_i^*)$$

$$r_i^t = S(G_i^t, G_i^*) - S(G_i^{t-1}, G_i^*)$$



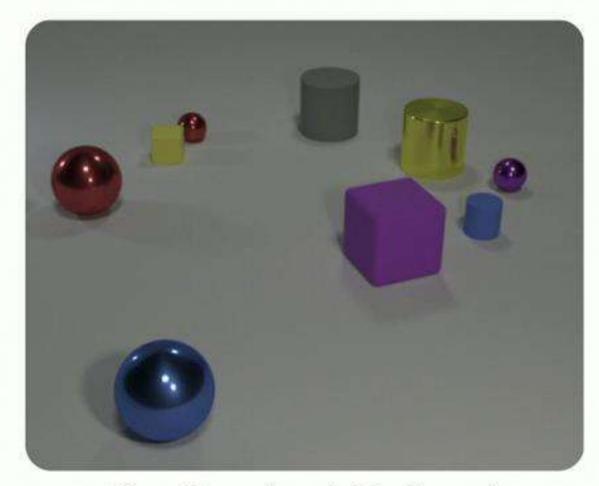
Per round change in graph memory accuracy



Can be improved by:

- Asking unambiguous, informative questions (top-down)
- Improving the visual system quickly (bottom-up)

Experiments: Environments



Synthesized Dataset

Different shapes, colors, materials and sizes. Extended from CLEVR dataset [1]

[1] CLEVR. Johnson et al.

Realistic Dataset

Various real indoor scenes.

Annotated based on the ARID dataset [2]

[2] Recognizing Objects In-the-Wild. Loghmani et al.

Experiments: Baselines

Baseline Heuristic Questioners:

Target object

Target attribute

Reference object

Experiments: Baselines

Baseline Heuristic Questioners:

	Random
Target object	Uniform
Target attribute	Uniform
Reference object	Uniform

Experiments: Baselines

Baseline Heuristic Questioners:

	Random	Entropy
Target object	Uniform	Highest entropy
Target attribute	Uniform	Highest entropy
Reference object	Uniform	Lowest entropy

Experiments: Baselines

Baseline Heuristic Questioners:

	Random	Entropy	Entropy + Context	
Target object	Uniform	Highest entropy	Highest Entropy + Spatial	
Target attribute	Uniform	Highest entropy	Highest Entropy	
Reference object	Uniform	Lowest entropy	Lowest Entropy + Spatial	

Experiment: Standard Training

Standard Dataset



Shapes: cube, sphere, cylinder

Colors: gray, red, blue, green, yellow, purple

Materials: rubber, metal

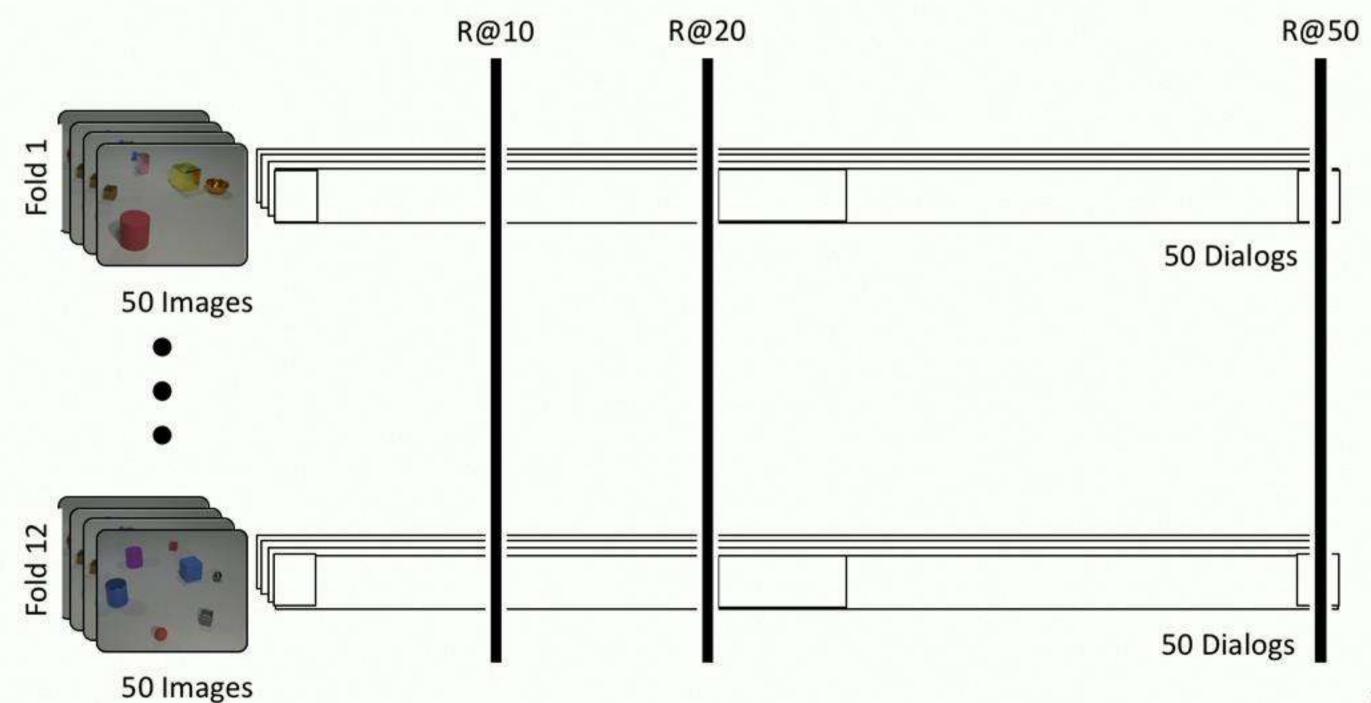
Sizes: small, large

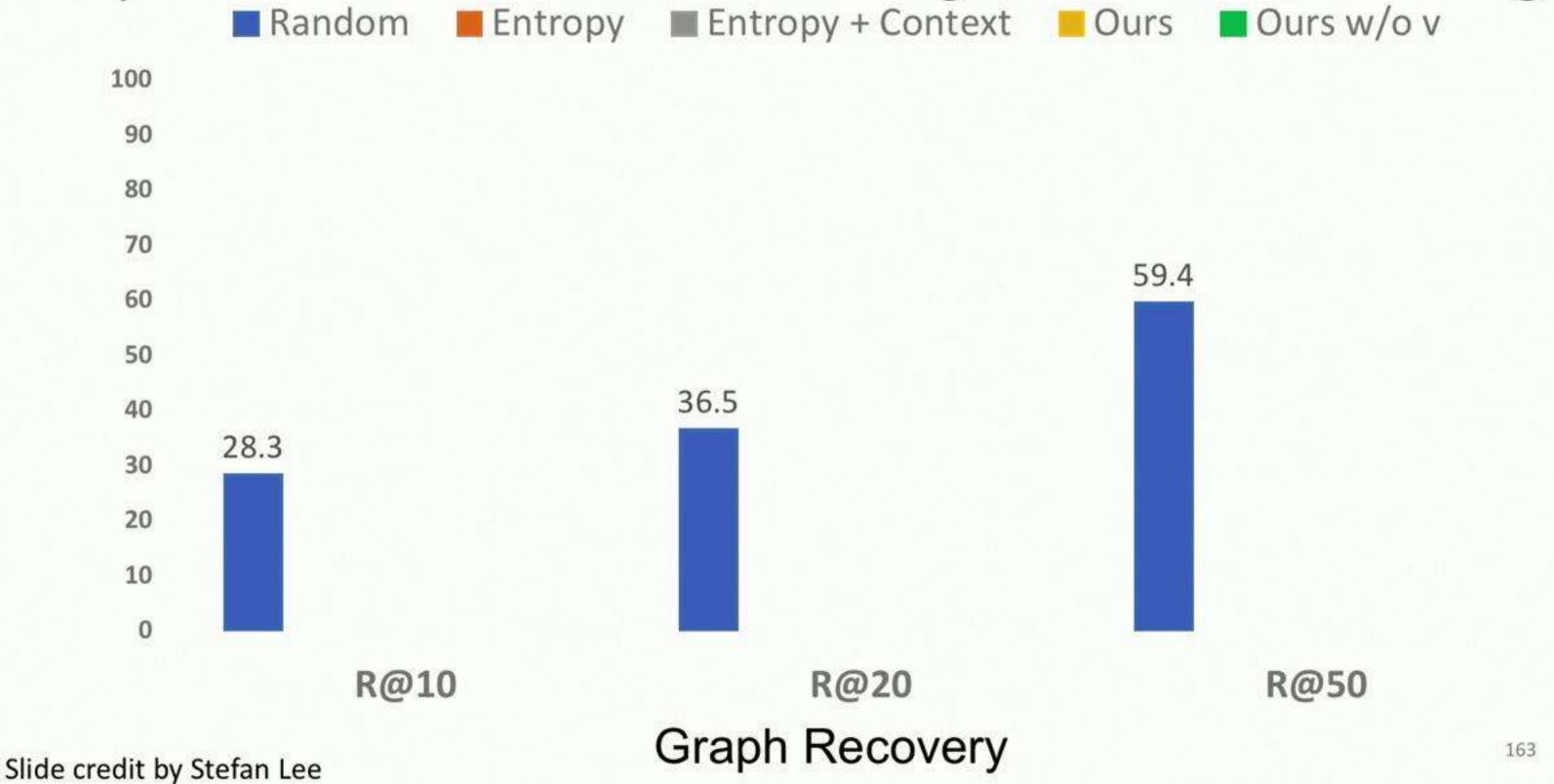
#Objects: 5-10

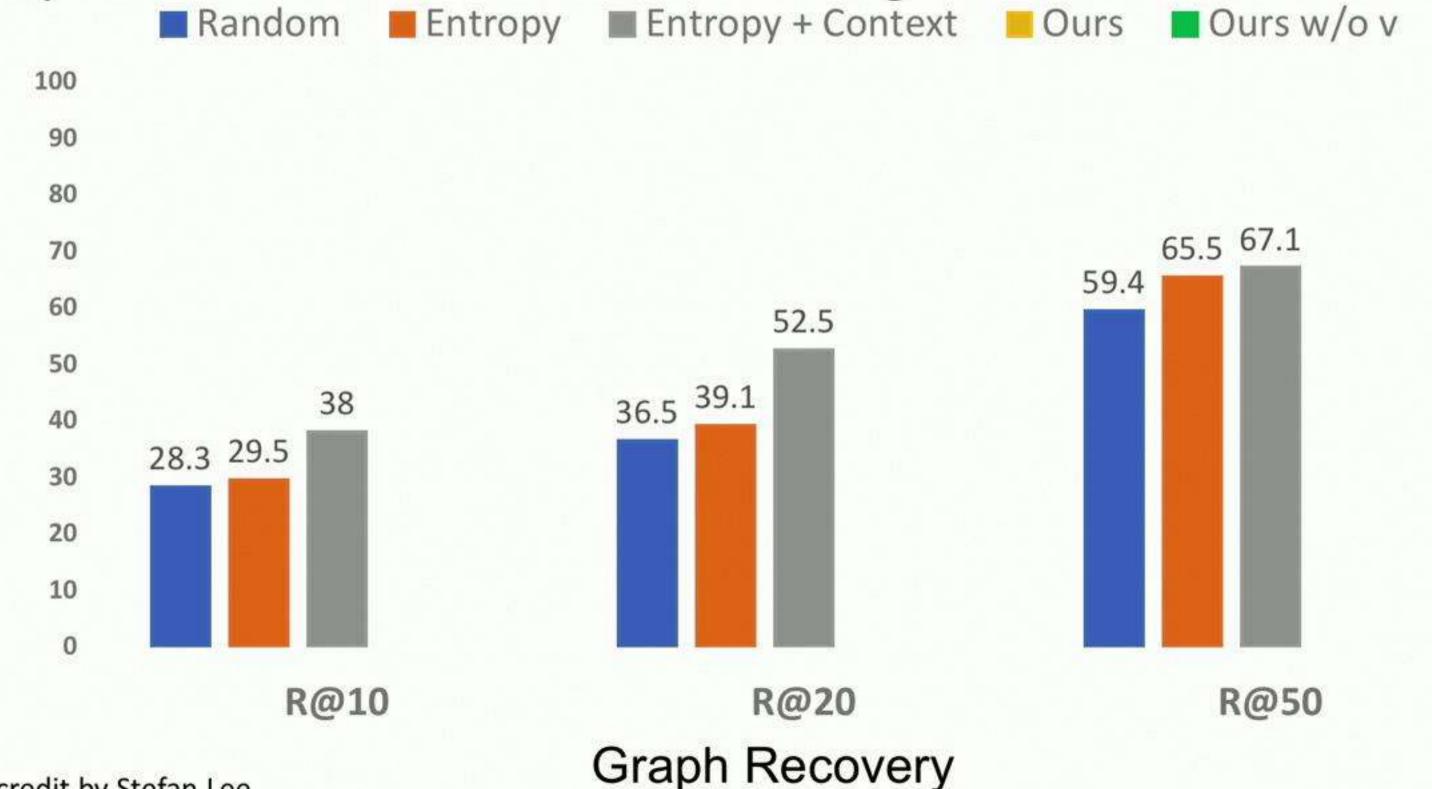
	Train	Val	Test
# Images	900	300	600

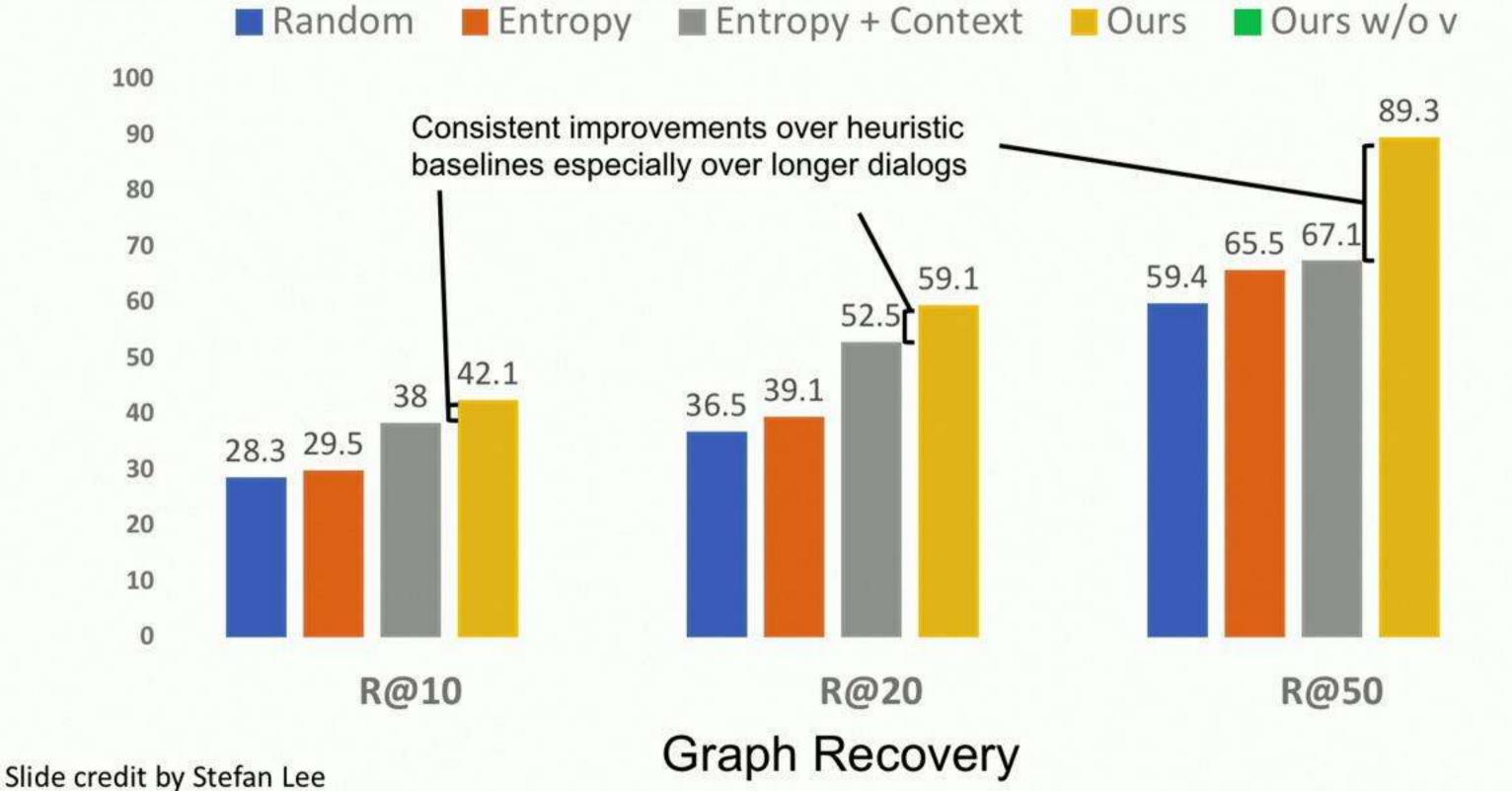
Experiments: Metrics

Graph Recovery R@k: Average accuracy of graph memory at dialog round k

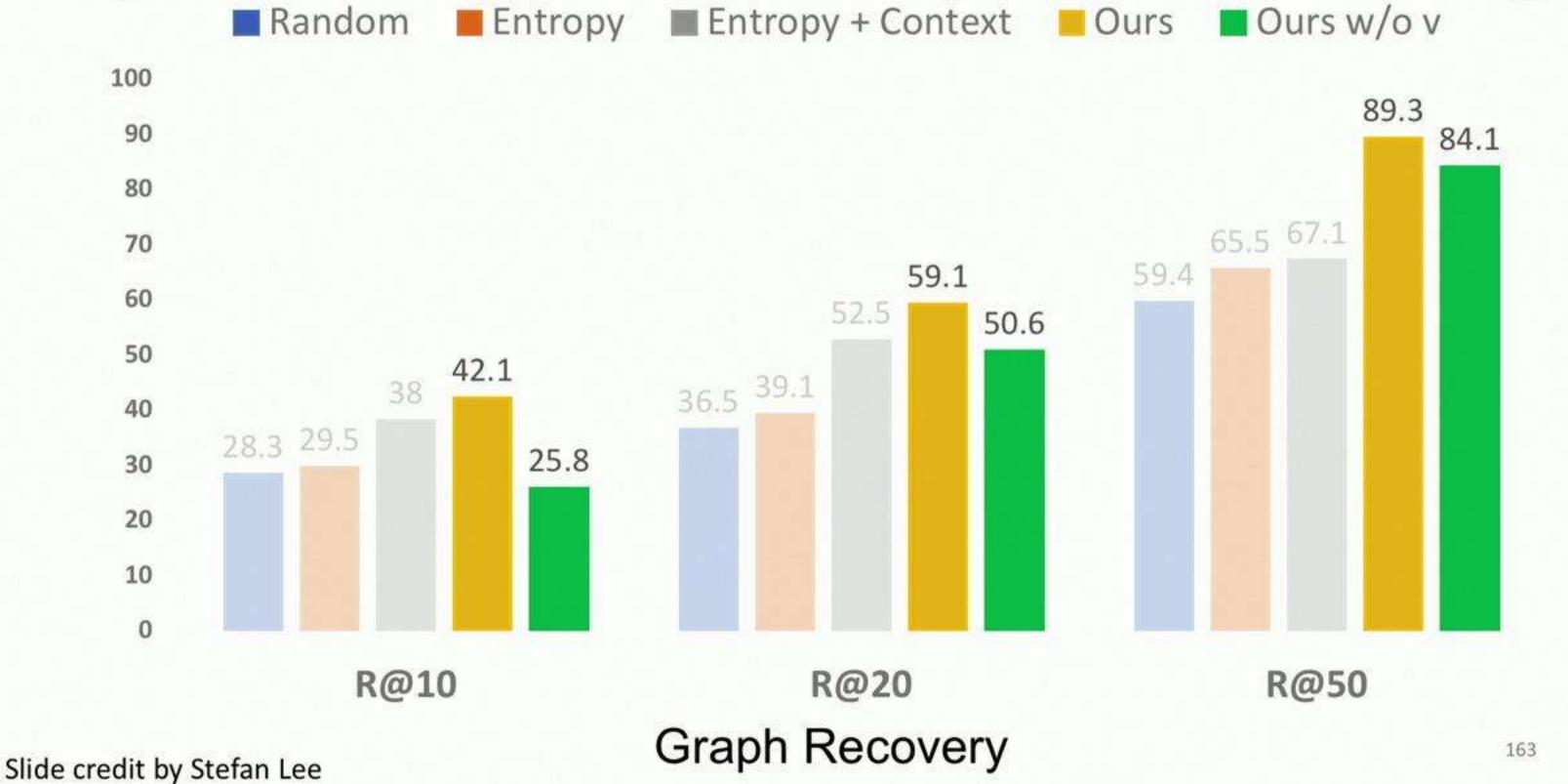








163



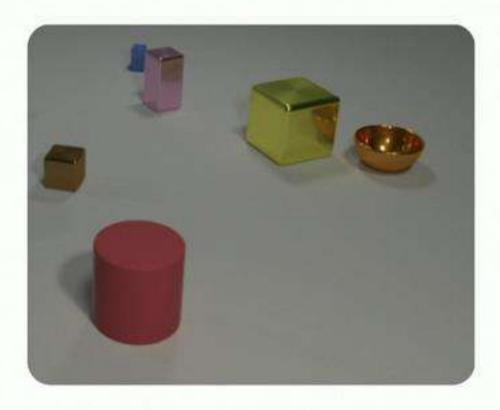
Experiments: Novel Object Environments

Novel

New colors and shapes

600 images for test (12 episodes)

Mixed



Mix of novel and standard colors and shapes

600 images for test (12 episodes)

Realistic

51 categories, 11 colors, 6 materials

1200 images for test (24 episodes) **Experiments: Novel Object Environments**

Novel Mixed Realistic

Note that questioners are trained on Standard and then evaluated in these new settings with randomly initialized visual systems

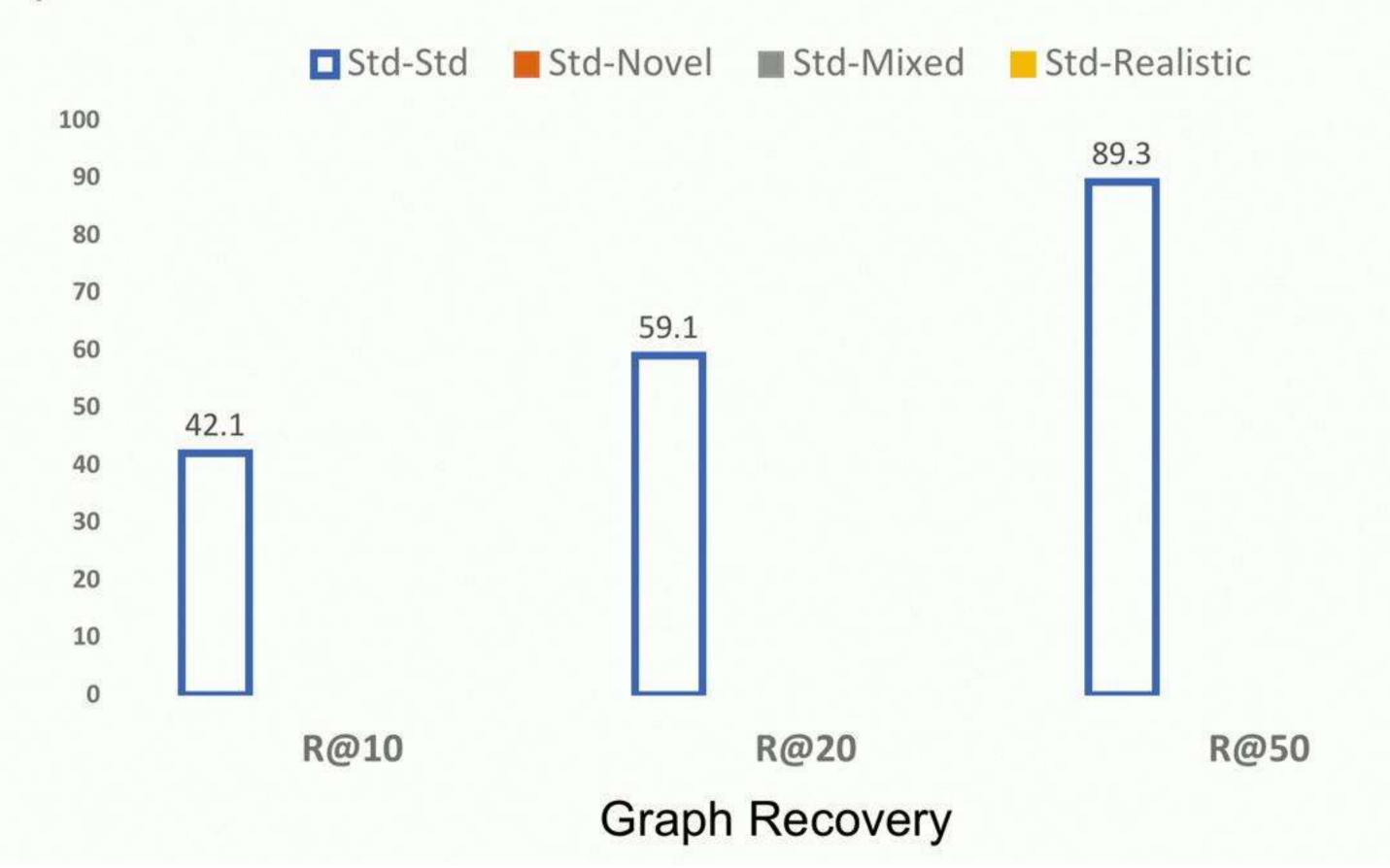
New colors and shapes

Mix of novel and standard colors and shapes

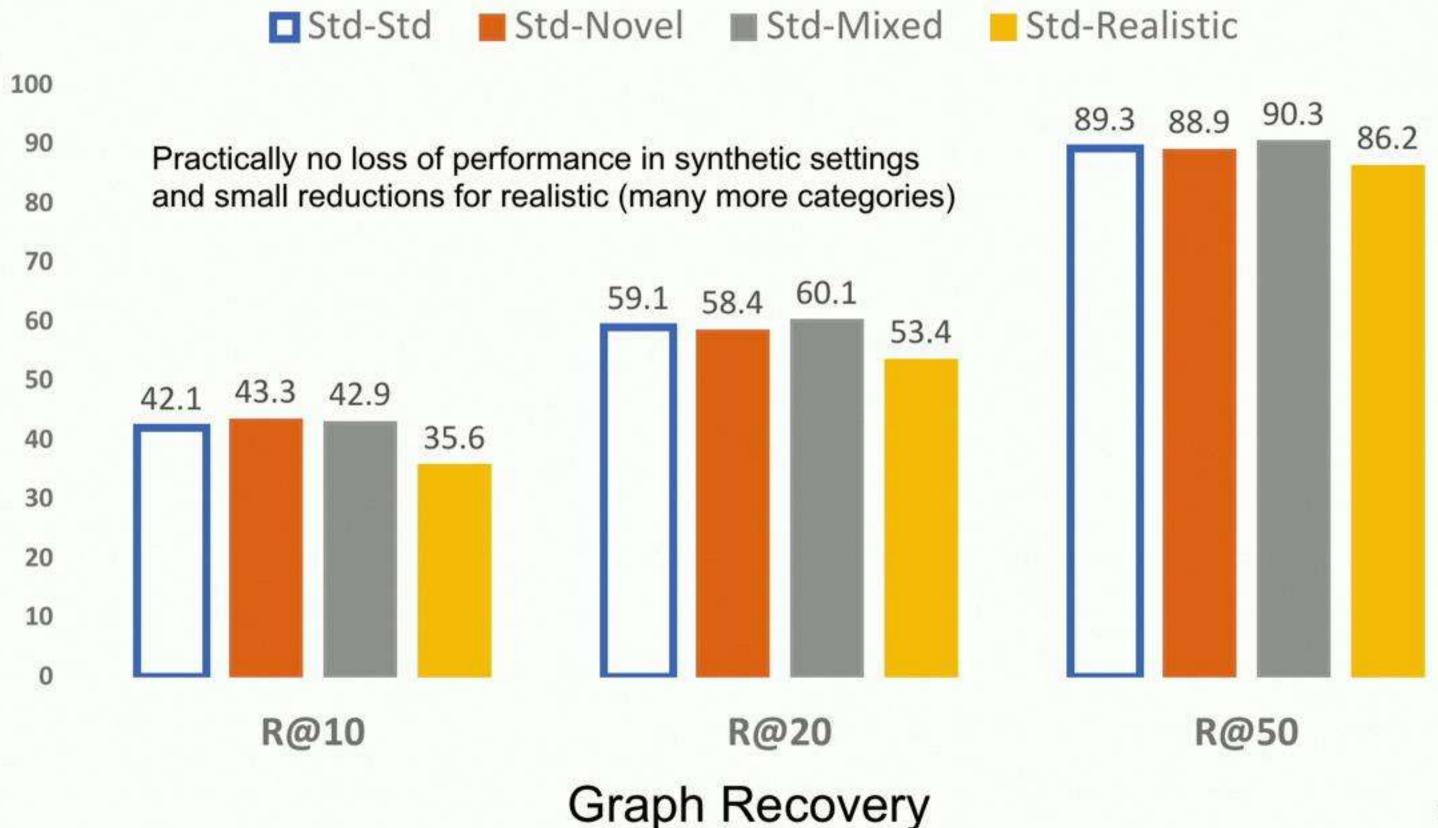
51 categories, 11 colors, 6 materials

600 images for test (12 episodes) 600 images for test (12 episodes) 1200 images for test (24 episodes)

Experiments: Standard Train – New Test Environments



Experiments: Standard Train - New Test Environments



What material is the leftmost thing?

What material is the leftmost thing?

food

There is a leftmost object; what is it?

What material is the leftmost thing?

food

There is a leftmost object; what is it?

potato

The leftmost object is what color?

What material is the leftmost thing?

food

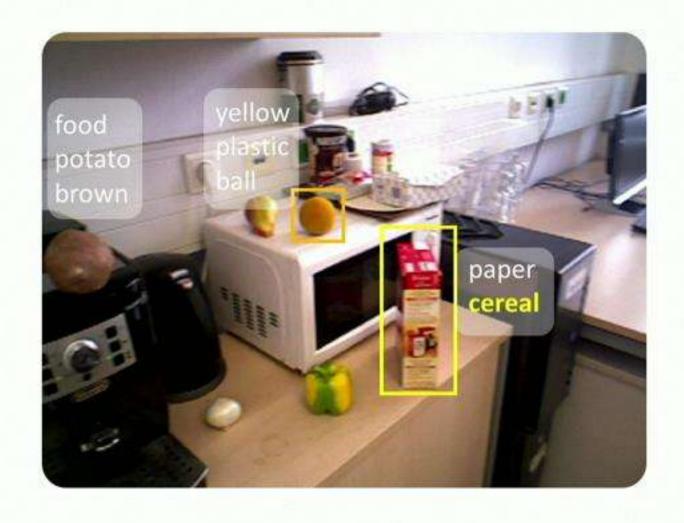
There is a leftmost object; what is it?

potato

The leftmost object is what color?

brown

What is the closest thing that is in front of the yellow plastic ball made of?



What material is the leftmost thing?

food

There is a leftmost object; what is it?

potato

The leftmost object is what color?

brown

What is the closest thing that is in front of the yellow plastic ball made of?

paper

What is the closest thing that is in front of the yellow plastic ball?

cereal

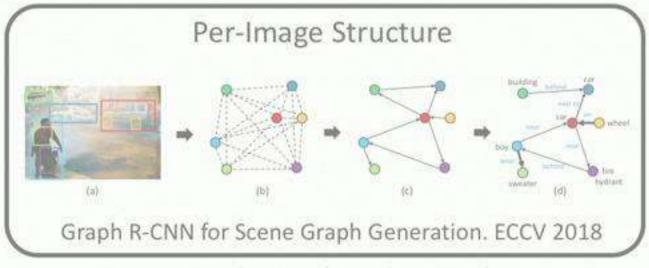
Takeaways

 A new neural-symbolic pipeline is proposed to learn visual curiosity for an agent

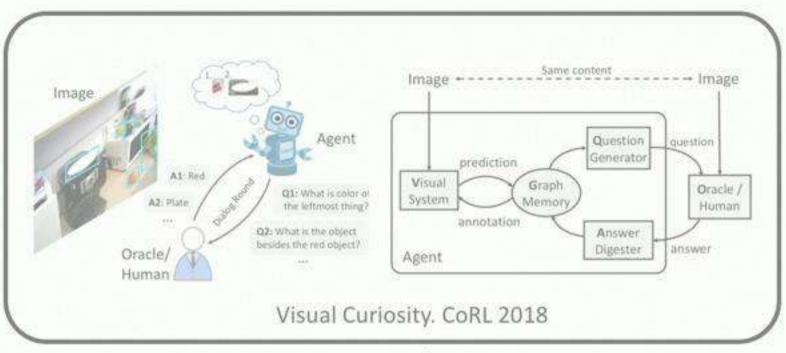
 Through interaction with humans (Oracle), the agent improves its visual understanding capacity gradually

 The learned questions generation policy can directly adapt from synthetic dataset to realistic dataset

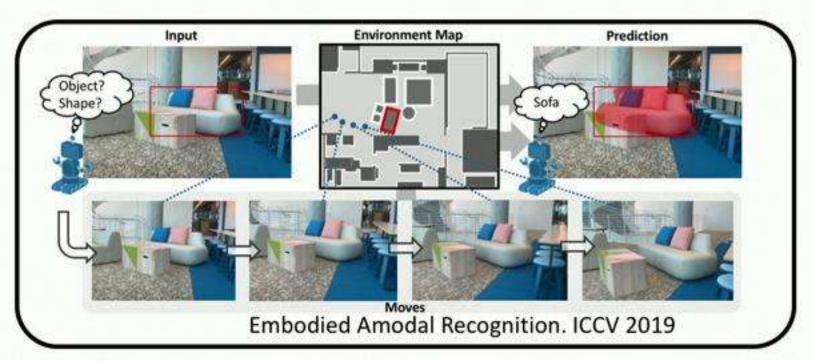
In this talk



Structured Visual Understanding



Interact with Human

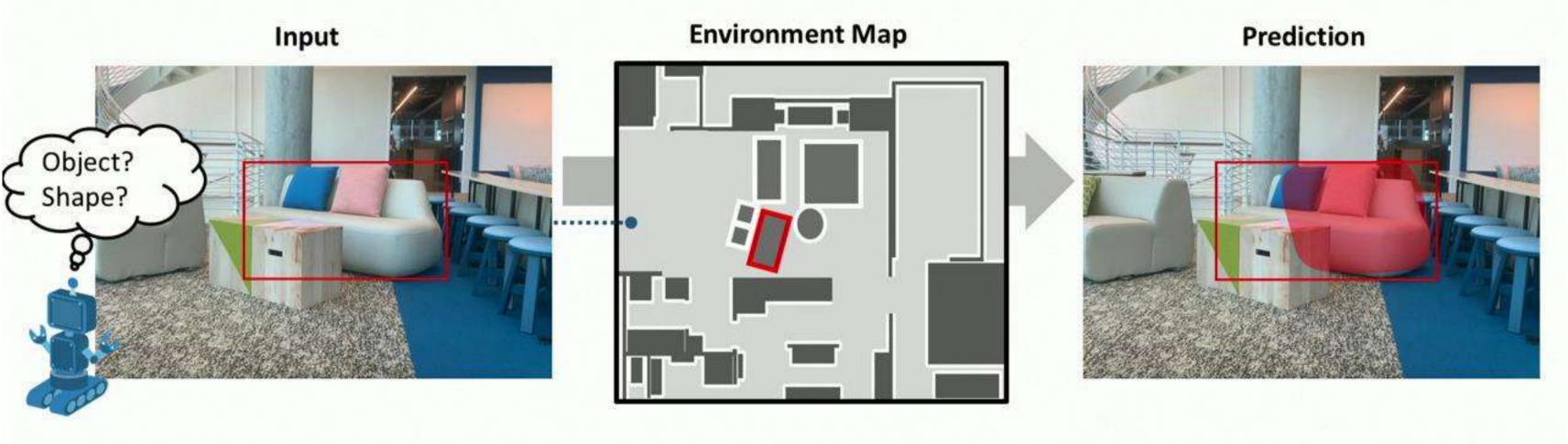


Interact with Environment

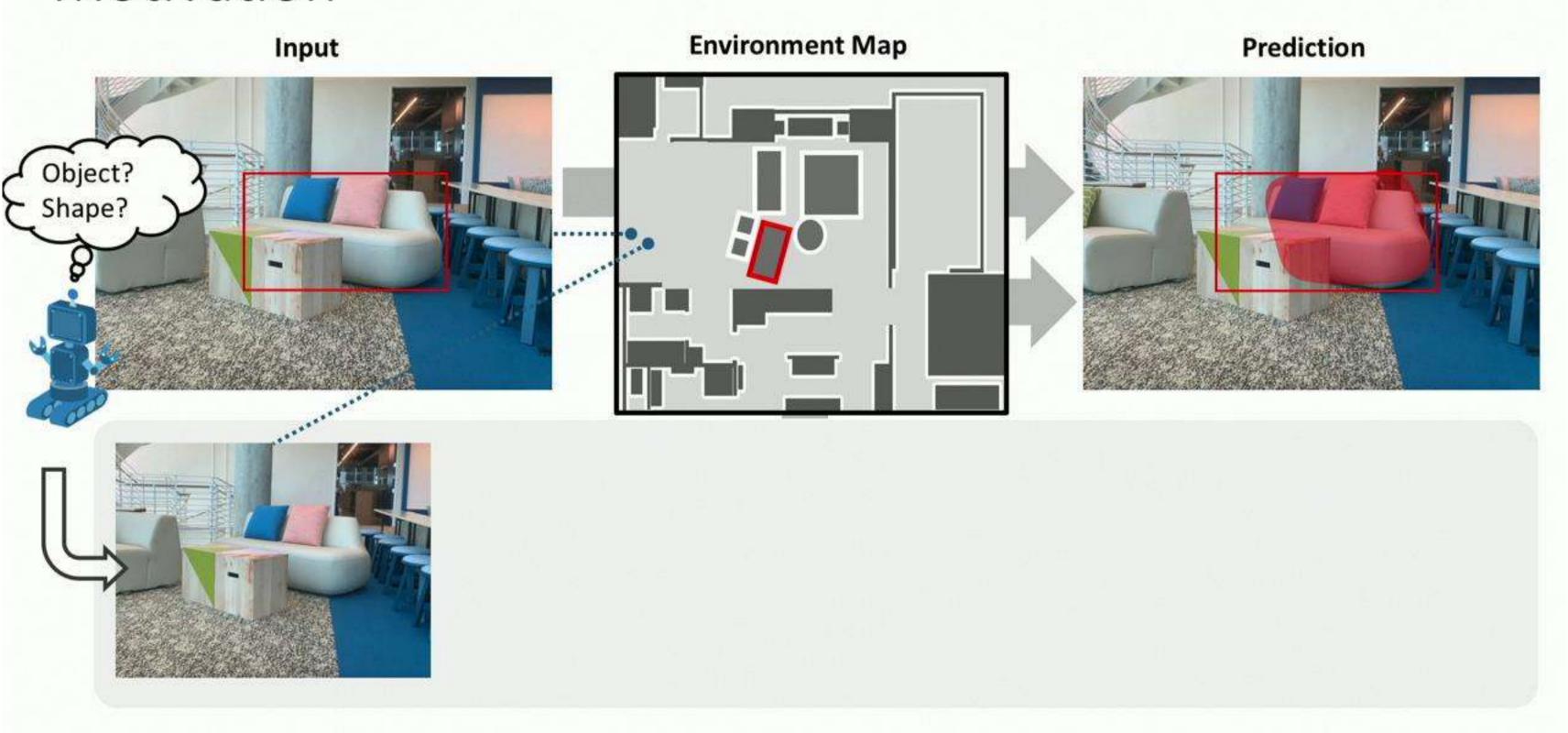
Visual Understanding by Moving in 3D Environment

Embodied Amodal Recognition: Learning to Move to Perceive Object. ICCV 2019

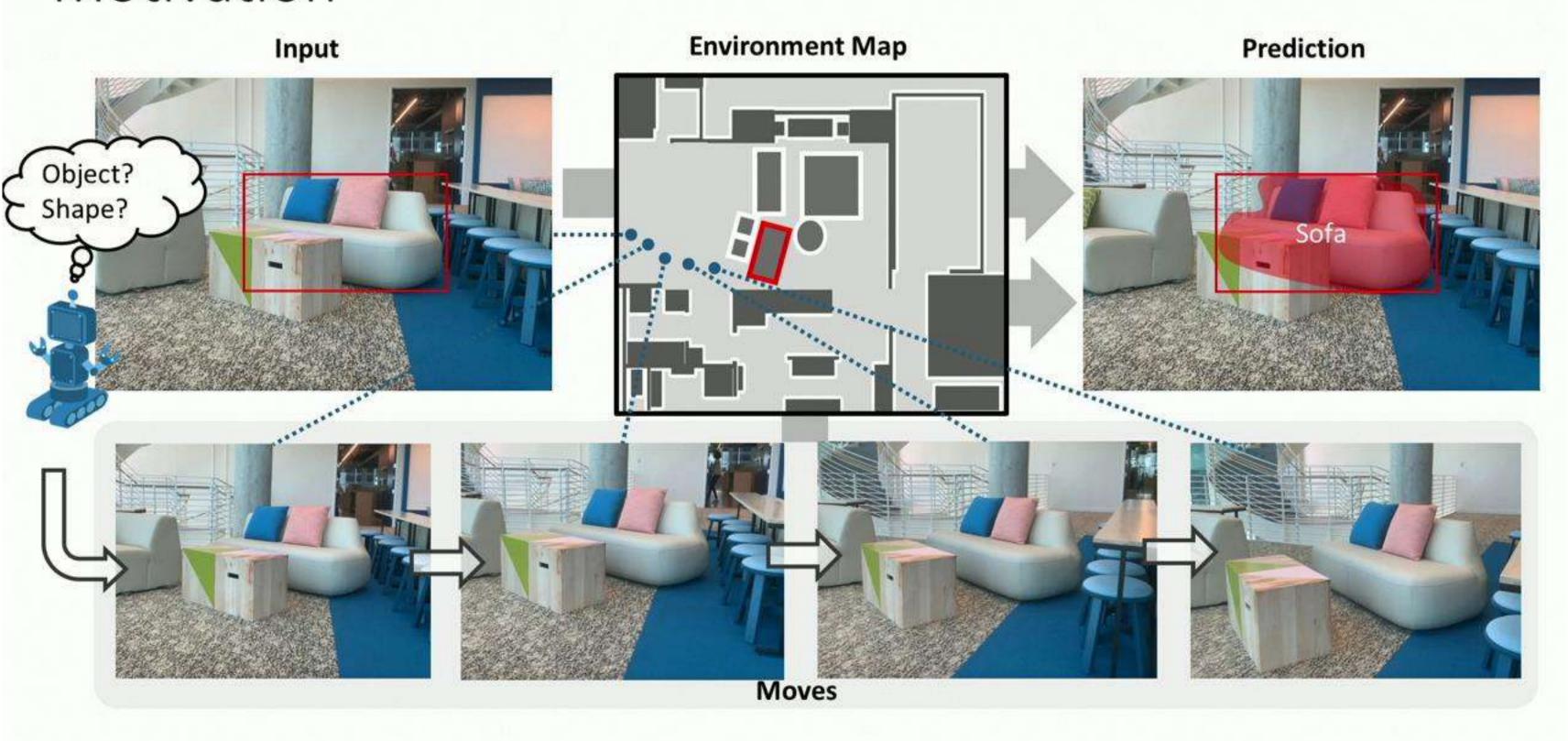
Motivation



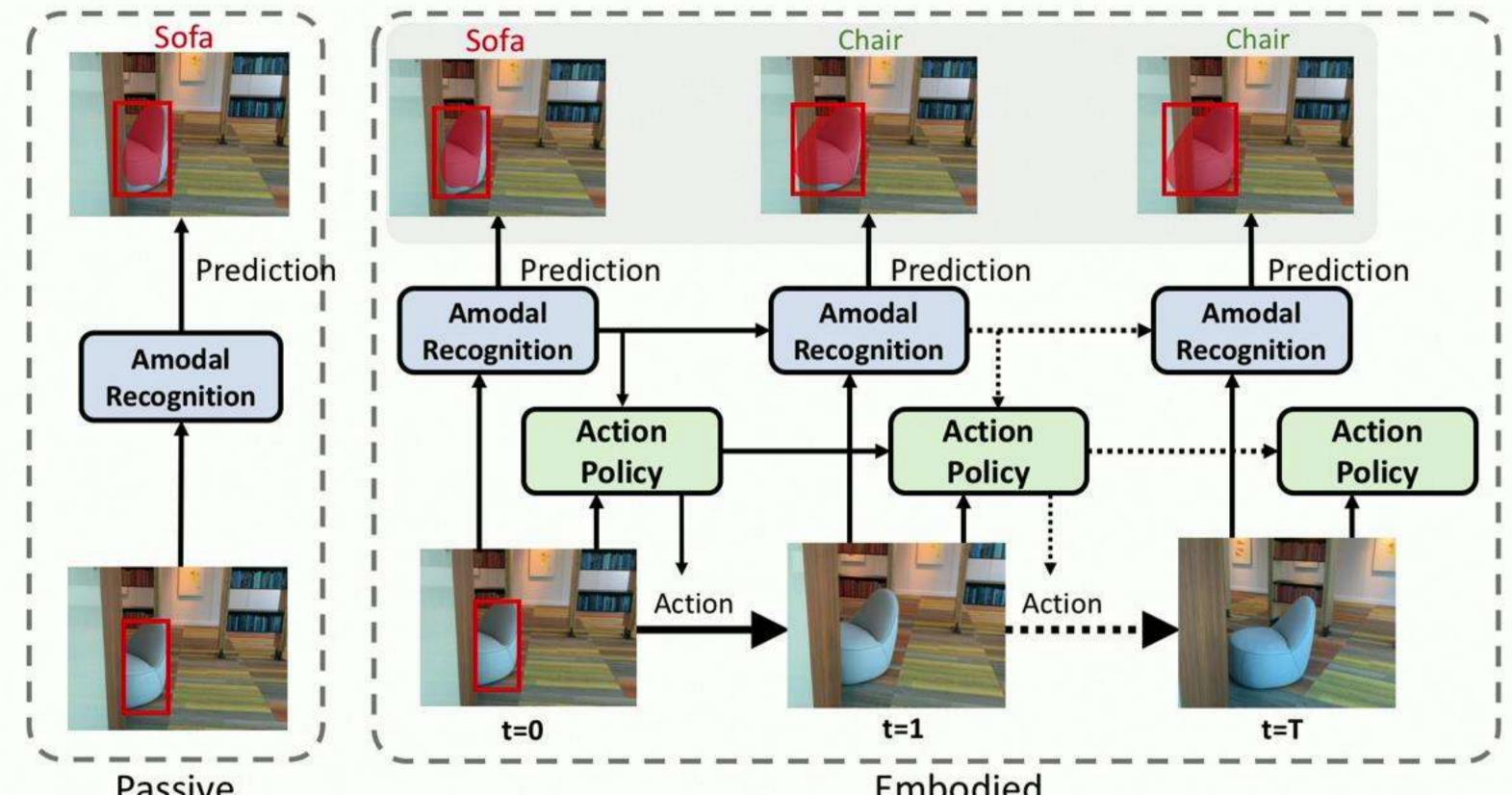
Motivation



Motivation



Embodied Amodal Recognition (EAR)



Passive

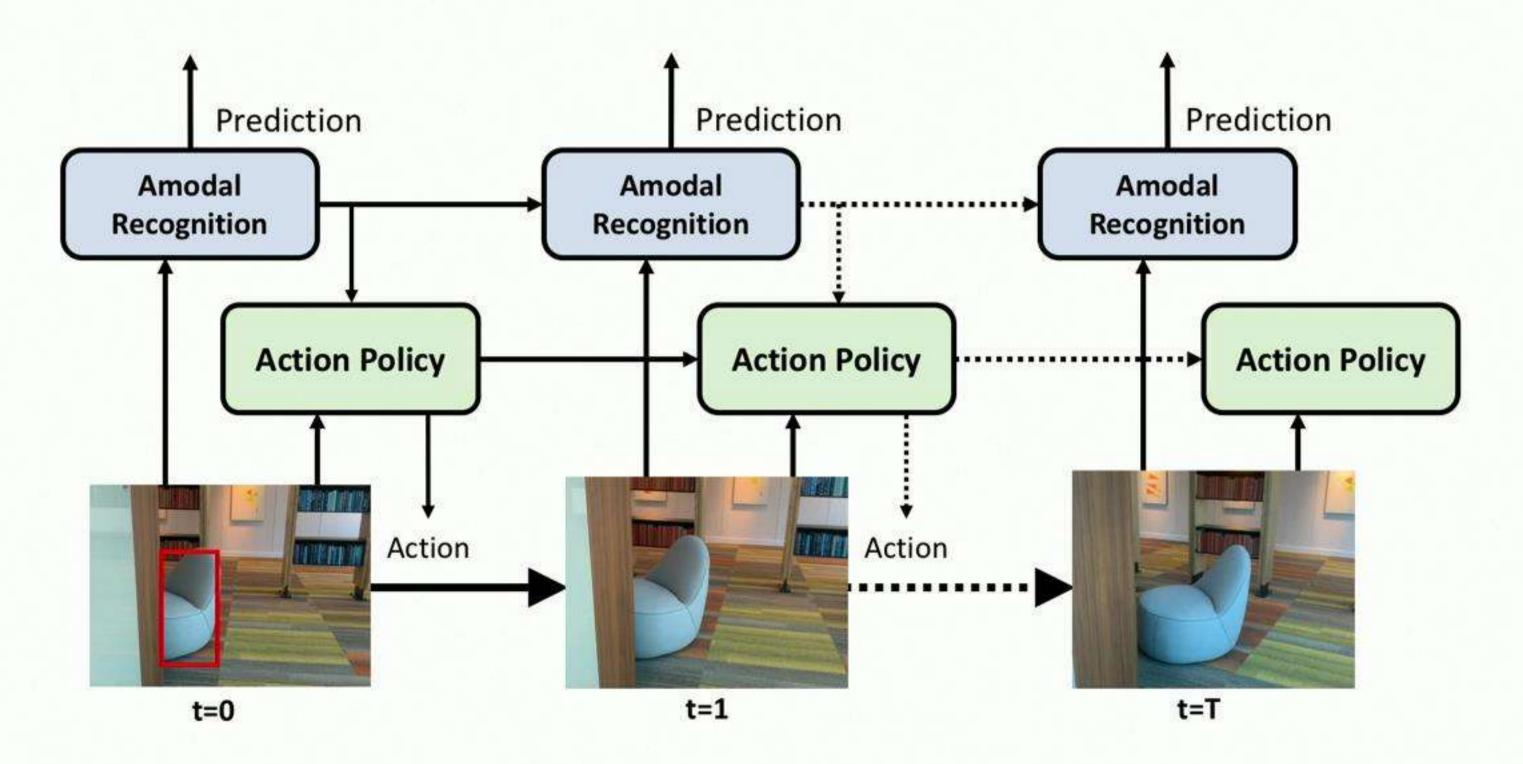
Embodied

EAR Task

Three sub-tasks

- Object recognition
- 2D amodal localization
- 2D amodal segmentation
- Single target object
 - Specify one object as the target
- Predict for the first frame

EVR Model



Amodal Recognition

Objective:

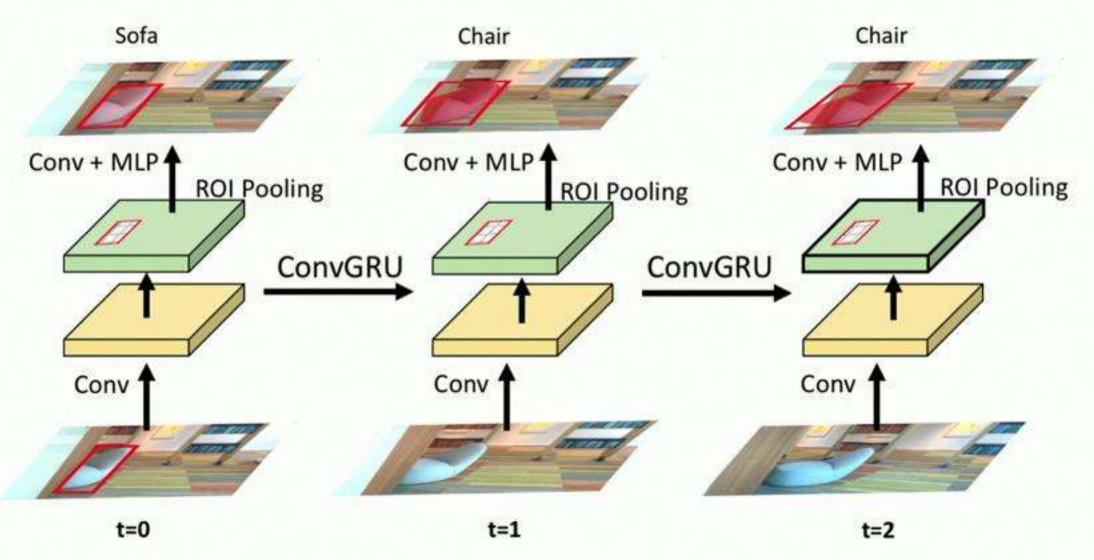
Visible Box
$$y_t = f(b_0, I_0, I_1, ..., I_t)$$
 Observations

Temporal Aggregation

$$h_t = GRU(x_t, h_{t-1})$$

Three losses:

$$L = L_c + L_b + L_m$$



Learn to Move (Policy)

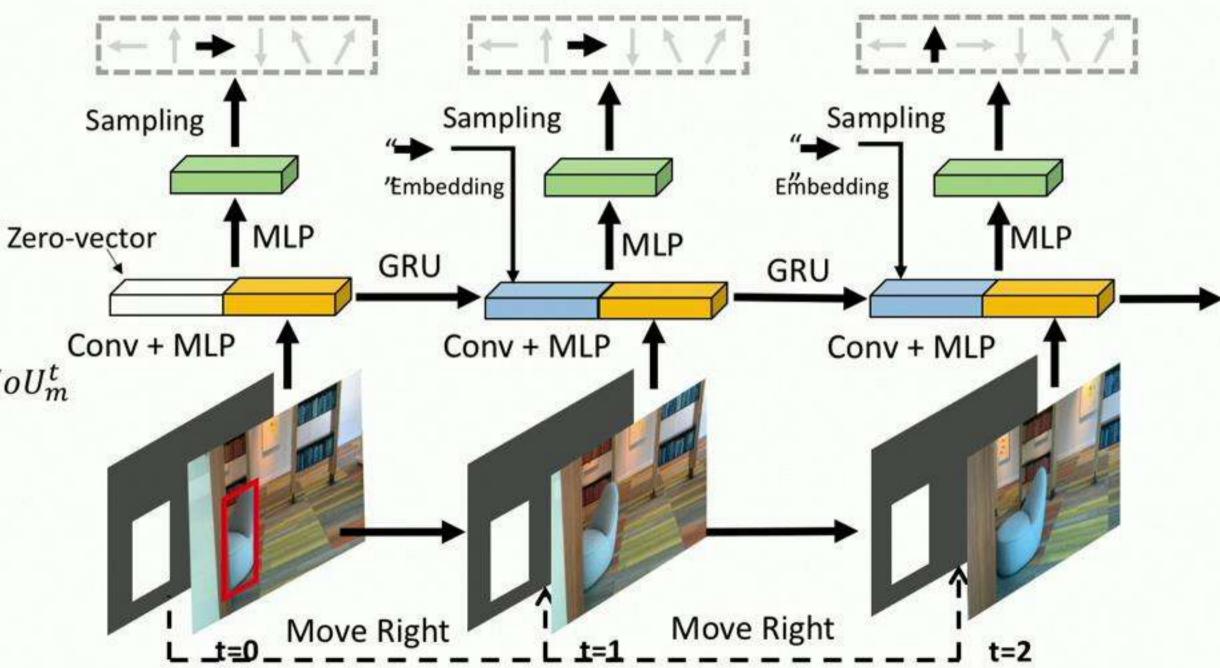
$$a_t = \pi(b_0, I_0, I_1, ..., I_t)$$

Reward:

 $r_t = \lambda_c A c c_c^t + \lambda_b I o U_b^t + \lambda_m I o U_m^t$

Reward reshaping

+ REINFORCEMENT



Amodal Recognition

Objective:

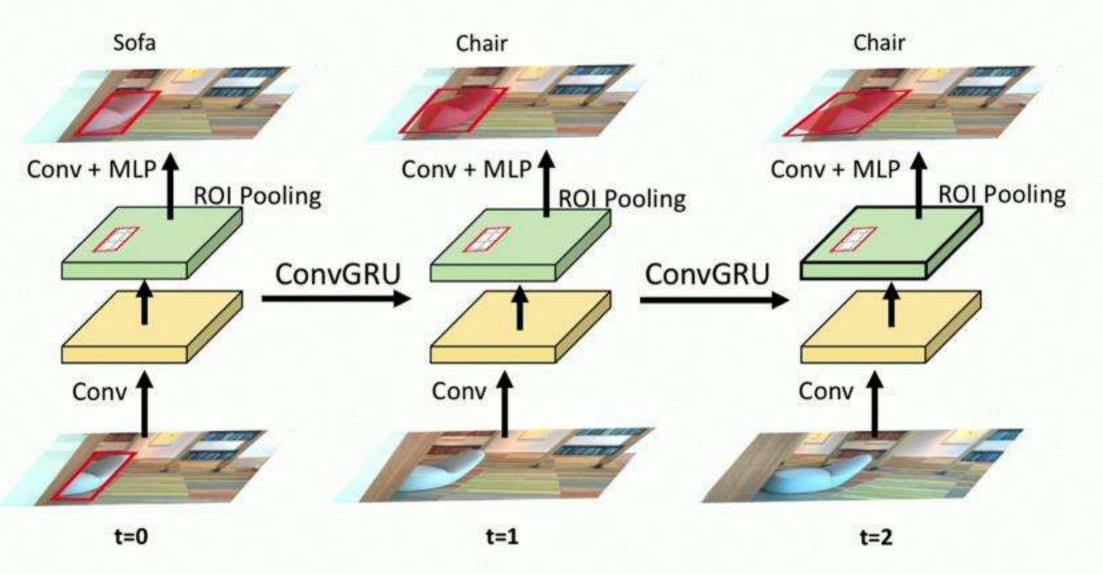
Visible Box
$$y_t = f(b_0, I_0, I_1, \dots, I_t)$$
 Observations

Temporal Aggregation

$$h_t = GRU(x_t, h_{t-1})$$

Three losses:

$$L = L_c + L_b + L_m$$



Learn to Move (Policy)

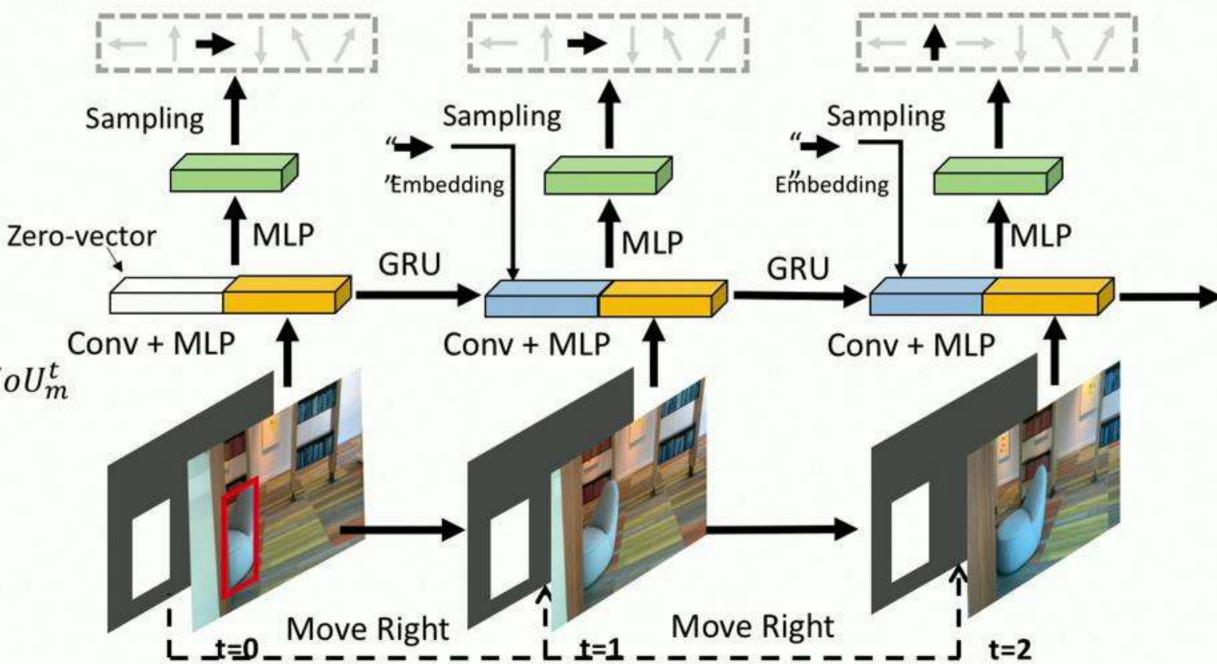
$$a_t = \pi(b_0, I_0, I_1, ..., I_t)$$

Reward:

 $r_t = \lambda_c A c c_c^t + \lambda_b I o U_b^t + \lambda_m I o U_m^t$

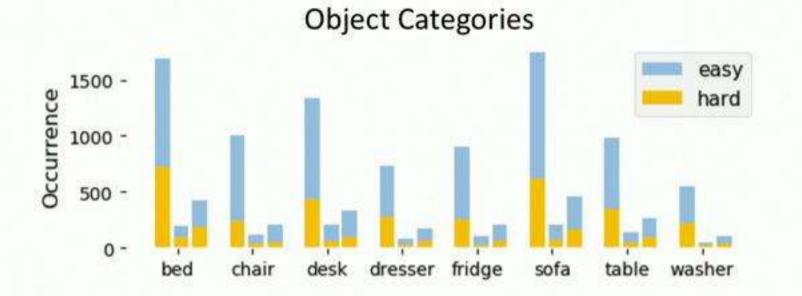
Reward reshaping

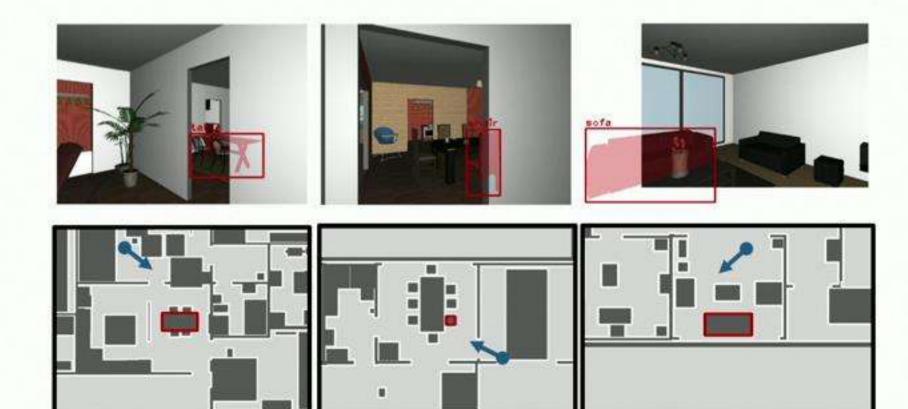
+ REINFORCEMENT

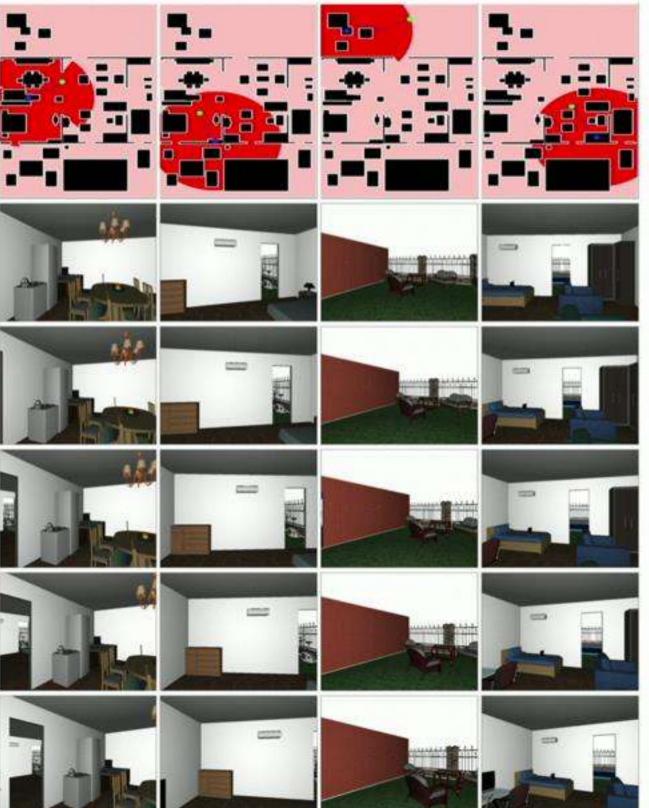


Shortest path toward target

Dataset



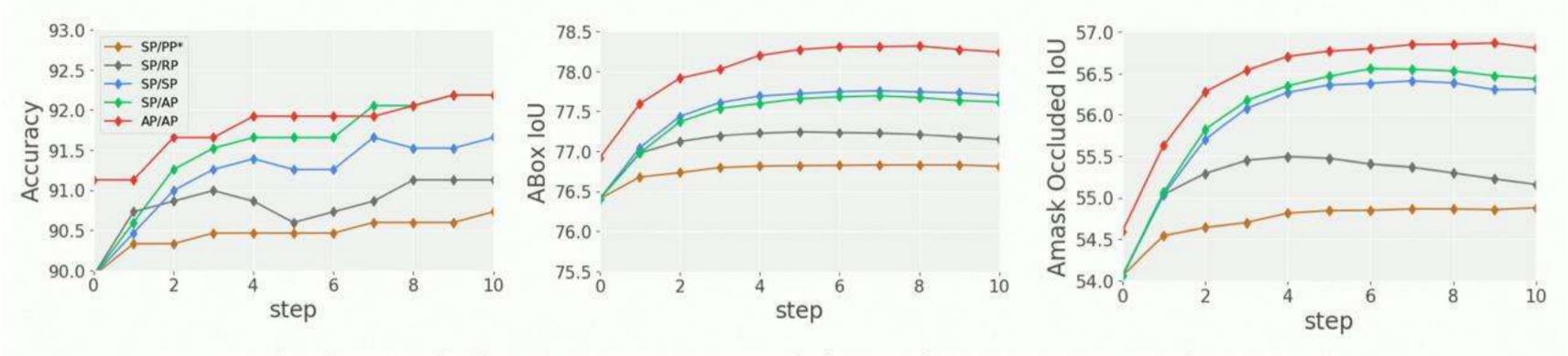




Training

- Stage-wised Training:
 - First train amodal visual recognition with shortest path
 - Then fix amodal visual recognition module, train policy network
 - Afterwards, train amodal visual recognition with learned path

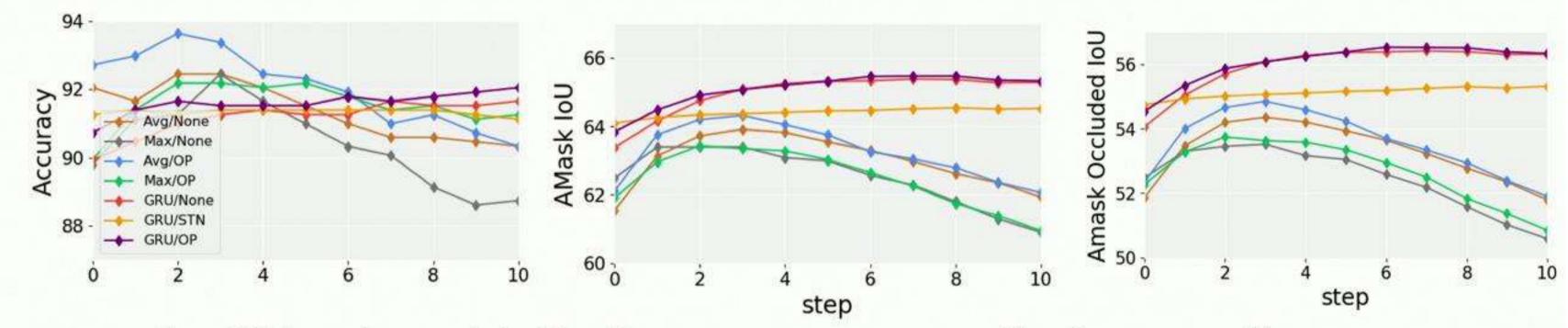
Results



- 1. Embodiment helps to improve amodal visual recognition performance
- Our learned moving strategy for agent outperforms other moving strategy and also static visual system.
- 3. Amodal recognition performance tends to saturate at the end of moving

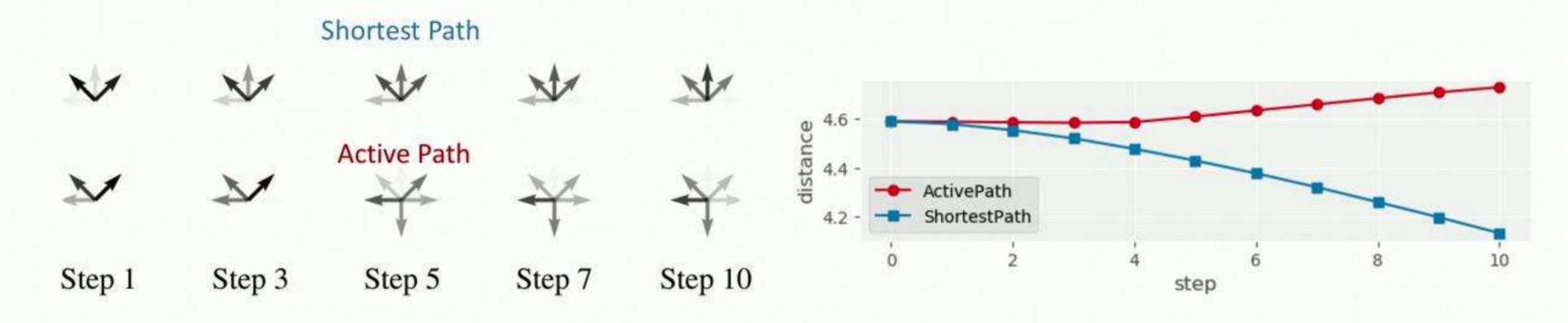
Ablated Study

Different feature aggregation and feature warping methods:



- 1. GRU works much better than average or max pooling for aggregation
- 2. Warping feature using optical flow helps to improve the performance
- 3. Combine GRU and optical flow works slightly better than either

Learned Actions

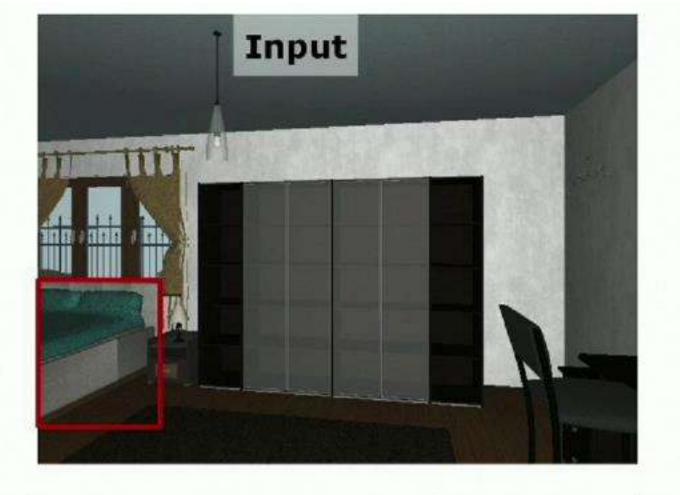


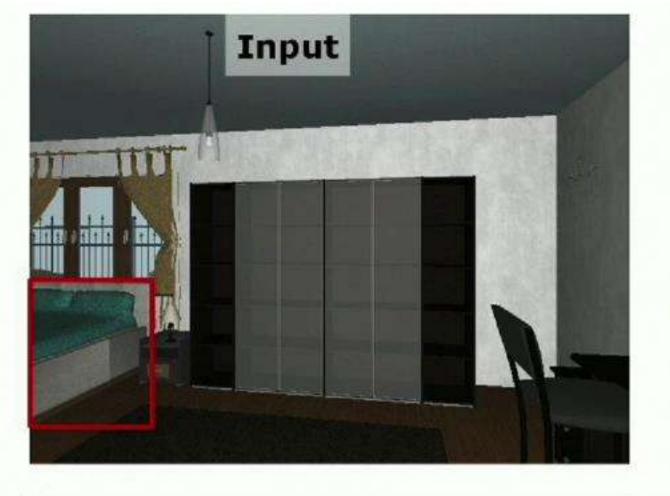
- 1. Our policy network has learned different moving strategies from shortest path
- 2. In general, the learned policy keeps the agent in a distance to the target object

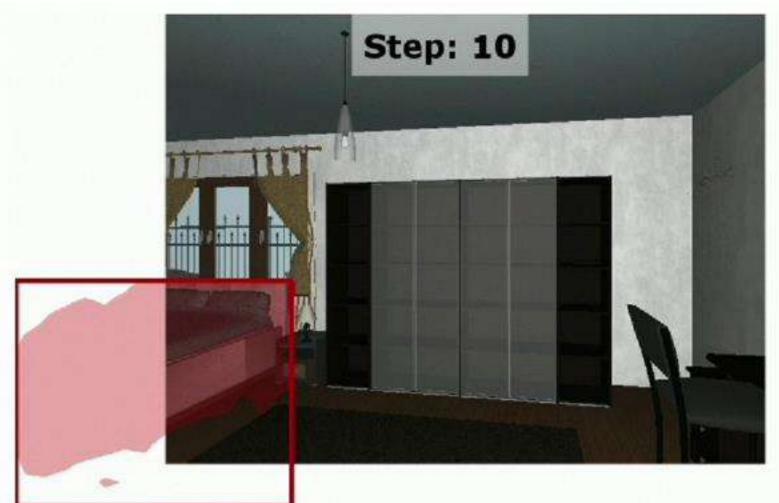
Passive Perception vs. Active Perception

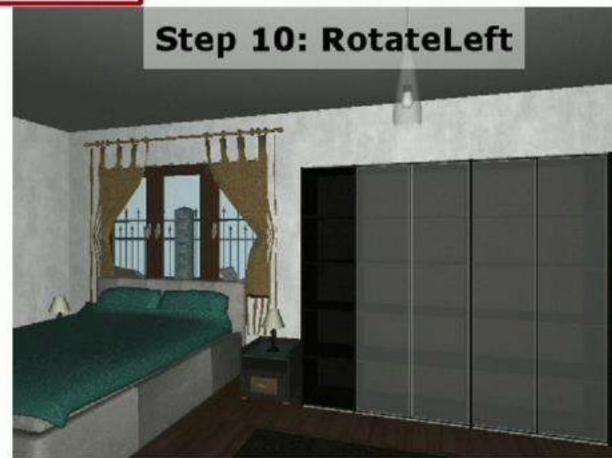
Shortest Path vs. Learned Active Path

Shortest-Path









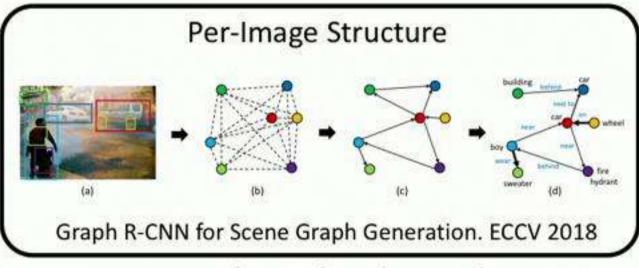
Active Path

Shortest-Path

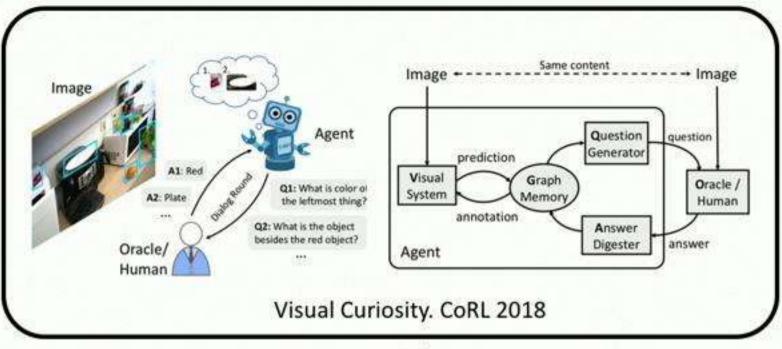
Takeaways

- A embodied visual recognition system is proposed as an initial step toward an intelligent agent system
- Embodiment helps to get better visual recognition of objects
- Learning a better moving strategy is challenging but helpful to improve visual recognition
- It would be interesting to enable full understanding of the whole environment after moves

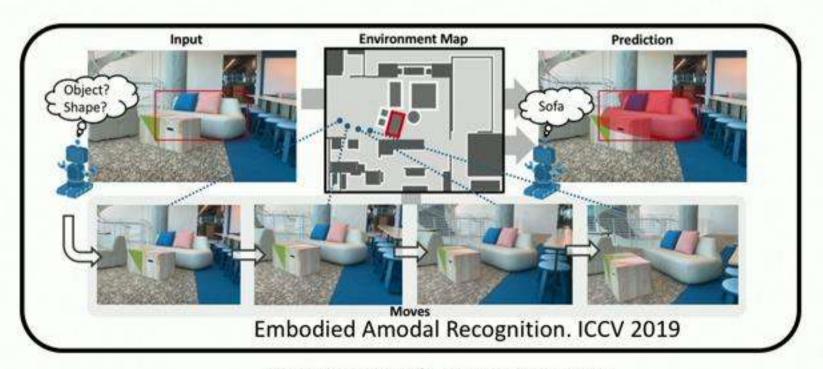
In this talk



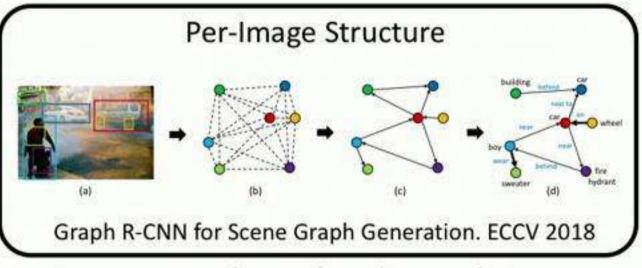
Structured Visual Understanding



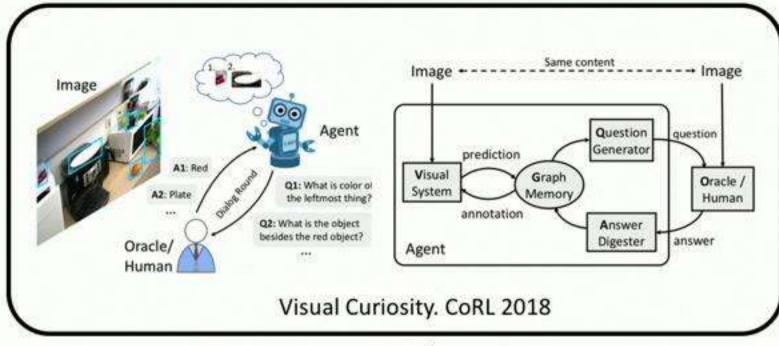
Interact with Human



In this talk

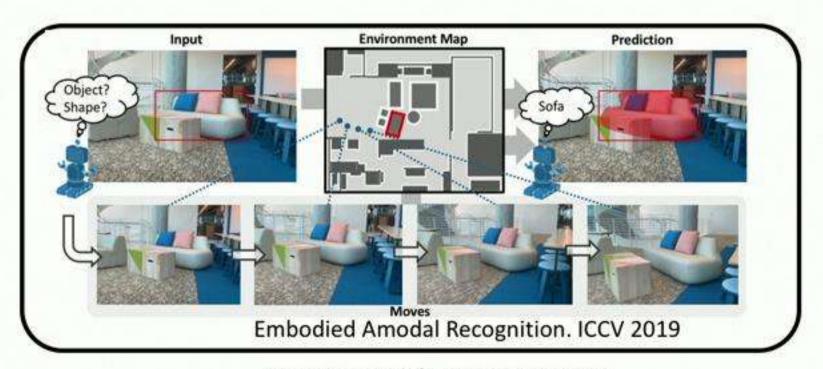


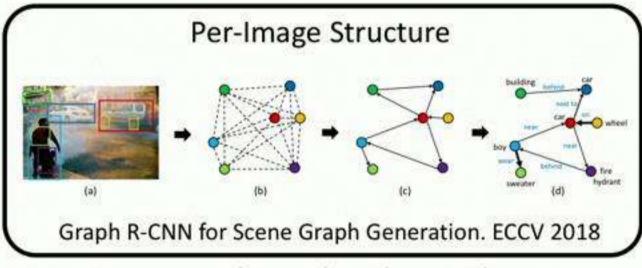
Structured Visual Understanding



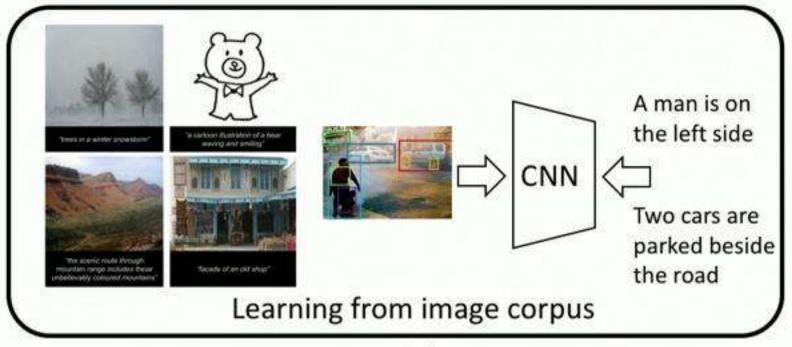
Interact with Human

Learn from interactions with human and environment



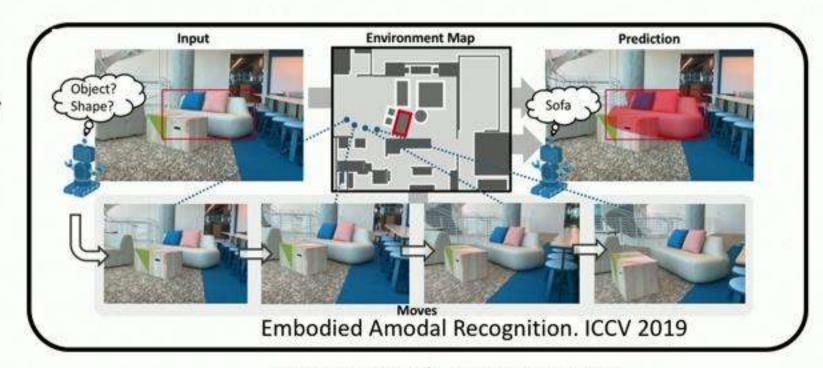


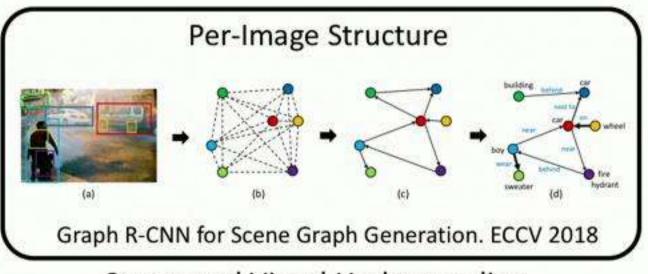
Structured Visual Understanding



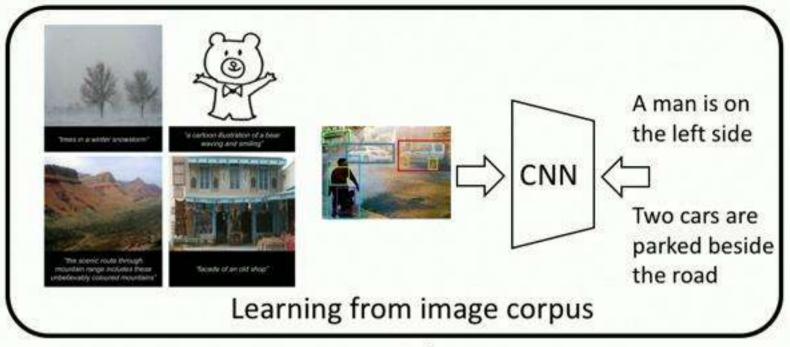
Interact with Human

Learn from interactions with human and environment



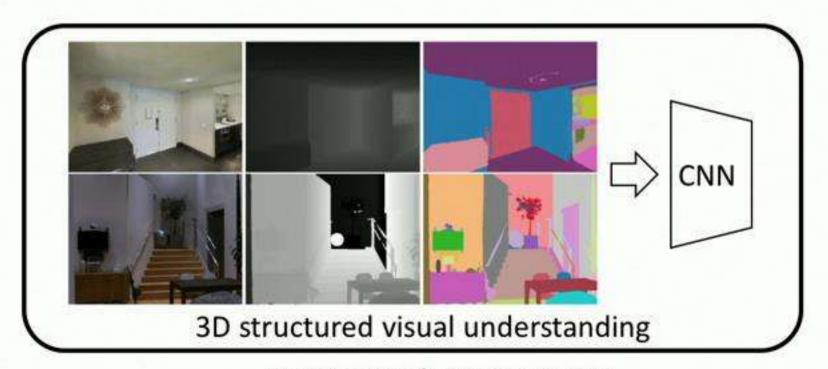


Structured Visual Understanding

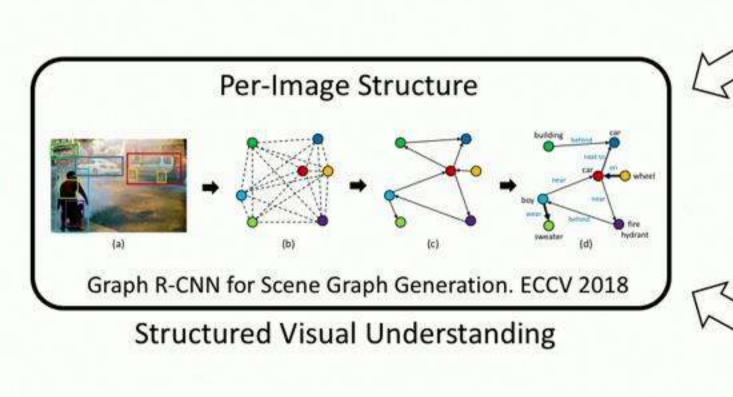


Interact with Human

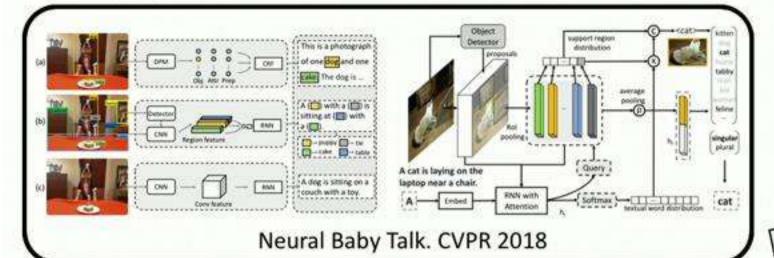
Learn from interactions with human and environment

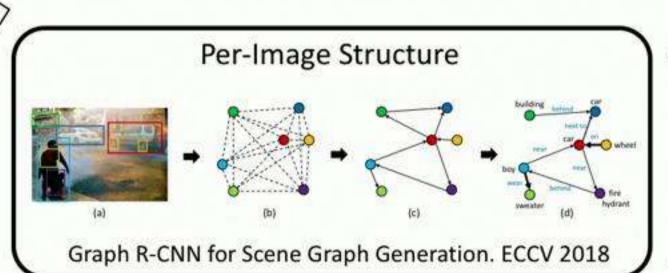


Learn for interactions with human and environment

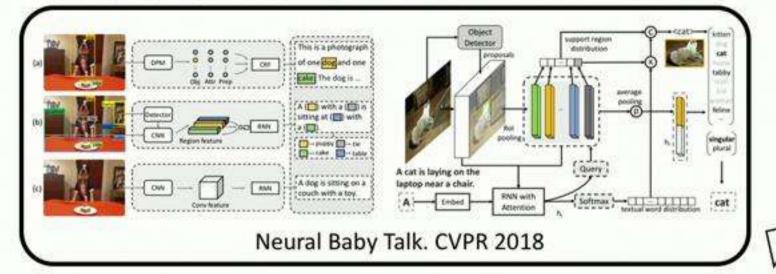


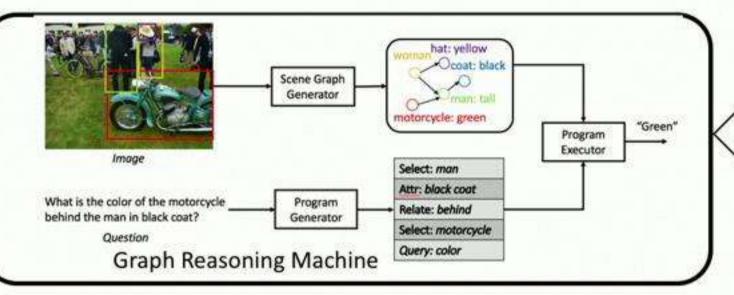
Learr

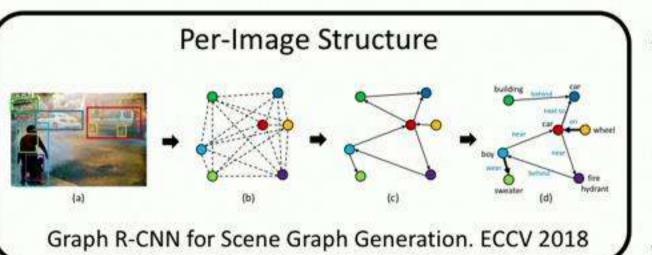


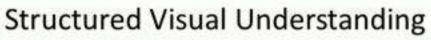


Structured Visual Understanding

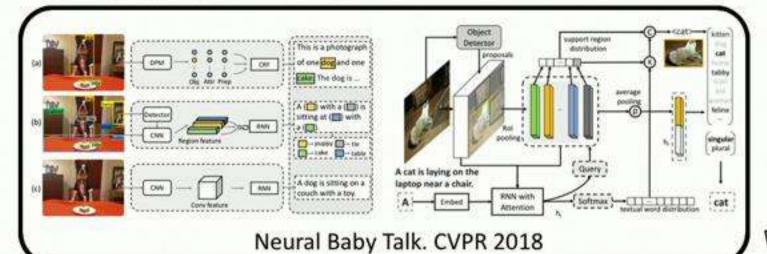


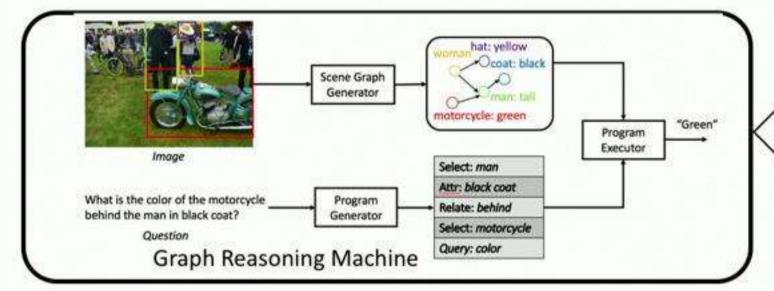


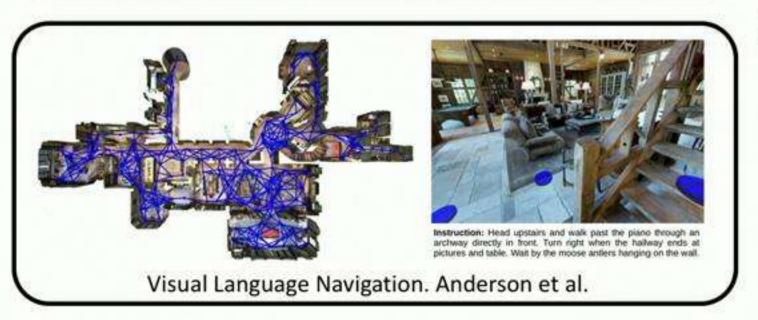


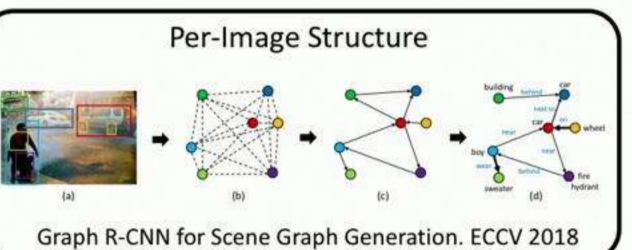


Learr





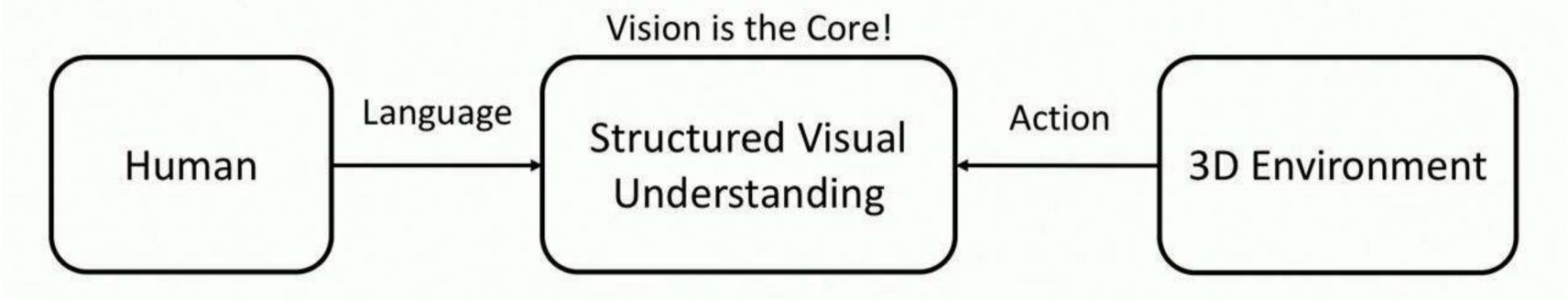




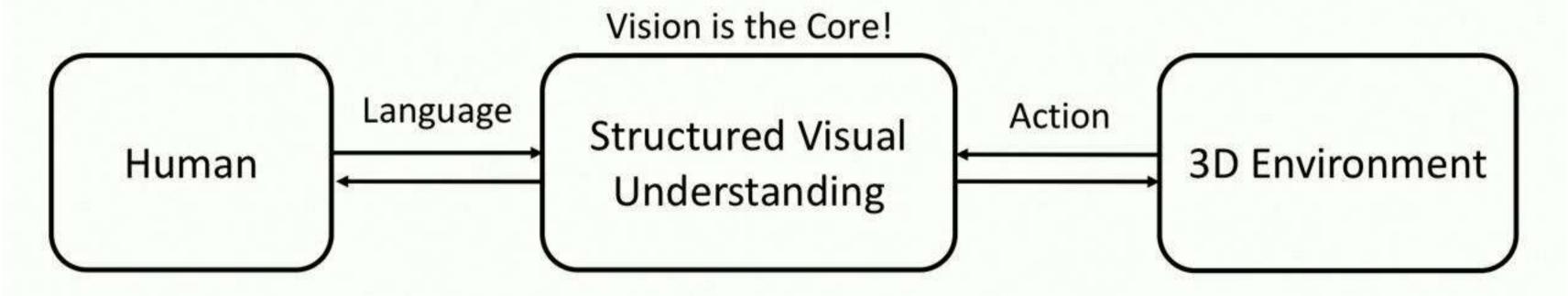
apri k-civiv for scene Graph Generation. ECCV 201

Structured Visual Understanding

To summarize



To summarize



Collaborators

Devi Parikh

Dhruv Batra

Jiasen Lu

Stefan Lee

Zhile Ren

Minze Xu

Anitha Kannan

Xinlei Chen

Ji Lin

Chuang Gan

Hongyuan Zhu

David Crandall

