

Blind multi-microphone noise reduction and dereverberation algorithms for speech communication applications

Prof. Dr. Simon Doclo

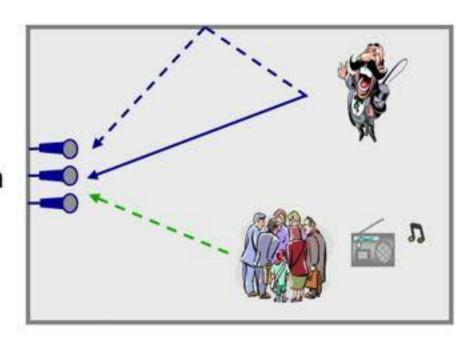
University of Oldenburg, Germany

Dept. of Medical Physics and Acoustics, Cluster of Excellence Hearing4all

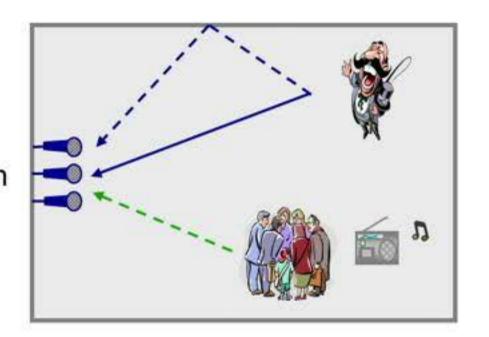
http://www.sigproc.uni-oldenburg.de/

Microsoft Research, 29.10.2019

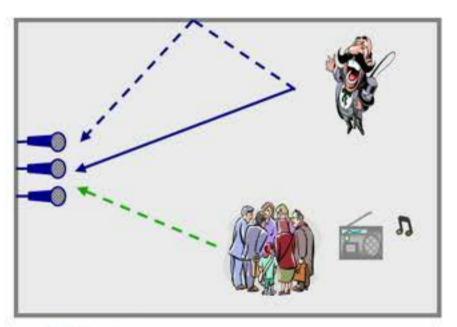
- Ambient noise and reverberation jointly present in typical acoustic environments
- Speech quality and intelligibility degradation for speech communication applications
- Performance degradation of voice-controlled systems



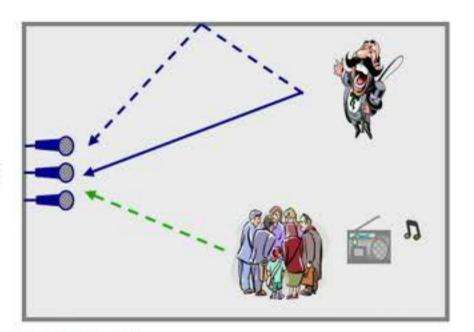
- Ambient noise and reverberation jointly present in typical acoustic environments
- Speech quality and intelligibility degradation for speech communication applications
- Performance degradation of voice-controlled systems



- Ambient noise and reverberation jointly present in typical acoustic environments
- Speech quality and intelligibility degradation for speech communication applications
- Performance degradation of voice-controlled systems

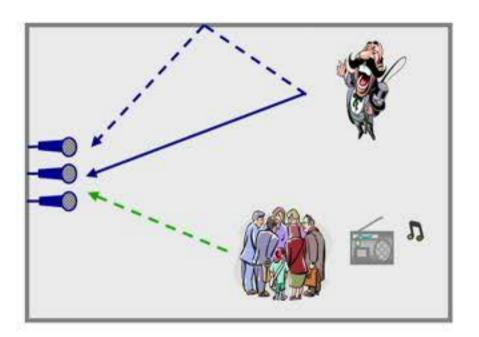


- Ambient noise and reverberation jointly present in typical acoustic environments
- Speech quality and intelligibility degradation for speech communication applications
- Performance degradation of voice-controlled systems



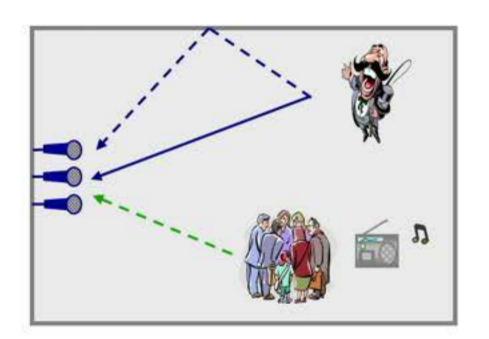
Objectives

- Single- and multi-microphone joint noise reduction and dereverberation algorithms
- Speech communication applications: blind and on-line processing for time-varying dynamic acoustic scenarios
- Exploit knowledge or (statistical) models of speech signals and room acoustics



Objectives

- Single- and multi-microphone joint noise reduction and dereverberation algorithms
- Speech communication applications: blind and on-line processing for time-varying dynamic acoustic scenarios
- Exploit knowledge or (statistical) models of speech signals and room acoustics



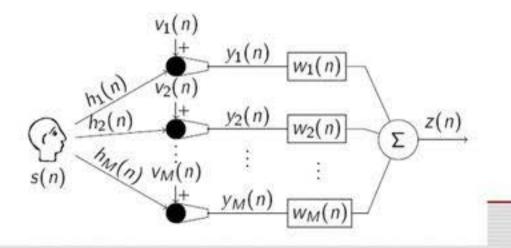
This presentation

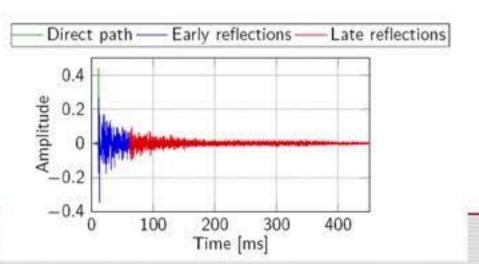
- Joint estimation of (time-varying) spatial and spectral variables for multi-microphone speech enhancement
- Binaural hearing devices: combination of speech enhancement and preservation of auditory scene
- Extension to acoustic sensor networks with spatially distributed microphones

1. Joint dereverberation and noise reduction

Signal model

- Scenario: speech source in noisy and reverberant environment, M microphones
- Model in Short-Time Fourier Transform (STFT) domain:



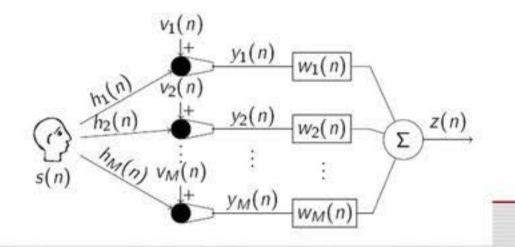


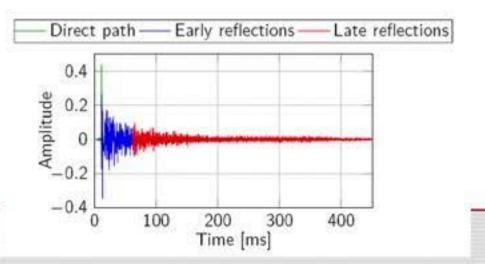
Signal model

- Scenario: speech source in noisy and reverberant environment, M microphones
- Model in Short-Time Fourier Transform (STFT) domain:

$$\mathbf{y}(k,l) = \mathbf{a}(k,l)x_1(k,l) + \mathbf{x}_r(k,l) + \mathbf{v}(k,l)$$

a(k,l) = vector of relative early transfer functions (RETFs) of target source

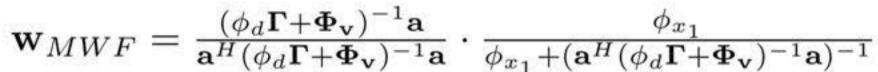


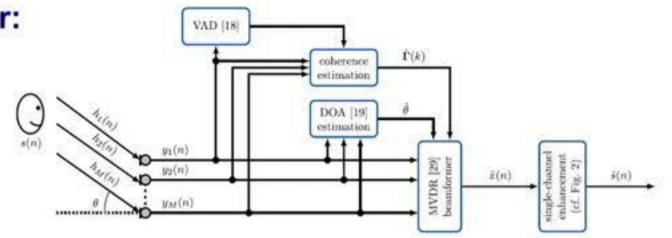


Multi-microphone dereverberation and noise reduction

Beamforming + spectral postfilter: multiply each time-frequency bin with real-valued gain

$$\mathbf{y}(l) = \mathbf{a}(l)x_1(l) + \mathbf{x}_r(l) + \mathbf{v}(l)$$





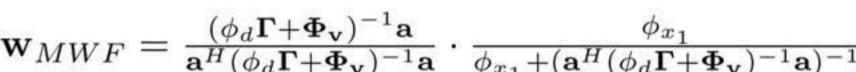
$$\frac{\phi_{x_1}}{\phi_{x_1} + (\mathbf{a}^H(\phi_d \mathbf{\Gamma} + \mathbf{\Phi_v})^{-1}\mathbf{a})^{-1}}$$

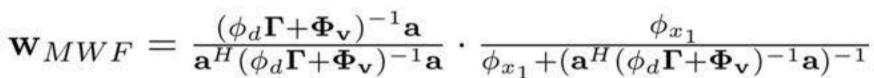
DOA [19

Multi-microphone dereverberation and noise reduction

Beamforming + spectral postfilter: multiply each time-frequency bin with real-valued gain

$$\mathbf{y}(l) = \mathbf{a}(l)x_1(l) + \mathbf{x}_r(l) + \mathbf{v}(l)$$

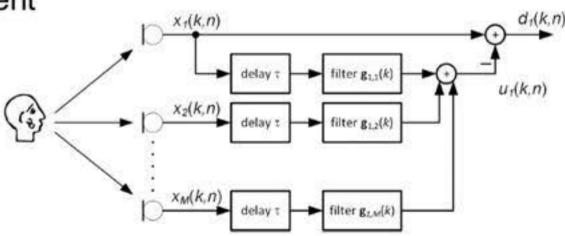




2. Reverberation and noise suppression: subtract complex-valued estimate of late reverberant and noise component

$$y_m(l) = h_m(l) \star s(l) + v_m(l)$$

$$\hat{x}_{e,1}(l) = y_1(l) - \mathbf{Y}_{\tau}(l)\mathbf{g}(l)$$

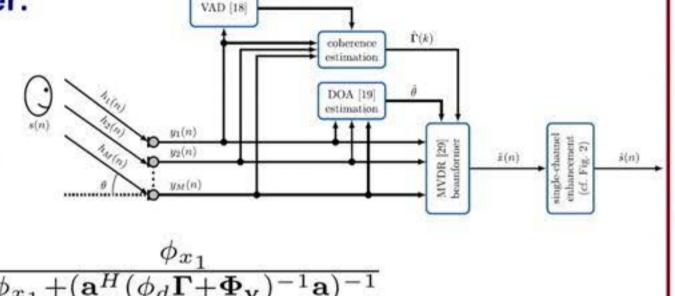


Multi-microphone dereverberation and noise reduction

 Beamforming + spectral postfilter: multiply each time-frequency bin with real-valued gain

$$\mathbf{y}(l) = \mathbf{a}(l)x_1(l) + \mathbf{x}_r(l) + \mathbf{v}(l)$$

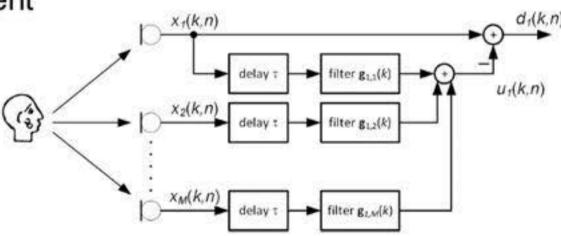
$$\mathbf{w}_{MWF} = \frac{(\phi_d \mathbf{\Gamma} + \mathbf{\Phi_v})^{-1} \mathbf{a}}{\mathbf{a}^H (\phi_d \mathbf{\Gamma} + \mathbf{\Phi_v})^{-1} \mathbf{a}} \cdot \frac{\phi_{x_1}}{\phi_{x_1} + (\mathbf{a}^H (\phi_d \mathbf{\Gamma} + \mathbf{\Phi_v})^{-1} \mathbf{a})^{-1}}$$



Reverberation and noise suppression: subtract complex-valued estimate of late reverberant and noise component

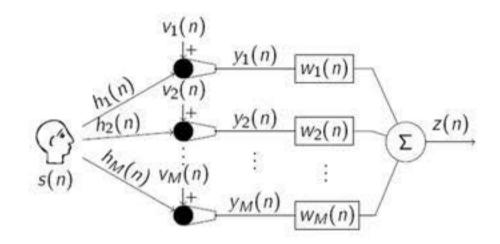
$$y_m(l) = h_m(l) \star s(l) + v_m(l)$$

$$\hat{x}_{e,1}(l) = y_1(l) - \mathbf{Y}_{\tau}(l)\mathbf{g}(l)$$



· Filter-and-sum structure :

$$z = \mathbf{w}^H \mathbf{y}$$



Filter-and-sum structure : $z = \mathbf{w}^H \mathbf{y}$ $\mathbf{y} = \mathbf{a}x_1 + \mathbf{n}$

$$z = \mathbf{w}^H \mathbf{y}$$

$$\mathbf{y} = \mathbf{a}x_1 + \mathbf{n}$$

"Workhorse algorithm": parametric Multi-channel Wiener filter (MWF)

Goal: estimate desired speech component in reference microphone + trade off interference (noise and/or reverberation) reduction and speech distortion

$$\min_{\mathbf{w}} \mathcal{E}\{|\mathbf{w}^H\mathbf{x} - x_1|^2\} + \mu \mathcal{E}\{|\mathbf{w}^H\mathbf{n}|^2\} \Rightarrow \mathbf{w}_{MWF} = (\mathbf{\Phi}_x + \mu \mathbf{\Phi}_n)^{-1}\mathbf{\Phi}_x\mathbf{e}$$

Requires estimate of covariance matrices, e.g., based on speech presence probability (SPP)

Filter-and-sum structure : $z = \mathbf{w}^H \mathbf{y}$ $\mathbf{y} = \mathbf{a}x_1 + \mathbf{n}$

$$z = \mathbf{w}^H \mathbf{y}$$

$$\mathbf{y} = \mathbf{a}x_1 + \mathbf{n}$$

"Workhorse algorithm": parametric Multi-channel Wiener filter (MWF)

Goal: estimate desired speech component in reference microphone + trade off interference (noise and/or reverberation) reduction and speech distortion

$$\min_{\mathbf{w}} \mathcal{E}\{|\mathbf{w}^H\mathbf{x} - x_1|^2\} + \mu \mathcal{E}\{|\mathbf{w}^H\mathbf{n}|^2\} \quad \Rightarrow \quad \mathbf{w}_{MWF} = (\mathbf{\Phi}_x + \mu \mathbf{\Phi}_n)^{-1}\mathbf{\Phi}_x\mathbf{e}$$

Requires estimate of covariance matrices, e.g., based on speech presence probability (SPP)

Filter-and-sum structure : $z = \mathbf{w}^H \mathbf{y}$ $\mathbf{y} = \mathbf{a}x_1 + \mathbf{n}$

$$z = \mathbf{w}^H \mathbf{y}$$

$$\mathbf{y} = \mathbf{a}x_1 + \mathbf{n}$$

"Workhorse algorithm": parametric Multi-channel Wiener filter (MWF)

Goal: estimate desired speech component in reference microphone + trade off interference (noise and/or reverberation) reduction and speech distortion

$$\min_{\mathbf{w}} \mathcal{E}\{|\mathbf{w}^H\mathbf{x} - x_1|^2\} + \mu \mathcal{E}\{|\mathbf{w}^H\mathbf{n}|^2\} \Rightarrow \mathbf{w}_{MWF} = (\mathbf{\Phi}_x + \mu \mathbf{\Phi}_n)^{-1}\mathbf{\Phi}_x \mathbf{e}$$

Requires estimate of covariance matrices, e.g., based on speech presence probability (SPP)

Filter-and-sum structure : $z = \mathbf{w}^H \mathbf{y}$ $\mathbf{y} = \mathbf{a}x_1 + \mathbf{n}$

$$z = \mathbf{w}^H \mathbf{y}$$

$$\mathbf{y} = \mathbf{a}x_1 + \mathbf{n}$$

"Workhorse algorithm": parametric Multi-channel Wiener filter (MWF)

Goal: estimate desired speech component in reference microphone + trade off interference (noise and/or reverberation) reduction and speech distortion

$$\min_{\mathbf{w}} \mathcal{E}\{|\mathbf{w}^H\mathbf{x} - x_1|^2\} + \mu \mathcal{E}\{|\mathbf{w}^H\mathbf{n}|^2\} \Rightarrow \mathbf{w}_{MWF} = (\mathbf{\Phi}_x + \mu \mathbf{\Phi}_n)^{-1}\mathbf{\Phi}_x\mathbf{e}$$

Requires estimate of covariance matrices, e.g., based on speech presence probability (SPP)

Can be decomposed as MVDR beamformer and spectral postfilter

$$\mathbf{w}_{MWF} = \frac{\mathbf{\Phi}_n^{-1}\mathbf{a}}{\mathbf{a}^H\mathbf{\Phi}_n^{-1}\mathbf{a}} \cdot \frac{\phi_{x_1}}{\phi_{x_1} + \mu(\mathbf{a}^H\mathbf{\Phi}_n^{-1}\mathbf{a})^{-1}}$$

Filter-and-sum structure : $z = \mathbf{w}^H \mathbf{y}$ $\mathbf{y} = \mathbf{a}x_1 + \mathbf{n}$

$$z = \mathbf{w}^H \mathbf{y}$$

$$\mathbf{y} = \mathbf{a}x_1 + \mathbf{n}$$

"Workhorse algorithm": parametric Multi-channel Wiener filter (MWF)

Goal: estimate desired speech component in reference microphone + trade off interference (noise and/or reverberation) reduction and speech distortion

$$\min_{\mathbf{w}} \mathcal{E}\{|\mathbf{w}^H\mathbf{x} - x_1|^2\} + \mu \mathcal{E}\{|\mathbf{w}^H\mathbf{n}|^2\} \Rightarrow \mathbf{w}_{MWF} = (\mathbf{\Phi}_x + \mu \mathbf{\Phi}_n)^{-1}\mathbf{\Phi}_x\mathbf{e}$$

Requires estimate of covariance matrices, e.g., based on speech presence probability (SPP)

Can be decomposed as MVDR beamformer and spectral postfilter

$$\mathbf{w}_{MWF} = \underbrace{\frac{\mathbf{\Phi}_n^{-1}\mathbf{a}}{\mathbf{a}^H\mathbf{\Phi}_n^{-1}\mathbf{a}}}_{\mathbf{\Phi}_n^{+1}\mathbf{a}} \underbrace{\frac{\phi_{x_1}}{\phi_{x_1} + \mu(\mathbf{a}^H\mathbf{\Phi}_n^{-1}\mathbf{a})^{-1}}}_{\phi_{x_1} + \mu(\mathbf{a}^H\mathbf{\Phi}_n^{-1}\mathbf{a})^{-1}}$$

Filter-and-sum structure : $z = \mathbf{w}^H \mathbf{y}$ $\mathbf{y} = \mathbf{a}x_1 + \mathbf{n}$

$$z = \mathbf{w}^H \mathbf{y}$$

$$\mathbf{y} = \mathbf{a}x_1 + \mathbf{n}$$

"Workhorse algorithm": parametric Multi-channel Wiener filter (MWF)

Goal: estimate desired speech component in reference microphone + trade off interference (noise and/or reverberation) reduction and speech distortion

$$\min_{\mathbf{w}} \mathcal{E}\{|\mathbf{w}^H\mathbf{x} - x_1|^2\} + \mu \mathcal{E}\{|\mathbf{w}^H\mathbf{n}|^2\} \Rightarrow \mathbf{w}_{MWF} = (\mathbf{\Phi}_x + \mu \mathbf{\Phi}_n)^{-1}\mathbf{\Phi}_x\mathbf{e}$$

Requires estimate of covariance matrices, e.g., based on speech presence probability (SPP)

Can be decomposed as MVDR beamformer and spectral postfilter

$$\mathbf{w}_{MWF} = \frac{\mathbf{\Phi}_n^{-1}\mathbf{a}}{\mathbf{a}^H\mathbf{\Phi}_n^{-1}\mathbf{a}} \underbrace{\frac{\phi_{x_1}}{\phi_{x_1} + \mu(\mathbf{a}^H\mathbf{\Phi}_n^{-1}\mathbf{a})^{-1}}}$$

Filter-and-sum structure : $z = \mathbf{w}^H \mathbf{y}$ $\mathbf{y} = \mathbf{a}x_1 + \mathbf{n}$

$$z = \mathbf{w}^H \mathbf{y}$$
 $\mathbf{y} =$

$$\mathbf{y} = \mathbf{a}x_1 + \mathbf{n}$$

"Workhorse algorithm": parametric Multi-channel Wiener filter (MWF)

Goal: estimate desired speech component in reference microphone + trade off interference (noise and/or reverberation) reduction and speech distortion

$$\min_{\mathbf{w}} \mathcal{E}\{|\mathbf{w}^H\mathbf{x} - x_1|^2\} + \mu \mathcal{E}\{|\mathbf{w}^H\mathbf{n}|^2\} \Rightarrow \mathbf{w}_{MWF} = (\mathbf{\Phi}_x + \mu \mathbf{\Phi}_n)^{-1}\mathbf{\Phi}_x\mathbf{e}$$

Requires estimate of covariance matrices, e.g., based on speech presence probability (SPP)

Can be decomposed as MVDR beamformer and spectral postfilter

$$\mathbf{w}_{MWF} = \frac{\mathbf{\Phi}_n^{-1}\mathbf{a}}{\mathbf{a}^H\mathbf{\Phi}_n^{-1}\mathbf{a}} \cdot \frac{\phi_{x_1}}{\phi_{x_1} + \mu(\mathbf{a}^H\mathbf{\Phi}_n^{-1}\mathbf{a})^{-1}}$$

Signal model

$$\mathbf{y}(l) = \mathbf{a}(l)x_1(l) + \mathbf{x}_r(l) + \mathbf{v}(l)$$

$$\mathbf{\Phi}_y(l) = \phi_{x_1}(l)\mathbf{a}(l)\mathbf{a}^H(l) + \mathbf{\Phi}_{x_r}(l) + \mathbf{\Phi}_v(l)$$

Late reverberation: model as diffuse sound field $\Phi_{x_r}(l) = \phi_d(l)\Gamma$

with $\phi_d(l)$ time-varying diffuse PSD and Γ time-invariant coherence matrix (also incorporating diffuse noise!)

$$\mathbf{w}_{MWF} = \frac{(\phi_d \mathbf{\Gamma} + \mathbf{\Phi_v})^{-1} \mathbf{a}}{\mathbf{a}^H (\phi_d \mathbf{\Gamma} + \mathbf{\Phi_v})^{-1} \mathbf{a}} \cdot \frac{\phi_{x_1}}{\phi_{x_1} + (\mathbf{a}^H (\phi_d \mathbf{\Gamma} + \mathbf{\Phi_v})^{-1} \mathbf{a})^{-1}}$$

Signal model

$$\mathbf{y}(l) = \mathbf{a}(l)x_1(l) + \mathbf{x}_r(l) + \mathbf{v}(l)$$

$$\mathbf{\Phi}_y(l) = \phi_{x_1}(l)\mathbf{a}(l)\mathbf{a}^H(l) + \mathbf{\Phi}_{x_r}(l) + \mathbf{\Phi}_v(l)$$

Late reverberation: model as diffuse sound field $\Phi_{x_r}(l) = \phi_d(l)\Gamma$

with $\phi_d(l)$ time-varying diffuse PSD and Γ time-invariant coherence matrix (also incorporating diffuse noise!)

$$\mathbf{w}_{MWF} = \frac{(\phi_d \mathbf{\Gamma} + \mathbf{\Phi_v})^{-1} \mathbf{a}}{\mathbf{a}^H (\phi_d \mathbf{\Gamma} + \mathbf{\Phi_v})^{-1} \mathbf{a}} \cdot \frac{\phi_{x_1}}{\phi_{x_1} + (\mathbf{a}^H (\phi_d \mathbf{\Gamma} + \mathbf{\Phi_v})^{-1} \mathbf{a})^{-1}}$$

- Key estimation tasks:
 - RETF vector a(I): anechoic (based on DOA estimate) or reverberant
 - **Diffuse/late reverberant PSD** $\phi_d(l)$: using single-channel temporal model (exponential decay) or based on multi-channel diffuse sound field model
 - Noise covariance matrix $\Phi_v(l)$: estimate (based on SPP) or model (e.g., spatially white noise)

Estimation of PSDs

Requiring estimate of RETF vector and noise covariance matrix

$$\hat{\mathbf{\Phi}}_x(l) = \hat{\mathbf{\Phi}}_y(l) - \hat{\mathbf{\Phi}}_v(l) = \phi_{x_1}(l)\mathbf{a}(l)\mathbf{a}^H(l) + \phi_d(l)\mathbf{\Gamma}$$

- Maximum-likelihood estimators, requiring iterative optimisation procedure
- Closed-form least-squares estimators, based on Frobenius norm

$$\min_{\phi_{x_1}(l),\phi_d(l)} ||\hat{\mathbf{\Phi}}_x(l) - \phi_{x_1}(l)\mathbf{a}(l)\mathbf{a}^H(l) - \phi_d(l)\mathbf{\Gamma}||_F^2$$

Estimation of PSDs

Requiring estimate of RETF vector and noise covariance matrix

$$\hat{\mathbf{\Phi}}_x(l) = \hat{\mathbf{\Phi}}_y(l) - \hat{\mathbf{\Phi}}_v(l) = \phi_{x_1}(l)\mathbf{a}(l)\mathbf{a}^H(l) + \phi_d(l)\mathbf{\Gamma}$$

- Maximum-likelihood estimators, requiring iterative optimisation procedure
- Closed-form least-squares estimators, based on Frobenius norm

$$\min_{\phi_{x_1}(l),\phi_d(l)} ||\hat{\mathbf{\Phi}}_x(l) - \phi_{x_1}(l)\mathbf{a}(l)\mathbf{a}^H(l) - \phi_d(l)\mathbf{\Gamma}||_F^2$$

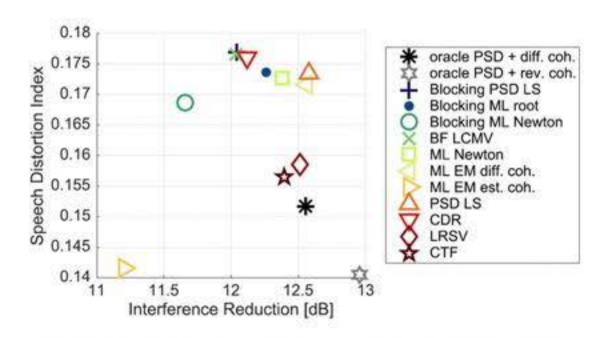


Fig. 9. Speech distortion vs. interference reduction for RSNR = 15 dB.

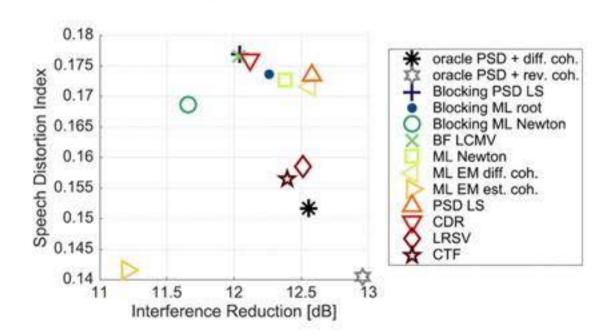
Estimation of PSDs

Requiring estimate of RETF vector and noise covariance matrix

$$\hat{\mathbf{\Phi}}_x(l) = \hat{\mathbf{\Phi}}_y(l) - \hat{\mathbf{\Phi}}_v(l) = \phi_{x_1}(l)\mathbf{a}(l)\mathbf{a}^H(l) + \phi_d(l)\mathbf{\Gamma}$$

- Maximum-likelihood estimators, requiring iterative optimisation procedure
- Closed-form least-squares estimators, based on Frobenius norm

$$\min_{\phi_{x_1}(l),\phi_d(l)} ||\hat{\mathbf{\Phi}}_x(l) - \phi_{x_1}(l)\mathbf{a}(l)\mathbf{a}^H(l) - \phi_d(l)\mathbf{\Gamma}||_F^2$$



Similar performance for most methods...

Fig. 9. Speech distortion vs. interference reduction for RSNR = 15 dB.

- 1. Covariance whitening (CW) method:
 - Requires estimate of noise covariance matrix

$$\hat{\mathbf{\Phi}}_x(l) = \hat{\mathbf{\Phi}}_y(l) - \hat{\mathbf{\Phi}}_v(l) = \phi_{x_1}(l)\mathbf{a}(l)\mathbf{a}^H(l) + \phi_d(l)\mathbf{\Gamma}$$

- 1. Covariance whitening (CW) method:
 - Requires estimate of noise covariance matrix

$$\hat{\mathbf{\Phi}}_x(l) = \hat{\mathbf{\Phi}}_y(l) - \hat{\mathbf{\Phi}}_v(l) = \phi_{x_1}(l)\mathbf{a}(l)\mathbf{a}^H(l) + \phi_d(l)\mathbf{\Gamma}$$

Eigenvalue decomposition of prewhitened signal correlation matrix

$$\hat{\boldsymbol{\Phi}}_{x}^{w}(l) = \boldsymbol{\Gamma}^{-1/2}\hat{\boldsymbol{\Phi}}_{x}(l)\boldsymbol{\Gamma}^{-H/2} = \phi_{x_{1}}(l)\mathbf{b}(l)\mathbf{b}^{H}(l) + \phi_{d}(l)\mathbf{I}$$

1. Covariance whitening (CW) method:

Requires estimate of noise covariance matrix

$$\hat{\mathbf{\Phi}}_x(l) = \hat{\mathbf{\Phi}}_y(l) - \hat{\mathbf{\Phi}}_v(l) = \phi_{x_1}(l)\mathbf{a}(l)\mathbf{a}^H(l) + \phi_d(l)\mathbf{\Gamma}$$

Eigenvalue decomposition of prewhitened signal correlation matrix

$$\hat{\boldsymbol{\Phi}}_{x}^{w}(l) = \boldsymbol{\Gamma}^{-1/2}\hat{\boldsymbol{\Phi}}_{x}(l)\boldsymbol{\Gamma}^{-H/2} = \phi_{x_{1}}(l)\mathbf{b}(l)\mathbf{b}^{H}(l) + \phi_{d}(l)\mathbf{I}$$

Principal eigenvector u(l): estimate of RETF vector

$$\hat{\mathbf{a}}(l) = \frac{\mathbf{\Gamma}^{1/2}\mathbf{u}(l)}{\mathbf{e}^T\mathbf{\Gamma}^{1/2}\mathbf{u}(l)}$$

Eigenvalues: estimate of PSDs

$$\hat{\phi}_{d}(l) = \lambda_{2} \{\hat{\mathbf{\Phi}}_{x}^{w}(l)\} \qquad \hat{\phi}_{d,\mu}(l) = \frac{1}{M-1} (\text{tr}\{\hat{\mathbf{\Phi}}_{x}^{w}(l)\} - \lambda_{1}\{\hat{\mathbf{\Phi}}_{x}^{w}(l)\})$$
$$\hat{\phi}_{x_{1}}(l) = \lambda_{1} \{\hat{\mathbf{\Phi}}_{x}^{w}(l)\} / ||\hat{\mathbf{b}}||_{2}^{2}$$

- 2. Alternating least squares (ALS) method, minimizing Frobenius norm
 - Model noise covariance matrix + estimate noise PSD

$$\min_{\phi_{x_1}(l),\phi_d(l),\phi_v(l),\mathbf{a}(l)}||\hat{\mathbf{\Phi}}_y(l)-\phi_{x_1}(l)\mathbf{a}(l)\mathbf{a}^H(l)-\phi_d(l)\mathbf{\Gamma}-\phi_v(l)\mathbf{\Psi}||_F^2$$

- 2. Alternating least squares (ALS) method, minimizing Frobenius norm
 - Model noise covariance matrix + estimate noise PSD

$$\min_{\phi_{x_1}(l),\phi_d(l),\phi_v(l),\mathbf{a}(l)}||\hat{\mathbf{\Phi}}_y(l)-\phi_{x_1}(l)\mathbf{a}(l)\mathbf{a}(l)\mathbf{a}^H(l)-\phi_d(l)\mathbf{\Gamma}-\phi_v(l)\mathbf{\Psi}||_F^2$$

No closed-form solution → two-step alternating procedure
 (least-squares problem for PSDs, eigenvalue problem for RETF vector)

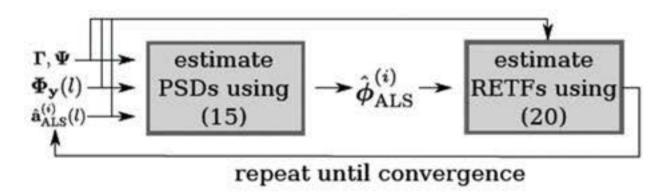


Fig. 1: Block diagram of ALS-based RETF vector and PSD estimation.

- 2. Alternating least squares (ALS) method, minimizing Frobenius norm
 - Model noise covariance matrix + estimate noise PSD

$$\min_{\phi_{x_1}(l),\phi_d(l),\phi_v(l),\mathbf{a}(l)}||\hat{\mathbf{\Phi}}_y(l)-\phi_{x_1}(l)\mathbf{a}(l)\mathbf{a}(l)\mathbf{a}^H(l)-\phi_d(l)\mathbf{\Gamma}-\phi_v(l)\mathbf{\Psi}||_F^2$$

No closed-form solution → two-step alternating procedure
 (least-squares problem for PSDs, eigenvalue problem for RETF vector)

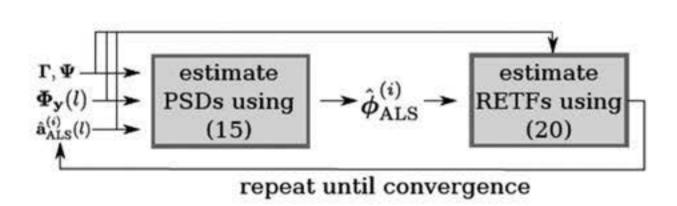


Fig. 1: Block diagram of ALS-based RETF vector and PSD estimation.

Simulation results

1. Simulated stationary source (ACE)

- Linear microphone array (M=6, d=6cm)
- Target source at 15° (measured room impulse responses, T₆₀ ≈ 1.25 s)
- Simulated diffuse babble noise (SDR=10 dB)

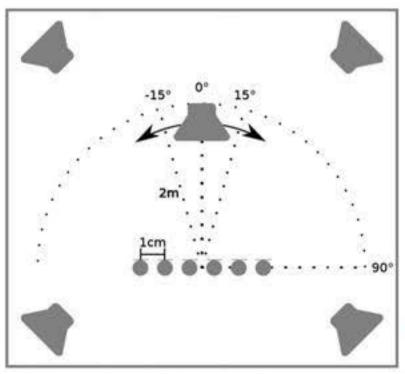
Simulation results

1. Simulated stationary source (ACE)

- Linear microphone array (M=6, d=6cm)
- Target source at 15° (measured room impulse responses, T₆₀ ≈ 1.25 s)
- Simulated diffuse babble noise (SDR=10 dB)

2. Recorded moving source (varechoic lab)

- Linear microphone array (M=6, d=1cm)
- Moving target source (T₆₀ ≈ 0.35 s)
- Recorded pseudo-diffuse babble noise (SDR=10 dB)



Simulation results

1. Simulated stationary source (ACE)

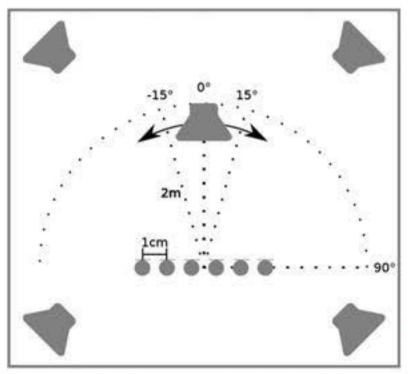
- Linear microphone array (M=6, d=6cm)
- Target source at 15° (measured room impulse responses, T₆₀ ≈ 1.25 s)
- Simulated diffuse babble noise (SDR=10 dB)

2. Recorded moving source (varechoic lab)

- Linear microphone array (M=6, d=1cm)
- Moving target source (T₆₀ ≈ 0.35 s)
- Recorded pseudo-diffuse babble noise (SDR=10 dB)

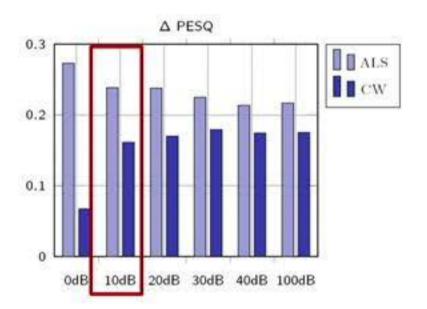
Simulation parameters:

- f_s = 16 kHz, STFT: 64 ms, 75% overlap, Hamming window
- Γ: spherically diffuse; smoothing: 40 ms; speech PSD estimated using decision-directed approach, G_{min} = -10 dB
- CW: noise covariance matrix estimated during first second; ALS: 5 iterations



Simulation results (PESQ improvement)

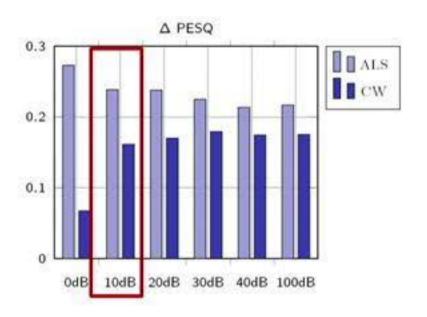
1. Simulated stationary source



Linear array (M=6, d=6cm), fs=16kHz, stationary source at θ =15°, perfectly diffuse babble noise (SDR=10dB), sensor noise (DNR=10dB)

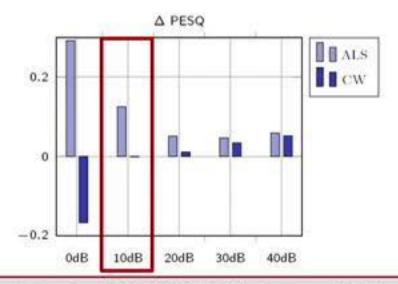
Simulation results (PESQ improvement)

1. Simulated stationary source



Linear array (M=6, d=6cm), fs=16kHz, stationary source at θ =15°, perfectly diffuse babble noise (SDR=10dB), sensor noise (DNR=10dB)

2. Recorded moving source



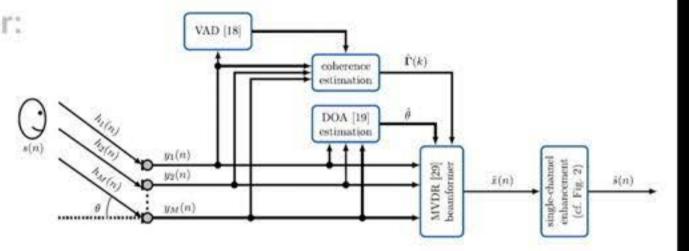
Input	MWF CW	MWF ALS
5000	5000	5000

Linear array (M=6, d=1cm), fs=16kHz, moving source θ =0° to θ =90° pseudo-diffuse babble noise (SDR=10dB), sensor noise (DNR=10dB)

Multi-microphone dereverberation and noise reduction

 Beamforming + spectral postfilter: multiply each time-frequency bin with real-valued gain

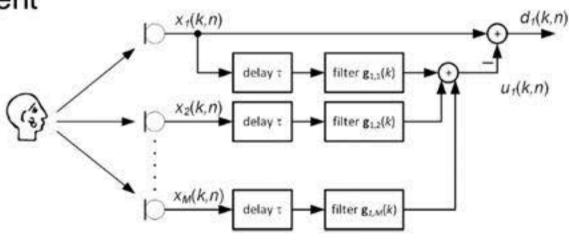
$$\mathbf{y}(l) = \mathbf{a}(l)x_1(l) + \mathbf{x}_{\tau}(l) + \mathbf{v}(l)$$



Reverberation and noise suppression: subtract complex-valued estimate
of late reverberant and noise component

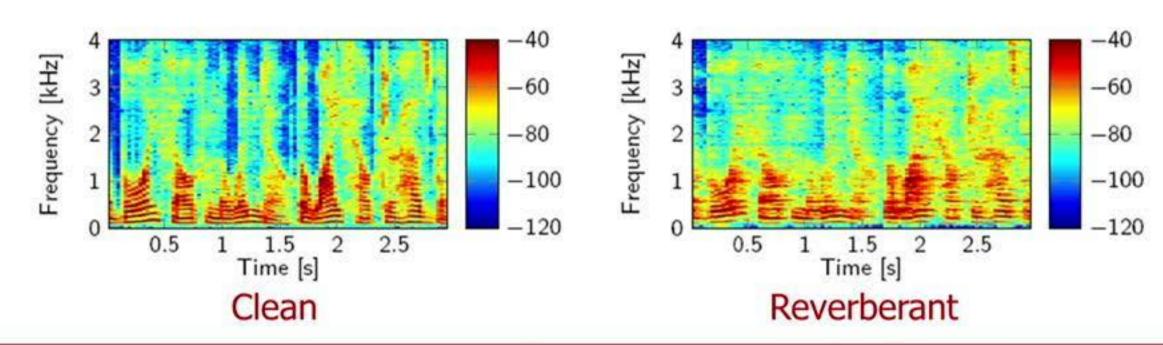
$$y_m(l) = h_m(l) \star s(l) + v_m(l)$$

$$\hat{x}_{e,1}(l) = y_1(l) - \mathbf{Y}_{\tau}(l)\mathbf{g}(l)$$



$$y_m(k,l) = \underbrace{h_m(k,l) \star s(k,l)}_{x_m(k,l)} + v_m(k,l)$$

- Probabilistic estimation using (statistical) models of desired speech signal and reverberation
- Exploit sparsity properties of speech in STFT-domain



$$y_m(k,l) = \underbrace{h_m(k,l) \star s(k,l)}_{x_m(k,l)} + v_m(k,l)$$

- Probabilistic estimation using (statistical) models of desired speech signal and reverberation
- · Exploit sparsity properties of speech in STFT-domain
- Approach: transform to equivalent AR model → sparse multi-channel linear prediction (MCLP)

$$x_1(k,l) = d(k,l) + \sum_{m=1}^{M} \sum_{n=0}^{L_g-1} g_m(k,n) x_m(k,l-\tau-n)$$

$$y_m(k,l) = \underbrace{h_m(k,l) \star s(k,l)}_{x_m(k,l)} + v_m(k,l)$$

- Probabilistic estimation using (statistical) models of desired speech signal and reverberation
- · Exploit sparsity properties of speech in STFT-domain
- Approach: transform to equivalent AR model → sparse multi-channel linear prediction (MCLP)

$$x_1(k,l) = d(k,l) + \sum\limits_{m=1}^{M} \sum\limits_{n=0}^{L_g-1} g_m(k,n) x_m(k,l-\tau-n)$$
 the clean signal delay (incl. early reflections)

$$y_m(k,l) = \underbrace{h_m(k,l) \star s(k,l)}_{x_m(k,l)} + v_m(k,l)$$

- Probabilistic estimation using (statistical) models of desired speech signal and reverberation
- · Exploit sparsity properties of speech in STFT-domain
- Approach: transform to equivalent AR model → sparse multi-channel linear prediction (MCLP)

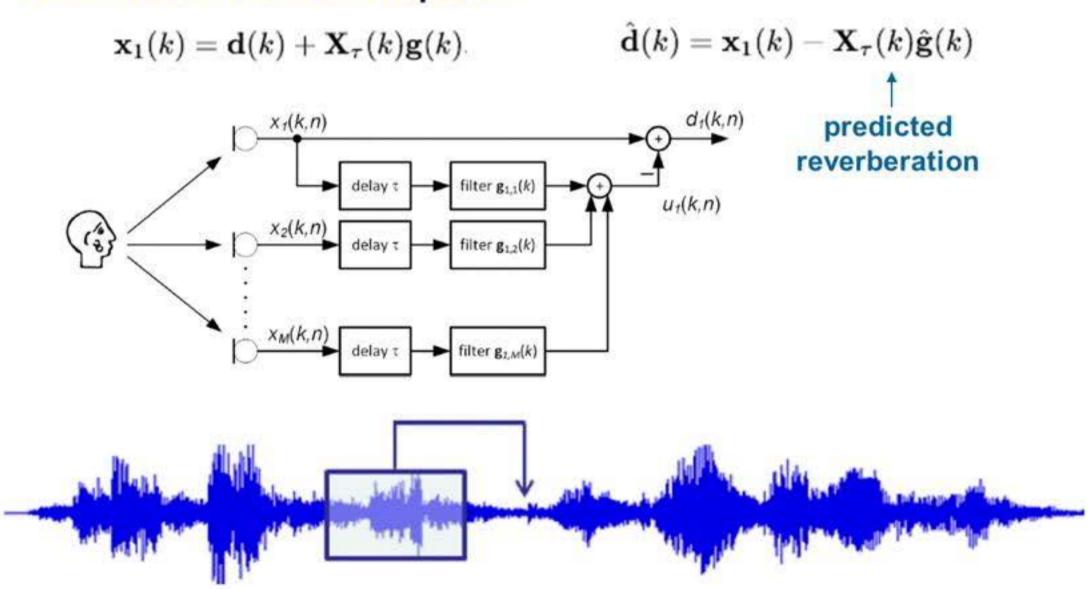
$$x_1(k,l) = d(k,l) + \sum_{m=1}^M \sum_{n=0}^{L_g-1} g_m(k,n) x_m(k,l-\tau-n)$$

$$\uparrow$$

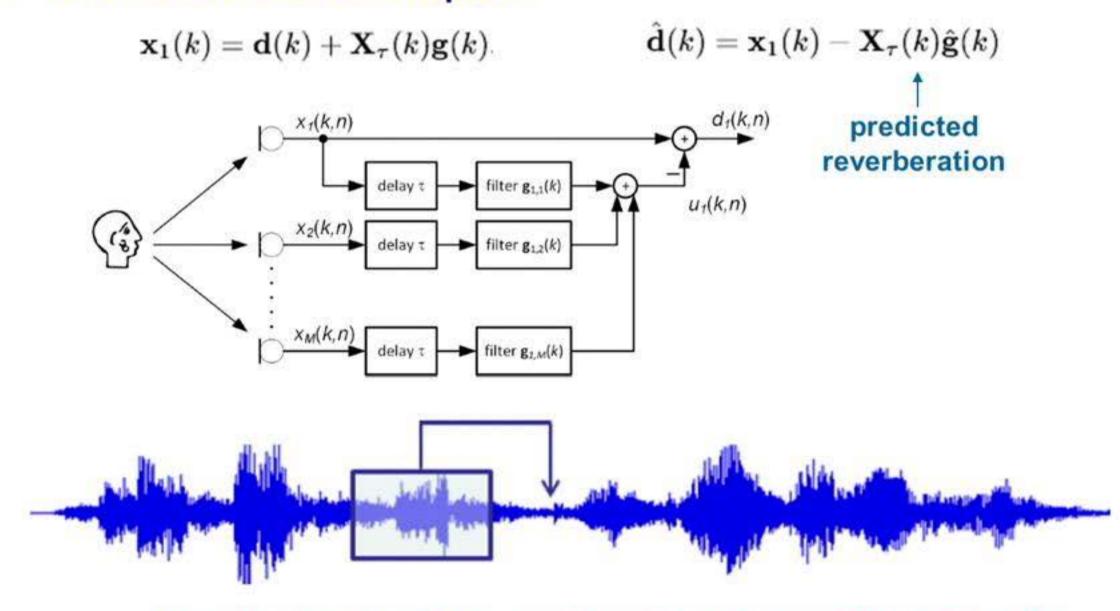
$$\mathsf{prediction}$$

$$\mathsf{filters}$$

AR model of reverberant speech



AR model of reverberant speech



How to select suitable cost function for prediction filters?

Approach:

- STFT coefficients of desired signal are modelled using circular sparse/super-Gaussian prior with time-varying variance $\lambda(n)$

$$\rho(d(n)) = \max_{\lambda(n)>0} \mathcal{N}_{\mathbb{C}}(d(n); 0, \lambda(n)) \psi(\lambda(n))$$

Scaling function $\psi(.)$ can be interpreted as hyper-prior on variance

Approach:

- STFT coefficients of desired signal are modelled using circular sparse/super-Gaussian prior with time-varying variance $\lambda(n)$

$$\rho(d(n)) = \max_{\lambda(n)>0} \mathcal{N}_{\mathbb{C}}(d(n); 0, \lambda(n)) \psi(\lambda(n))$$

Scaling function $\psi(.)$ can be interpreted as hyper-prior on variance

Maximum-Likelihood Estimation (batch, per frequency bin)

$$\mathcal{L}(\mathbf{g}) = \prod_{n=1}^{N} \rho\left(d(n)\right) \implies \min_{\boldsymbol{\lambda} > 0, \mathbf{g}} \sum_{n=1}^{N} \left(\frac{|d(n)|^2}{\lambda(n)} + \log \pi \lambda(n) - \log \psi(\lambda(n))\right)$$

Approach:

- STFT coefficients of desired signal are modelled using circular sparse/super-Gaussian prior with time-varying variance $\lambda(n)$

$$\rho(d(n)) = \max_{\lambda(n)>0} \mathcal{N}_{\mathbb{C}}(d(n); 0, \lambda(n)) \psi(\lambda(n))$$

Scaling function $\psi(.)$ can be interpreted as hyper-prior on variance

Maximum-Likelihood Estimation (batch, per frequency bin)

$$\mathcal{L}(\mathbf{g}) = \prod_{n=1}^{N} \rho\left(d(n)\right) \implies \min_{\boldsymbol{\lambda} > 0, \mathbf{g}} \sum_{n=1}^{N} \left(\frac{|d(n)|^2}{\lambda(n)} + \log \pi \lambda(n) - \log \psi(\lambda(n))\right)$$

- Alternating optimization procedure
 - 1. Estimate prediction vector (assuming fixed variances)

$$\hat{\mathbf{g}}^{(i+1)} = \left(\mathbf{X}_{\tau}^H \mathcal{D}_{\hat{\boldsymbol{\lambda}}^{(i)}}^{-1} \mathbf{X}_{\tau}\right)^{-1} \mathbf{X}_{\tau}^H \mathcal{D}_{\hat{\boldsymbol{\lambda}}^{(i)}}^{-1} \mathbf{x}_1$$

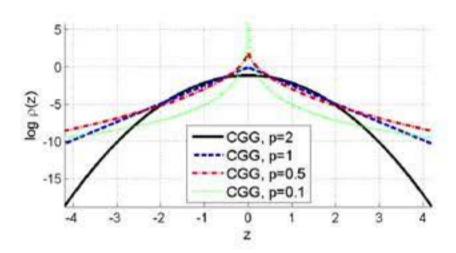
Estimate variances (assuming fixed prediction vector)

$$\hat{\lambda}^{(i+1)}(n) = \operatorname*{arg\,min}_{\lambda(n)>0} \frac{\left|\hat{d}^{(i+1)}(n)\right|^2}{\lambda(n)} + \log \pi \lambda(n) - \log \psi(\lambda(n))$$

Example: complex generalized Gaussian (CGG) prior with shape parameter p

$$ho(z)=rac{p}{2\pi\gamma\Gamma(2/p)}e^{-rac{|z|^p}{\gamma^{p/2}}}$$

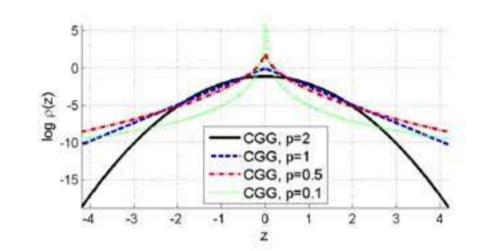
$$\hat{\lambda}^{(i+1)}(n) = |\hat{d}^{(i+1)}(n)|^{2-p},$$



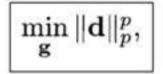
Example: complex generalized Gaussian (CGG) prior with shape parameter p

$$ho(z) = rac{p}{2\pi\gamma\Gamma(2/p)}e^{-rac{|z|^p}{\gamma^{p/2}}}$$

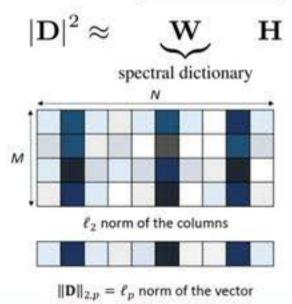
$$\hat{\lambda}^{(i+1)}(n) = |\hat{d}^{(i+1)}(n)|^{2-p},$$



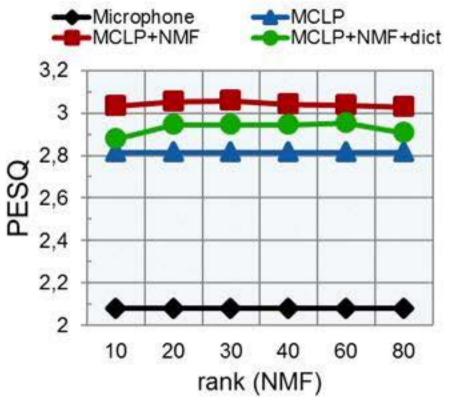
- Remarks:
 - ML estimation using CGG prior is equivalent to I_p-norm minimization
 → promotes sparsity of TF-coefficients across time (for p < 2)</p>



- Incorporate additional knowledge of speech signal, e.g. low-rank structure (NMF)
- Group sparsity for MIMO speech dereverberation
 → mixed norms
- Recursive version by constraining MCLP-based estimate of undesired component



- Instrumental validation (noiseless, batch)
 - MCLP exploits sparsity
 - NMF introduces speech structure (unsupervised vs. supervised NMF)

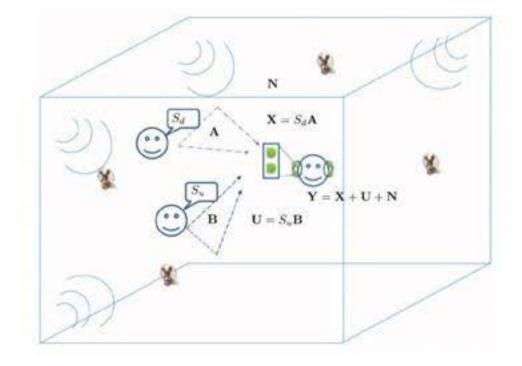




 $T_{60} \sim 700 \text{ms}$, M=4, fs=16 kHz; STFT: 64ms (overlap 16ms); MCLP: L_g =8, τ =2, p=0

Current/future work

- Estimation of RETF vectors and PSDs for multi-speaker scenarios (e.g. based on Procrustes problem)
- Joint noise reduction and dereverberation: integration of multi-channel linear prediction and generalized sidelobe canceller



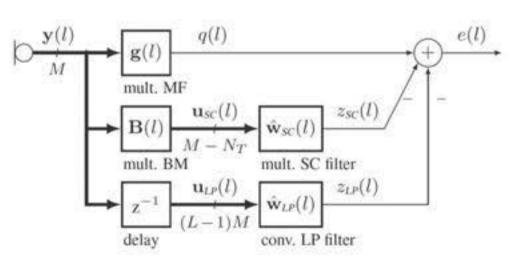
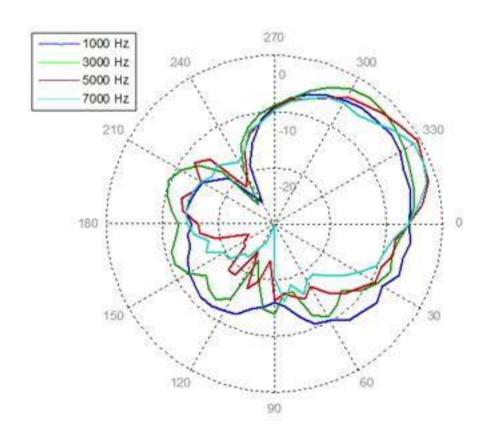


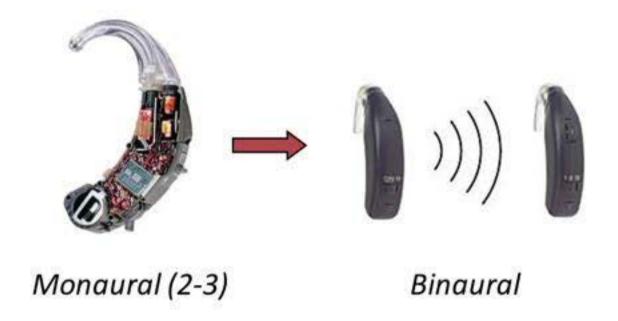
Fig. 1. The integrated sidelobe cancellation and linear prediction (ISCLP) architecture.

2. Acoustic signal processing for binaural hearing devices

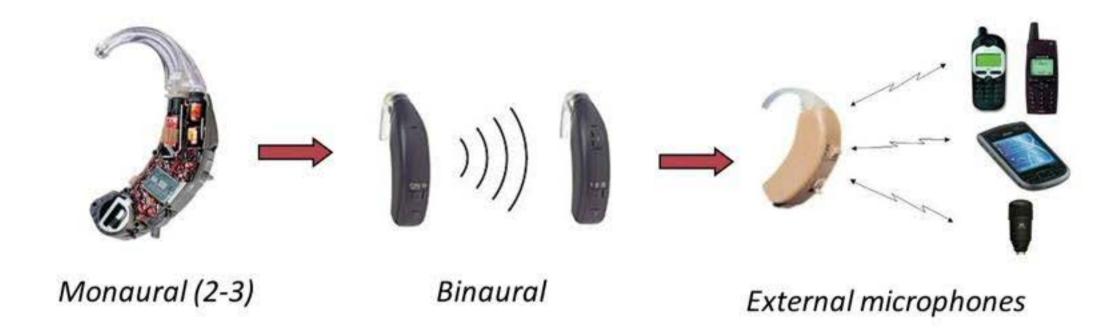
Hearing devices generally have multiple microphones available and allow for advanced acoustical signal pre-processing



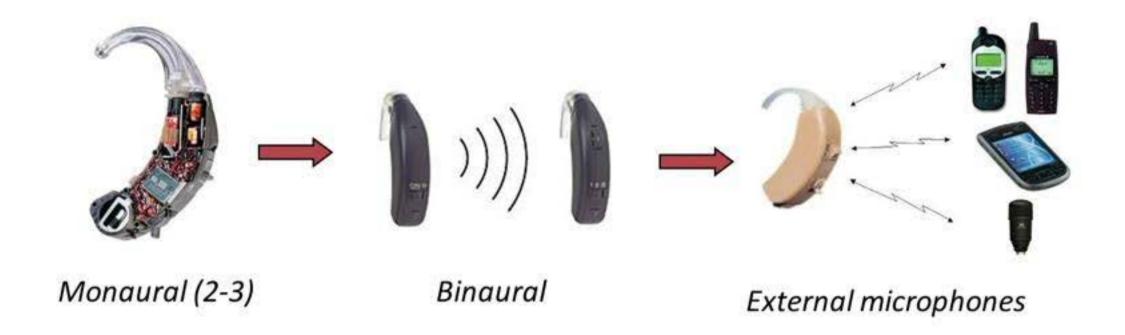
Hearing devices generally have multiple microphones available and allow for advanced acoustical signal pre-processing



□ Hearing devices generally have multiple microphones available and allow for advanced acoustical signal pre-processing



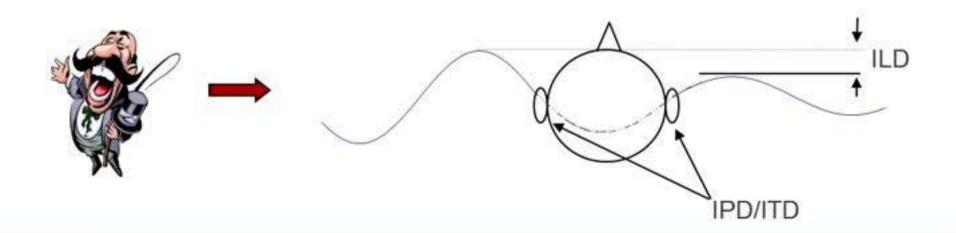
□ Hearing devices generally have multiple microphones available and allow for advanced acoustical signal pre-processing



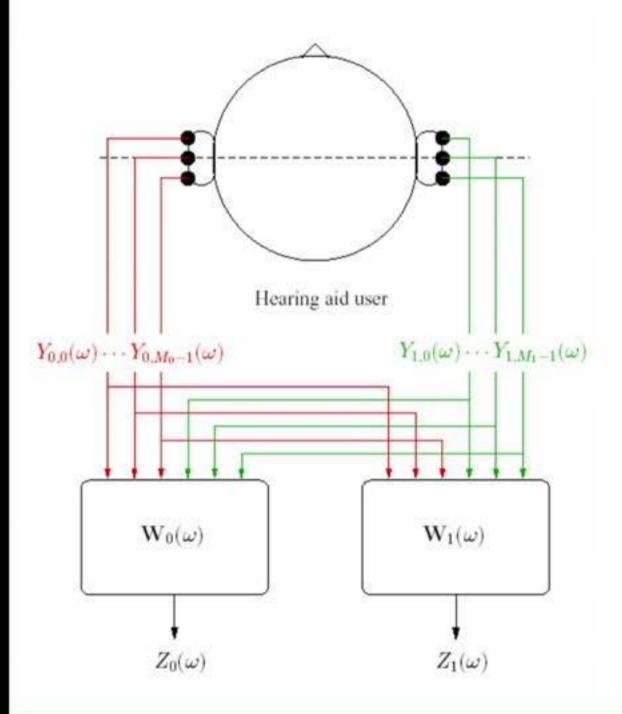
■ Main objectives of binaural speech enhancement algorithms: improve speech intelligibility + preserve spatial awareness (binaural cues)

Binaural auditory cues

- □ Interaural Time/Phase Difference (ITD/IPD) Interaural Level Difference (ILD) Interaural Coherence (IC)
 - ☐ ITD: f < 1500 Hz, ILD: f > 2000 Hz
 - □ IC: describes spatial characteristics, e.g. perceived width, of diffuse noise, and determines when ITD/ILD cues are *reliable*
- ☐ Binaural cues, in addition to spectro-temporal cues, play an important role in auditory scene analysis (source segregation) and speech intelligibility

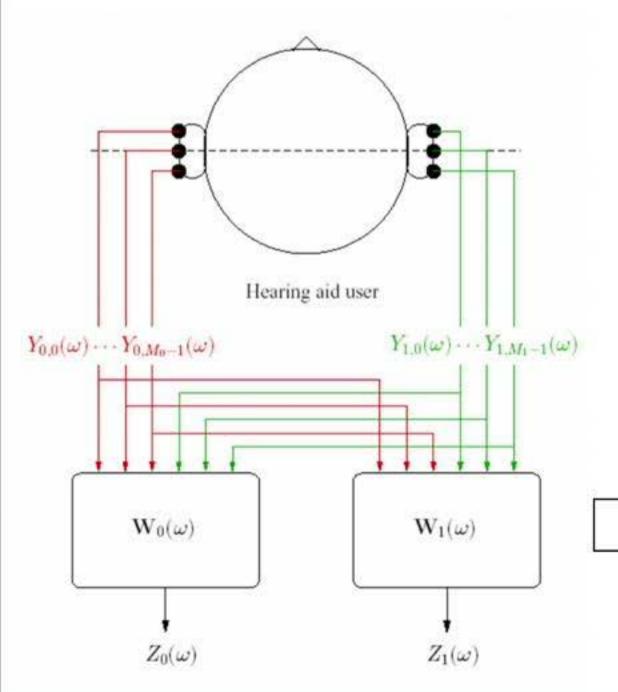


Binaural noise reduction: Configuration



- Binaural hearing aid configuration:
 - □ Two hearing aids with in total M microphones
 - □ All microphone signals Y are assumed to be available at both hearing aids (perfect wireless link)

Binaural noise reduction: Configuration



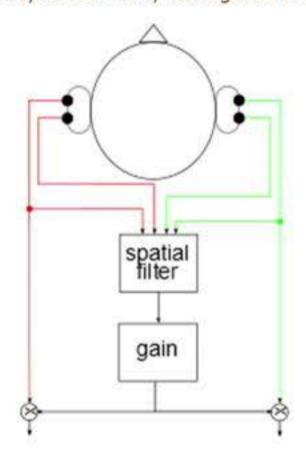
- Binaural hearing aid configuration:
 - □ Two hearing aids with in total M microphones
 - □ All microphone signals Y are assumed to be available at both hearing aids (perfect wireless link)
- □ Apply a filter W₀ and W₁ at the left and the right hearing aid, generating binaural output signals Z₀ and Z₁

$$Z_0(\omega) = \mathbf{W}_0^H(\omega)\mathbf{Y}(\omega), \quad Z_1(\omega) = \mathbf{W}_1^H(\omega)\mathbf{Y}(\omega)$$

Binaural noise reduction: Two main paradigms

Spectral post-filtering (based on multi-microphone noise reduction)

[Wittkop 2003, Lotter 2006, Rohdenburg 2008, Grimm 2009, Kamkar-Parsi 2011, Reindl 2013, Baumgärtel 2015, Enzner 2016]

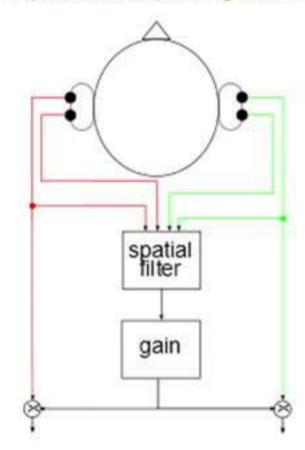


- Binaural cue preservation
- Possible single-channel artifacts

Binaural noise reduction: Two main paradigms

Spectral post-filtering (based on multi-microphone noise reduction)

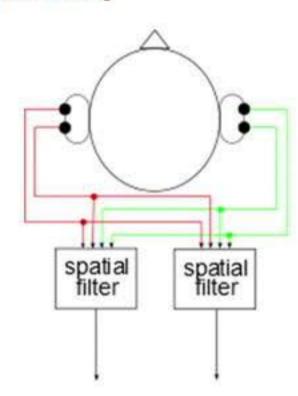
[Wittkop 2003, Lotter 2006, Rohdenburg 2008, Grimm 2009, Kamkar-Parsi 2011, Reindl 2013, Baumgärtel 2015, Enzner 2016]



- Binaural cue preservation
- Possible single-channel artifacts

Binaural spatial filtering techniques

[Welker 1997, Aichner 2007, Doclo 2010, Cornelis 2012, Hadad 2015-2016, Marquardt 2015-2018, Koutrouvelis 2017-2019]



- Larger noise reduction performance
- Merge spatial and spectral post-filtering
- Binaural cue preservation not guaranteed

Binaural MVDR and MWF

Minimum-Variance-Distortionless-Response (MVDR) beamformer

Goal: minimize output noise power without distorting speech component in reference microphone signals

$$\min_{\mathbf{W}_0} \mathbf{W}_0^H \mathbf{R}_v \mathbf{W}_0$$
 subject to $\mathbf{W}_0^H \mathbf{A} = A_0$
 $\min_{\mathbf{W}_1} \mathbf{W}_1^H \mathbf{R}_v \mathbf{W}_1$ subject to $\mathbf{W}_1^H \mathbf{A} = A_1$
 \uparrow
noise distortionless reduction constraint

Requires estimate/model of noise coherence matrix (e.g. diffuse) and estimate/model of relative transfer function (RTF) of target speech source

Multi-channel Wiener Filter (MWF)

Goal: estimate speech component in reference microphone signals + trade off noise reduction and speech distortion

$$J_{\text{MWF}}(\mathbf{W}) = \mathcal{E} \left\{ \left\| \begin{bmatrix} X_0 - \mathbf{W}_0^H \mathbf{X} \\ X_1 - \mathbf{W}_1^H \mathbf{X} \end{bmatrix} \right\|^2 + \mu \left\| \begin{bmatrix} \mathbf{W}_0^H \mathbf{V} \\ \mathbf{W}_1^H \mathbf{V} \end{bmatrix} \right\|^2 \right\}$$
speech distortion noise reduction

Requires estimate of speech and noise covariance matrices, e.g. based on SPP

Can be decomposed as binaural MVDR beamformer and spectral postfilter

Binaural MVDR and MWF

Minimum-Variance-Distortionless-Response (MVDR) beamformer

Goal: minimize output noise power without distorting speech component in reference microphone signals

$$\min_{\mathbf{W}_0} \mathbf{W}_0^H \mathbf{R}_v \mathbf{W}_0$$
 subject to $\mathbf{W}_0^H \mathbf{A} = A_0$
 $\min_{\mathbf{W}_1} \mathbf{W}_1^H \mathbf{R}_v \mathbf{W}_1$ subject to $\mathbf{W}_1^H \mathbf{A} = A_1$
 \uparrow
noise distortionless reduction constraint

Requires estimate/model of noise coherence matrix (e.g. diffuse) and estimate/model of relative transfer function (RTF) of target speech source

Multi-channel Wiener Filter (MWF)

Goal: estimate speech component in reference microphone signals + trade off noise reduction and speech distortion

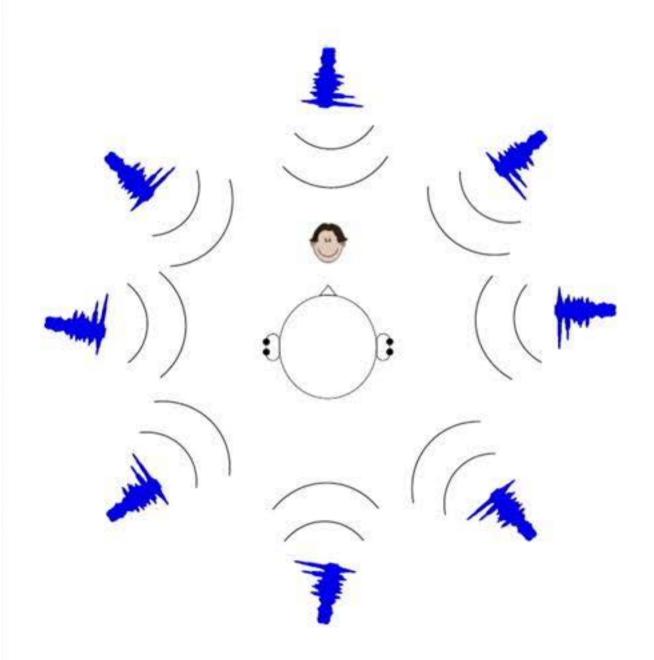
$$J_{\text{MWF}}(\mathbf{W}) = \mathcal{E} \left\{ \left\| \begin{bmatrix} X_0 - \mathbf{W}_0^H \mathbf{X} \\ X_1 - \mathbf{W}_1^H \mathbf{X} \end{bmatrix} \right\|^2 + \mu \left\| \begin{bmatrix} \mathbf{W}_0^H \mathbf{V} \\ \mathbf{W}_1^H \mathbf{V} \end{bmatrix} \right\|^2 \right\}$$
speech distortion noise reduction

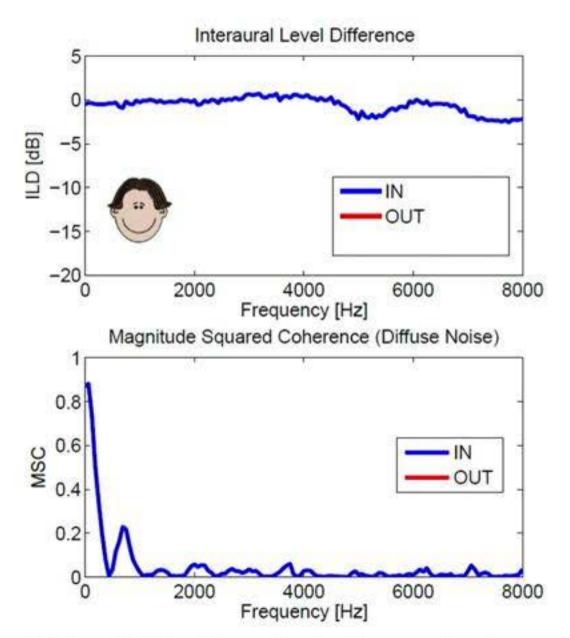
Requires estimate of speech and noise covariance matrices, e.g. based on SPP

Can be decomposed as binaural MVDR beamformer and spectral postfilter

Good noise reduction performance, what about binaural cues?

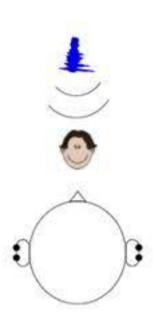
Binaural MVDR/MWF: binaural cues

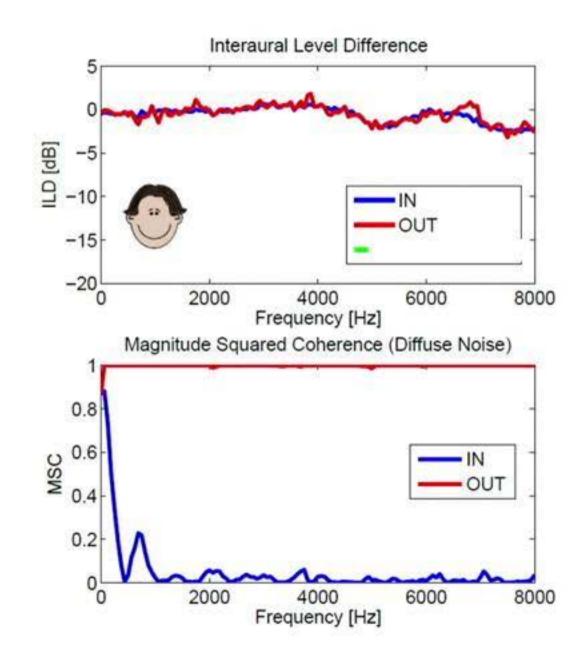




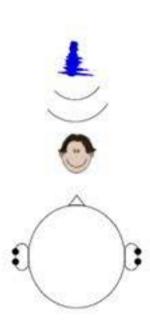
Note: MSC = Magnitude Squared Coherence

Binaural MVDR/MWF: binaural cues

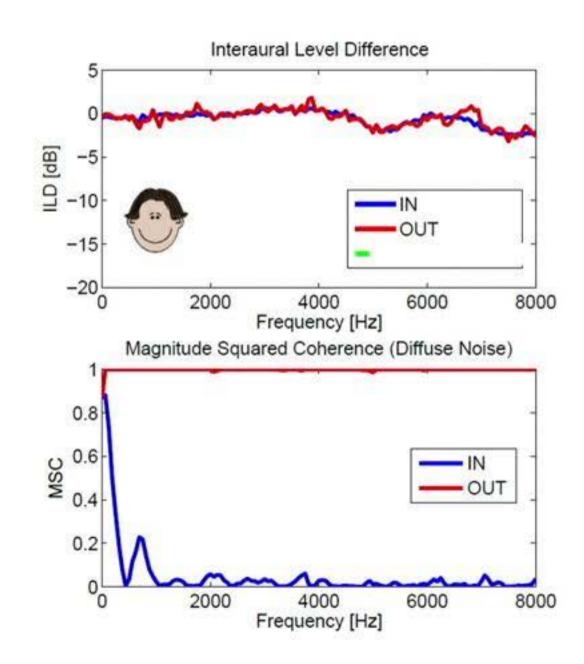




Binaural MVDR/MWF: binaural cues



Binaural cues for residual noise/interference in binaural MVDR/MWF not preserved



Binaural MWF

- SNR improvement
- Binaural cues of speech source
- Binaural cues of noise

Binaural MWF

SNR improvement

Binaural cues of speech source

Binaural cues of noise

Interaural coherence preservation (MWF-IC)

$$J_{MWF-IC}(\mathbf{W}) = J_{MWF}(\mathbf{W}) \left(\lambda \frac{\mathbf{W}_0^H \mathbf{R}_v \mathbf{W}_1}{\sqrt{\mathbf{W}_0^H \mathbf{R}_v \mathbf{W}_0 \mathbf{W}_1^H \mathbf{R}_v \mathbf{W}_1}} - IC_v^{des}\right)^2$$

No closed-form solution, iterative optimization procedures required

Binaural MWF

- SNR improvement
- Binaural cues of speech source
- Binaural cues of noise

Interaural coherence preservation (MWF-IC)

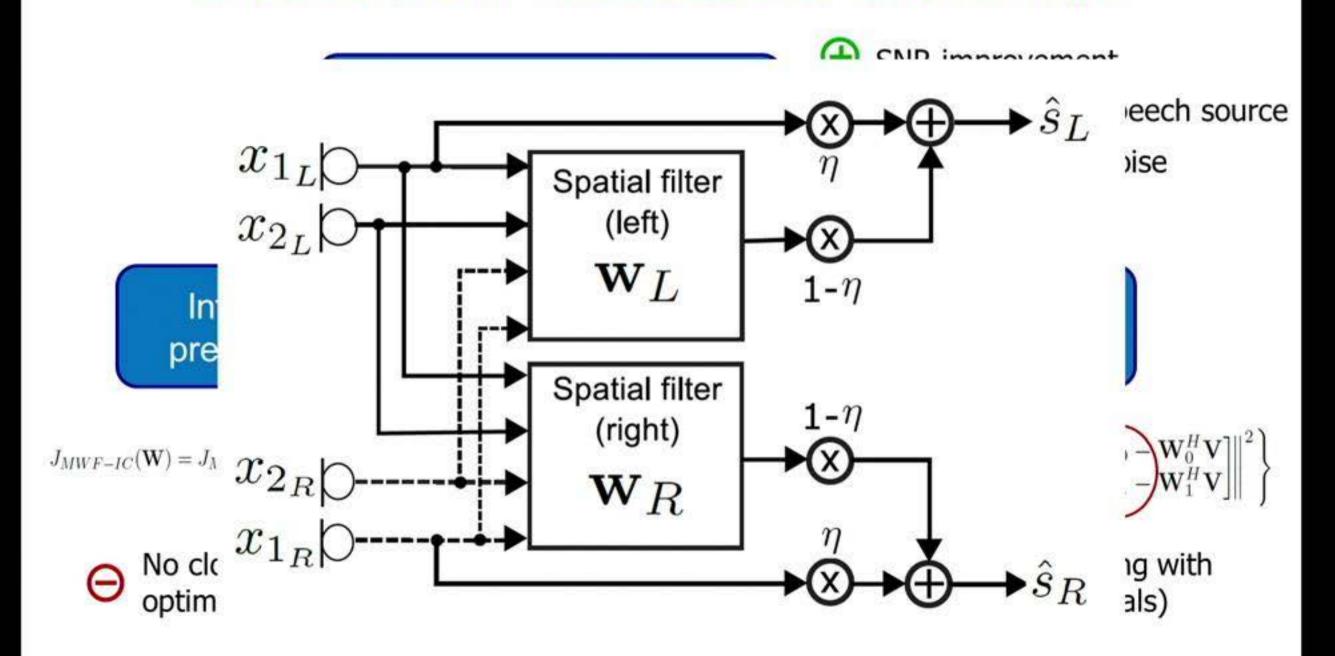
Partial noise estimation (MWF-N)

$$J_{MWF-IC}(\mathbf{W}) = J_{MWF}(\mathbf{W}) \left(\lambda \frac{\mathbf{W}_0^H \mathbf{R}_v \mathbf{W}_1}{\sqrt{\mathbf{W}_0^H \mathbf{R}_v \mathbf{W}_0 \mathbf{W}_1^H \mathbf{R}_v \mathbf{W}_1}} - IC_v^{des}\right)^2$$

$$J_{\text{MWF-N}}(\mathbf{W}) = \mathcal{E} \left\{ \left\| \begin{bmatrix} X_0 - \mathbf{W}_0^H \mathbf{X} \\ X_1 - \mathbf{W}_1^H \mathbf{X} \end{bmatrix} \right\|^2 + \mu \left\| \begin{matrix} \eta V_0 - \mathbf{W}_0^H \mathbf{V} \\ \eta V_1 - \mathbf{W}_1^H \mathbf{V} \end{bmatrix} \right\|^2 \right\}$$

O No closed-form solution, iterative optimization procedures required

Closed-form solution (mixing with reference microphone signals)



- SNR improvement
- Binaural cues of speech source
- Binaural cues of noise

Interaural coherence preservation (MWF-IC)

Partial noise estimation (MWF-N)

$$J_{MWF-IC}(\mathbf{W}) = J_{MWF}(\mathbf{W}) \left(\lambda \frac{\mathbf{W}_0^H \mathbf{R}_v \mathbf{W}_1}{\sqrt{\mathbf{W}_0^H \mathbf{R}_v \mathbf{W}_0 \mathbf{W}_1^H \mathbf{R}_v \mathbf{W}_1}} - IC_v^{des}\right)^2$$

$$J_{\text{MWF-N}}(\mathbf{W}) = \mathcal{E} \left\{ \left\| \begin{bmatrix} X_0 - \mathbf{W}_0^H \mathbf{X} \\ X_1 - \mathbf{W}_1^H \mathbf{X} \end{bmatrix} \right\|^2 + \mu \left\| \begin{matrix} \eta V_0 - \mathbf{W}_0^H \mathbf{V} \\ \eta V_1 - \mathbf{W}_1^H \mathbf{V} \end{bmatrix} \right\|^2 \right\}$$

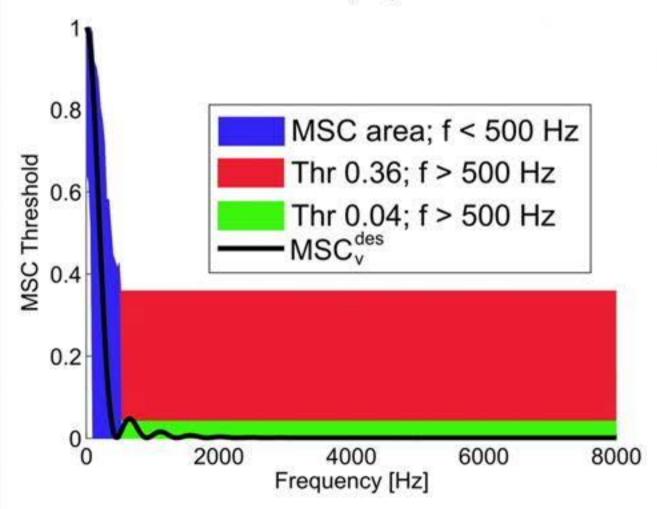
Optimization procedures required

- Closed-form solution (mixing with reference microphone signals)
- Trade-off between SNR improvement and binaural cue preservation, depending on parameters (η and λ)

Trade-off parameters for binaural MVDR/MWF

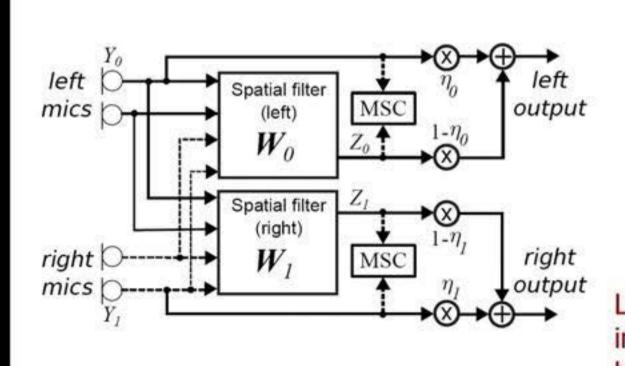
□ Fixed broadband values ($\eta = 0.1 ... 0.3$)

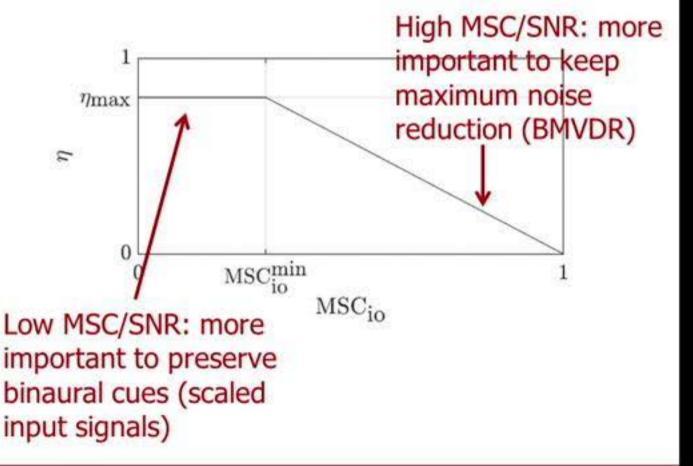
- □ Fixed broadband values ($\eta = 0.1 ... 0.3$)
- Frequency-dependent values based on IC discrimination ability of human auditory system



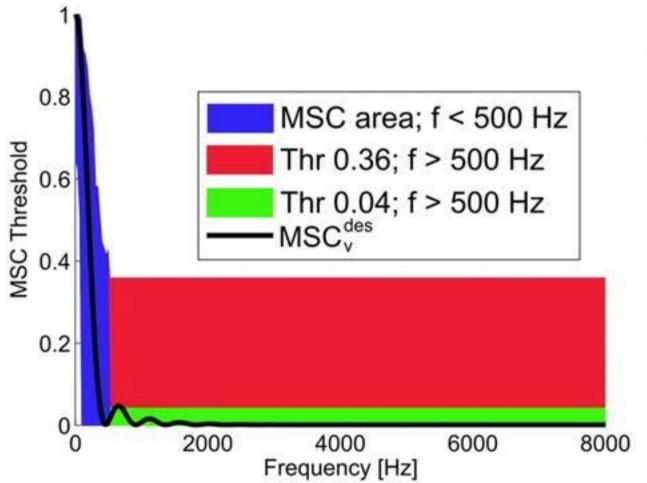
- IC discrimination ability depends on magnitude of reference IC
- Boundaries on Magnitude
 Squared Coherence (MSC=|IC|²):
 - For f < 500 Hz ("large" IC): frequency-dependent MSC boundaries (blue)
 - For f > 500 Hz ("small" IC):
 fixed MSC boundary, e.g.
 0.36 (red) or 0.04 (green)

- □ Fixed broadband values ($\eta = 0.1 ... 0.3$)
- Frequency-dependent values based on IC discrimination ability of human auditory system
- Frequency-dependent function of MSC between noisy reference microphone signals and output signals of BMVDR beamformer



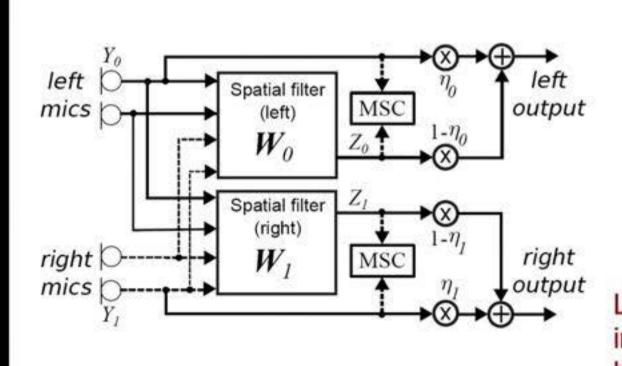


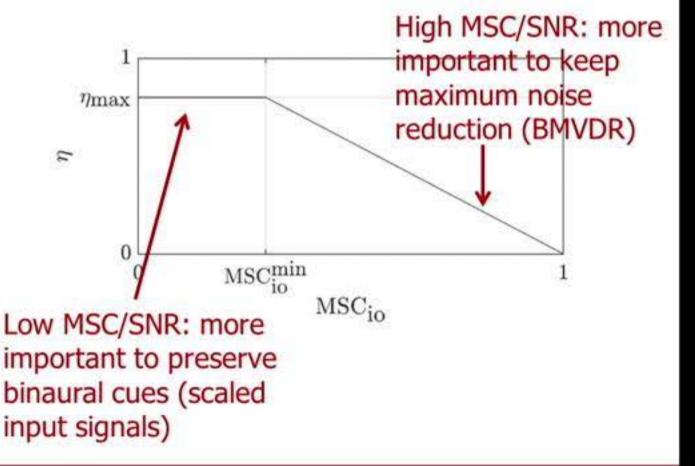
- □ Fixed broadband values ($\eta = 0.1 ... 0.3$)
- Frequency-dependent values based on IC discrimination ability of human auditory system



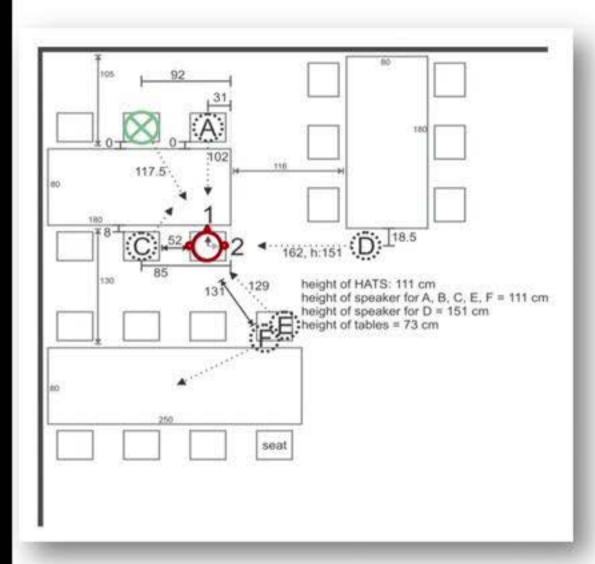
- IC discrimination ability depends on magnitude of reference IC
- Boundaries on Magnitude
 Squared Coherence (MSC=|IC|²):
 - For f < 500 Hz ("large" IC): frequency-dependent MSC boundaries (blue)
 - For f > 500 Hz ("small" IC): fixed MSC boundary, e.g. 0.36 (red) or 0.04 (green)

- □ Fixed broadband values ($\eta = 0.1 ... 0.3$)
- Frequency-dependent values based on IC discrimination ability of human auditory system
- Frequency-dependent function of MSC between noisy reference microphone signals and output signals of BMVDR beamformer



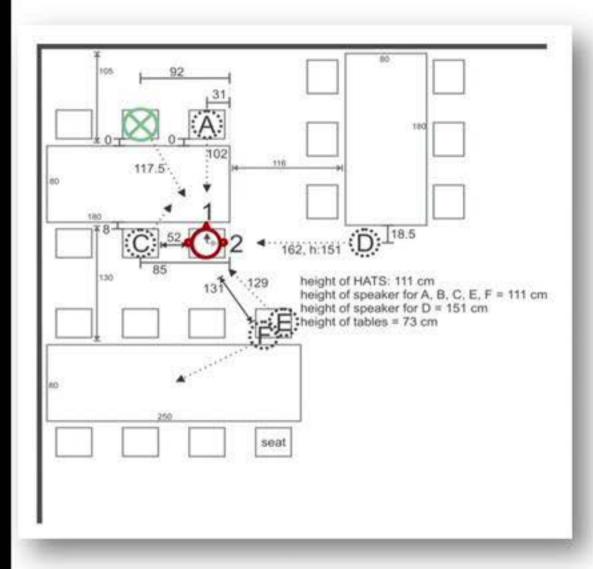


Evaluation: Test setup



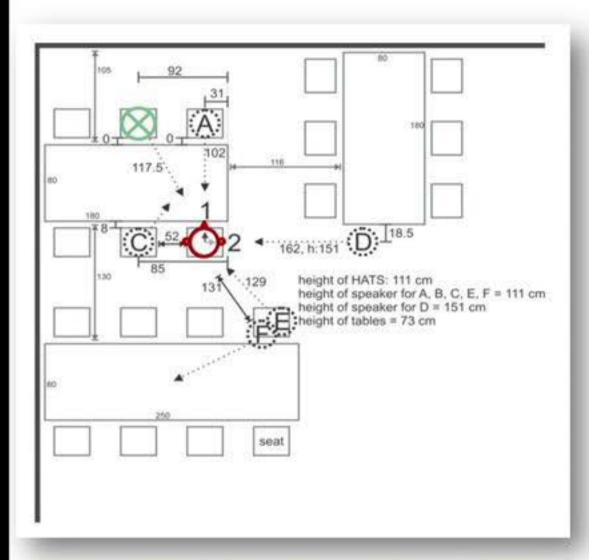
- Binaural hearing aid recordings (M=4 mics) in cafeteria (T₆₀≈1250 ms)
 - Target speaker at -35°
 - Realistic cafeteria ambient noise
- Algorithms: binaural MVDR and binaural MVDR-N with different trade-off parameters:
 - MVDR-IC
 - MVDR-MSC1: η_{max}=0.7, MSC_{min}=0
 - MVDR-MSC2: η_{max} =1.0, MSC_{min}=0.1

Evaluation: Test setup



- Binaural hearing aid recordings (M=4 mics) in cafeteria (T₆₀≈1250 ms)
 - Target speaker at -35°
 - Realistic cafeteria ambient noise
- Algorithms: binaural MVDR and binaural MVDR-N with different trade-off parameters:
 - MVDR-IC
 - MVDR-MSC1: η_{max}=0.7, MSC_{min}=0
 - MVDR-MSC2: $\eta_{\text{max}}=1.0$, MSC_{min}=0.1
- Subjective listening experiments:
 - 11 normal-hearing subjects
 - SRT using Oldenburg Sentence Test (OLSA)
 - Spatial quality (diffuseness) using MUSHRA

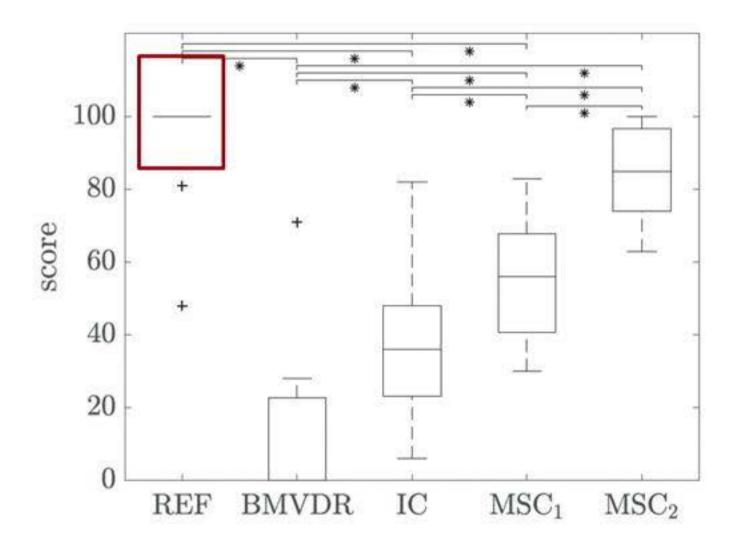
Evaluation: Test setup



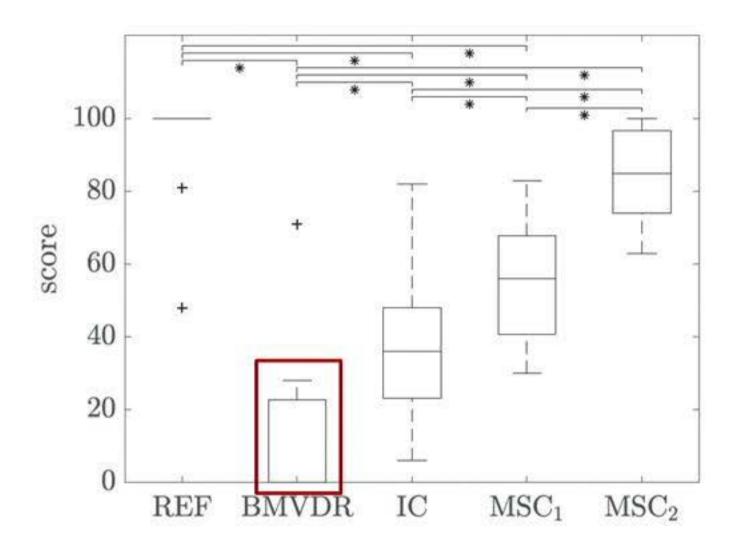
- Binaural hearing aid recordings (M=4 mics) in cafeteria (T₆₀≈1250 ms)
 - Target speaker at -35°
 - Realistic cafeteria ambient noise
- Algorithms: binaural MVDR and binaural MVDR-N with different trade-off parameters:
 - MVDR-IC
 - MVDR-MSC1: η_{max} =0.7, MSC_{min}=0
 - MVDR-MSC2: η_{max}=1.0, MSC_{min}=0.1
- Subjective listening experiments:
 - 11 normal-hearing subjects
 - SRT using Oldenburg Sentence Test (OLSA)
 - Spatial quality (diffuseness) using MUSHRA

Does binaural unmasking compensate for SNR decrease of cue preservation algorithms (MVDR-N)?

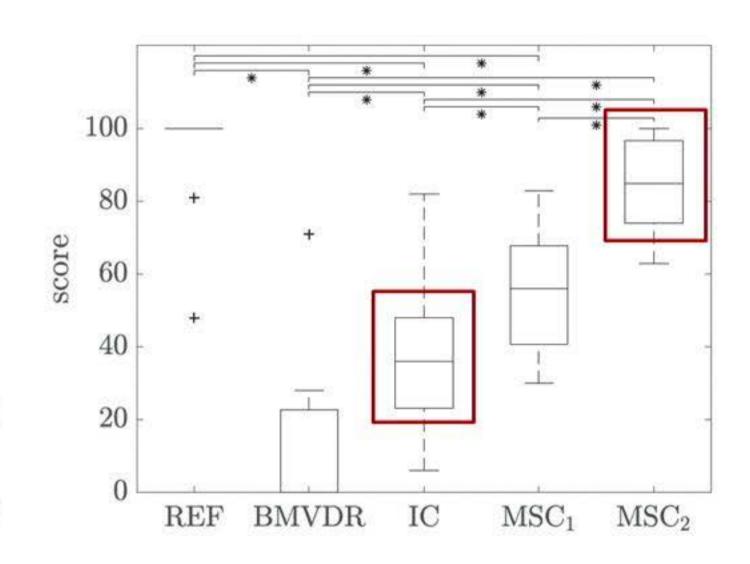
 Evaluate spatial difference between reference microphone signals and binaural output signals



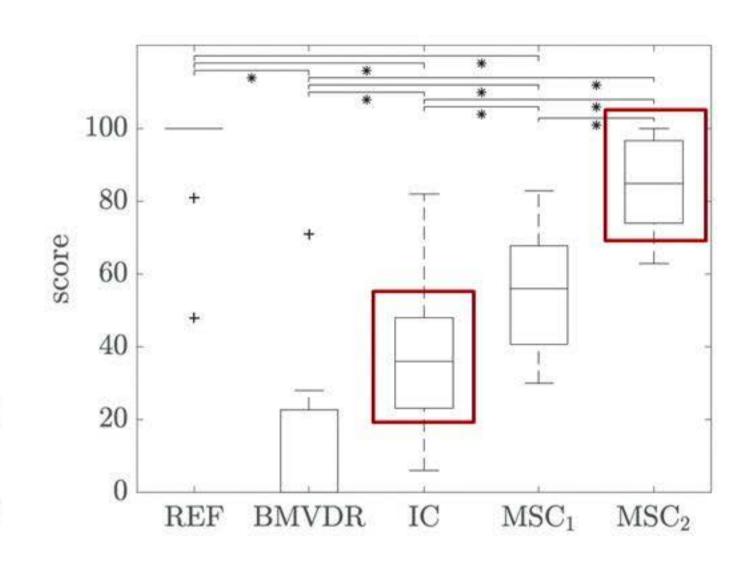
 Evaluate spatial difference between reference microphone signals and binaural output signals



- Evaluate spatial difference between reference microphone signals and binaural output signals
- MVDR-N outperforms BMVDR
 - Trade-off parameters:
 MSC-based better than IC-based
 - Using MSC2 hardly any difference to input!



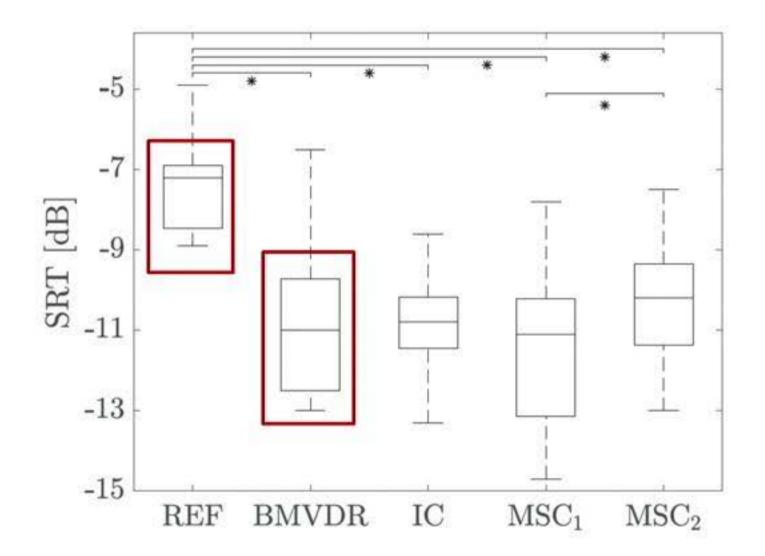
- Evaluate spatial difference between reference microphone signals and binaural output signals
- MVDR-N outperforms BMVDR
 - Trade-off parameters:
 MSC-based better than IC-based
 - Using MSC2 hardly any difference to input!



Binaural cue preservation for diffuse noise significantly improves spatial quality

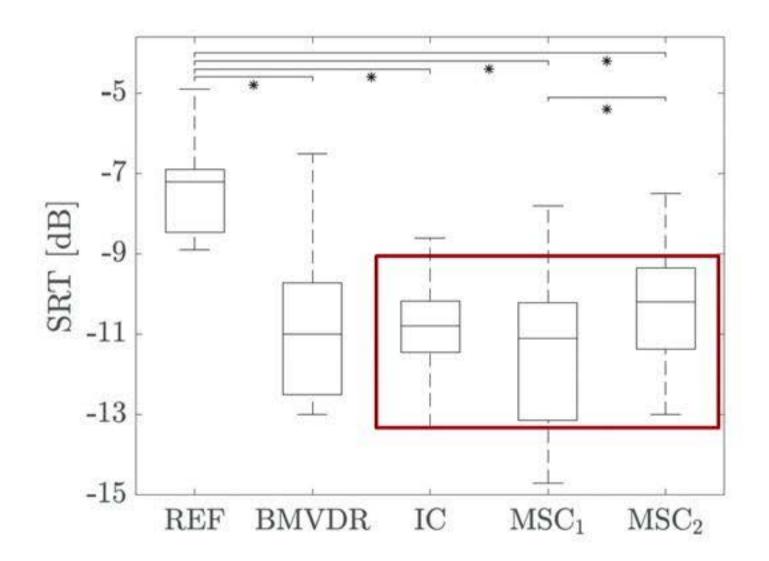
Evaluation: Speech intelligibility (SRT)

 All algorithms show a highly significant speech reception threshold (SRT) improvement



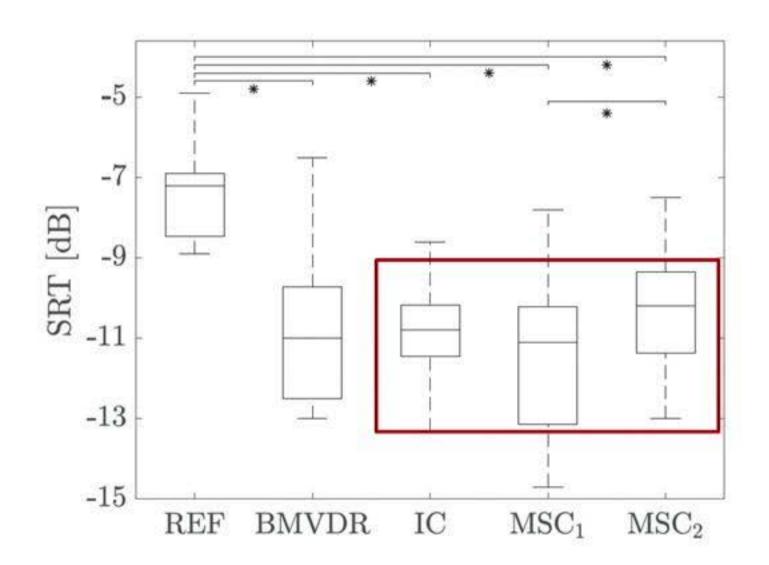
Evaluation: Speech intelligibility (SRT)

- All algorithms show a highly significant speech reception threshold (SRT) improvement
- No significant SRT difference between BMVDR and MVDR-N



Evaluation: Speech intelligibility (SRT)

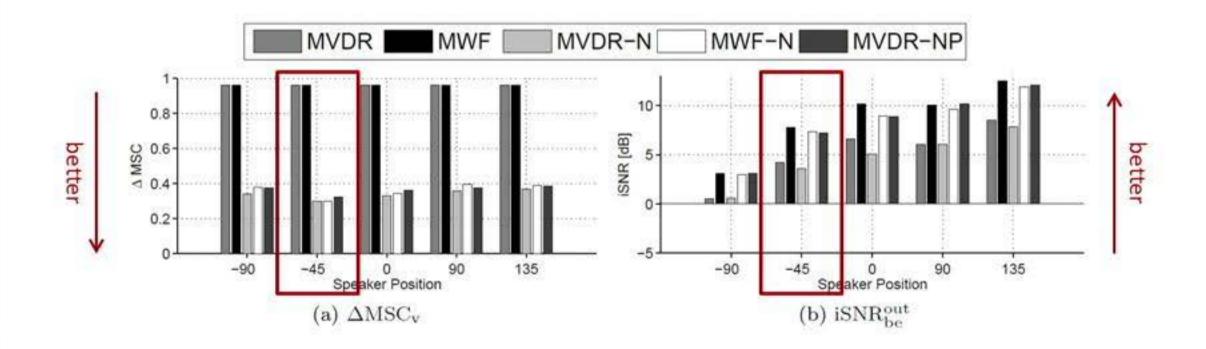
- All algorithms show a highly significant speech reception threshold (SRT) improvement
- No significant SRT difference between BMVDR and MVDR-N



Binaural cue preservation for diffuse noise does not affect speech intelligibility

Binaural MVDR/MWF: Sound samples

Input	MVDR	MWF	MVDR-N	MWF-N	MVDR-NP
No. of Contract of		Series Contraction of the Contra	0.00		



Cafeteria with recorded ambient noise, speaker at -45°, 0 dB input iSNR (left hearing aid)

MVDR: anechoic ATF, DOA known, spatial coherence matrix calculated from anechoic ATFs / MWF = MVDR + postfilter (SPP-based)

3. Acoustic sensor networks

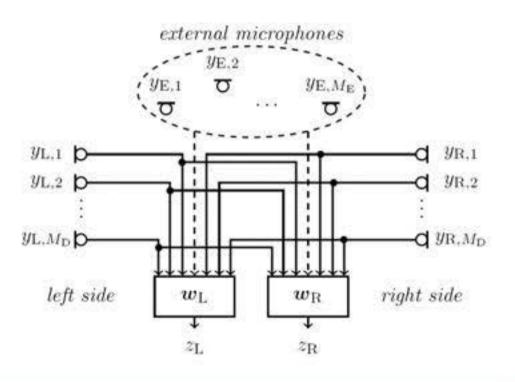
External microphones

 Exploit the availability of one or more external microphones (acoustic sensor network) with hearing aids

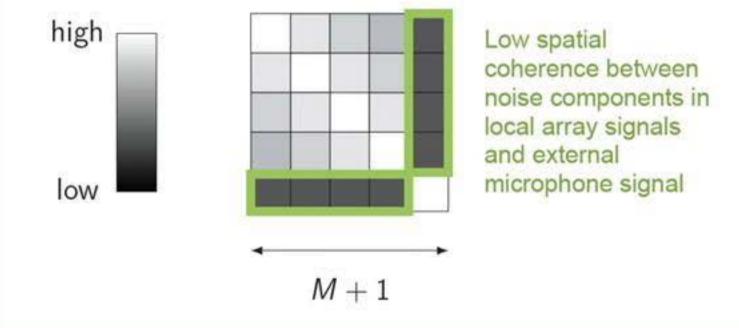
[Bertrand 2009, Szurley 2016, Yee 2018, Farmani 2018, Kates 2018, Ali 2019, Gößling 2019]

- Integrating external microphone(s) with hearing aid microphones may lead to:
 - Low-complexity method to estimate relative transfer function (RTF) vector of target speaker
 - Improved noise reduction and binaural cue preservation performance

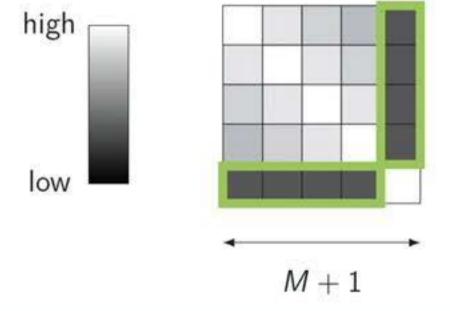
$$\mathbf{w}_L = \frac{\mathbf{R}_v^{-1} \mathbf{a}_L}{\mathbf{a}_L^H \mathbf{R}_v^{-1} \mathbf{a}_L}, \quad \mathbf{w}_R = \frac{\mathbf{R}_v^{-1} \mathbf{a}_R}{\mathbf{a}_R^H \mathbf{R}_v^{-1} \mathbf{a}_R}$$



- Estimate RTF vector of target speaker to steer binaural MVDR beamformer
- Spatial coherence (SC) method: assume that noise components in external microphone and HA microphones are uncorrelated, e.g., when external microphone is spatially separated from HA microphones + diffuse noise field



- Estimate RTF vector of target speaker to steer binaural MVDR beamformer
- Spatial coherence (SC) method: assume that noise components in external microphone and HA microphones are uncorrelated, e.g., when external microphone is spatially separated from HA microphones + diffuse noise field
 - → correlate HA microphone signals with external microphone signals and normalize by reference element

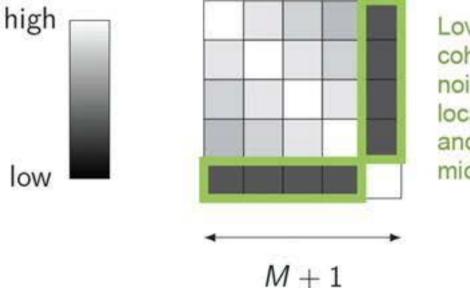


Low spatial coherence between noise components in local array signals and external microphone signal

$$\bar{\mathbf{a}}_{\mathrm{L}}^{\mathrm{SCE}} = \frac{\bar{\mathbf{R}}_{\mathrm{y}}\mathbf{e}_{\mathrm{E}}}{\mathbf{e}_{\mathrm{L}}^{T}\bar{\mathbf{R}}_{\mathrm{y}}\mathbf{e}_{\mathrm{E}}},\; \bar{\mathbf{a}}_{\mathrm{R}}^{\mathrm{SCE}} = \frac{\bar{\mathbf{R}}_{\mathrm{y}}\mathbf{e}_{\mathrm{E}}}{\mathbf{e}_{\mathrm{R}}^{T}\bar{\mathbf{R}}_{\mathrm{y}}\mathbf{e}_{\mathrm{E}}}$$

$$\bar{\mathbf{w}}_{\mathbf{L}}^{\text{SCE}} = \begin{bmatrix} \alpha \cdot [\mathbf{I}_{2M}, \mathbf{0}_{2M \times 1}] \, \bar{\mathbf{w}}_{\mathbf{L}} \\ \alpha (1 + \beta) \cdot \mathbf{e}_{\mathbf{E}}^T \bar{\mathbf{w}}_{\mathbf{L}} \end{bmatrix}$$

- Estimate RTF vector of target speaker to steer binaural MVDR beamformer
- Spatial coherence (SC) method: assume that noise components in external microphone and HA microphones are uncorrelated, e.g., when external microphone is spatially separated from HA microphones + diffuse noise field
 - → correlate HA microphone signals with external microphone signals and normalize by reference element

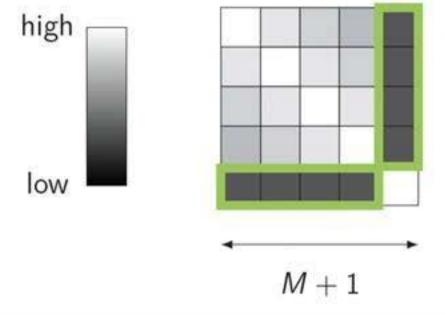


Low spatial coherence between noise components in local array signals and external microphone signal

$$\bar{\mathbf{a}}_{\mathrm{L}}^{\mathrm{SCE}} = \frac{\bar{\mathbf{R}}_{\mathrm{y}}\mathbf{e}_{\mathrm{E}}}{\mathbf{e}_{\mathrm{L}}^{T}\bar{\mathbf{R}}_{\mathrm{y}}\mathbf{e}_{\mathrm{E}}},\; \bar{\mathbf{a}}_{\mathrm{R}}^{\mathrm{SCE}} = \frac{\bar{\mathbf{R}}_{\mathrm{y}}\mathbf{e}_{\mathrm{E}}}{\mathbf{e}_{\mathrm{R}}^{T}\bar{\mathbf{R}}_{\mathrm{y}}\mathbf{e}_{\mathrm{E}}}$$

$$\bar{\mathbf{w}}_{\mathrm{L}}^{\mathrm{SCE}} = \begin{bmatrix} \alpha \cdot [\mathbf{I}_{2M}, \mathbf{0}_{2M \times 1}] \, \bar{\mathbf{w}}_{\mathrm{L}} \\ \alpha (1 + \beta) \cdot \mathbf{e}_{\mathrm{E}}^{T} \bar{\mathbf{w}}_{\mathrm{L}} \end{bmatrix}$$
real-valued bias

- Estimate RTF vector of target speaker to steer binaural MVDR beamformer
- Spatial coherence (SC) method: assume that noise components in external microphone and HA microphones are uncorrelated, e.g., when external microphone is spatially separated from HA microphones + diffuse noise field
 - → correlate HA microphone signals with external microphone signals and normalize by reference element
- Low computational complexity with similar (even better in practice) performance than state-of-the-art covariance whitening (CW) approach

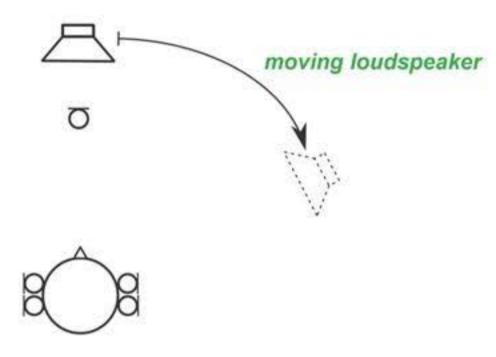


Low spatial coherence between noise components in local array signals and external microphone signal

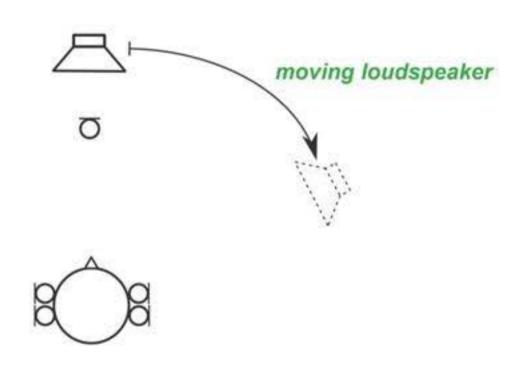
$$\bar{\mathbf{a}}_{\mathrm{L}}^{\mathrm{SCE}} = \frac{\bar{\mathbf{R}}_{\mathrm{y}} \mathbf{e}_{\mathrm{E}}}{\mathbf{e}_{\mathrm{L}}^{T} \bar{\mathbf{R}}_{\mathrm{y}} \mathbf{e}_{\mathrm{E}}}, \; \bar{\mathbf{a}}_{\mathrm{R}}^{\mathrm{SCE}} = \frac{\bar{\mathbf{R}}_{\mathrm{y}} \mathbf{e}_{\mathrm{E}}}{\mathbf{e}_{\mathrm{R}}^{T} \bar{\mathbf{R}}_{\mathrm{y}} \mathbf{e}_{\mathrm{E}}}$$

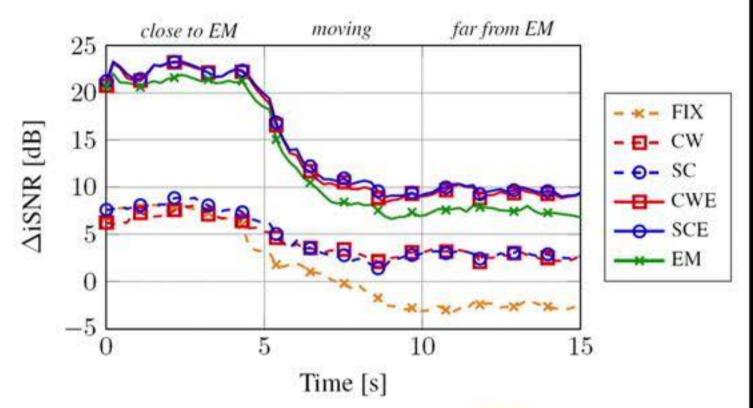
$$\bar{\mathbf{w}}_{\mathbf{L}}^{\text{SCE}} = \begin{bmatrix} \alpha \cdot [\mathbf{I}_{2M}, \mathbf{0}_{2M \times 1}] \, \bar{\mathbf{w}}_{\mathbf{L}} \\ \alpha (1 + \beta) \cdot \mathbf{e}_{\mathbf{E}}^T \bar{\mathbf{w}}_{\mathbf{L}} \end{bmatrix}$$

Oldenburg Varechoic Lab ($T_{60} \approx 350 \text{ms}$), M=4 + 1 external mic (1.5m/0.5m), moving speaker, pseudo-diffuse babble noise, iSNR=0dB (right HA) STFT: 32 ms, 50% overlap, sqrt-Hann; SPP in external microphone; smoothing: 100 ms (speech), 1 s (noise)



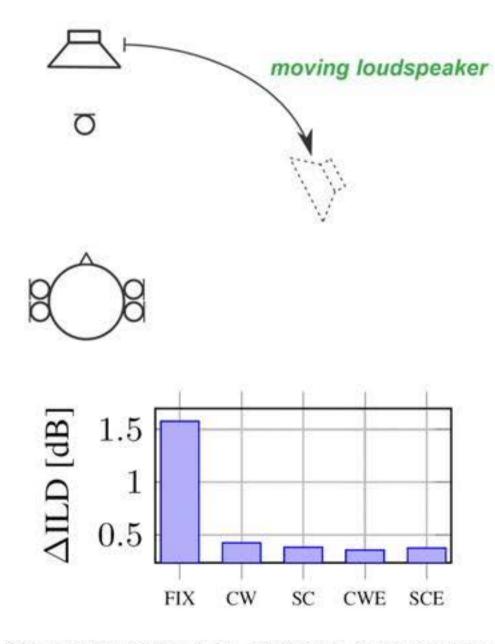
Oldenburg Varechoic Lab ($T_{60} \approx 350 ms$), M=4 + 1 external mic (1.5m/0.5m), moving speaker, pseudo-diffuse babble noise, iSNR=0dB (right HA) STFT: 32 ms, 50% overlap, sqrt-Hann; SPP in external microphone; smoothing: 100 ms (speech), 1 s (noise)

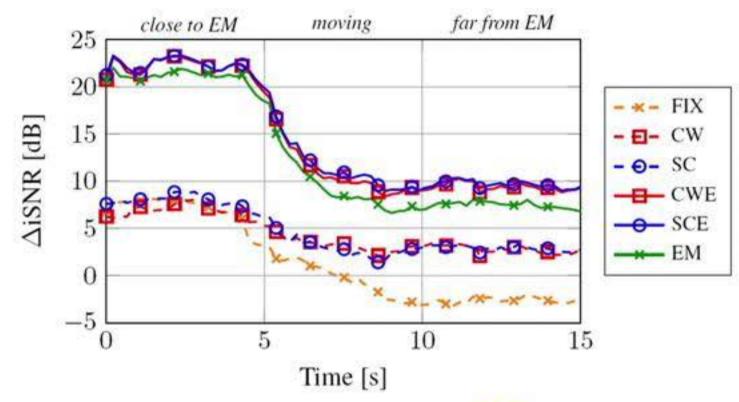




 MVDR with external microphone (SCE) leads to better SNR compared to MVDR using only HA microphones (SC,FIX) and external microphone (EM)

Oldenburg Varechoic Lab ($T_{60} \approx 350 \text{ms}$), M=4 + 1 external mic (1.5m/0.5m), moving speaker, pseudo-diffuse babble noise, iSNR=0dB (right HA) STFT: 32 ms, 50% overlap, sqrt-Hann; SPP in external microphone; smoothing: 100 ms (speech), 1 s (noise)





- MVDR with external microphone (SCE) leads to better SNR compared to MVDR using only HA microphones (SC,FIX) and external microphone (EM)
- MVDR using estimated RTFs (SCE, SC) preserves binaural cues of target speaker compared to fixed MVDR (FIX) and external microphone (EM)

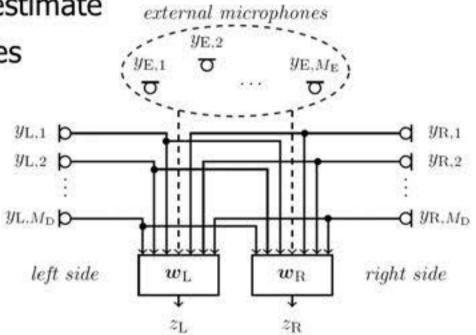
Oldenburg Varechoic Lab ($T_{60} \approx 350 ms$), M=4 + 1 external mic (1.5m/0.5m), moving speaker, pseudo-diffuse babble noise, iSNR=0dB (right HA) STFT: 32 ms, 50% overlap, sqrt-Hann; SPP in external microphone; smoothing: 100 ms (speech), 1 s (noise)

Multiple external microphones

Each external microphone yields (different) RTF estimate

 Linear combination/selection of RTF estimates (per frequency)

$$oldsymbol{a}_{ ext{L}}^{ ext{SC-C}} = rac{oldsymbol{A}_{ ext{L}}^{ ext{SC}} oldsymbol{c}}{oldsymbol{e}_{ ext{L}}^T oldsymbol{A}_{ ext{L}}^{ ext{SC}} oldsymbol{c}}$$



Multiple external microphones

- Each external microphone yields (different) RTF estimate
- Linear combination/selection of RTF estimates (per frequency)

$$oldsymbol{a}_{ ext{L}}^{ ext{SC-C}} = rac{oldsymbol{A}_{ ext{L}}^{ ext{SC}} oldsymbol{c}}{oldsymbol{e}_{ ext{L}}^T oldsymbol{A}_{ ext{L}}^{ ext{SC}} oldsymbol{c}}$$

Input SNR-based selection

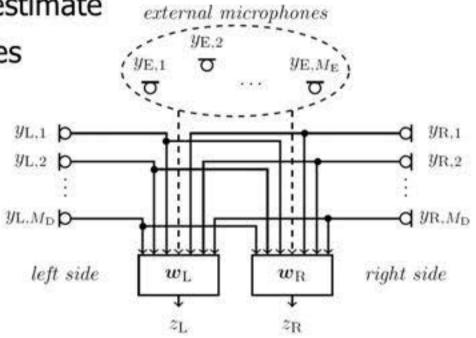
$$oldsymbol{c}^{ ext{iSNR}} = oldsymbol{e}_{ ext{E},\hat{i}}\,, \quad \hat{i} = rg \max_{i} \; rac{oldsymbol{e}_{ ext{E},i}^T oldsymbol{R}_{ ext{E},i}}{oldsymbol{e}_{ ext{E},i}^T oldsymbol{R}_{ ext{E},i}}$$

Simple averaging

$$oldsymbol{c}^{ ext{AV}} = \left[rac{1}{M_{ ext{E}}}, \dots, rac{1}{M_{ ext{E}}}
ight]^T$$

Output SNR-maximizing combination

$$oldsymbol{c}^{ ext{mSNR}} = rg \max_{oldsymbol{c}} \ ext{SNR}^{ ext{out}}_{ ext{BMVDR,L}} = \mathcal{P}\{oldsymbol{\Lambda}_2^{-1}oldsymbol{\Lambda}_1\}$$



Multiple external microphones

- Each external microphone yields (different) RTF estimate
- Linear combination/selection of RTF estimates (per frequency)

$$oldsymbol{a}_{ ext{L}}^{ ext{SC-C}} = rac{oldsymbol{A}_{ ext{L}}^{ ext{SC}} oldsymbol{c}}{oldsymbol{e}_{ ext{L}}^T oldsymbol{A}_{ ext{L}}^{ ext{SC}} oldsymbol{c}}$$

Input SNR-based selection

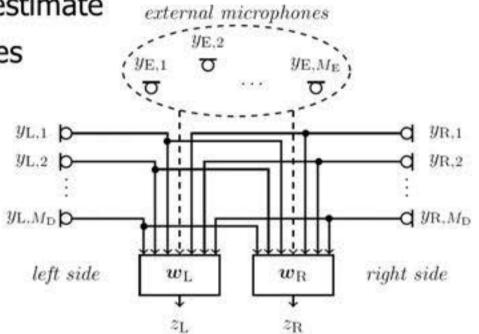
$$oldsymbol{c}^{ ext{iSNR}} = oldsymbol{e}_{ ext{E},\hat{i}}\,, \quad \hat{i} = rg \max_{i} \; rac{oldsymbol{e}_{ ext{E},i}^T oldsymbol{R}_{ ext{E},i}}{oldsymbol{e}_{ ext{E},i}^T oldsymbol{R}_{ ext{E},i}}$$

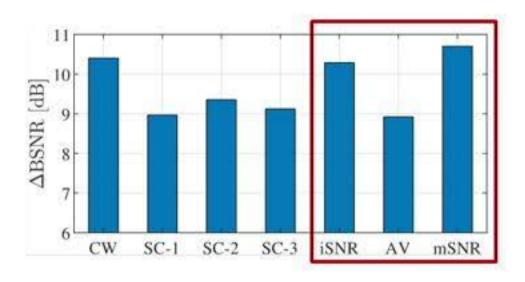
2. Simple averaging

$$oldsymbol{c}^{ ext{AV}} = \left[rac{1}{M_{ ext{E}}}, \dots, rac{1}{M_{ ext{E}}}
ight]^T$$

3. Output SNR-maximizing combination

$$oldsymbol{c}^{ ext{mSNR}} = rg \max_{oldsymbol{c}} \ ext{SNR}^{ ext{out}}_{ ext{BMVDR,L}} = \mathcal{P}\{oldsymbol{\Lambda}_2^{-1}oldsymbol{\Lambda}_1\}$$

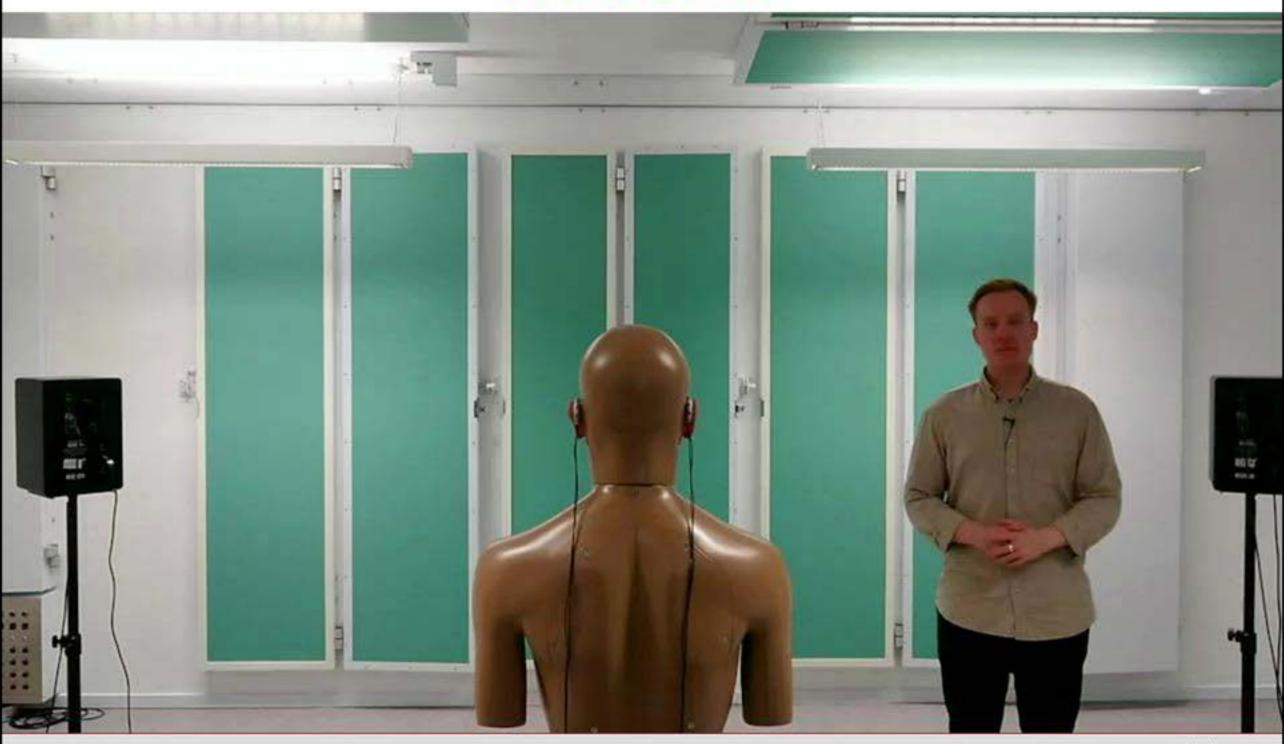




Audio Demo

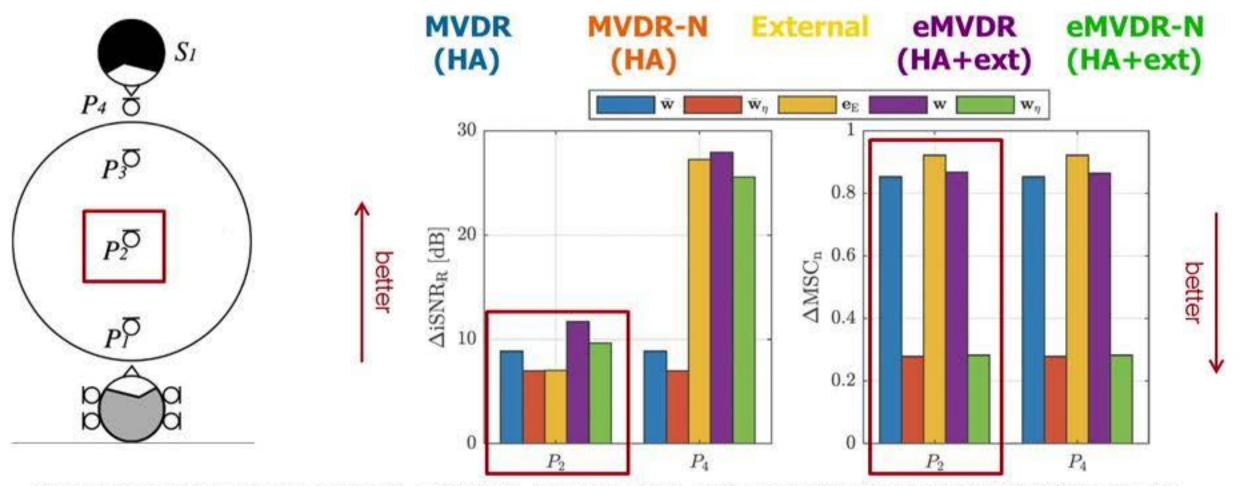
- Real-world recordings ($T_{60} \approx 300 \, \text{ms}$), moving speaker
- KEMAR with two BTE hearing aids (2 mics each) and one external mic
- Pseudo-diffuse babble noise

Audio Demo



Binaural MVDR-N beamformer

- Including external microphone in binaural MVDR-N beamformer leads to:
 - Larger output SNR for same trade-off parameter η
 - Same output SNR with larger trade-off parameter $\eta \rightarrow$ better cue preservation



Starkey database with real-world recordings ($T_{60} \approx 620 \text{ms}$), M=4, target speaker S_1 , multi-talker babble noise, 0 dB input iSNR (right hearing aid) MVDR: perfectly estimated noise correlation matrix, RTF of target speaker estimated using covariance whitening method

Current/future work

 Performance analysis for different acoustic scenarios (interfering speakers)

external D

oright D

orig

Synchronization/latency issues

 Complex and time-varying scenarios: incorporate computational acoustic scene analysis (CASA) into control path of developed algorithms

The state of the s

Time (s)

0.6

 Subjective evaluation of binaural speech enhancement algorithms with HA/CI users ongoing

Conclusions

 Speech communication applications: on-line speech enhancement algorithms for dynamic acoustic scenarios required

Conclusions

- Speech communication applications: on-line speech enhancement algorithms for dynamic acoustic scenarios required
- Joint noise reduction and dereverberation using multiple microphones:
 - MVDR beamformer + spectral postfiltering: estimates of time-varying spatial and spectral variables (RETF vector, PSDs)
 - Reverberation suppression: multi-channel linear prediction

Conclusions

- Speech communication applications: on-line speech enhancement algorithms for dynamic acoustic scenarios required
- Joint noise reduction and dereverberation using multiple microphones:
 - MVDR beamformer + spectral postfiltering: estimates of time-varying spatial and spectral variables (RETF vector, PSDs)
 - Reverberation suppression: multi-channel linear prediction
- Binaural hearing devices with binaural output signals:
 - Extensions of binaural MVDR/MWF enable to improve speech intelligibility while preserving spatial awareness (binaural cues)
 - Improved performance when integrating external microphones (acoustic sensor networks)

Acknowledgments

Dr. Ante Jukić

Dr. Daniel Marquardt

Marvin Tammen

Jonas Klug

Nico Gößling

Wiebke Middelberg

Prof. Timo Gerkmann

Prof. Sharon Gannot

Funding:

- ☐ Cluster of Excellence Hearing4all (DFG), Research Unit Individualized Hearing Acoustics (DFG)
- Marie-Curie Initial Training Network "Dereverberation and Reverberation of Audio, Music, and Speech" (EU)
- Joint Lower-Saxony Israel Project "Acoustic scene aware speech enhancement for binaural hearing aids" (Partner: Bar-Ilan University, Israel)
- □ German-Israeli Foundation Project "Signal Dereverberation Algorithms for Next-Generation Binaural Hearing Aids" (Partners: International Audiolabs Erlangen; Bar-Ilan University, Israel)

Questions?

House of Hearing, Oldenburg