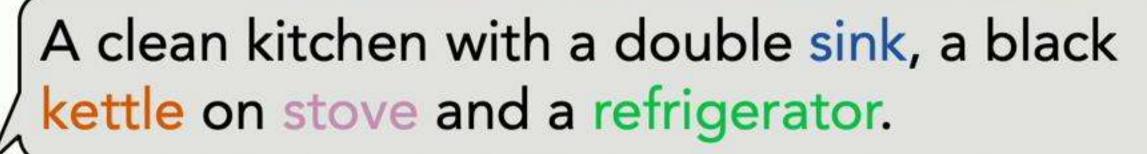
Visually Grounded Language Understanding and Generation

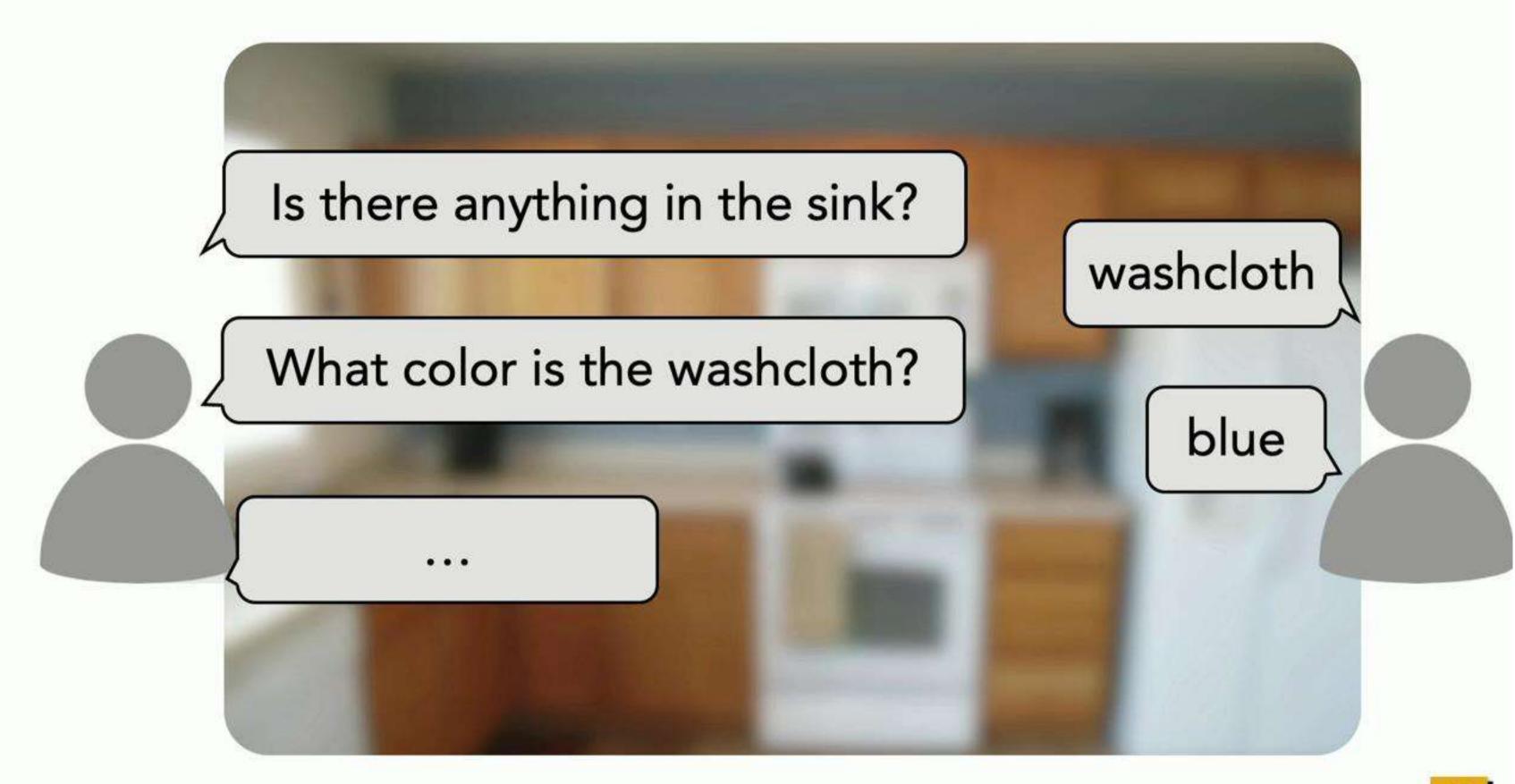
Jiasen Lu

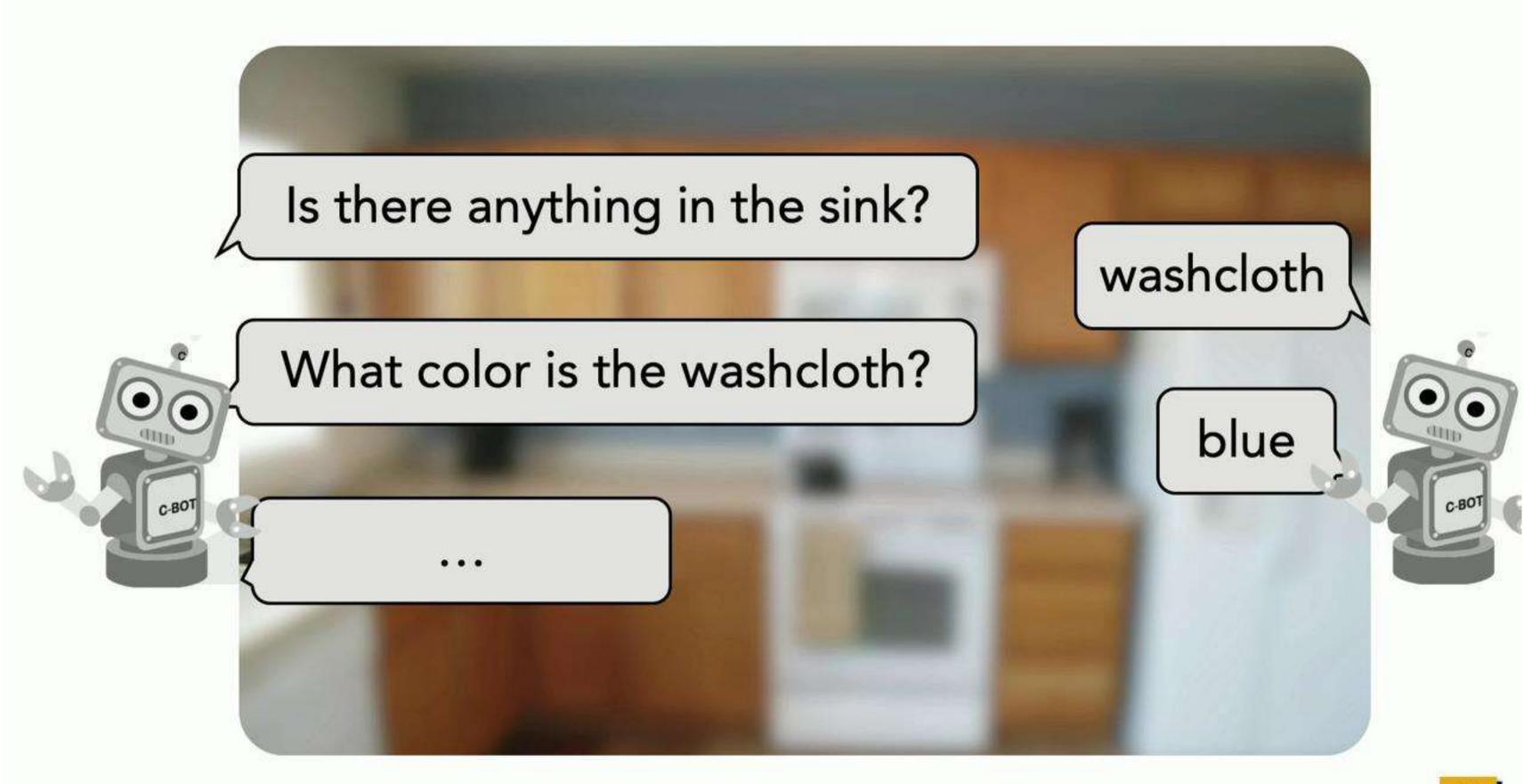
Georgia Institute of Technology

A clean kitchen with a double sink, a black kettle on stove and a refrigerator.









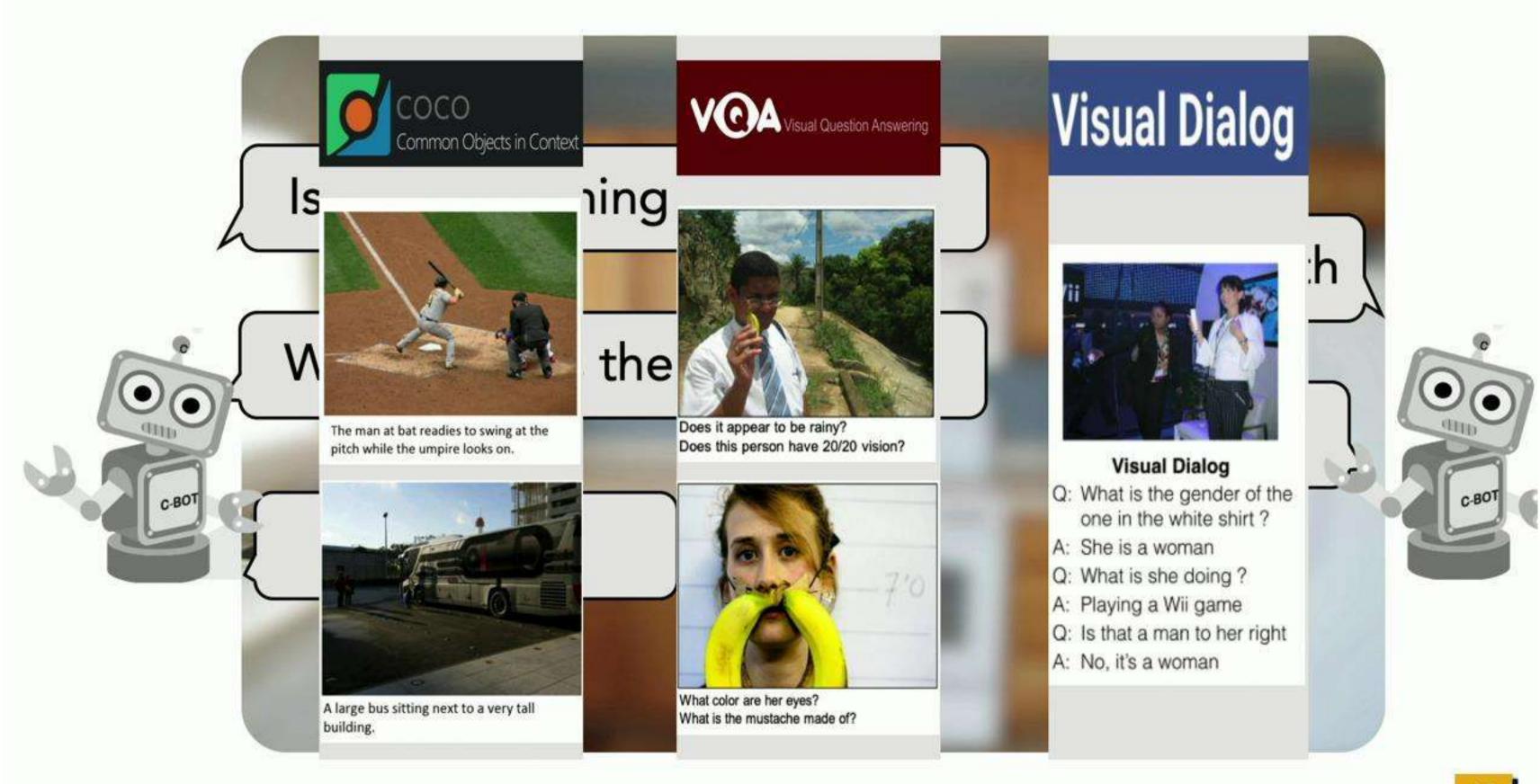


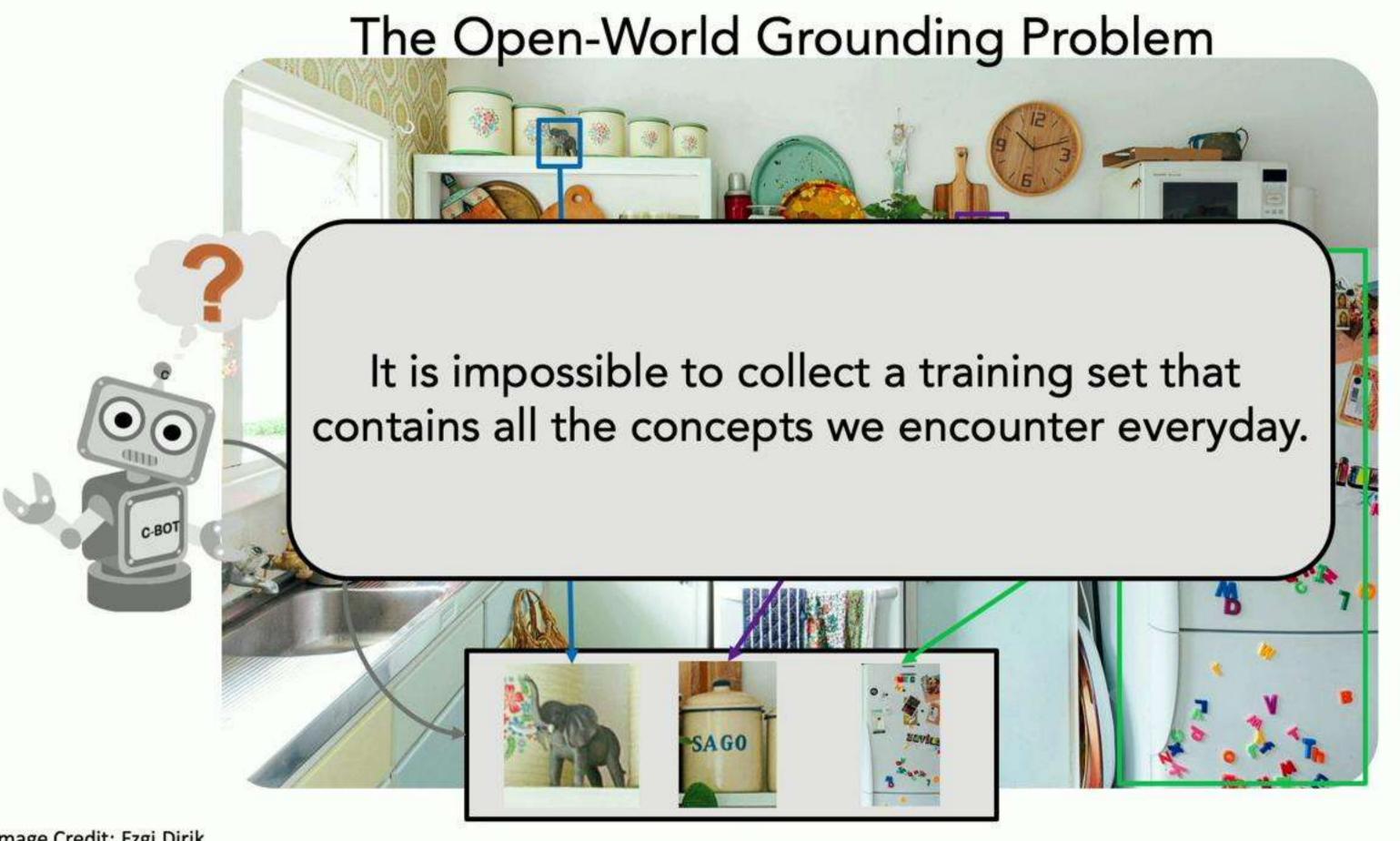
Image Credit: COCO dataset

13

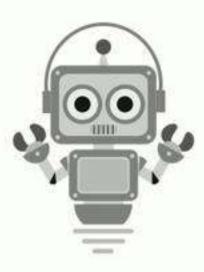
Image Credit: Ezgi Dirik

Image Credit: Ezgi Dirik

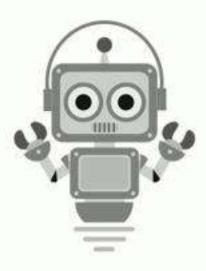
Image Credit: Ezgi Dirik





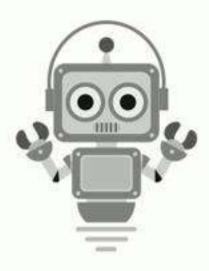


Virtual assistance

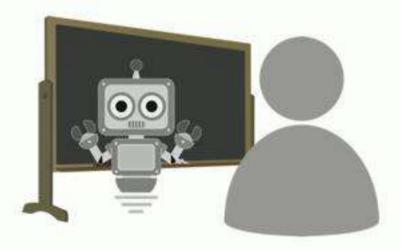


Virtual assistance

Assistive Technology

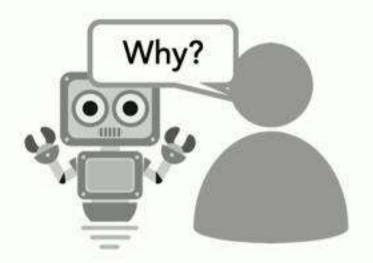


Virtual assistance



Machine Teaching

Assistive Technology

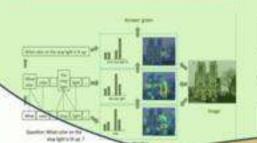


Explainable Al

Visual Question Answering

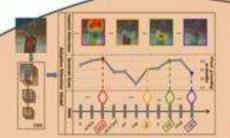
[ICCV 2015, IJCV]

VQA

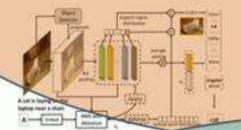


Hierarchical Question-Image Co-Attention for VQA.

[NeurlPS 2016]

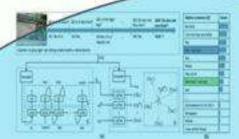


Knowing when to Look: adaptive attention for Image captioning [CVPR 2017]



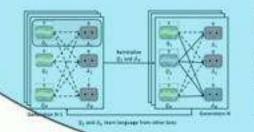
Neural Baby Talk Captioning

[CVPR 2018]



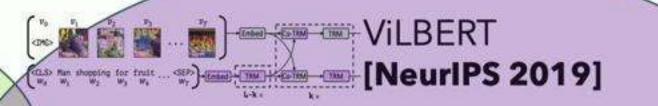
Discriminative Learning for visual dialog

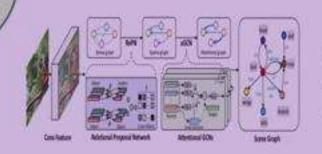
[NeurIPS 2018] (Visual) Dialog



Emergence of Compositional Language with Deep Generational Transmission.

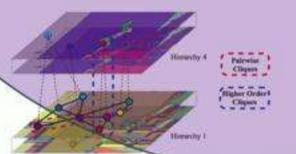
[In Submission]



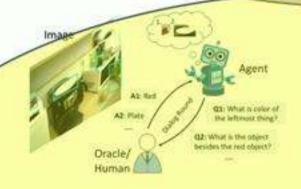


Graph RCNN
[ECCV 2018]

Image/Video understanding

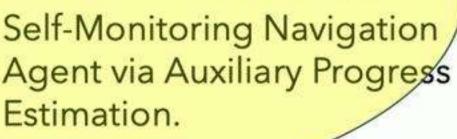


Human Action Segmentation [CVPR 2015]



Visual Curiosity [CORL 2018]

Embodied Agent



[ICLR 2019]

This Talk

Neural Baby Talk

CVPR 2018

ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks

NeurIPS 2019

Recent & Future Work

Image Captioning

The fundamental capability to describe what is seen.

Input:

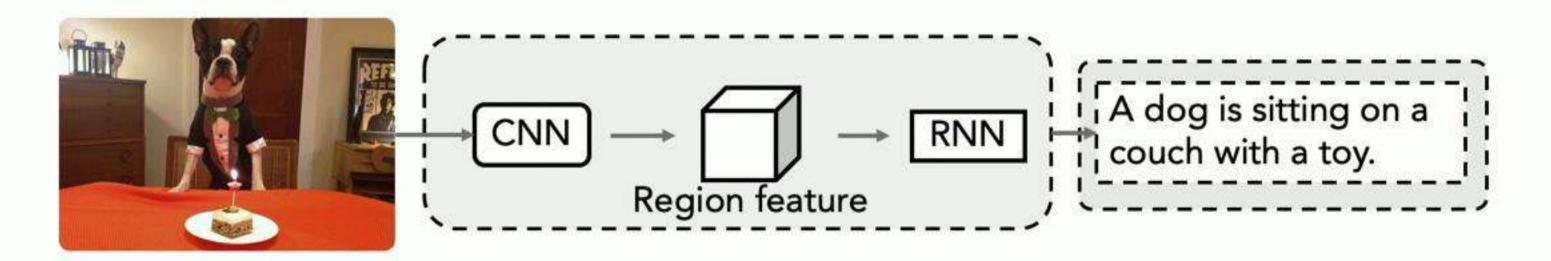
Image Captioning

The fundamental capability to describe what is seen.

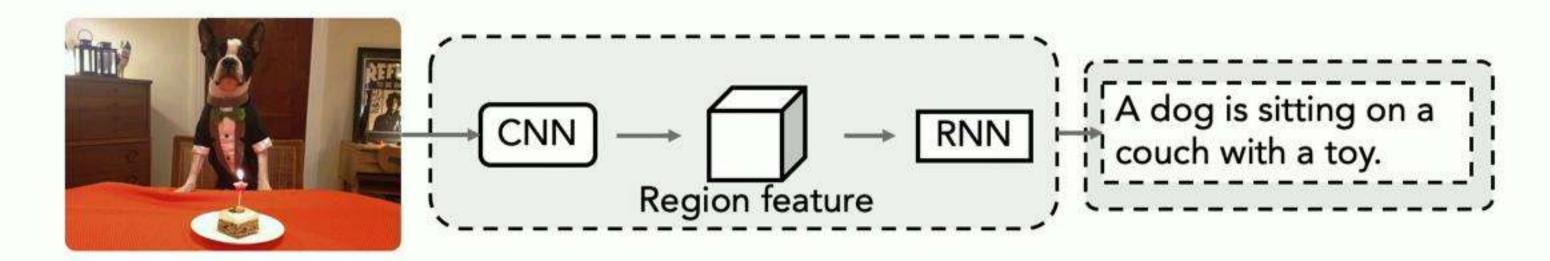
Input:

Desired A table that has a mug and output: a plate with food on it.

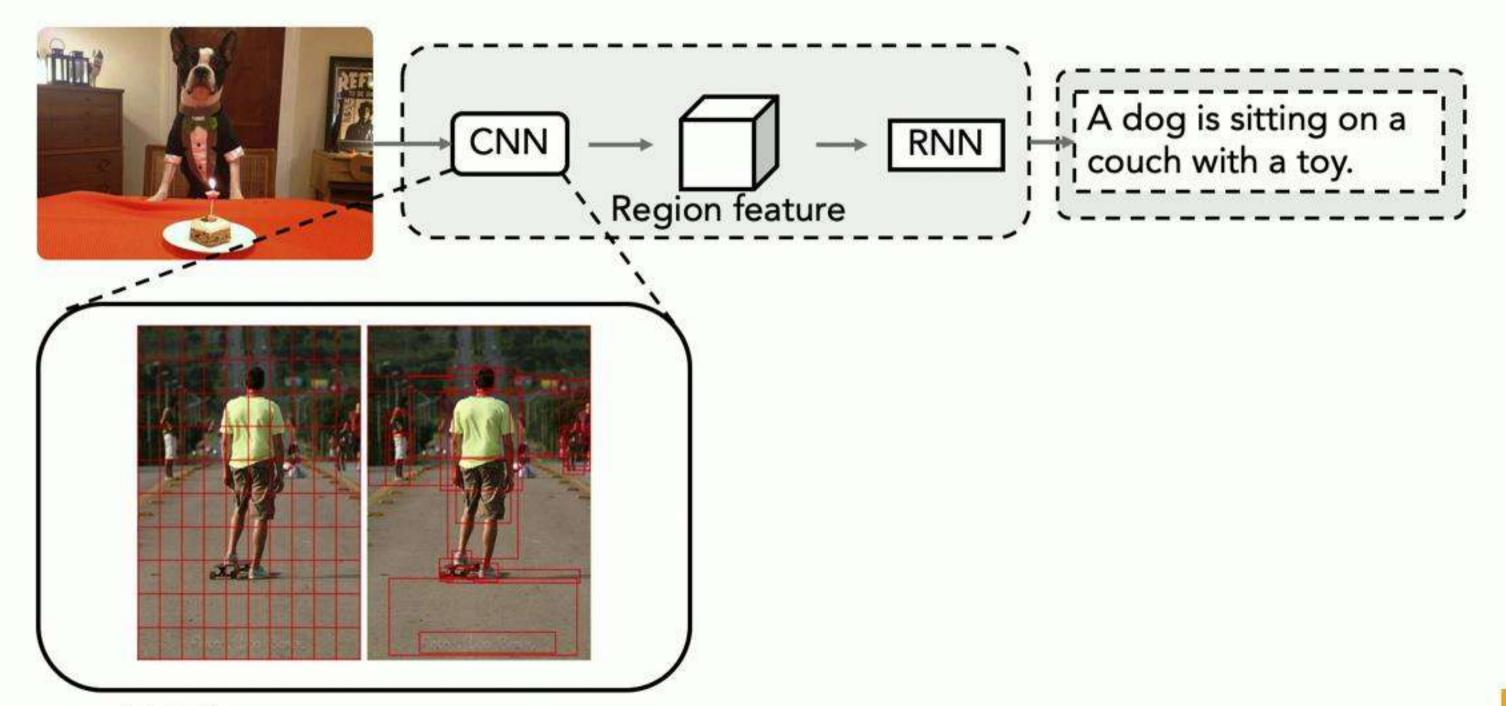
A dog wearing goggles and leathers sitting on a motorcycle.



Bottom up and Top down attention for image captioning

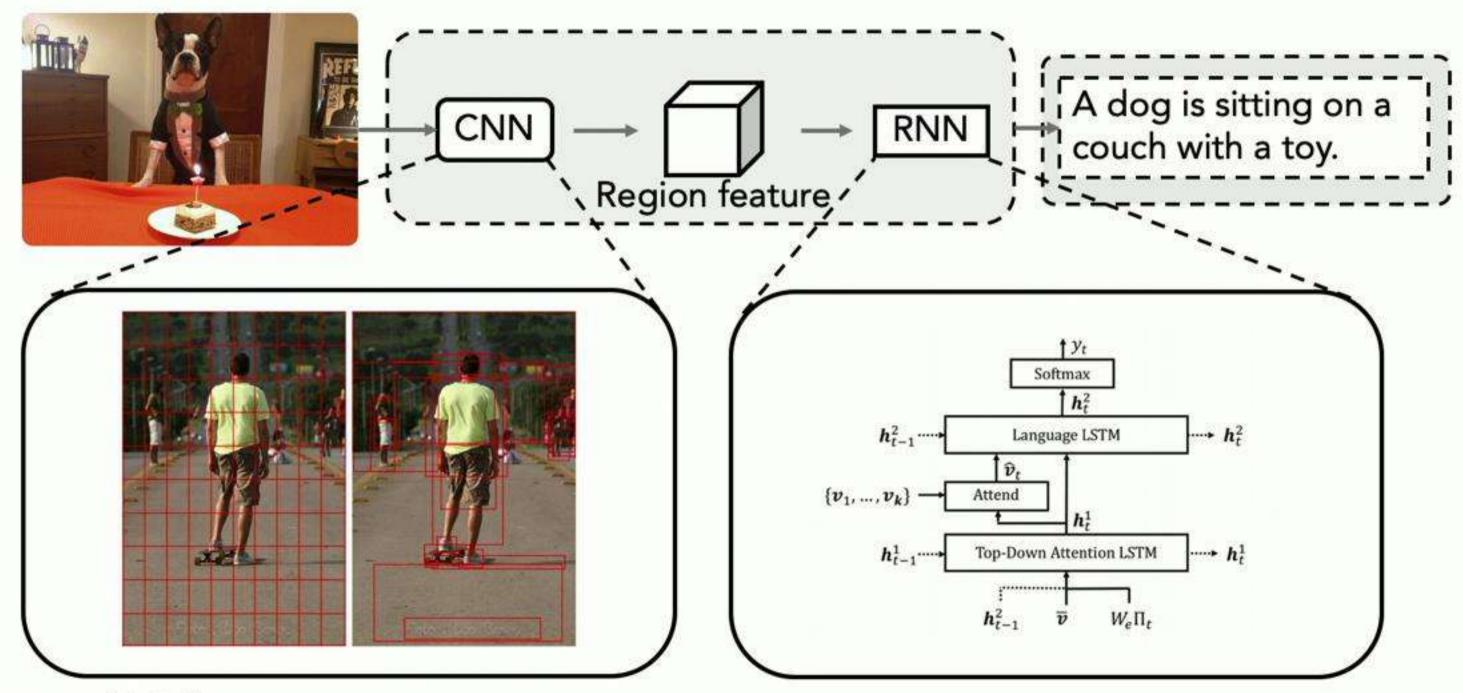


Bottom up and Top down attention for image captioning



[Anderson et.al. 2018]

Bottom up and Top down attention for image captioning



[Anderson et.al. 2018]

Two elephants and a baby elephant walking together.

Two elephants and a baby elephant walking together.

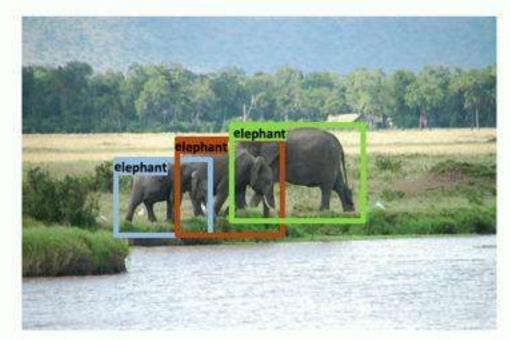
A cat is standing on a sign that says "UNK".

Two elephants and a baby elephant walking together.

A cat is standing on a sign that says "UNK".

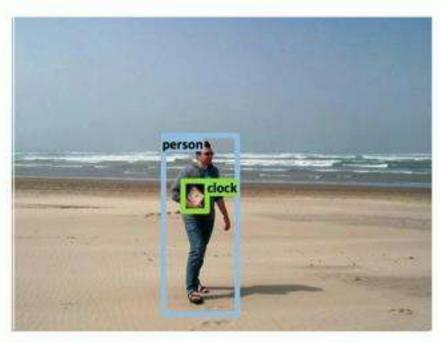
A man standing on a beach holding a surfboard.

Object detection and OCR output



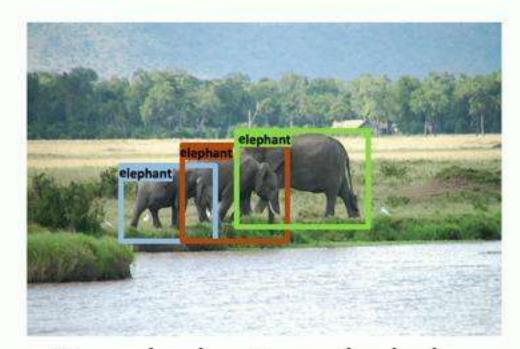
Two elephants and a baby elephant walking together.

A cat is standing on a sign that says "UNK".



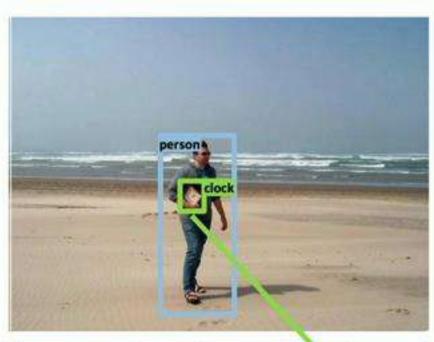
A man standing on a beach holding a surfboard.

Learn from object detection and OCR.



Two elephants and a baby elephant walking together.

A cat is standing on a sign that says "UNK"-"Abundzu".



A man standing on a beach holding a surfboard - clock.

Image captioning system before deep learning "revolution".

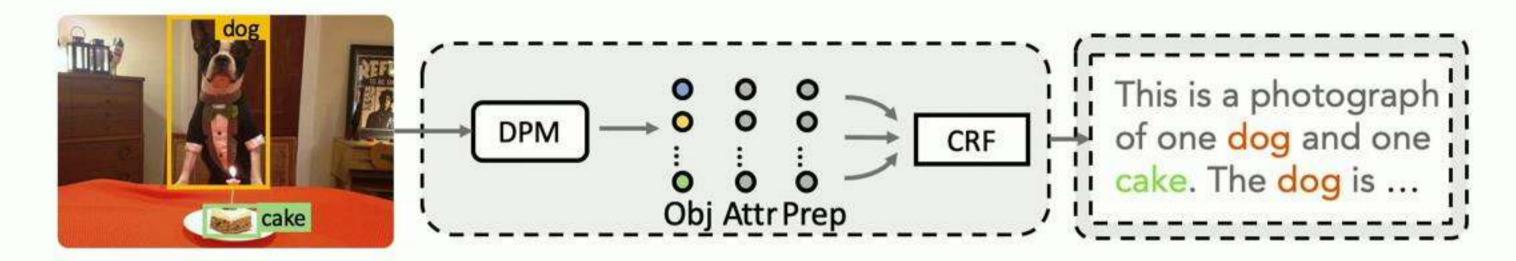
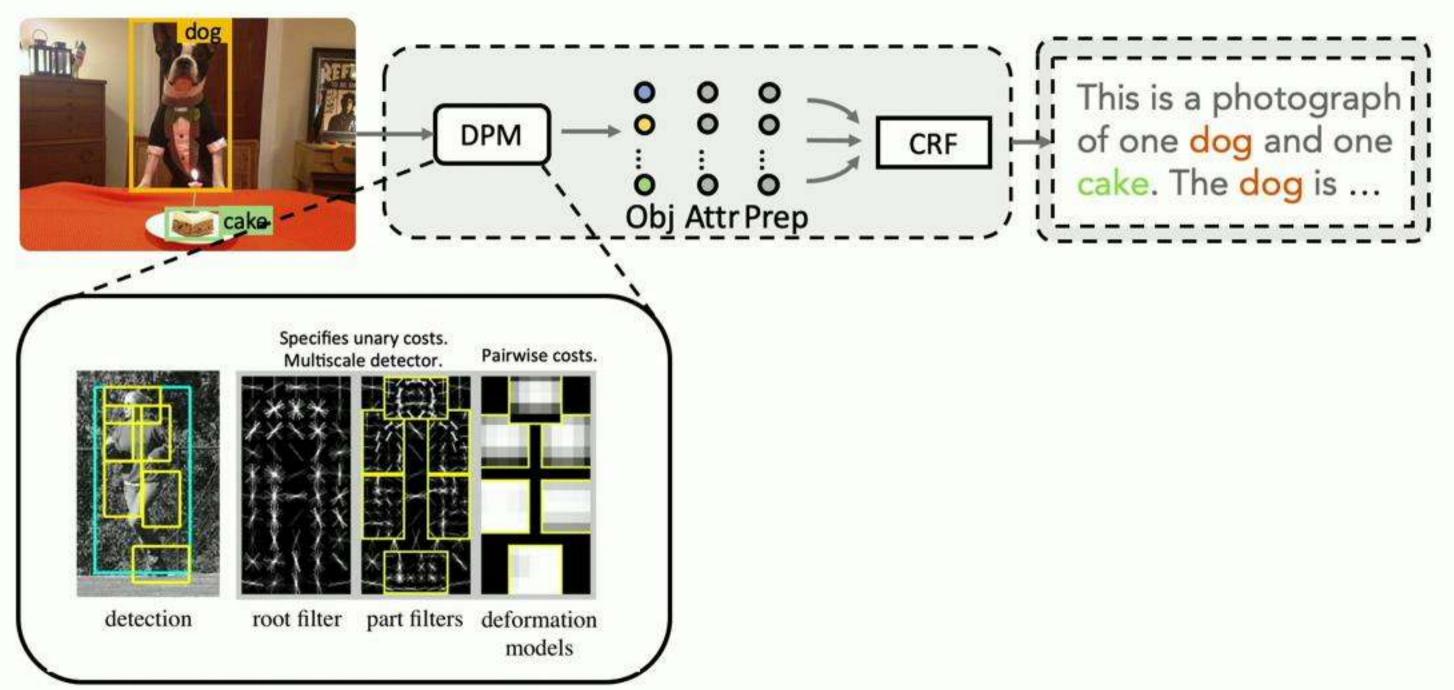
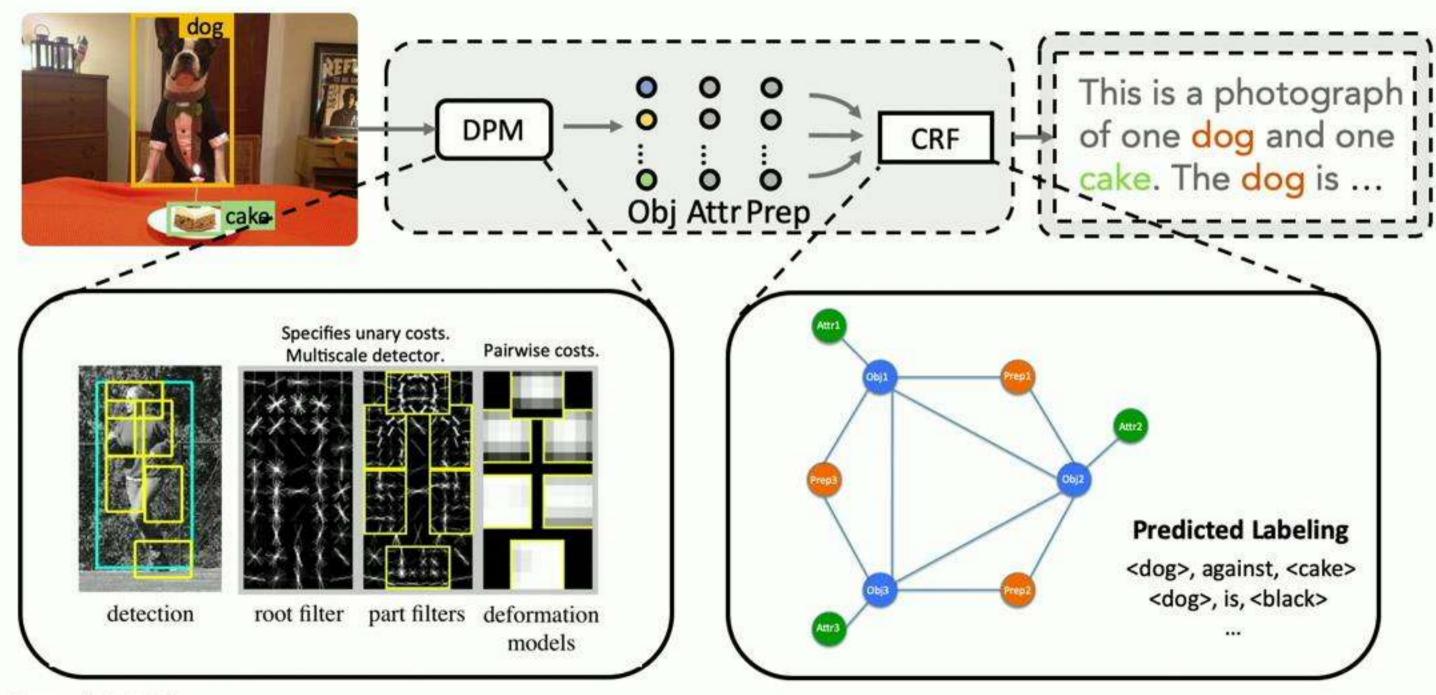


Image captioning system before deep learning "revolution".



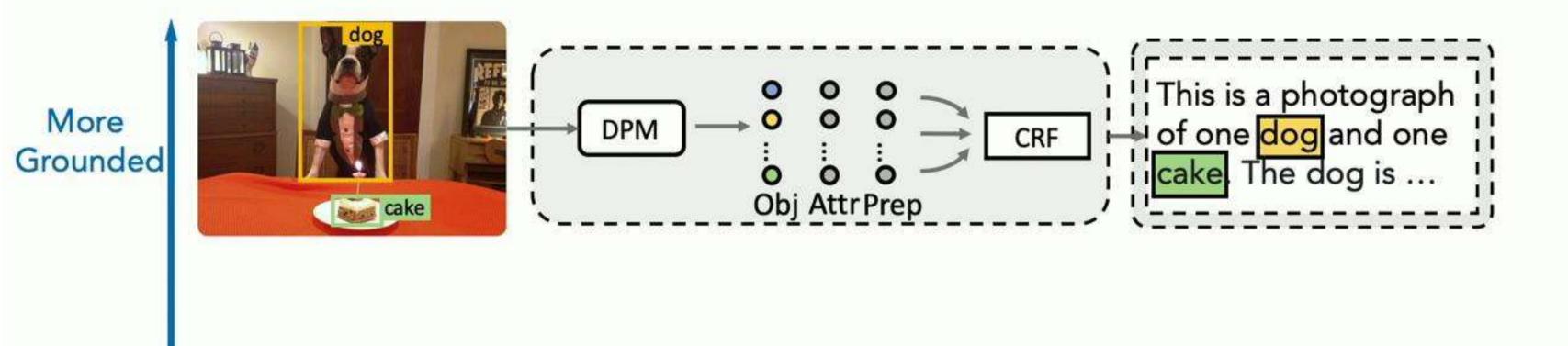
[Kulkarni et.al. 2011]

Image captioning system before deep learning "revolution".

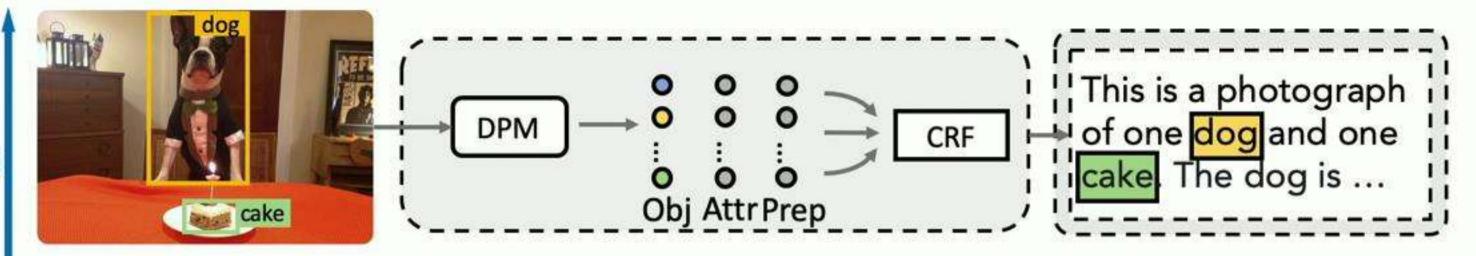


30

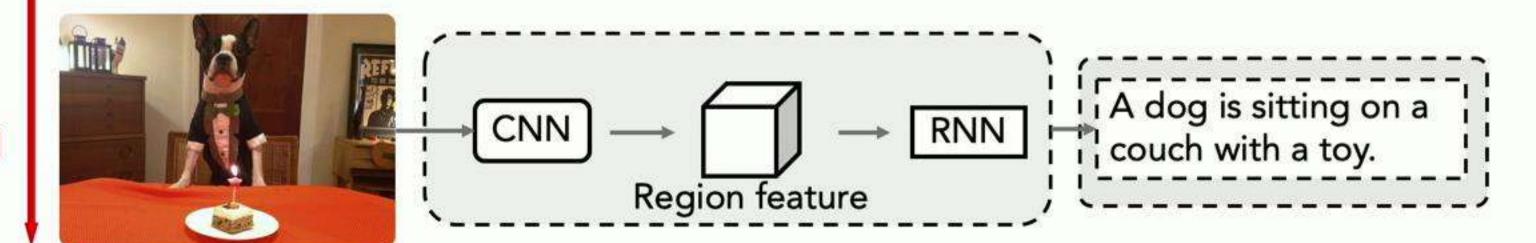
Motivation



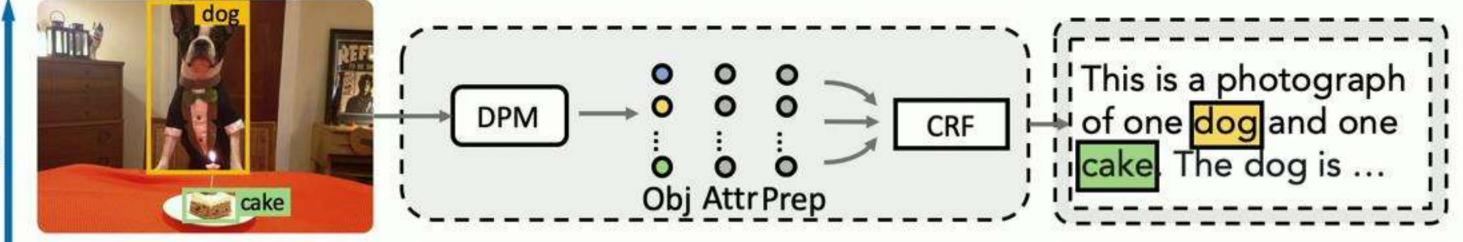
More Grounded



More Natural

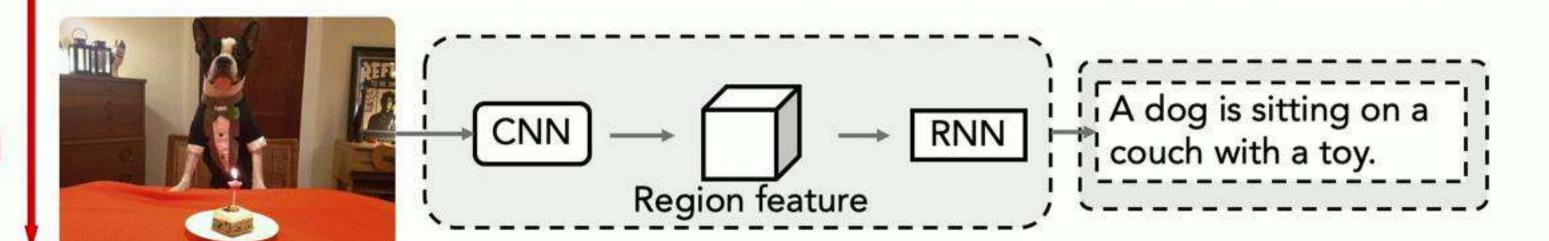


More Grounded

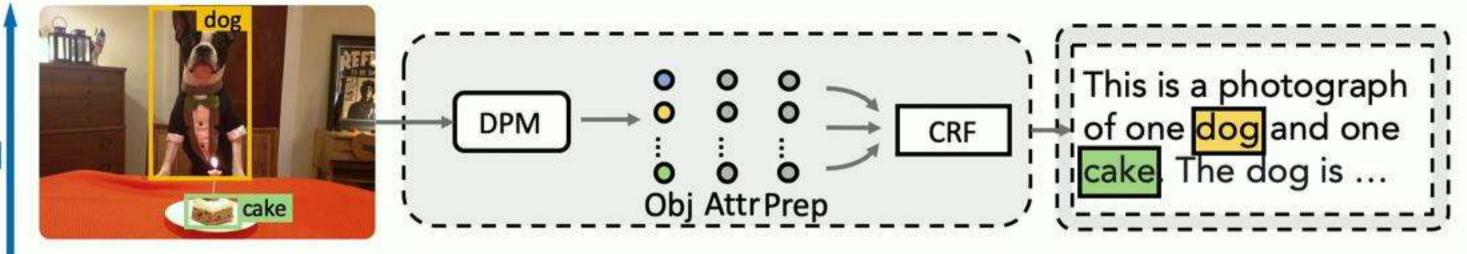


Associate the named concept to the pixels / bounding box detections in the image.

More Natural

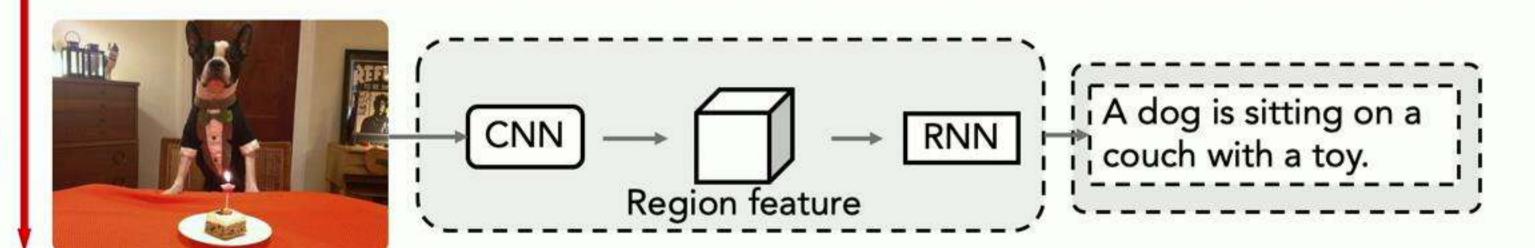


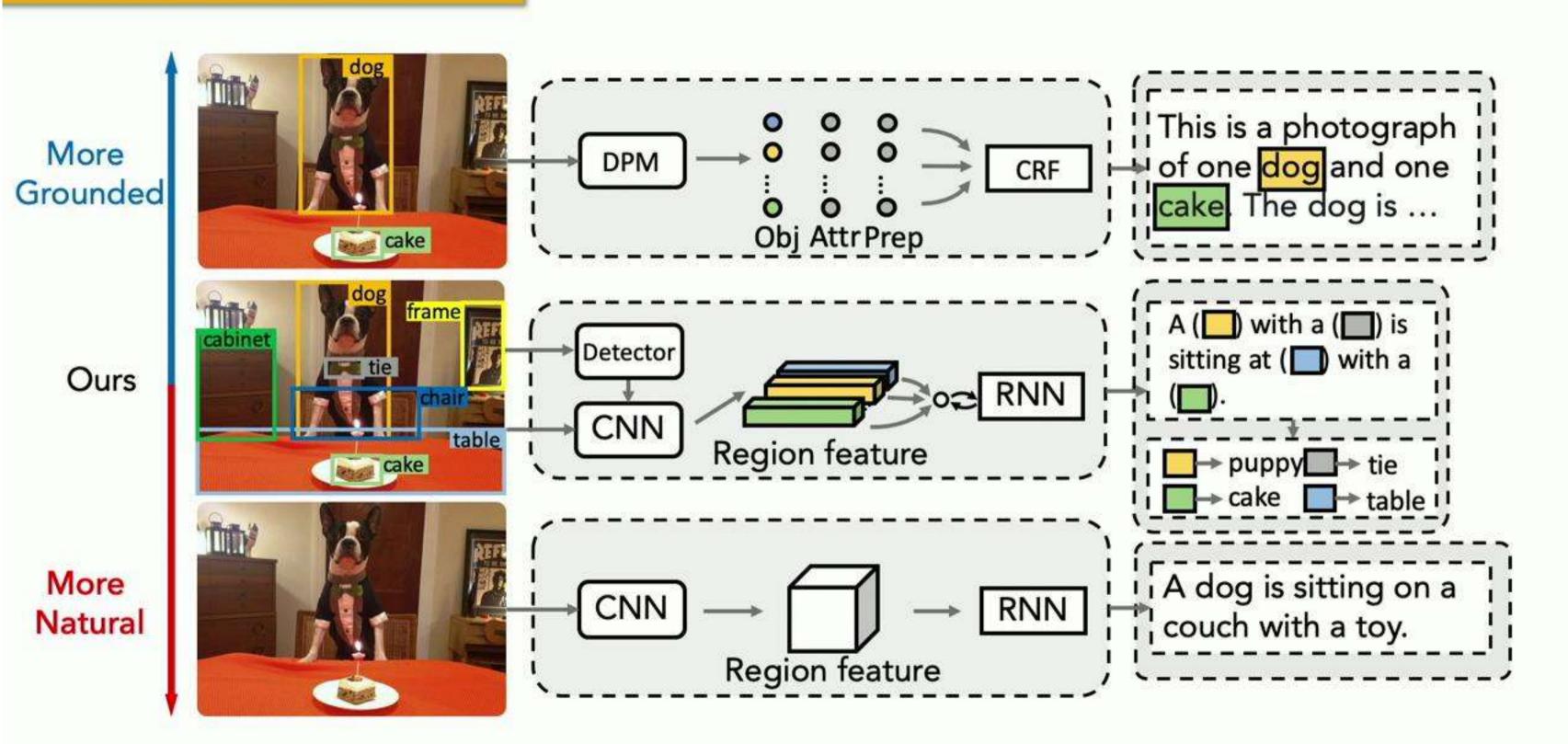
More Grounded



- Associate the named concept to the pixels / bounding box detections in the image.
- No human generated templated, language needs to be natural.

More Natural





Neural Baby Talk

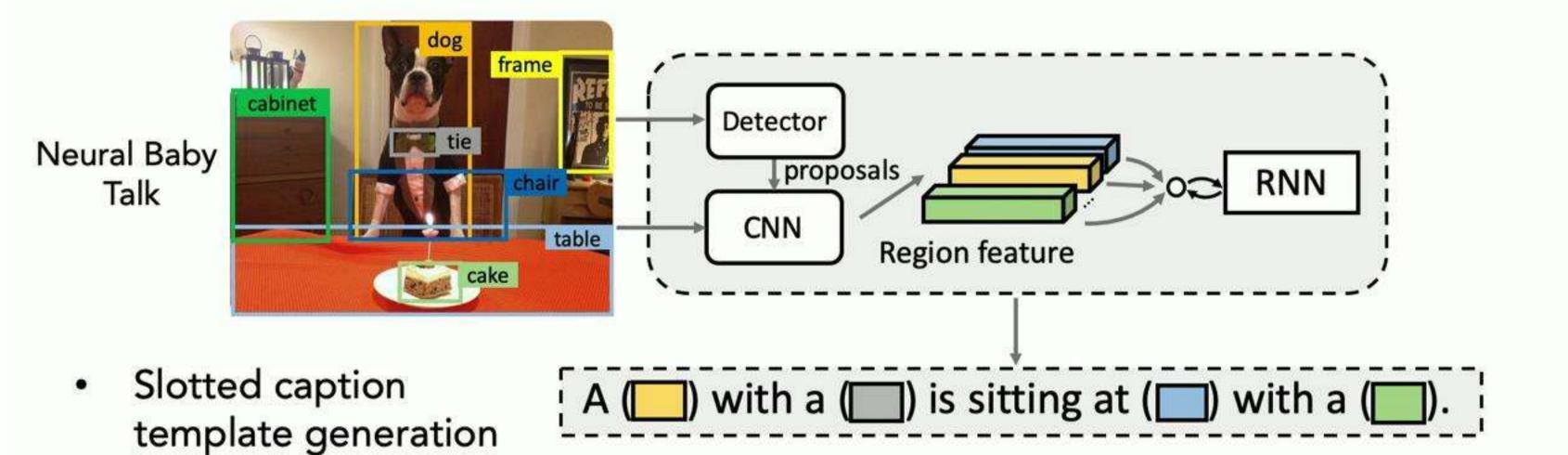
Detector

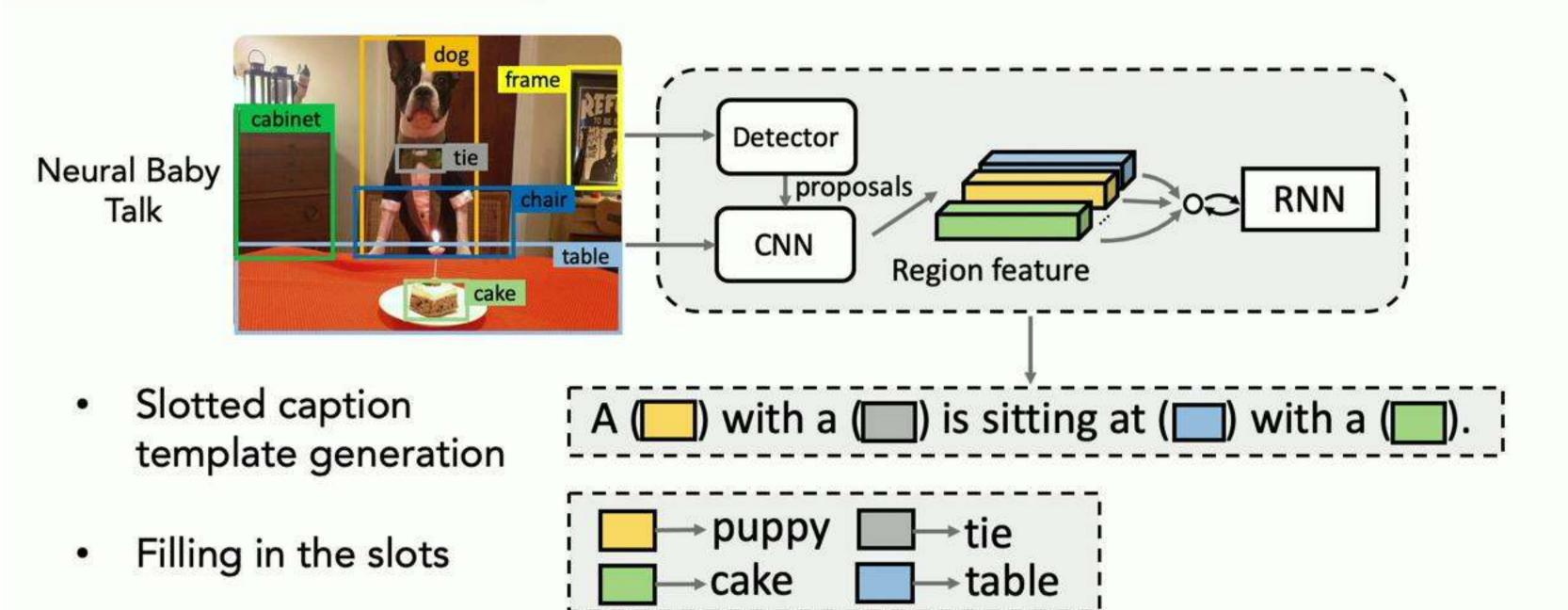
Detector

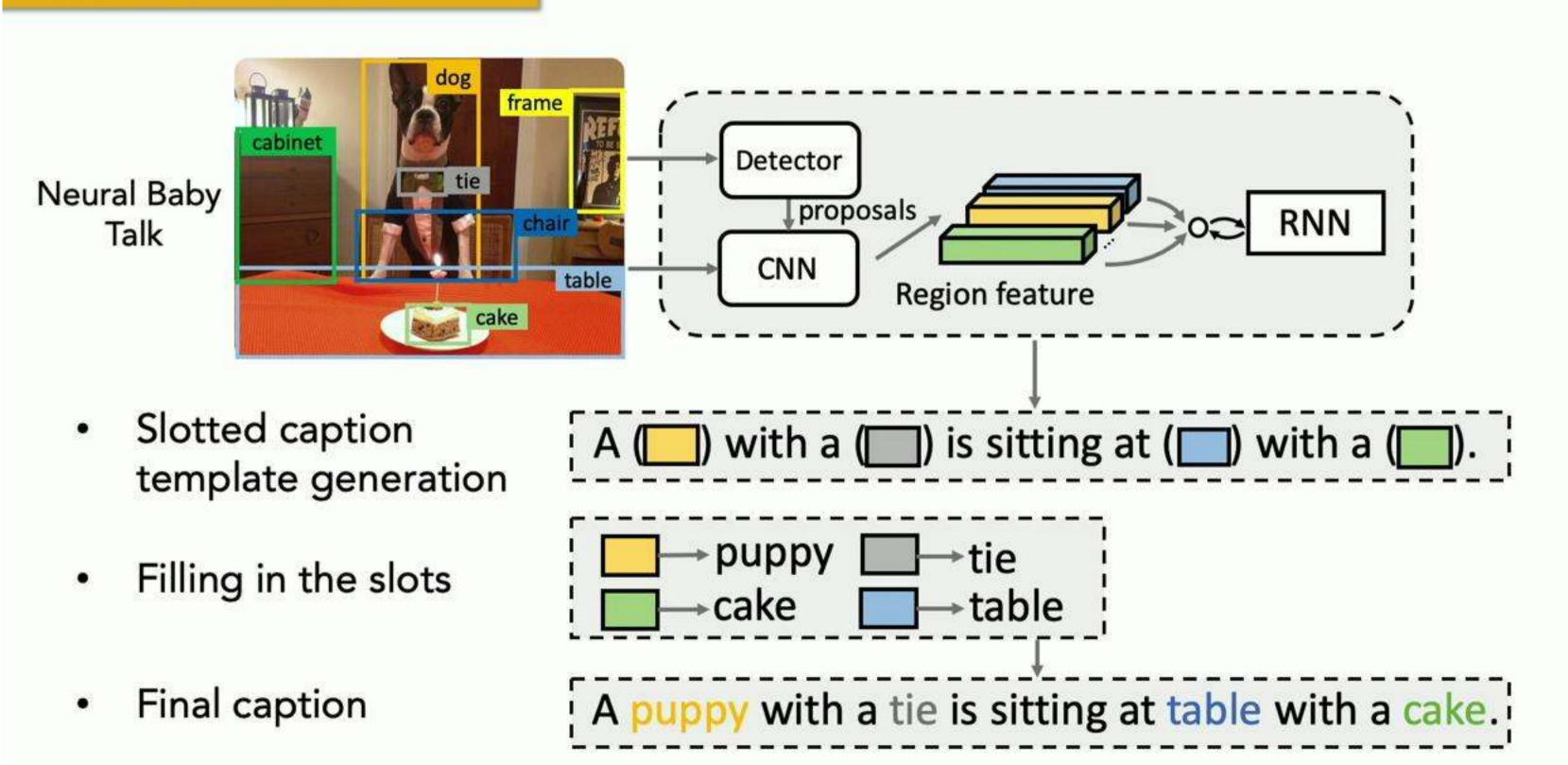
Neural Baby Talk

Neural Baby Talk

Region feature



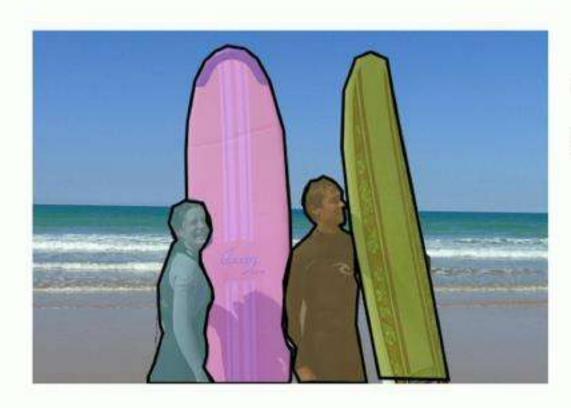




How to construct the caption template?

A young woman standing next to a man holding a surfboard.

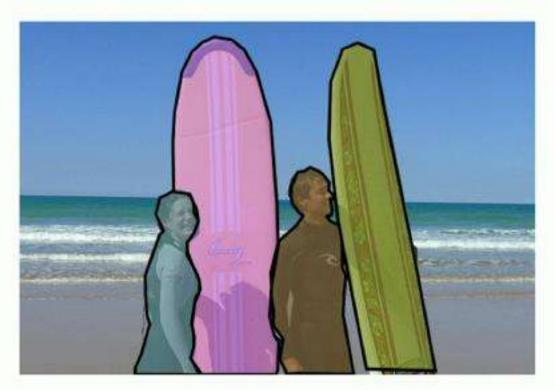
How to construct the caption template?



A young woman standing next to a man holding a surfboard.

Object label: <person>, <person>, <surfboard>, <surfboard>

How to construct the caption template?

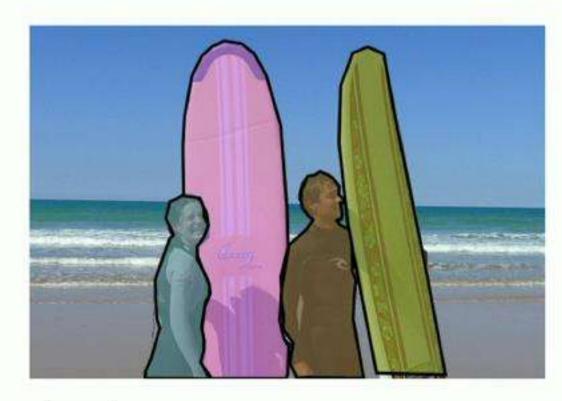


A young woman standing next to a man holding a surfboard.

Object label: <person>, <person>, <surfboard>, <surfboard>

A young woman standing next to a man holding a surfboard.

How to construct the caption template?

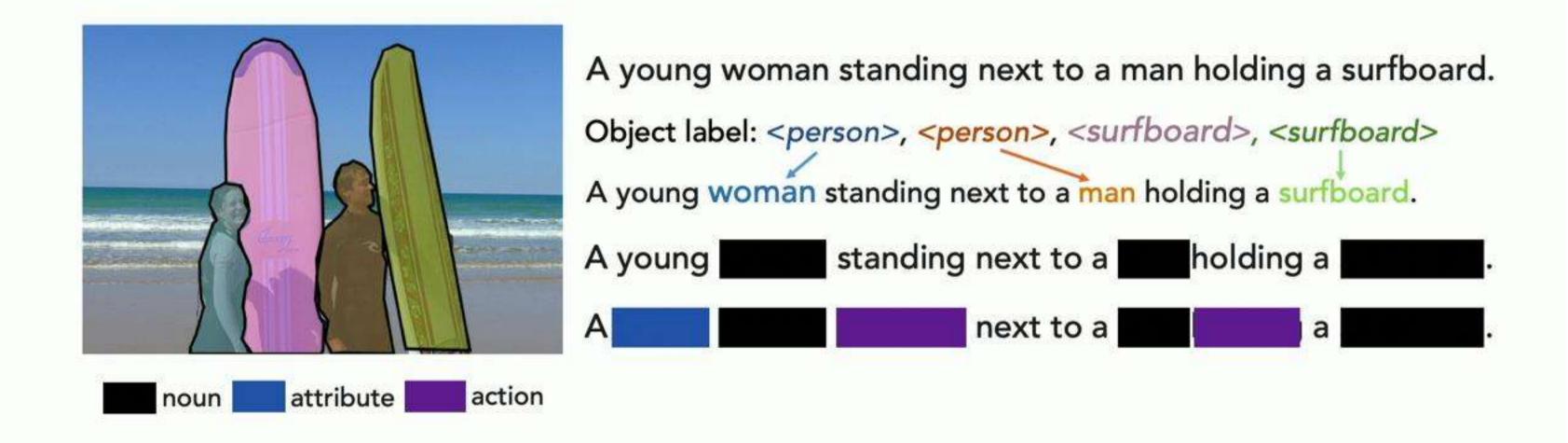


A young woman standing next to a man holding a surfboard.

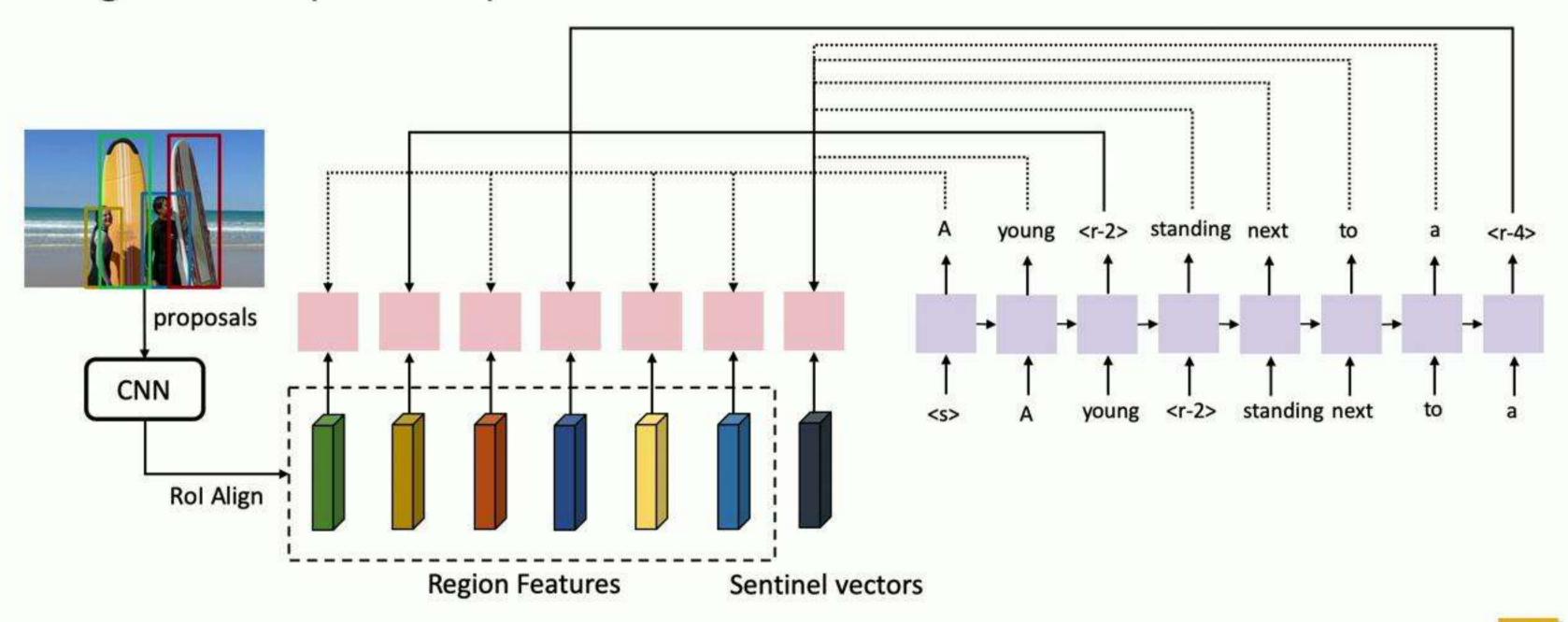
Object label: <person>, <person>, <surfboard>, <surfboard>

A young woman standing next to a man holding a surfboard.

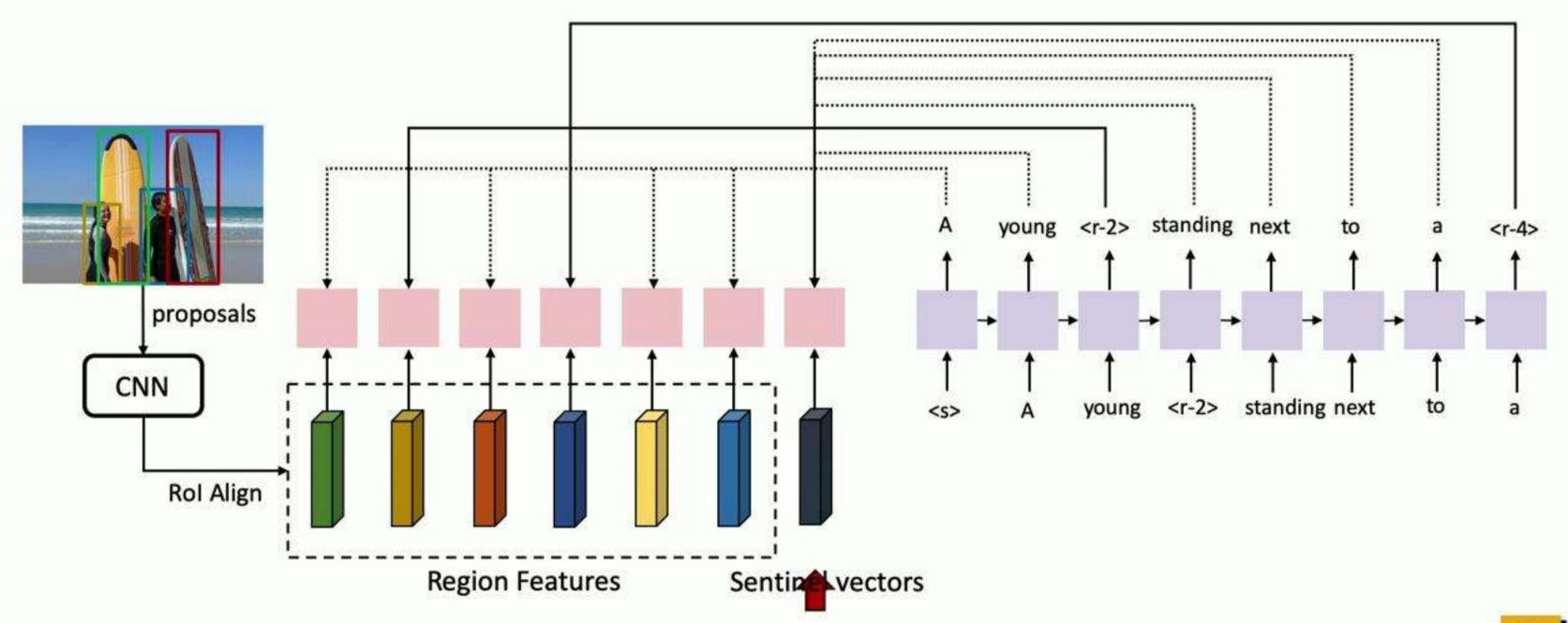
How to construct the caption template?



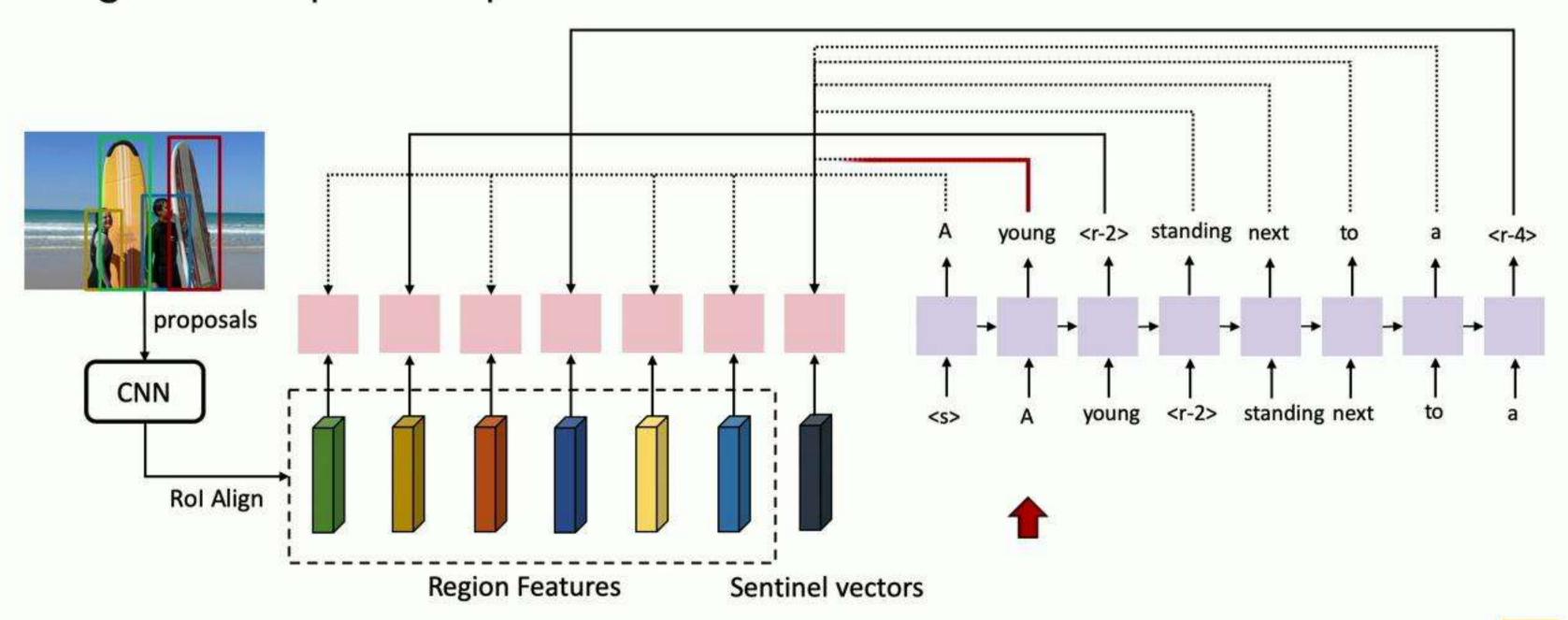
Use pointer networks [Vinyals et.al 2015] with visual sentinel [Lu et.al 2017] to generate caption templates.



Use pointer networks [Vinyals et.al 2015] with visual sentinel [Lu et.al 2017] to generate caption templates.



Use pointer networks [Vinyals et.al 2015] with visual sentinel [Lu et.al 2017] to generate caption templates.



How to handle inaccurate object detection?

How to handle inaccurate object detection?

A man is playing guitar on the stage.

How to handle inaccurate object detection?

Treat object labels as caption template.

Template: A man is playing guitar on the stage.

A man is playing guitar on the stage.

How to handle inaccurate object detection?

Treat object labels as caption template.

Template: A man is playing guitar on the stage.

Dynamically identify the visual words.

 $IoU(detected\ bbox,\ GT\ bbox) > 0.5\ and\ labels ==\ words$

A man is playing guitar on the stage.

Filling in the slots

Input: A young <region-2> standing next to a <region-3> holding a <region-5>.

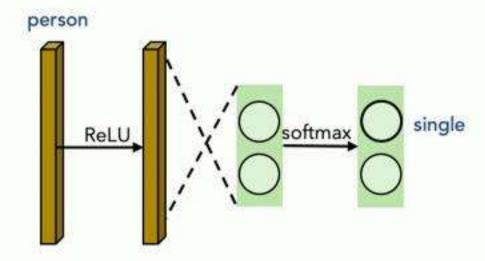
person, person, surfboard (coarse names form the object detector)

Filling in the slots

Input: A young <region-2> standing next to a <region-3> holding a <region-5>.

person, person, surfboard (coarse names form the object detector)

1) Classify Plurality

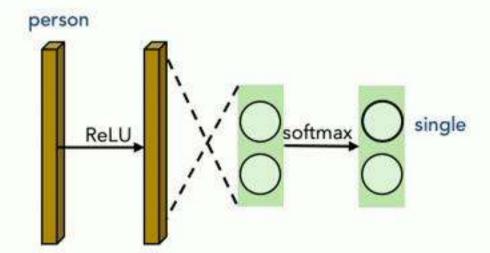


Filling in the slots

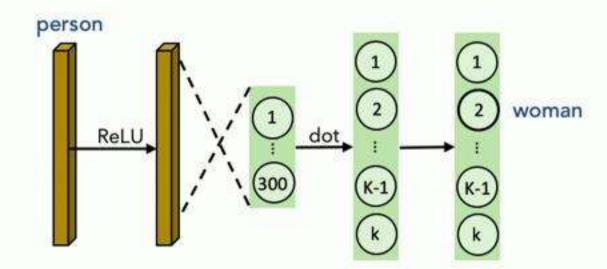
Input: A young <region-2> standing next to a <region-3> holding a <region-5>.

person, person, surfboard (coarse names form the object detector)

1) Classify Plurality



2) Determine Fine Grained Category

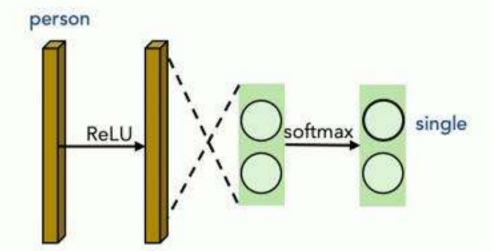


Filling in the slots

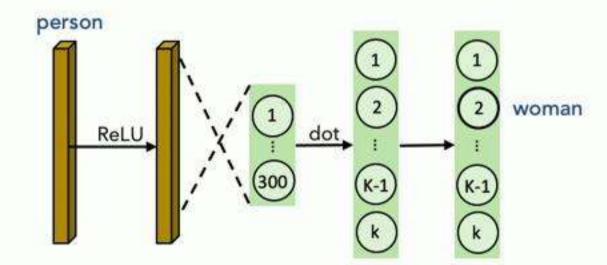
Input: A young <region-2> standing next to a <region-3> holding a <region-5>.

person, person, surfboard (coarse names form the object detector)

1) Classify Plurality



2) Determine Fine Grained Category



Output: A young woman standing next to a man holding a surfboard.

Minimize this cross-entropy loss

$$L(\boldsymbol{\theta}) = -\sum_{t=1}^{T} \log \left(p(y_{t}^{*}|\tilde{r}, y_{1:t-1}^{*}) p(\tilde{r}|\boldsymbol{y}_{1:t-1}^{*}) \mathbf{1}_{(y_{t}^{*}=y^{txt})} + p(b_{t}^{*}, s_{t}^{*}|\boldsymbol{r}_{t}, y_{1:t-1}^{*}) (\frac{1}{m} \sum_{i=1}^{m} p(r_{t}^{i}|y_{1:t-1}^{*})) \mathbf{1}_{(y_{t}^{*}=y^{vis})} \right)$$

Minimize this cross-entropy loss

$$L(\boldsymbol{\theta}) = -\sum_{t=1}^{T} \log \left(p(y_t^* | \tilde{r}, y_{1:t-1}^*) p(\tilde{r} | \boldsymbol{y}_{1:t-1}^*) \boldsymbol{1}_{(y_t^* = \boldsymbol{y}^{t \times t})} + p(b_t^*, s_t^* | \boldsymbol{r}_t, y_{1:t-1}^*) (\frac{1}{m} \sum_{i=1}^{m} p(r_t^i | y_{1:t-1}^*)) \boldsymbol{1}_{(y_t^* = \boldsymbol{y}^{vis})} \right)$$

Minimize this cross-entropy loss

$$L(\boldsymbol{\theta}) = -\sum_{t=1}^{T} \log \left(p(y_t^* | \tilde{r}, y_{1:t-1}^*) p(\tilde{r} | \boldsymbol{y}_{1:t-1}^*) 1_{(y_t^* = y^{t \times t})} \right)$$

Refinement prob.

$$L(\boldsymbol{\theta}) = -\sum_{t=1}^{T} \log \left(p(y_{t}^{*}|\tilde{r}, y_{1:t-1}^{*}) p(\tilde{r}|\boldsymbol{y}_{1:t-1}^{*}) \mathbf{1}_{(y_{t}^{*}=y^{txt})} + p(b_{t}^{*}, s_{t}^{*}|\boldsymbol{r}_{t}, y_{1:t-1}^{*}) (\frac{1}{m} \sum_{i=1}^{m} p(r_{t}^{i}|y_{1:t-1}^{*})) \mathbf{1}_{(y_{t}^{*}=y^{vis})} \right)$$

Minimize this cross-entropy loss

$$L(\boldsymbol{\theta}) = -\sum_{t=1}^{T} \log \left(p(y_{t}^{*}|\tilde{r}, y_{1:t-1}^{*}) p(\tilde{r}|\boldsymbol{y}_{1:t-1}^{*}) 1_{(y_{t}^{*}=y^{txt})} + p(b_{t}^{*}, s_{t}^{*}|\boldsymbol{r}_{t}, y_{1:t-1}^{*}) (\frac{1}{m} \sum_{i=1}^{m} p(r_{t}^{i}|y_{1:t-1}^{*})) 1_{(y_{t}^{*}=y^{vis})} \right)$$

Refinement prob.

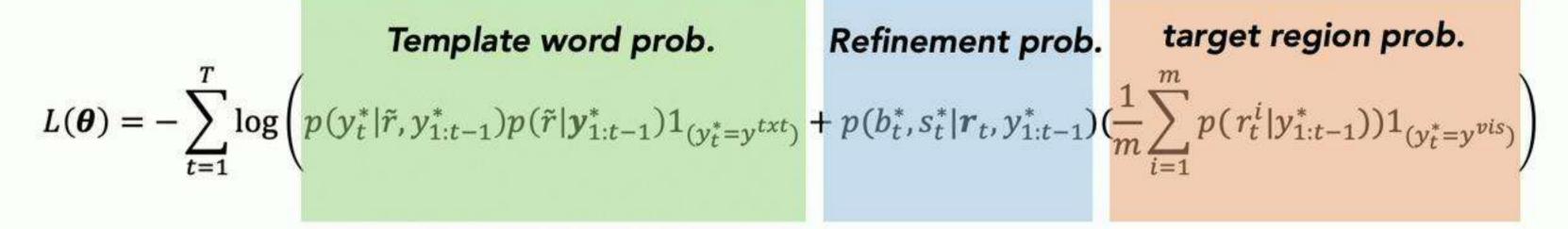
$$\frac{1}{m} \sum_{i=1}^{m} p(r_t^i | y_{1:t-1}^*)) 1_{(y_t^* = y^{vis})}$$

Minimize this cross-entropy loss

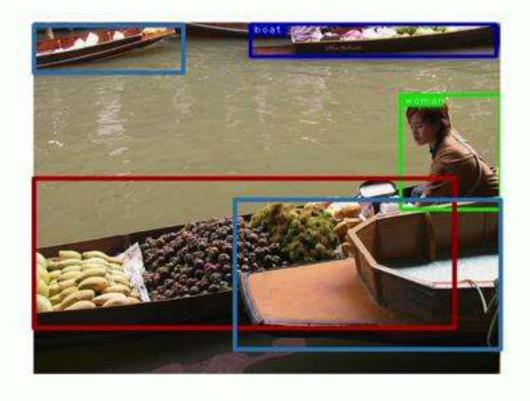
$$L(\boldsymbol{\theta}) = -\sum_{t=1}^{T} \log \left(p(y_t^* | \tilde{r}, y_{1:t-1}^*) p(\tilde{r} | \mathbf{y}_{1:t-1}^*) \mathbf{1}_{(y_t^* = y^{txt})} + p(b_t^*, s_t^* | \mathbf{r}_t, y_{1:t-1}^*) (\frac{1}{m} \sum_{i=1}^{m} p(\mathbf{r}_t^i | \mathbf{y}_{1:t-1}^*)) \mathbf{1}_{(y_t^* = y^{vis})} \right)$$

Co-reference when different kind of supervision exists.

Minimize this cross-entropy loss

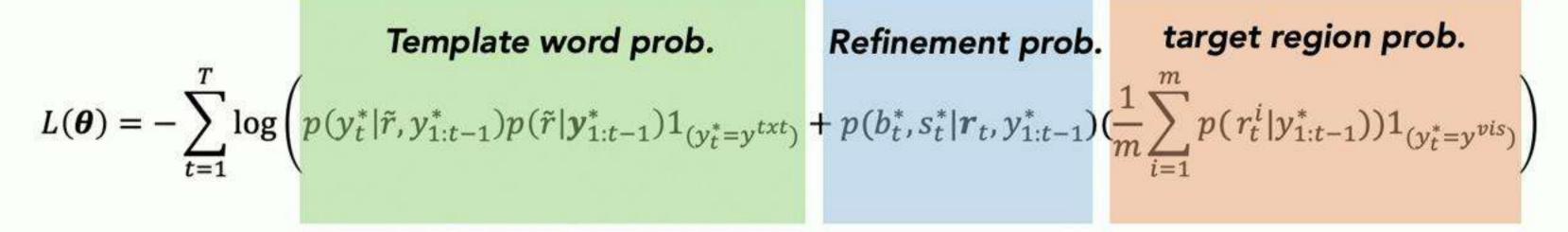


Co-reference when different kind of supervision exists.

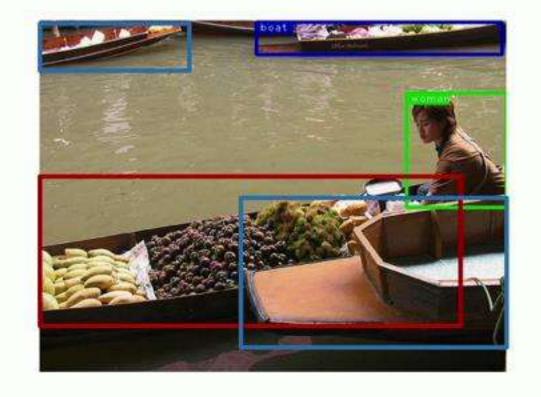


A young woman is sitting inside a boat.

Minimize this cross-entropy loss



Co-reference when different kind of supervision exists.



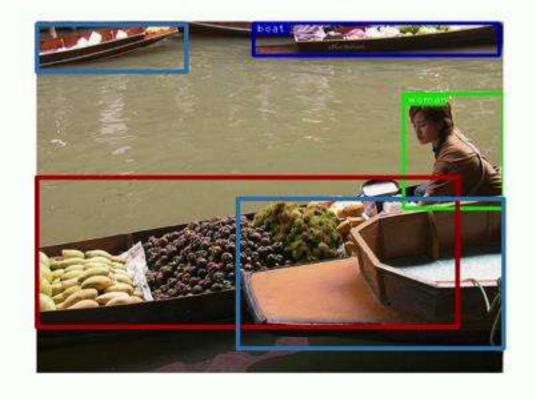
A young woman is sitting inside a boat.

Problem: which boat is the caption referred to.

Minimize this cross-entropy loss

$$L(\boldsymbol{\theta}) = -\sum_{t=1}^{T} \log \left(p(y_t^* | \tilde{r}, y_{1:t-1}^*) p(\tilde{r} | \boldsymbol{y}_{1:t-1}^*) \boldsymbol{1}_{(y_t^* = \boldsymbol{y}^{txt})} + p(b_t^*, s_t^* | \boldsymbol{r}_t, y_{1:t-1}^*) (\frac{1}{m} \sum_{i=1}^{m} p(r_t^i | y_{1:t-1}^*) \boldsymbol{1}_{(y_t^* = \boldsymbol{y}^{vis})} \right)$$

Co-reference when different kind of supervision exists.



A young woman is sitting inside a boat.

Problem: which boat is the caption referred to.

Solution: maximize the averaged target region prob.

Dataset

Datasets

- Flickr30k: 31,783 images, 5 captions per image, 275,555 annotated bounding boxes.
- COCO: 164,062 images, 5 captions per image.

Object category to words

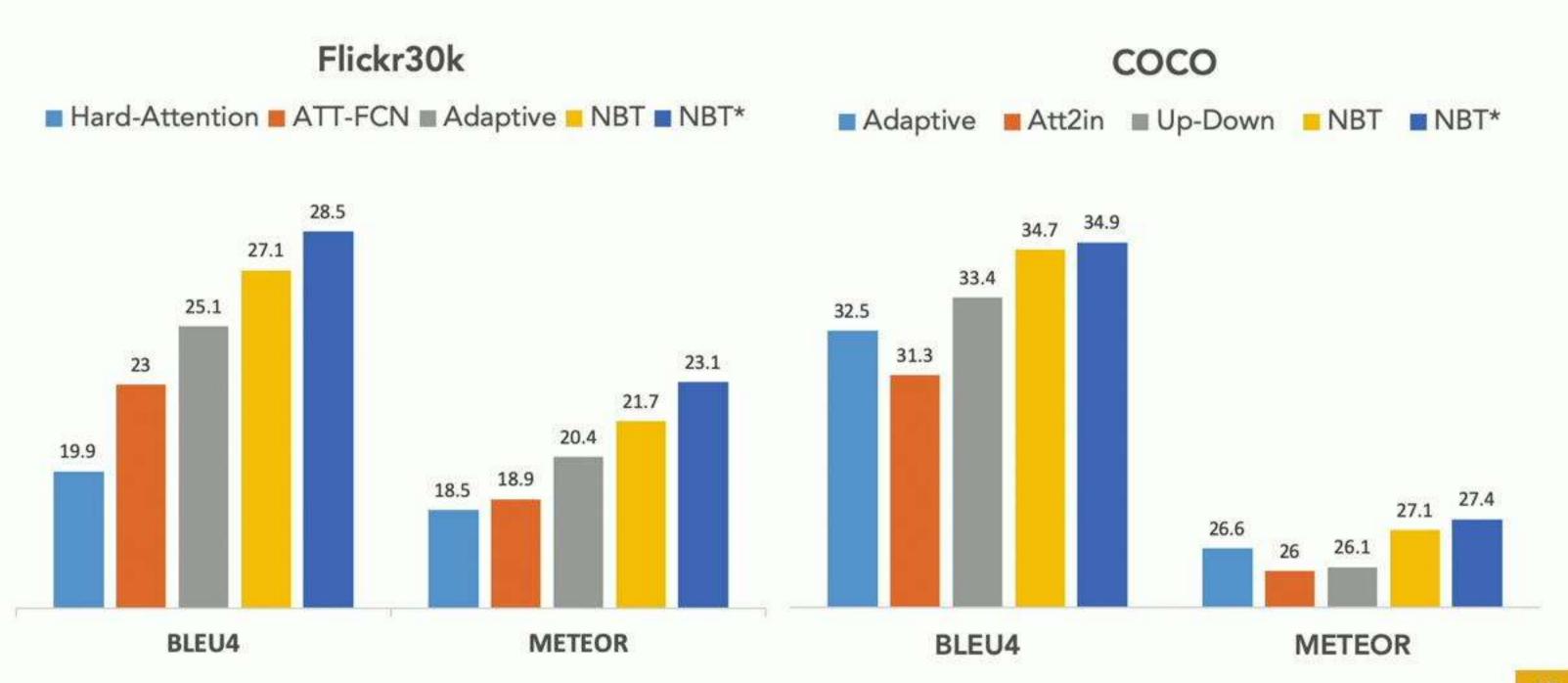
For COCO dataset. (e.g., "person" mapping to ["child", "baker", ...])

Caption pre-processing

- Caption truncation (if > 16 words)
- Building vocabulary (9,587 words for COCO, 6,864 words for Flickr30k)

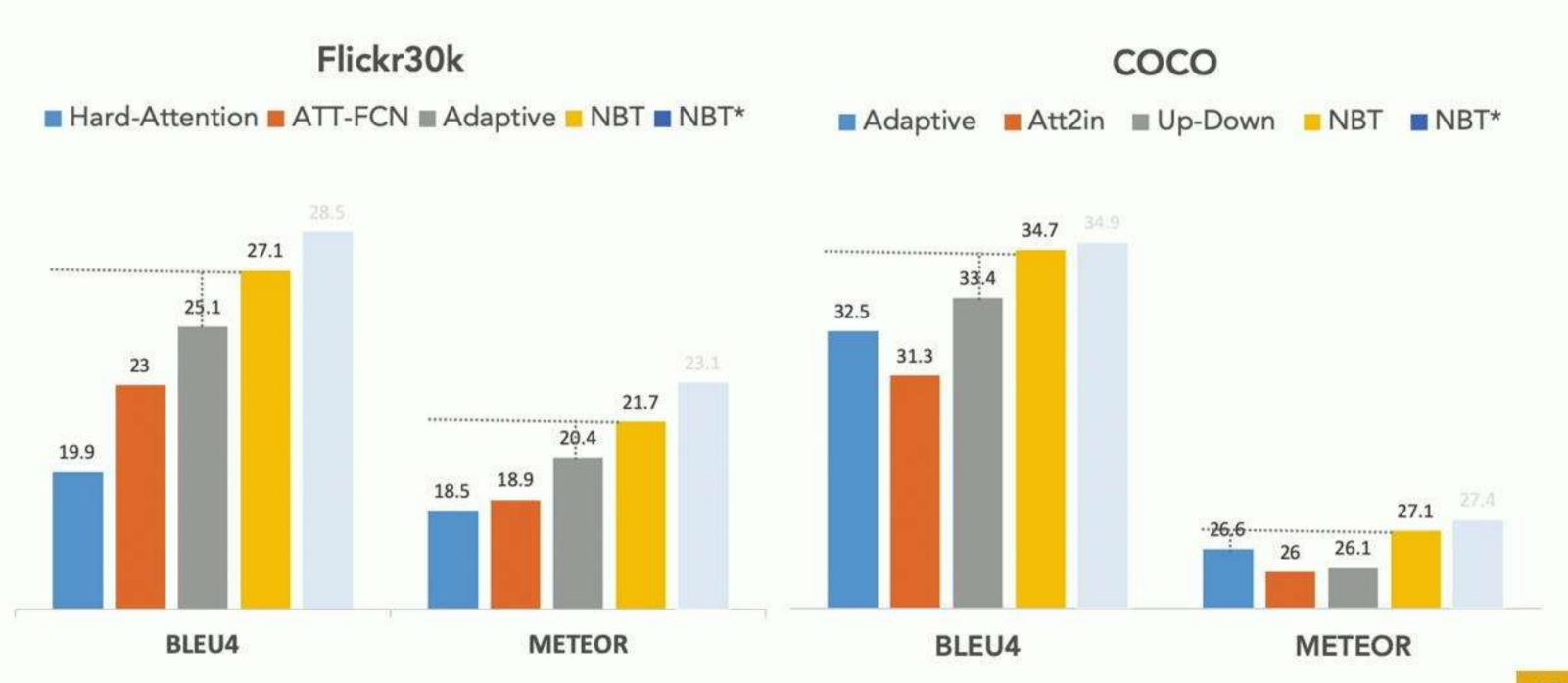
Results

Standard Image Captioning

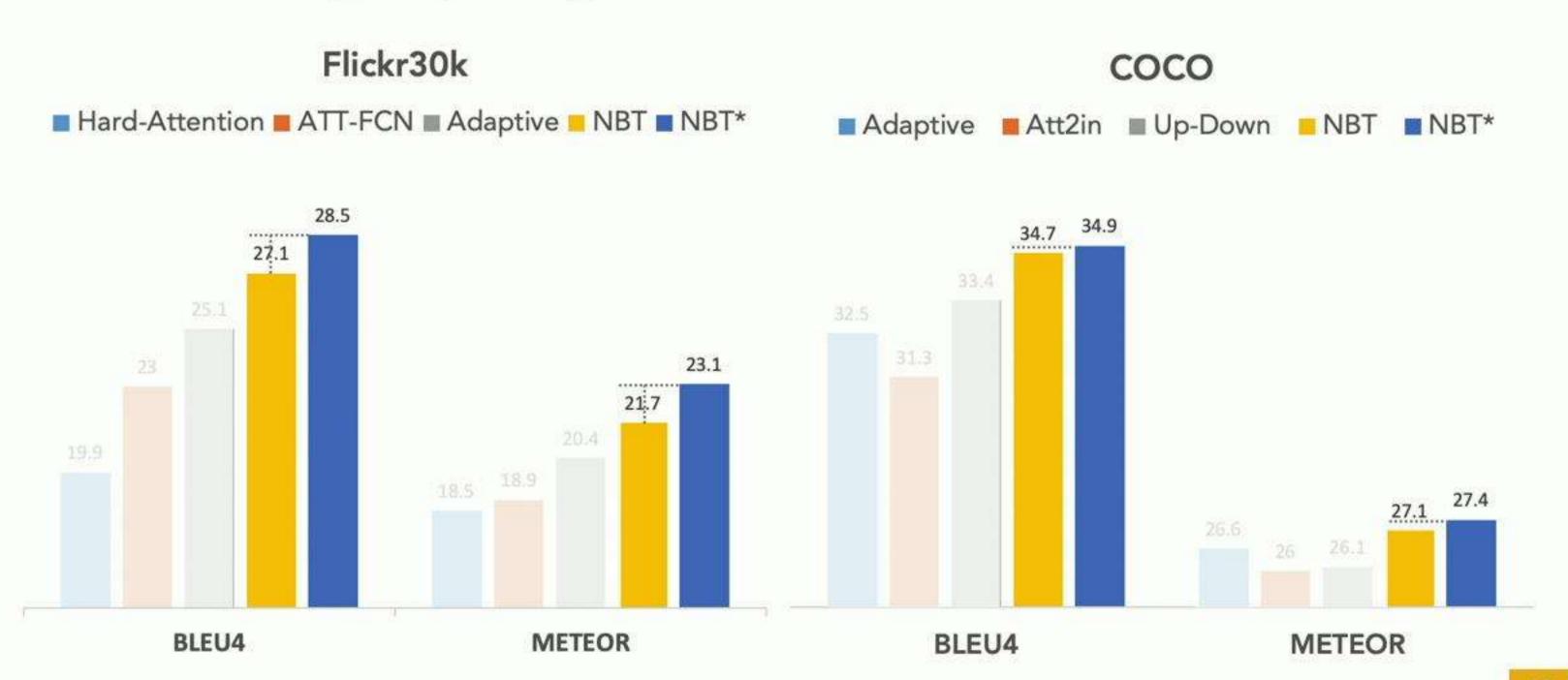


Results

Standard Image Captioning



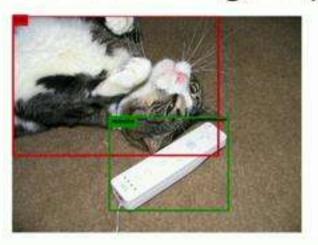
Standard Image Captioning

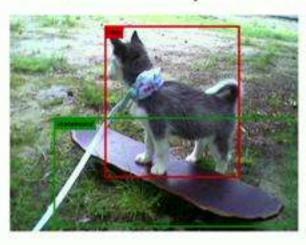


Robust Image Captioning

Robust Image Captioning

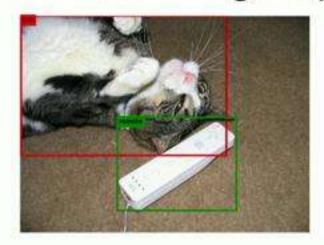
• To evaluate image captioning for novel scene compositions.

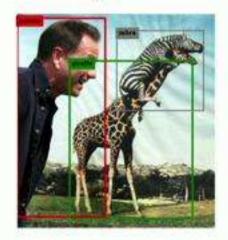


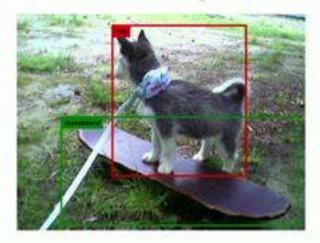


Robust Image Captioning

To evaluate image captioning for novel scene compositions.





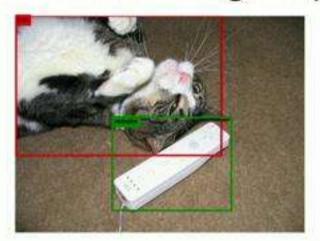


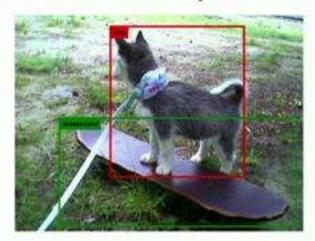
Robust-COCO split

- Distribution of co-occurring objects in train data is different from test data.
- Sufficient examples from each category in train set.
- Novel compositions (pairs) of categories in test set.

Robust Image Captioning

To evaluate image captioning for novel scene compositions.





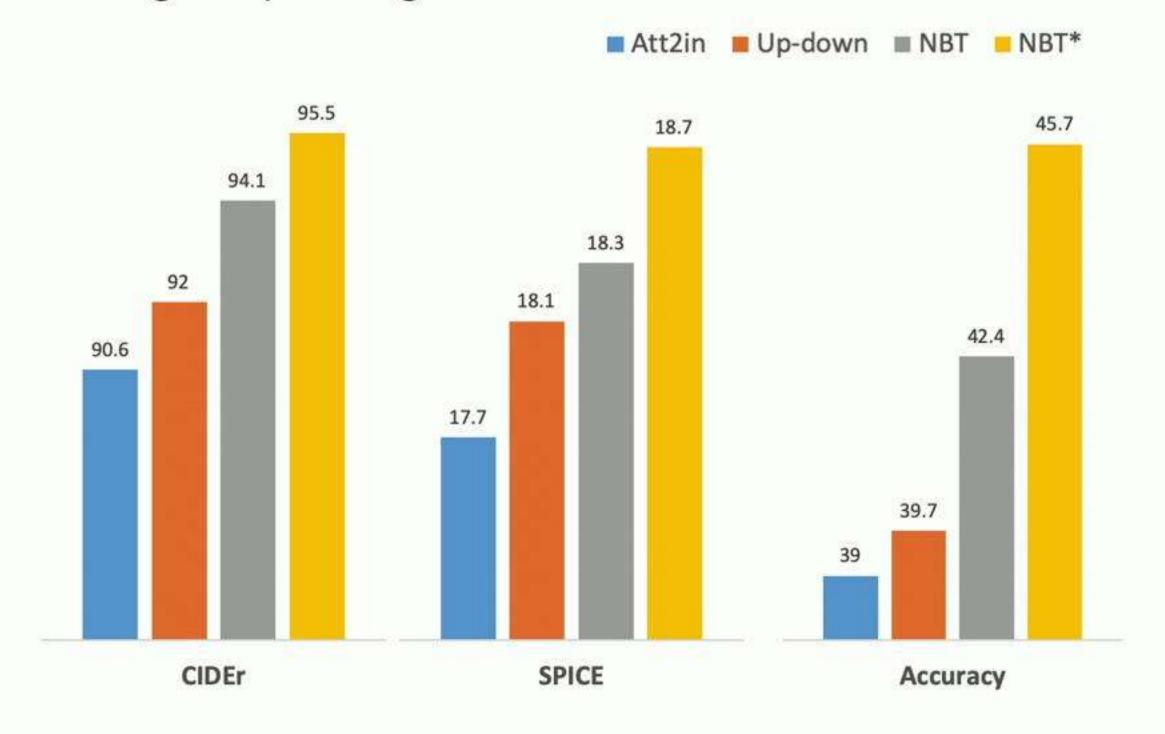
Robust-COCO split

- Distribution of co-occurring objects in train data is different from test data.
- Sufficient examples from each category in train set.
- Novel compositions (pairs) of categories in test set.

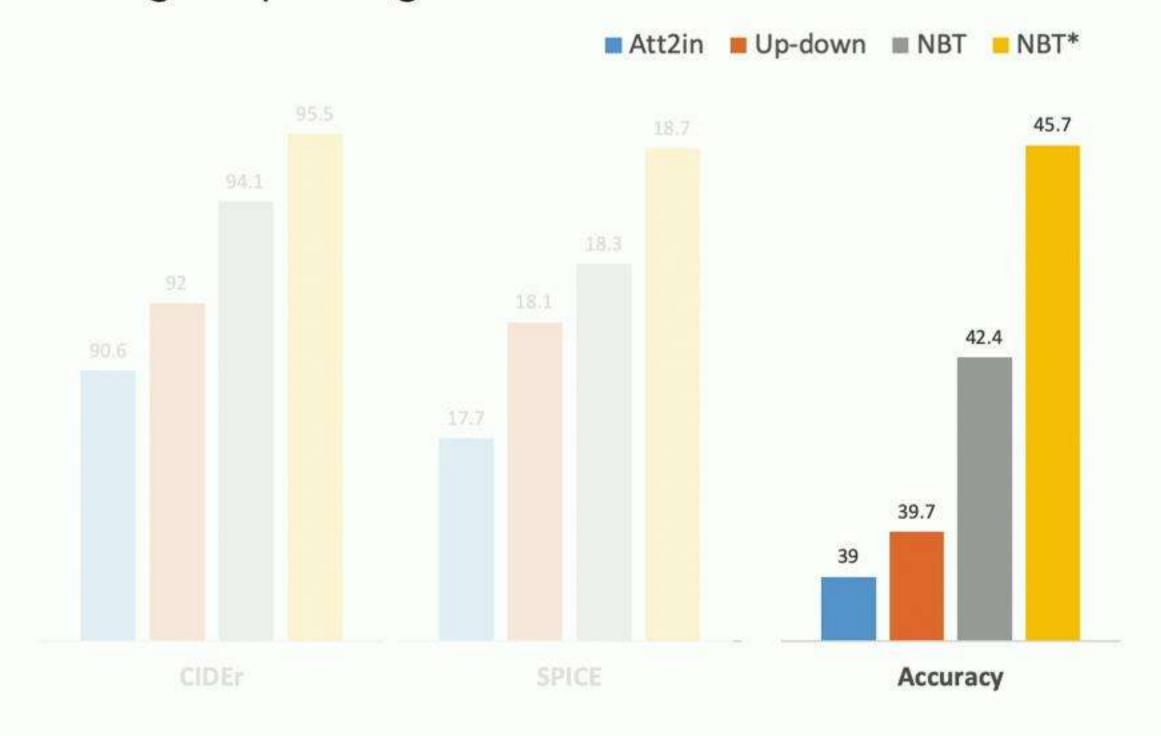
Accuracy (new metric)

- Whether or not a generated caption includes the new object combination.
- 100% accuracy for at least one mention of the novel category pair.

Robust Image Captioning



Robust Image Captioning



Novel Object Captioning [Hendricks et.al.]

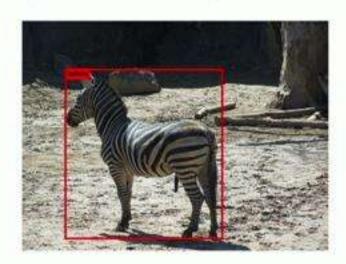
Novel Object Captioning [Hendricks et.al.]

• Describe image with novel objects.

Novel Object Captioning [Hendricks et.al.]

- Describe image with novel objects.
- Excludes all the pairs that contain at least one of the eight objects in COCO

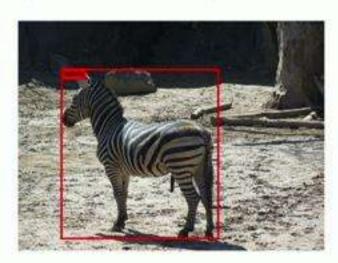
("bottle", "bus", "couch", "microwave", "pizza", "racket", "suitcase", and "zebra")



Novel Object Captioning [Hendricks et.al.]

- Describe image with novel objects.
- Excludes all the pairs that contain at least one of the eight objects in COCO

("bottle", "bus", "couch", "microwave", "pizza", "racket", "suitcase", and "zebra")

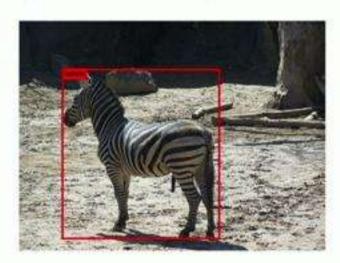


Test set is split into in-domain and out-of-domain subsets.

Novel Object Captioning [Hendricks et.al.]

- Describe image with novel objects.
- Excludes all the pairs that contain at least one of the eight objects in COCO

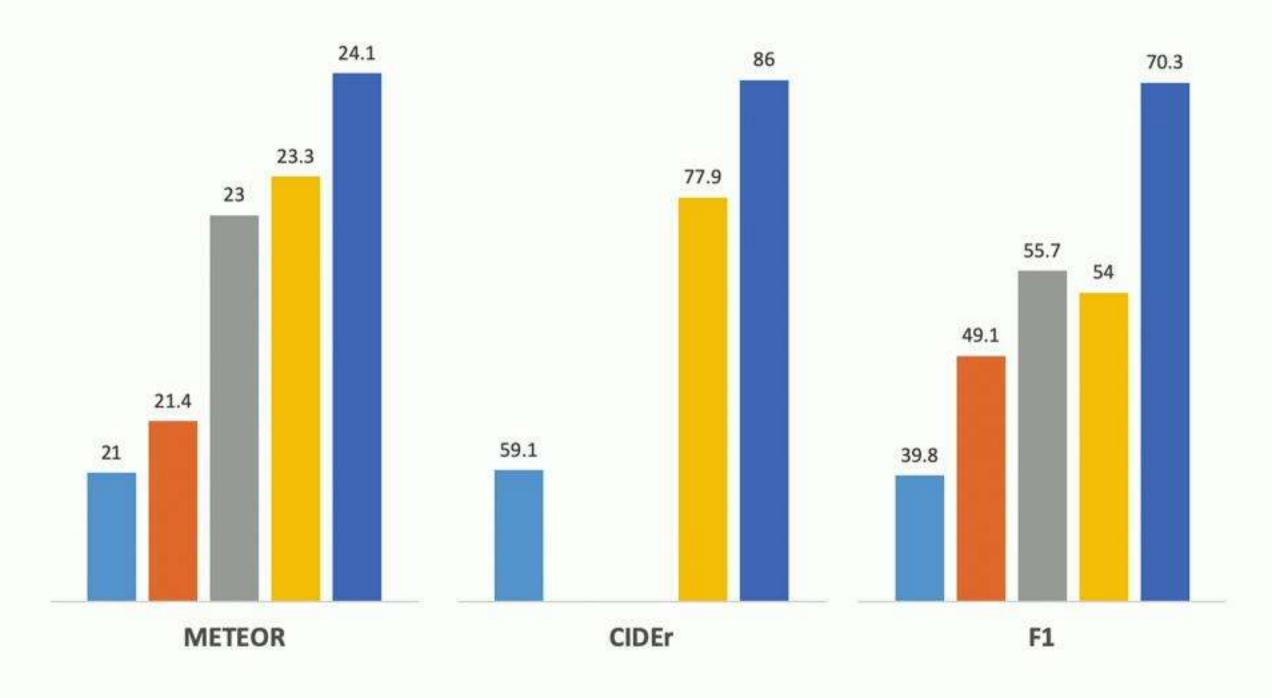
("bottle", "bus", "couch", "microwave", "pizza", "racket", "suitcase", and "zebra")



- Test set is split into in-domain and out-of-domain subsets.
- F1 score (metric)

Checks if the excluded object is correctly mentioned in the generated caption.

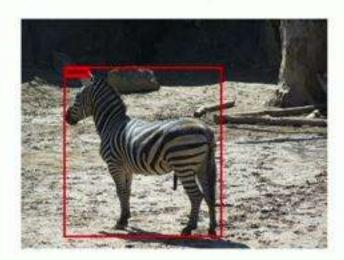
Novel Object Captioning



Novel Object Captioning [Hendricks et.al.]

- Describe image with novel objects.
- Excludes all the pairs that contain at least one of the eight objects in COCO

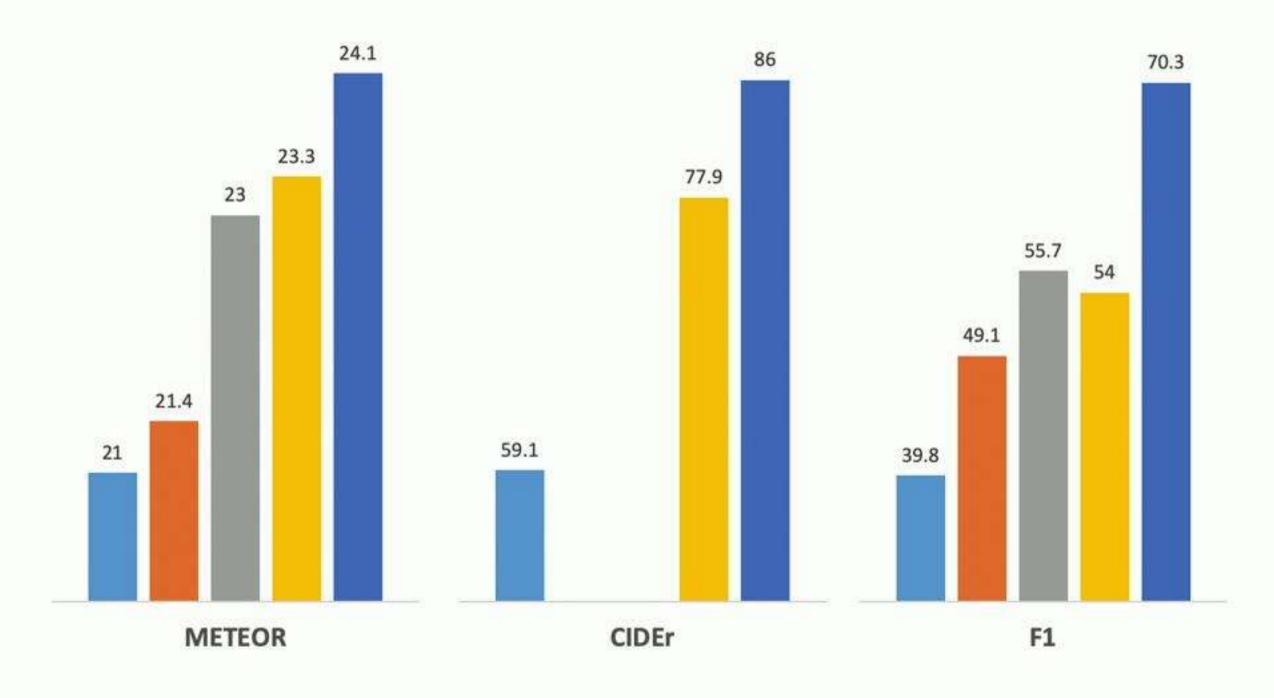
("bottle", "bus", "couch", "microwave", "pizza", "racket", "suitcase", and "zebra")



- Test set is split into in-domain and out-of-domain subsets.
- F1 score (metric)

Checks if the excluded object is correctly mentioned in the generated caption.

Novel Object Captioning



Summary

Two-stage approach for image captioning

- generate hybrid template
- · fills the slots with categories recognized by object detector

Summary

Two-stage approach for image captioning

- generate hybrid template
- · fills the slots with categories recognized by object detector

Limitation

Summary

Two-stage approach for image captioning

- generate hybrid template
- fills the slots with categories recognized by object detector

Limitation

Only ground on noun words which found by object detector

Extend to attributes, actions, OCR etc.

Summary

Two-stage approach for image captioning

- generate hybrid template
- fills the slots with categories recognized by object detector

Limitation

Only ground on noun words which found by object detector

Extend to attributes, actions, OCR etc.

Limited by the image captioning dataset.

Learn from other data sources -- ViLBERT.

This Talk

ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks

VeurIPS 2019

This Talk

ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks

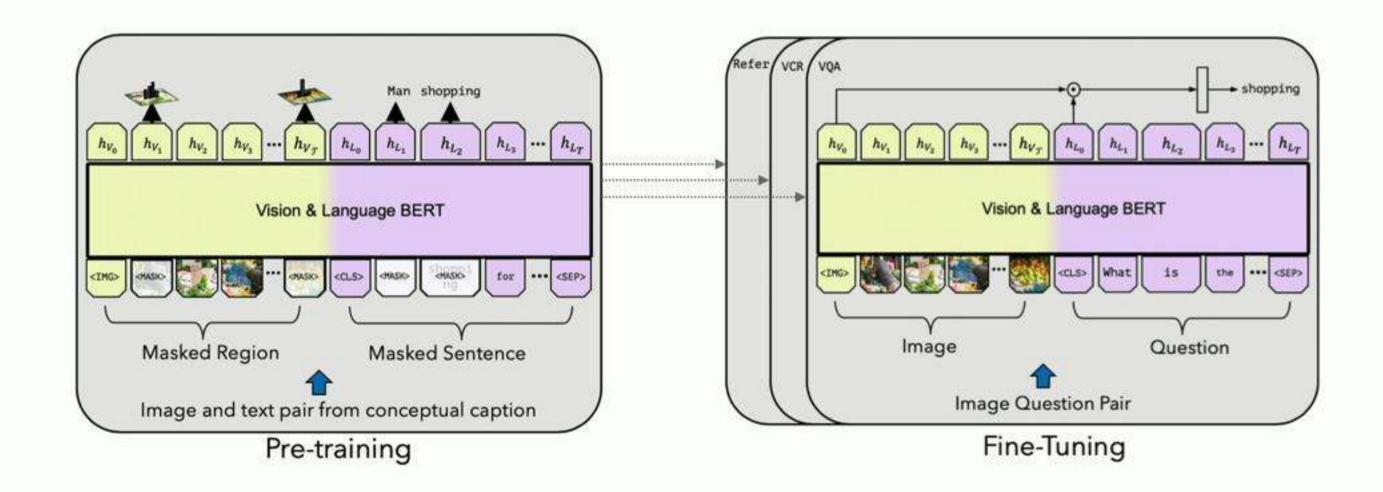
VeurIPS 2019



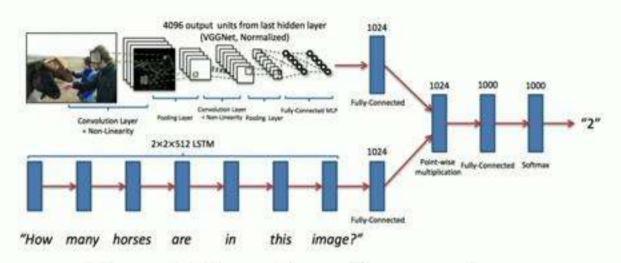
This Talk

ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks

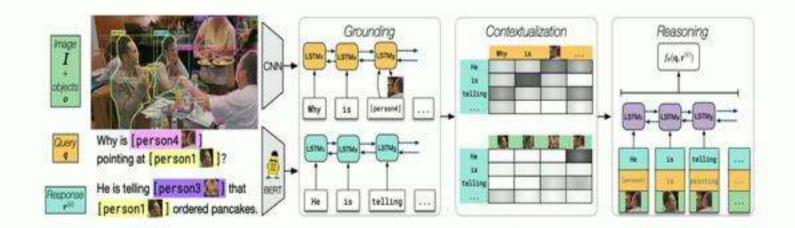
VeurIPS 2019



Vision and Language



Visual Question Answering



Visual Commonsense Reasoning

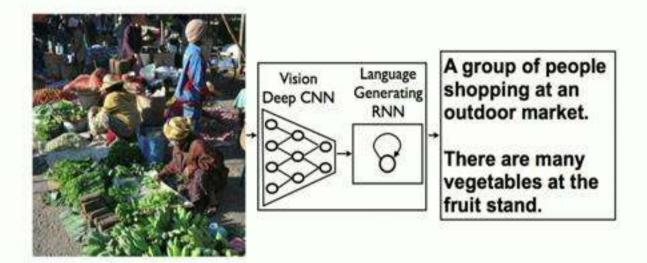
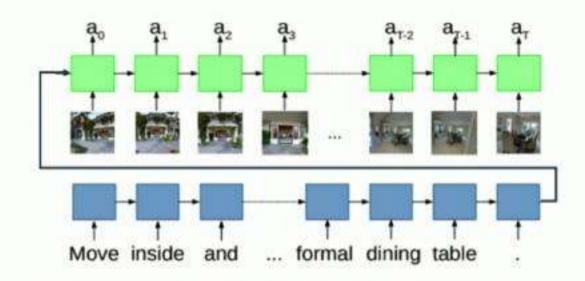
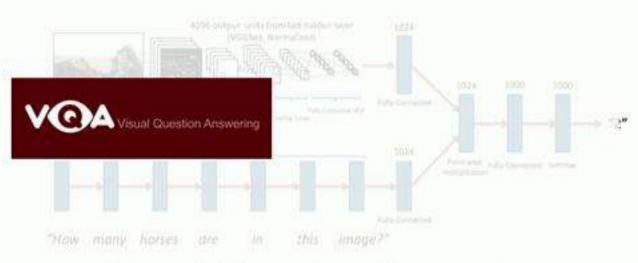


Image Captioning

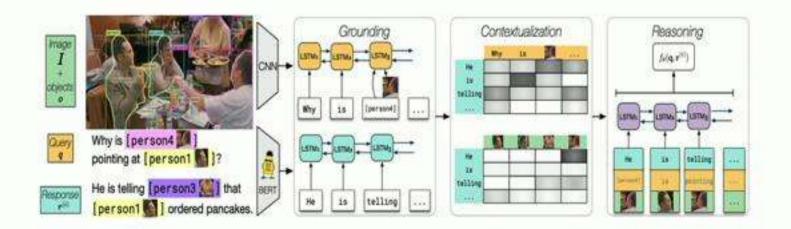


Vision and Language Navigation

Vision and Language



Visual Question Answering



Visual Commonsense Reasoning

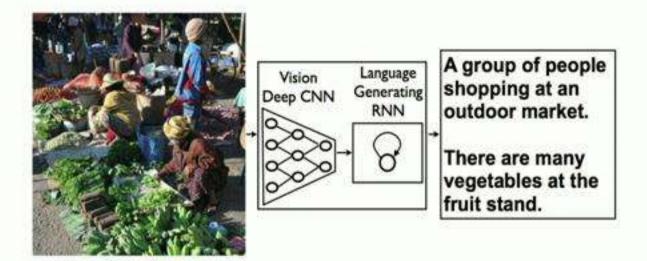
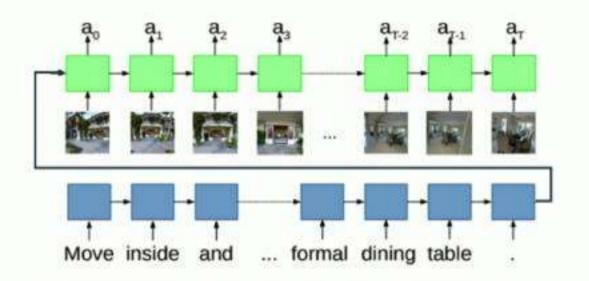
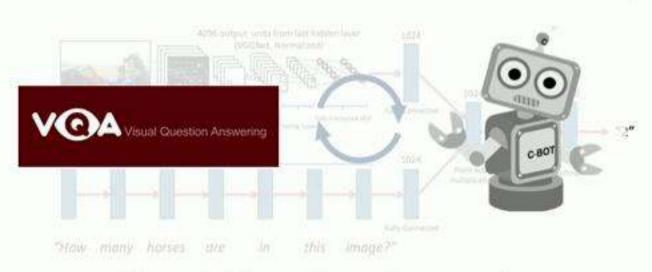


Image Captioning



Vision and Language Navigation

Vision and Language



Visual Question Answering

Visual Commonsense Reasoning

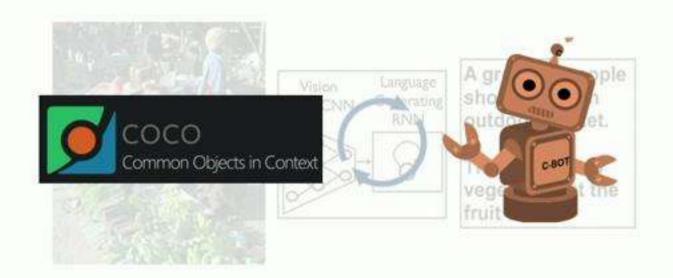
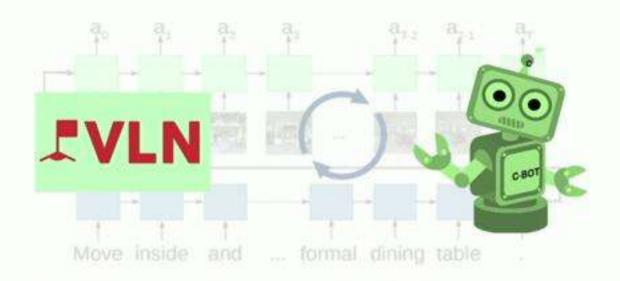
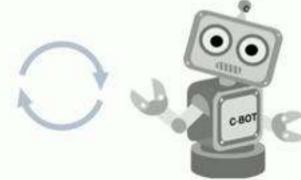


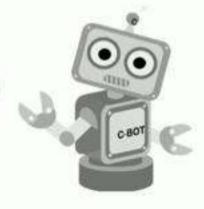
Image Captioning



Vision and Language Navigation

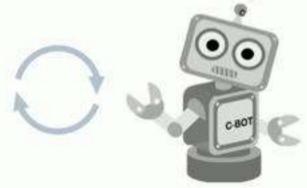


57

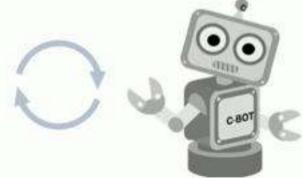




57



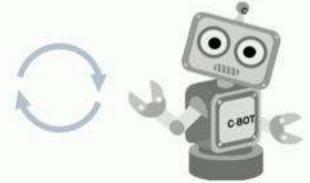
Q: What type of plant is this?



Q: What type of plant is this?

A: Banana

C: A bunch of red and yellow flowers on a branch.



Q: What type of plant is this?

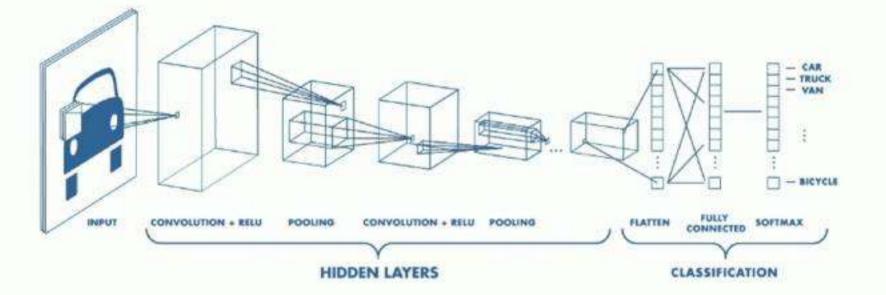
A: Banana

C: A bunch of red and yellow flowers on a branch.

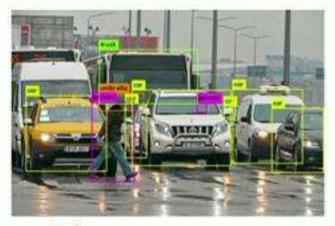
Common model for visual grounding and leverage them on a wide array of vision-and-language tasks

58

[Deng et.al 2009, Devlin 2018]

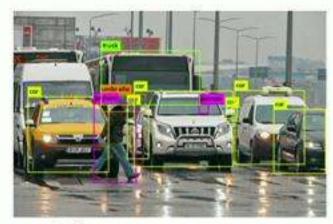


58



Object Detection

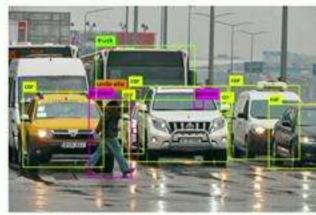
[Deng et.al 2009, Devlin 2018]

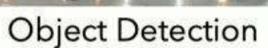


Object Detection

Semantic Segmentation

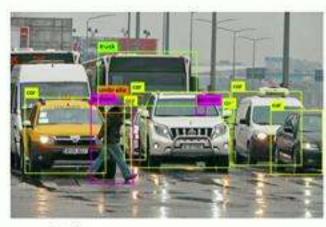
58





Semantic Segmentation

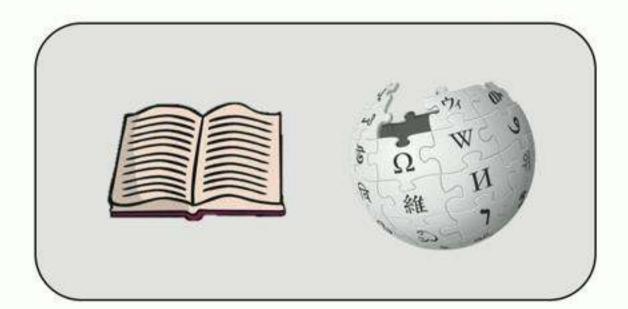
Pose Estimation

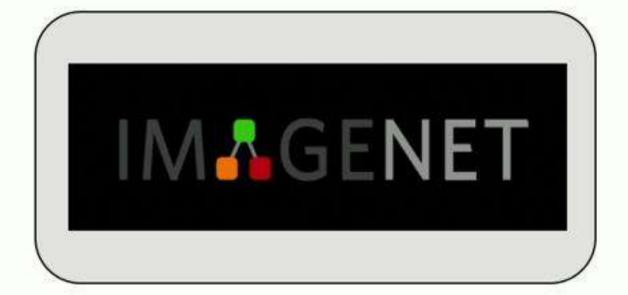


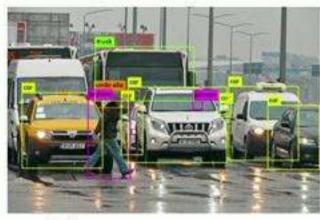
Object Detection

Semantic Segmentation

Pose Estimation



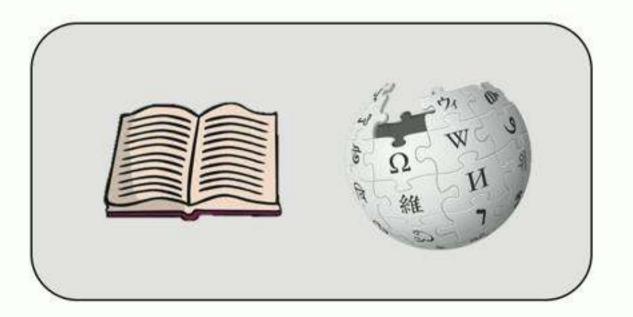


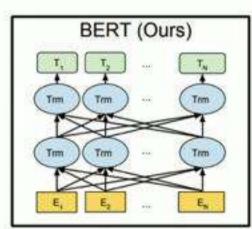


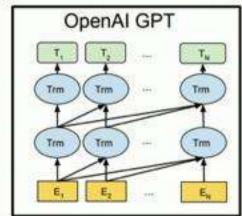
Object Detection

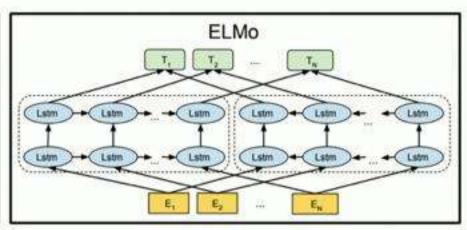
Semantic Segmentation

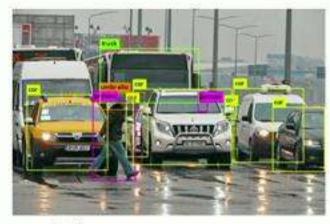
Pose Estimation







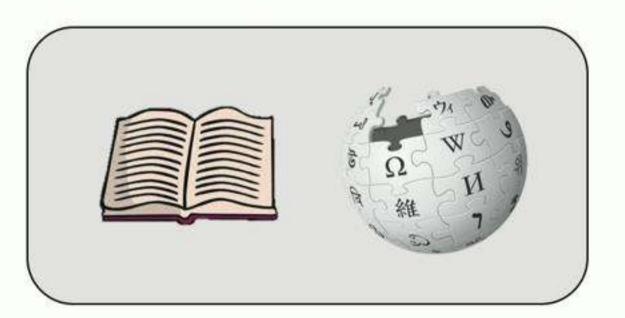




Object Detection

Semantic Segmentation

Pose Estimation



Passage Segment

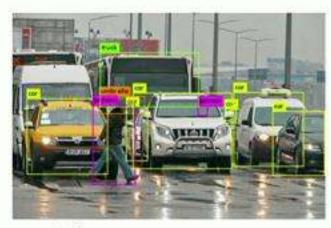
...The European Parliament and the Council of the European Union have powers of amendment and veto during the legislative process...

Question

Which governing bodies have veto power?

Question Answering

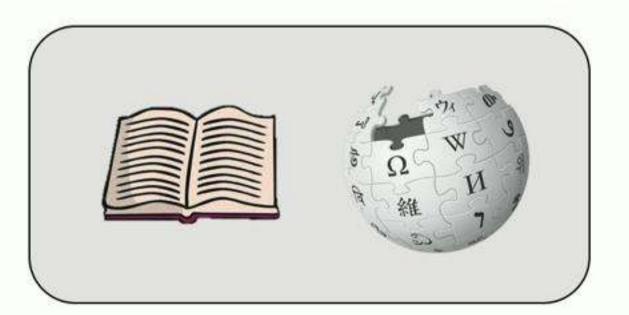
[Deng et.al 2009, Devlin 2018]



Object Detection

Semantic Segmentation

Pose Estimation

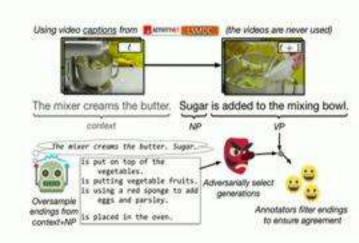


Passage Segment

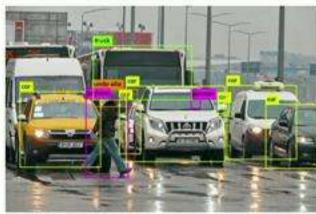
... The European Parliament and the Council of the European Union have powers of amendment and veto during the legislative process...

Question

Which governing bodies have veto power?



Question Answering Commonsense Inference



Object Detection

Semantic Segmentation

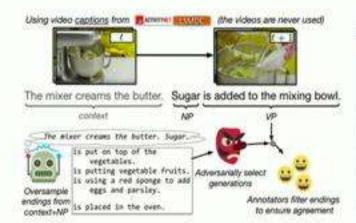
Pose Estimation

Passage Segment

... The European Parliament and the Council of the European Union have powers of amendment and veto during the legislative process...

Question

Which governing bodies have veto power?



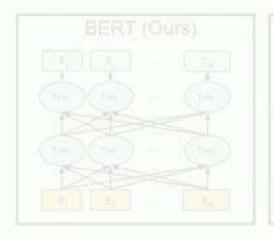
Sentiment	Tweets
Negative	@united is the worst. Nonrefundable First class tickets? Oh because when you select Global/FC their system auto selects oconomy w/upgrade.
	Queited I will not be flying you again
Neutral	WirginAmerica my drivers license is expered by a little over a month. Can I fly Friday morning using my expired license?
	@VirginAmerica any plans to start flying direct from DAL to LAS?
Positive	@VirginAmerica done! Thank you for the quick response, apparently faster than sitting on hold;)
	@united I appreciate your efforts getting me home!

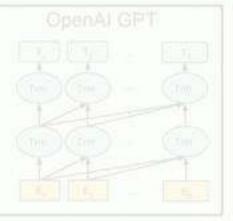
Question Answering Commonsense Inference Sentiment Analysis

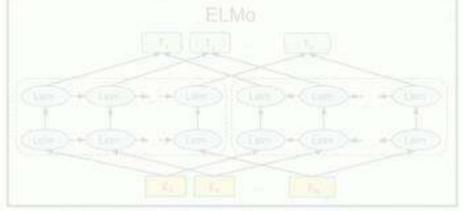
Alt-text: Musician Justin Timberlake performs at the 2017 Pilgrimage Music & Cultural Festival on September 23, 2017 in Franklin, Tennessee.

Conceptual Captions: pop artist performs at the festival in a city.

HIDDEN LAYERS CLASSIFICATION







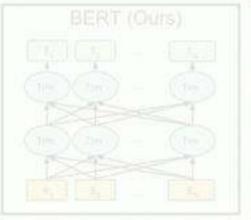
Alt-text: Musician Justin Timberlake performs at the 2017 Pilgrimage Music & Cultural Festival on September 23, 2017 in Franklin, Tennessee.

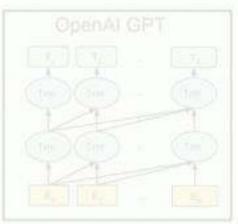
Conceptual Captions: pop artist performs at the festival in a city.

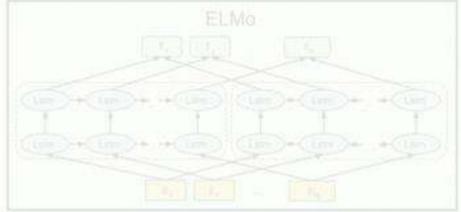
Aligned image-caption pairs.

HIDDIN LAYERS

CLARENCE MON







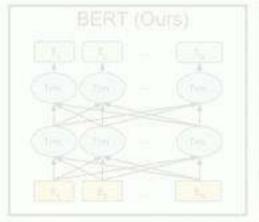
Alt-text: Musician Justin Timberlake performs at the 2017 Pilgrimage Music & Cultural Festival on September 23, 2017 in Franklin, Tennessee.

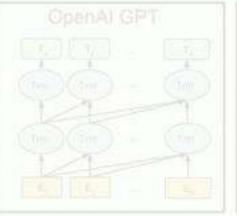
Conceptual Captions: pop artist performs at the festival in a city.

Aligned image-caption pairs.

 Large Scale. (3.3 million)

Large Scale. (3.3 million)





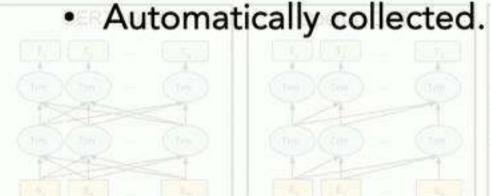
Alt-text: Musician Justin Timberlake performs at the 2017 Pilgrimage Music & Cultural Festival on September 23, 2017 in Franklin, Tennessee.

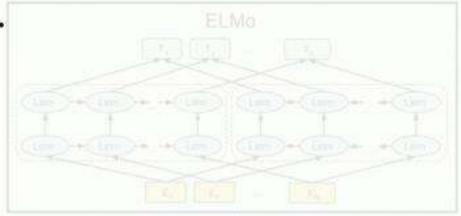
Conceptual Captions: pop artist

performs at the festival in a city.

Aligned image-caption pairs.

Large Scale. (3.3 million)

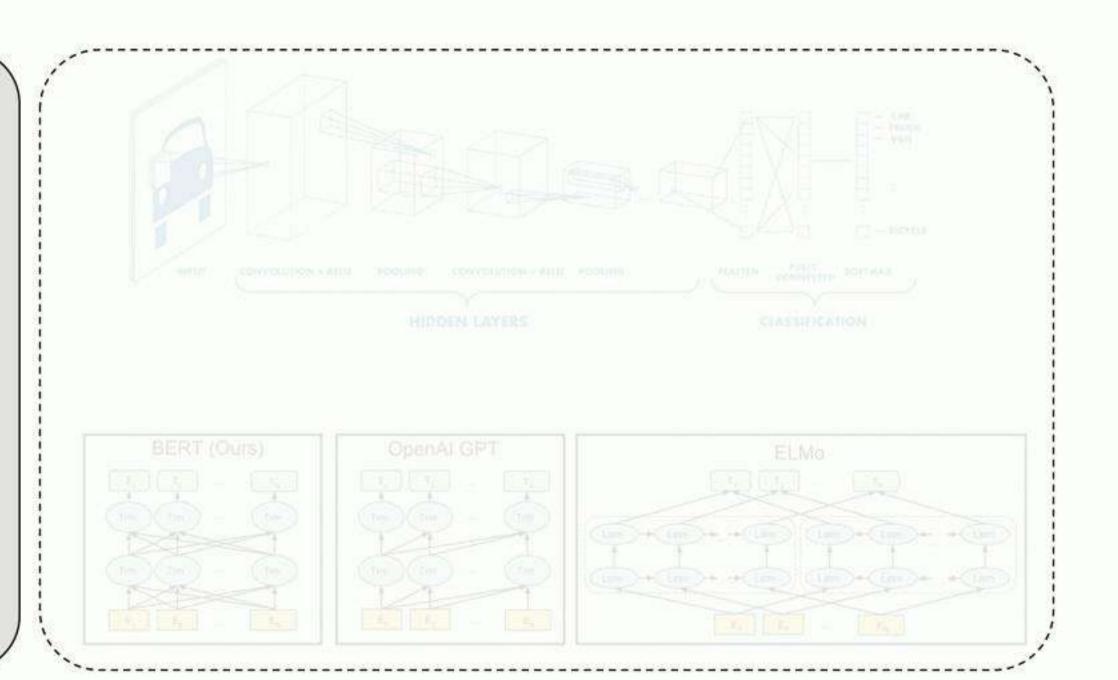




BERT

Alt-text: Musician Justin Timberlake performs at the 2017 Pilgrimage Music & Cultural Festival on September 23, 2017 in Franklin, Tennessee.

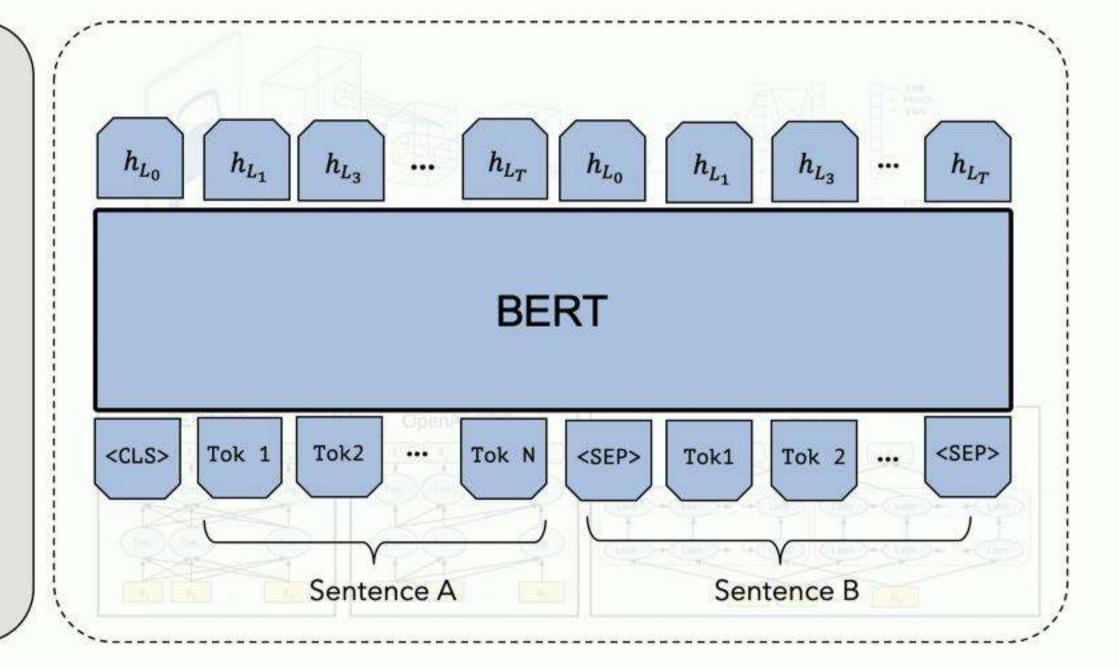
Conceptual Captions: pop artist performs at the festival in a city.



BERT

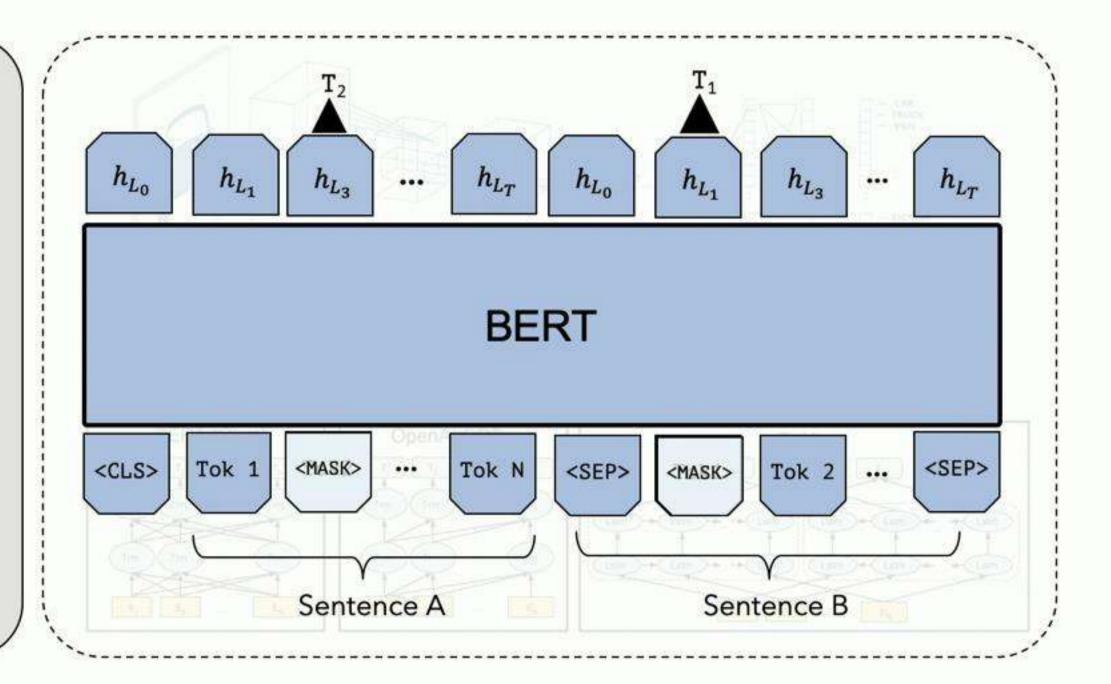
Alt-text: Musician Justin Timberlake performs at the 2017 Pilgrimage Music & Cultural Festival on September 23, 2017 in Franklin, Tennessee.

Conceptual Captions: pop artist performs at the festival in a city.



Alt-text: Musician Justin Timberlake performs at the 2017 Pilgrimage Music & Cultural Festival on September 23, 2017 in Franklin, Tennessee.

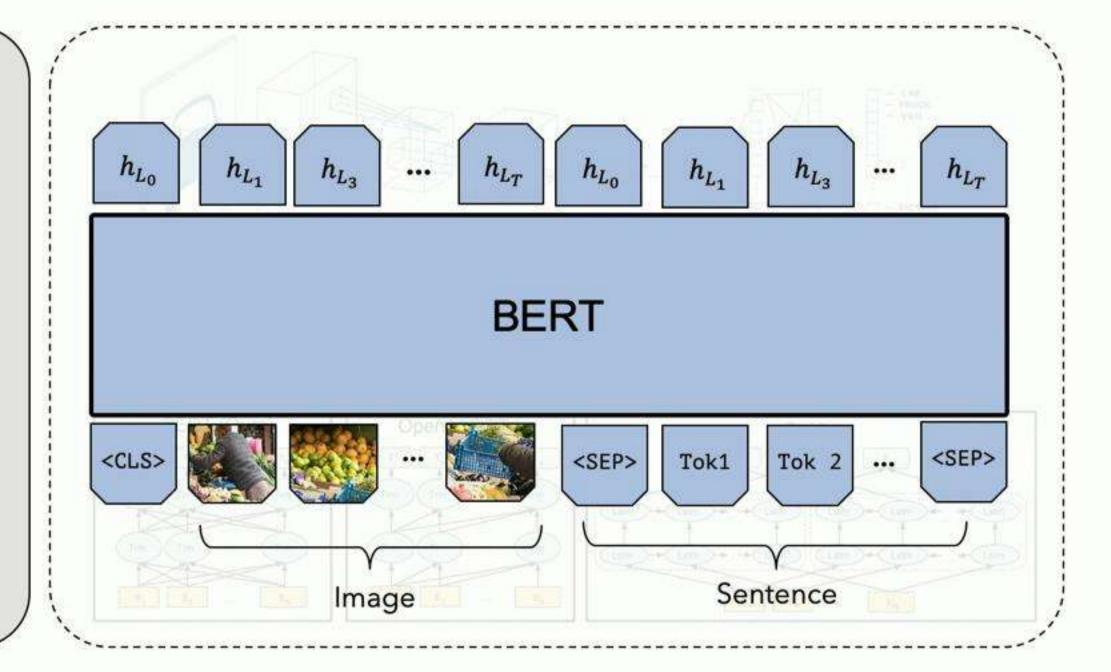
Conceptual Captions: pop artist performs at the festival in a city.



Single-Stream model

Alt-text: Musician Justin Timberlake performs at the 2017 Pilgrimage Music & Cultural Festival on September 23, 2017 in Franklin, Tennessee.

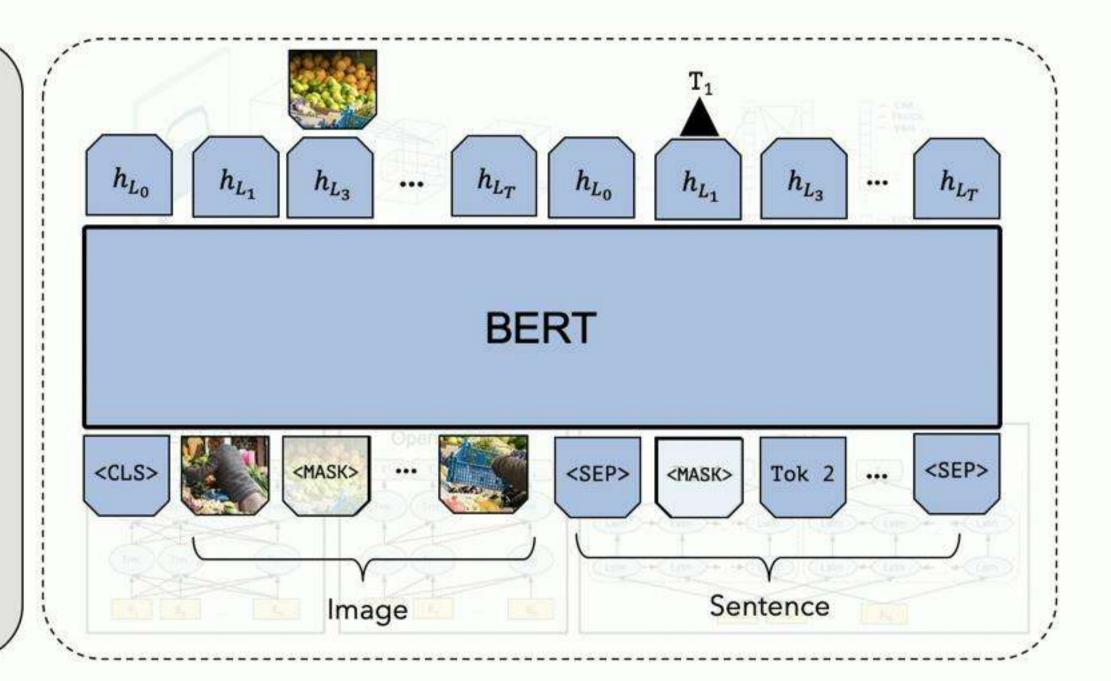
Conceptual Captions: pop artist performs at the festival in a city.



Single-Stream model

Alt-text: Musician Justin Timberlake performs at the 2017 Pilgrimage Music & Cultural Festival on September 23, 2017 in Franklin, Tennessee.

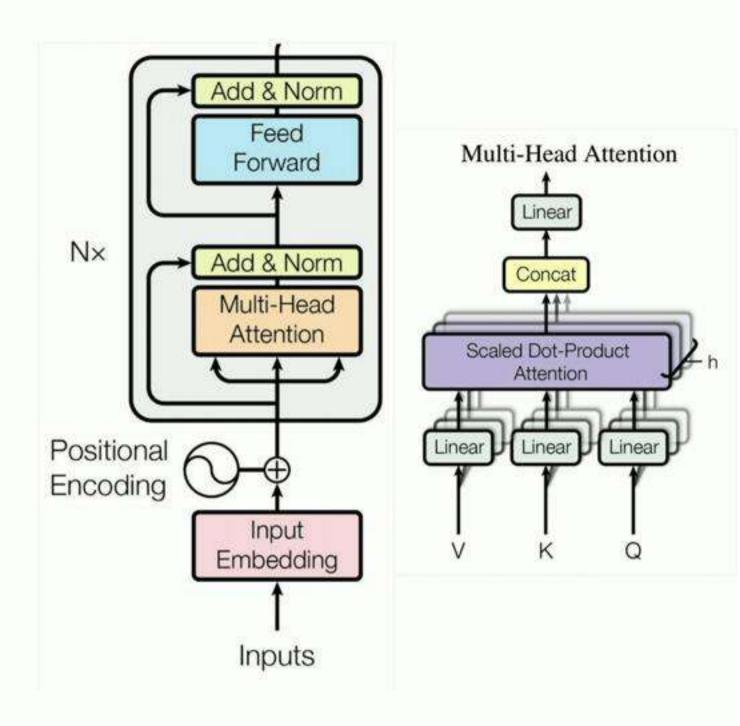
Conceptual Captions: pop artist performs at the festival in a city.



Conceptual Caption Dataset

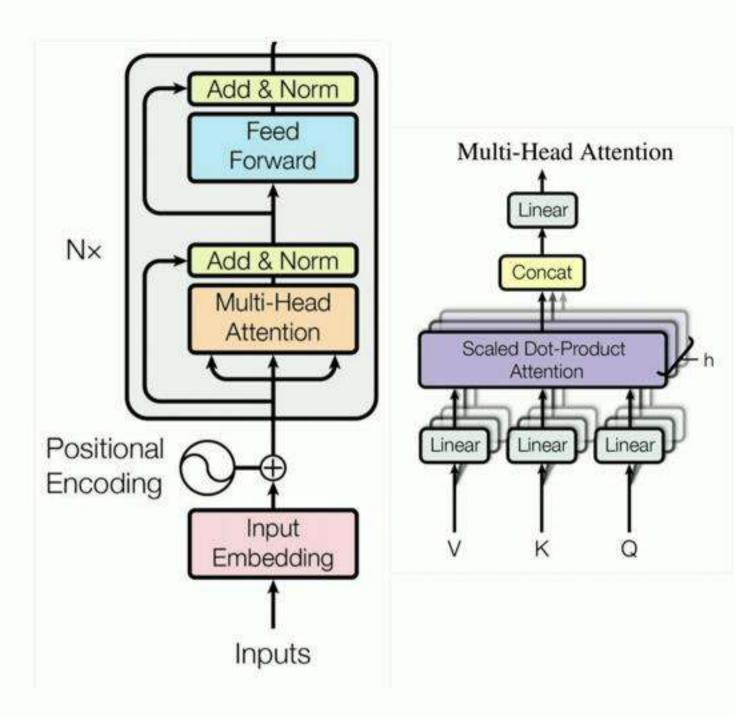
63

Transformer encoder

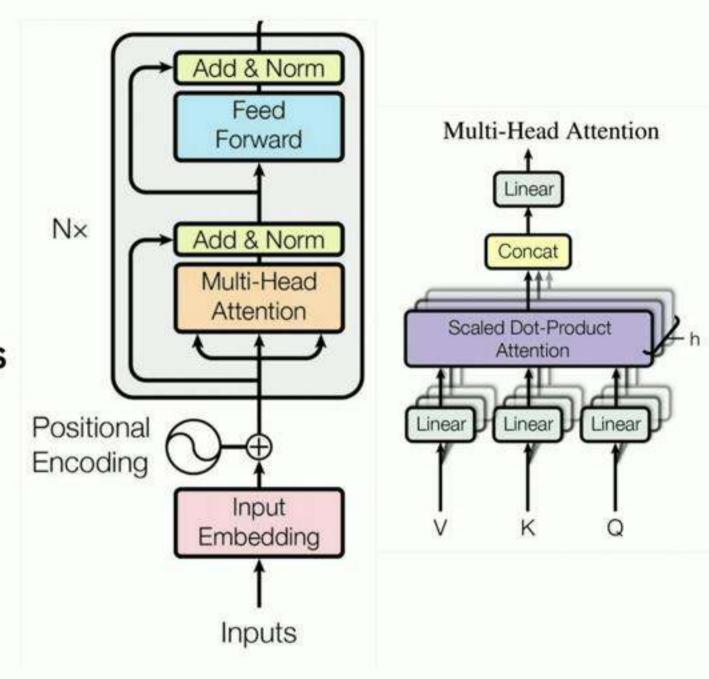


4

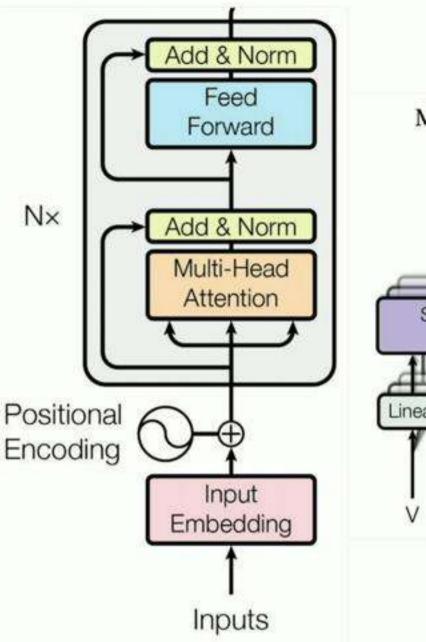
- Multi-headed self attention
 - Model context

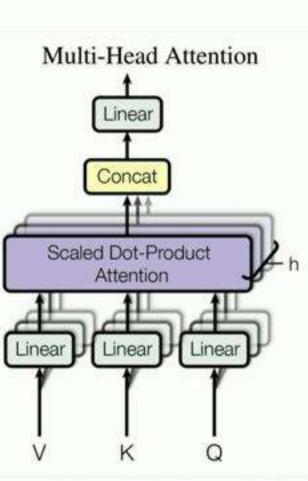


- Multi-headed self attention
 - Model context
- Feed-forward layers
 - o Computes non-linear hierarchical features

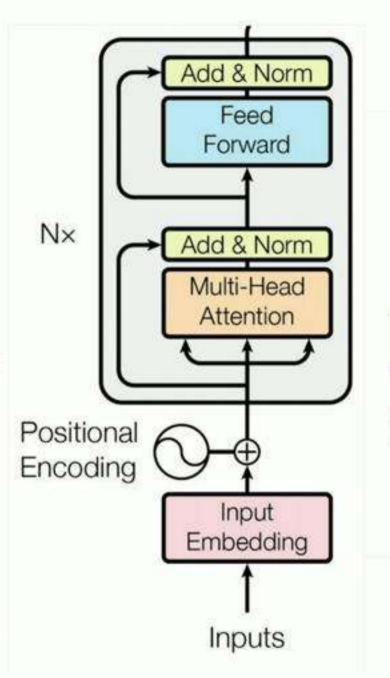


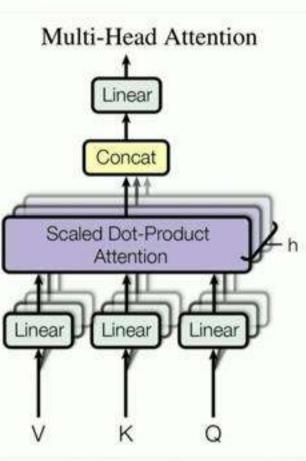
- Multi-headed self attention
 - Model context
- Feed-forward layers
 - Computes non-linear hierarchical features
- Layer norm and residuals
 - Makes training deep networks healthy





- Multi-headed self attention
 - Model context
- Feed-forward layers
 - Computes non-linear hierarchical features
- Layer norm and residuals
 - Makes training deep networks healthy
- Positional embeddings
 - Allows model to learn relative positioning





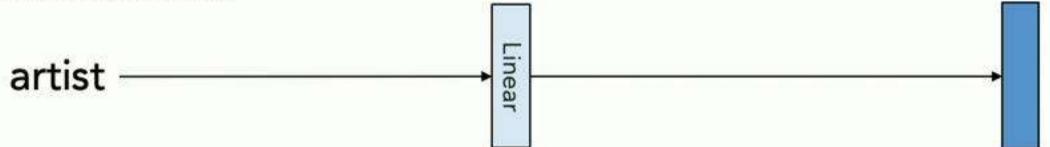
Problem: Different modalities may requires different level of abstractions.

Problem: Different modalities may requires different level of abstractions.

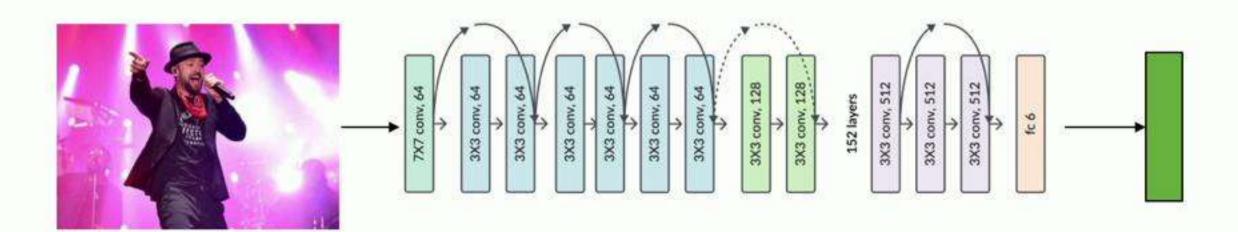
• Linguistic stream:

Problem: Different modalities may requires different level of abstractions.

Linguistic stream:

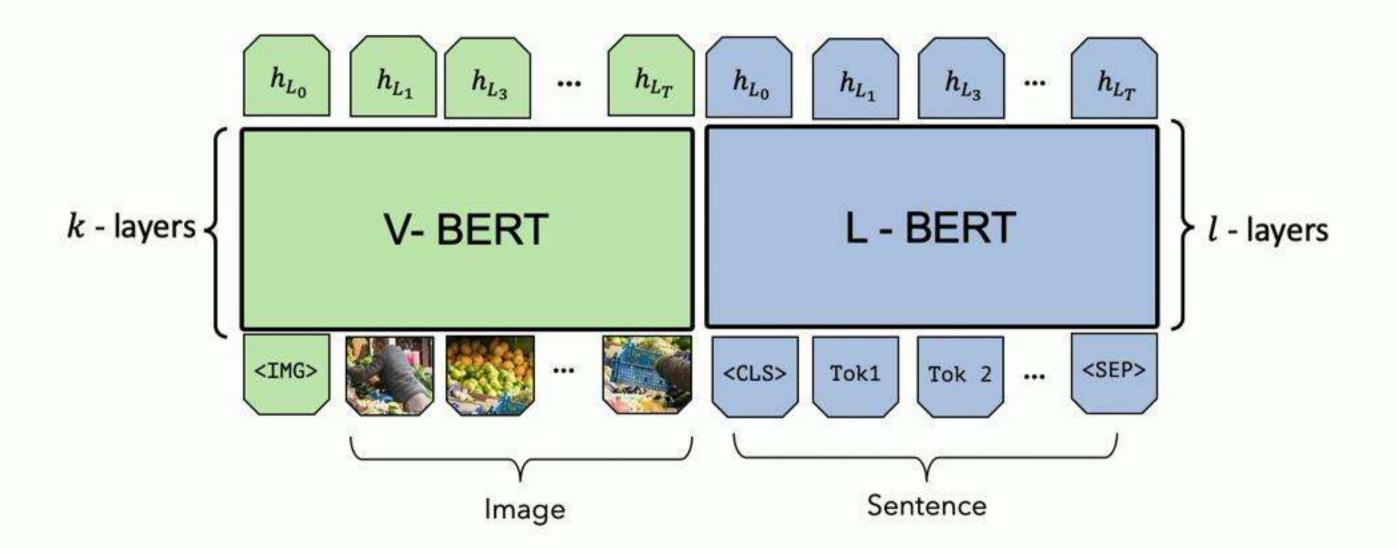


Visual stream:



Solution: two-stream model which process visual and linguistic separately.

Solution: two-stream model which process visual and linguistic separately.



Problem: how to fuse two different modality?

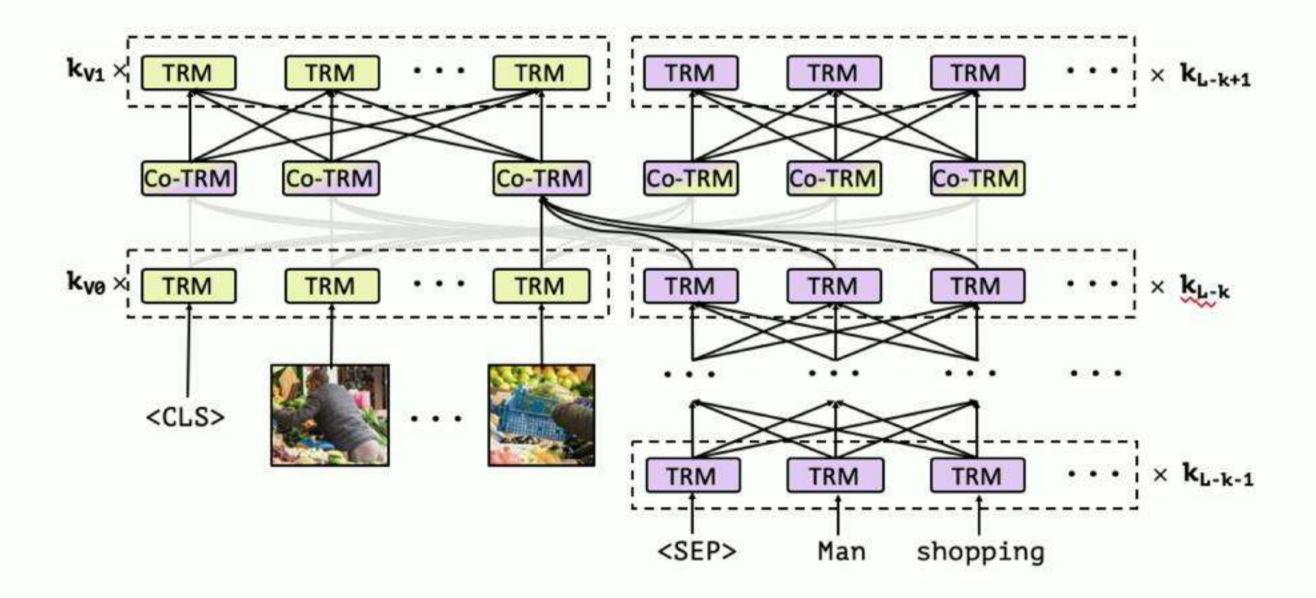
Problem: how to fuse two different modality?

Solution: use co-attention [Lu.et.al 2016] to fuse information between

different source.

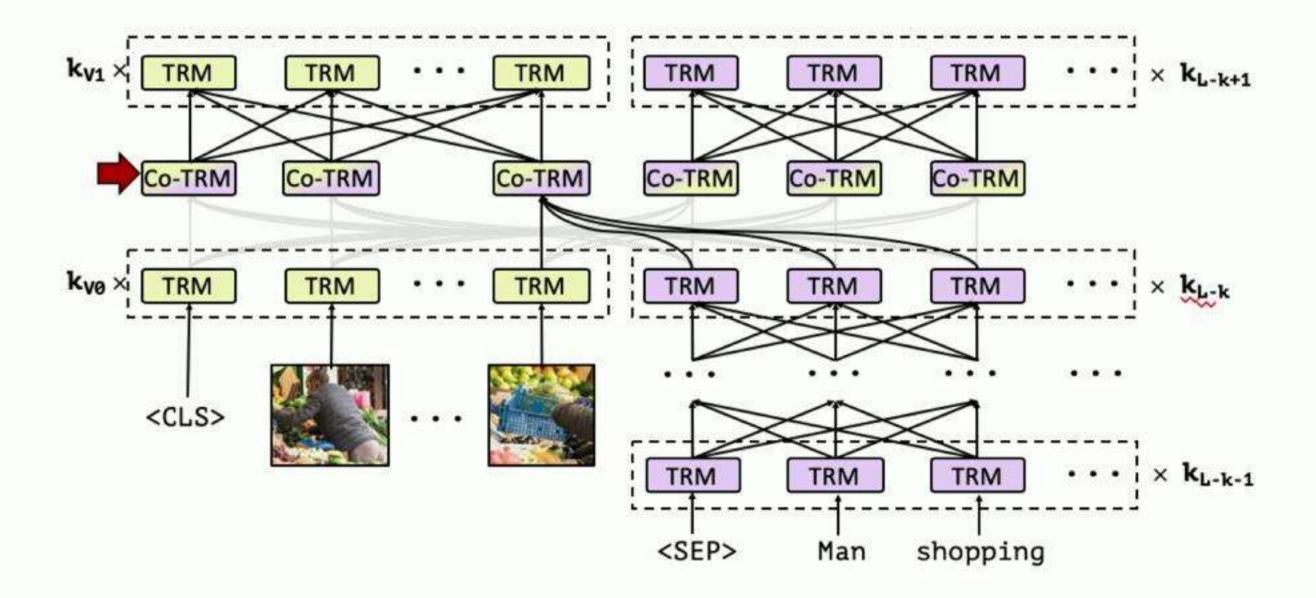
Problem: how to fuse two different modality?

Solution: use **co-attention** [Lu.et.al 2016] to fuse information between different source.

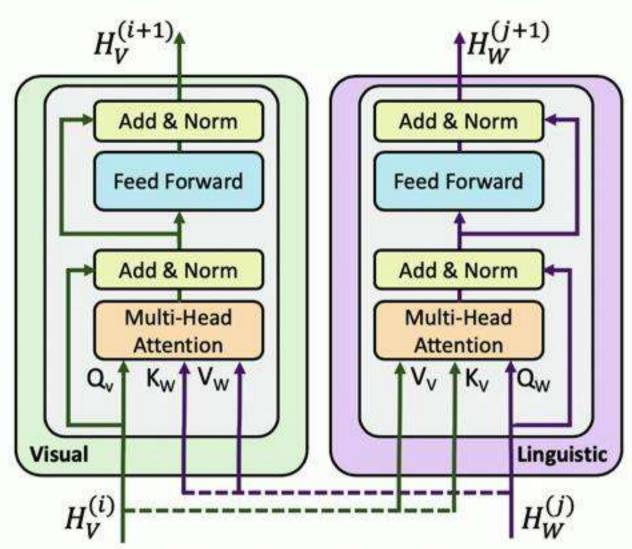


Problem: how to fuse two different modality?

Solution: use **co-attention** [Lu.et.al 2016] to fuse information between different source.



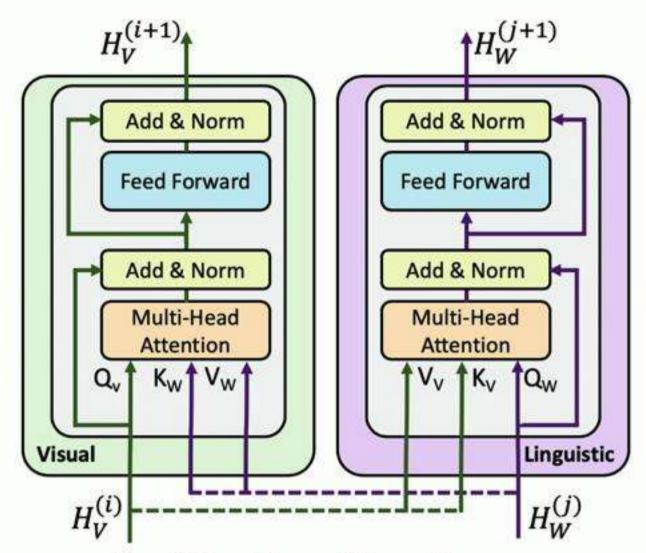
Co-Attentional Transformer



Co-Attentional Transformer

Co-Attentional Transformer

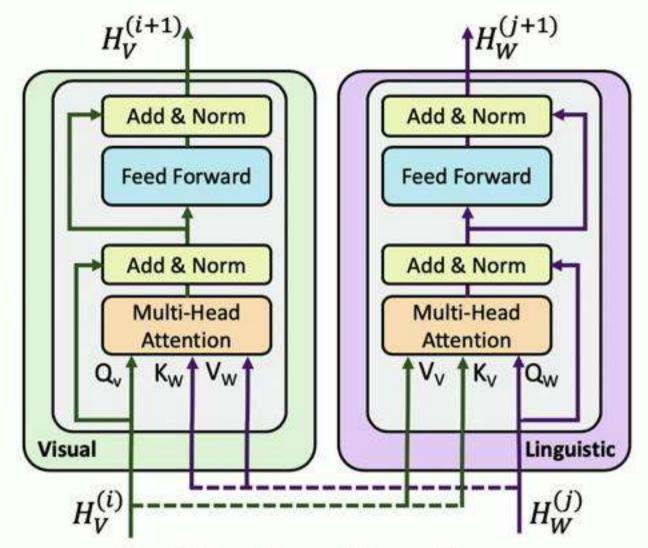
Transformer encoder with query from another modality.



Co-Attentional Transformer

Co-Attentional Transformer

- Transformer encoder with query from another modality.
- Aggregate information with residual add operation.



Co-Attentional Transformer

Masked multi-modal modelling

Masked multi-modal modelling

Follows masked LM in BERT.

Masked multi-modal modelling

- Follows masked LM in BERT.
- 15% of the words or image regions to predict.

Masked multi-modal modelling

- Follows masked LM in BERT.
- 15% of the words or image regions to predict.
- Linguistic stream:
 - o 80% of the time, replace with [MASK].
 - 10% of the time, replace random word.
 - o 10% of the time, keep same.

Pre-training Objective

Masked multi-modal modelling

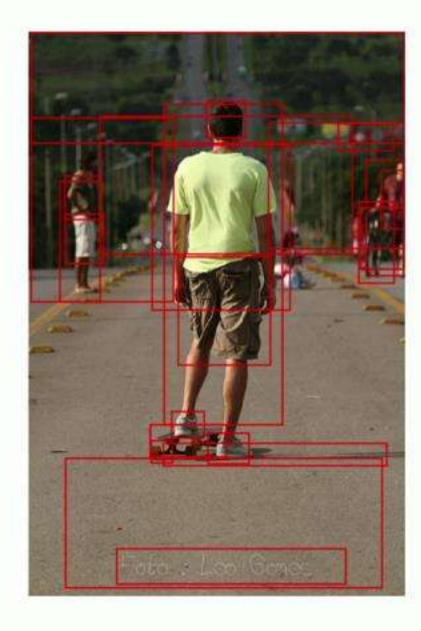
- Follows masked LM in BERT.
- 15% of the words or image regions to predict.
- Linguistic stream:
 - o 80% of the time, replace with [MASK].
 - 10% of the time, replace random word.
 - o 10% of the time, keep same.
- Visual stream:
 - 80% of the time, replace with zero vector.

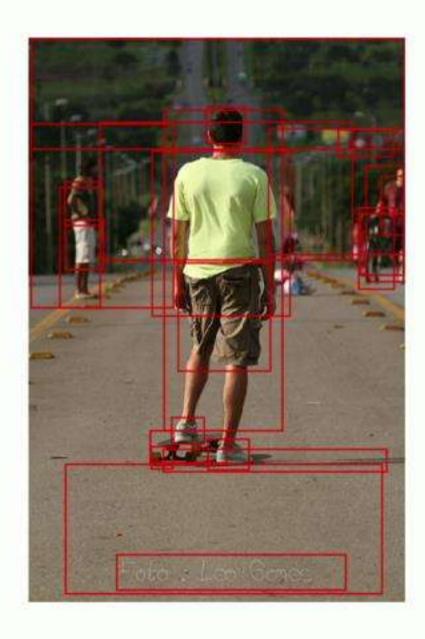
Pre-training Objective

Masked multi-modal modelling

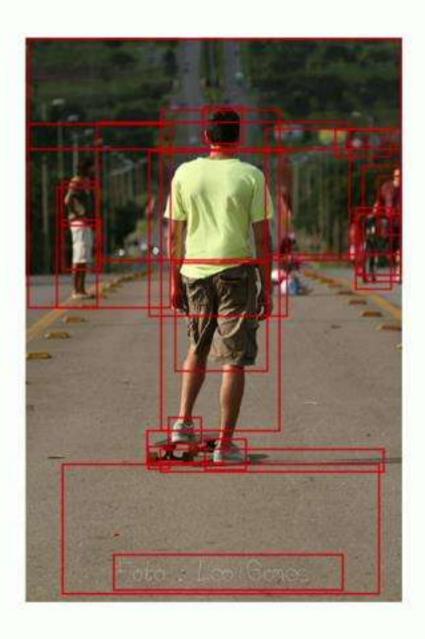
- Follows masked LM in BERT.
- 15% of the words or image regions to predict.
- Linguistic stream:
 - 80% of the time, replace with [MASK].
 - 10% of the time, replace random word.
 - o 10% of the time, keep same.
- Visual stream:
 - 80% of the time, replace with zero vector.

Multi-modal alignment prediction

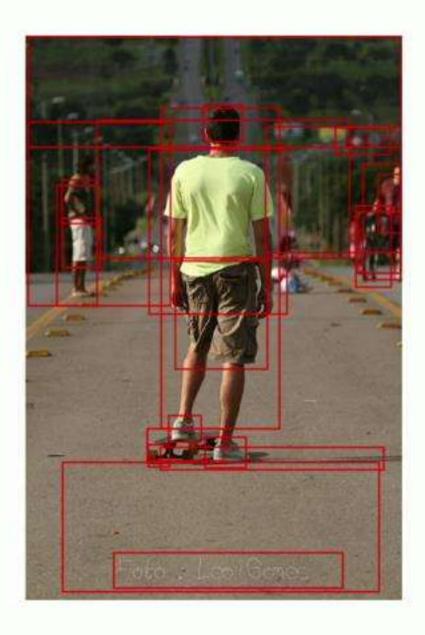




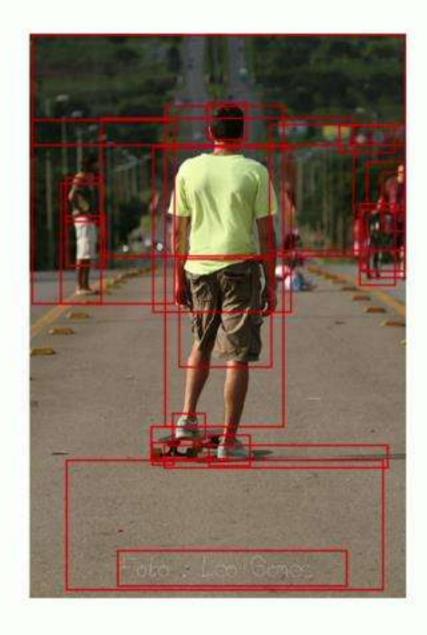
Faster R-CNN with Res101 backbone.



- Faster R-CNN with Res101 backbone.
- Trained on Visual Genome dataset.

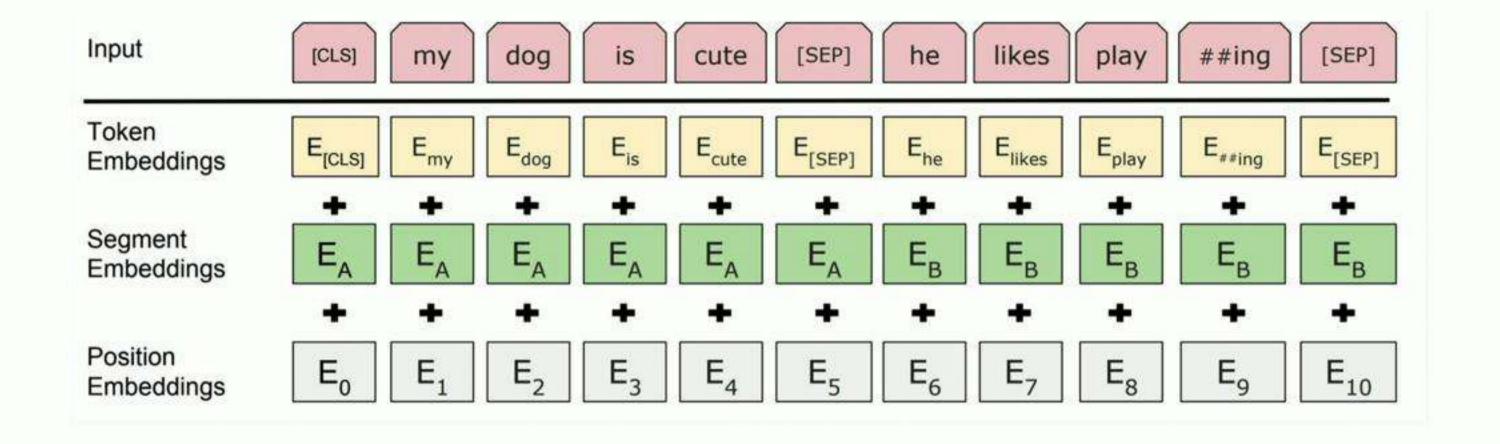


- Faster R-CNN with Res101 backbone.
- Trained on Visual Genome dataset.
- 1600 detection classes.

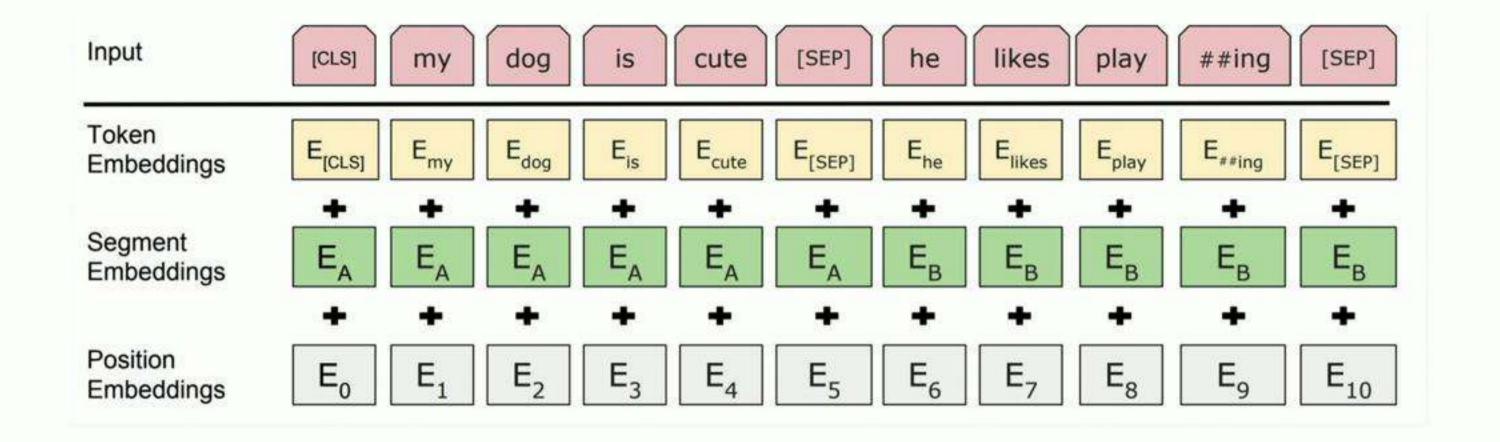


- Faster R-CNN with Res101 backbone.
- Trained on Visual Genome dataset.
- 1600 detection classes.
- Sum of region embeddings + location embeddings

Text Representation

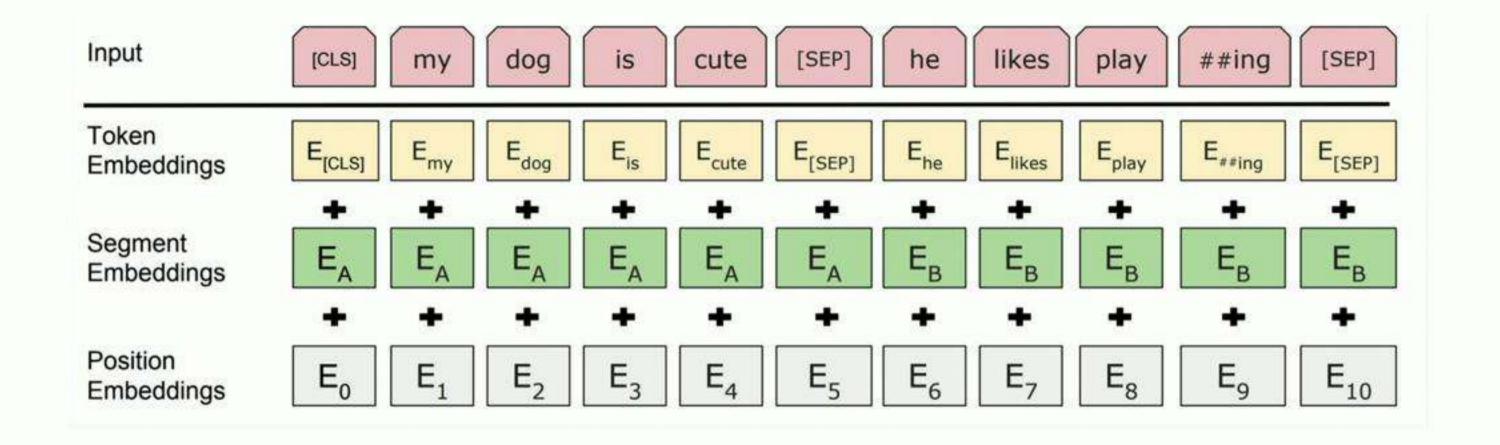


Text Representation



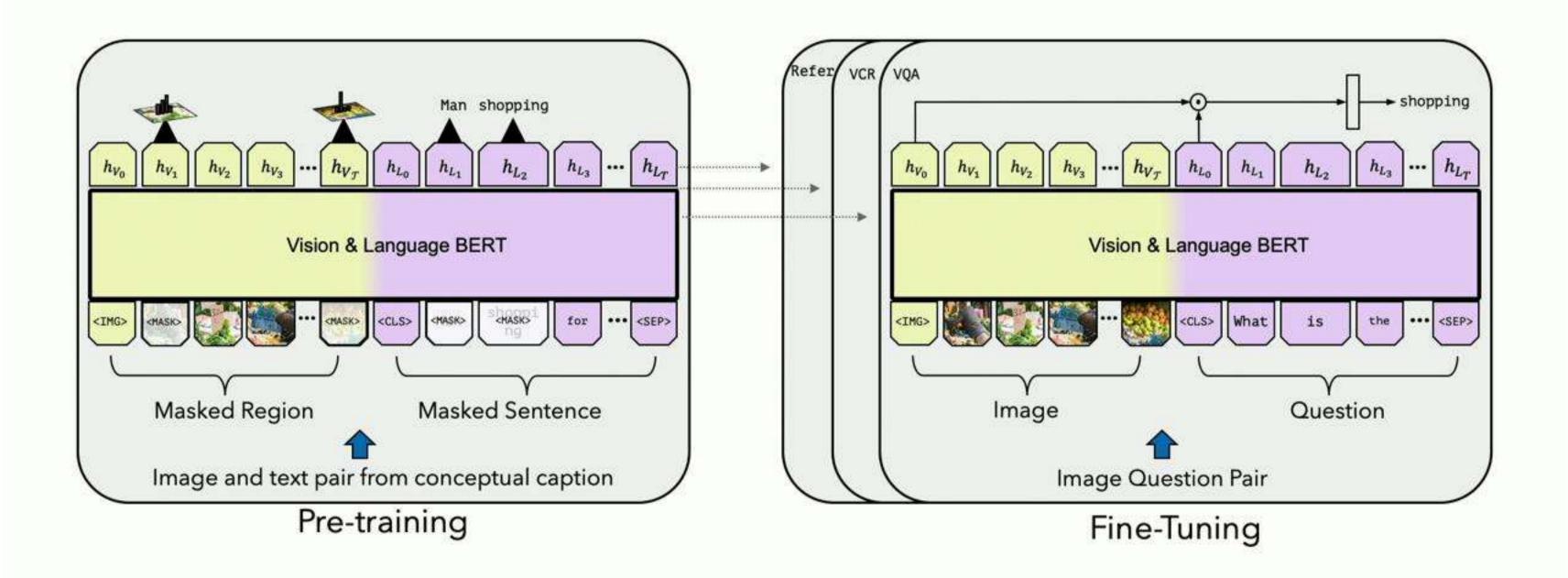
Use 30,000 WordPiece vocabulary on input.

Text Representation



- Use 30,000 WordPiece vocabulary on input.
- Each token is sum of three embeddings

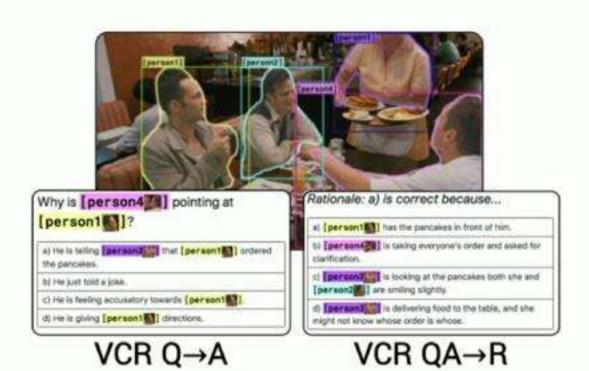
Fine-tuning Procedure



VQA

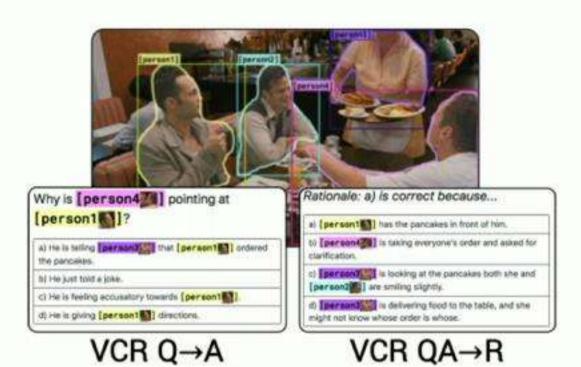
VQA

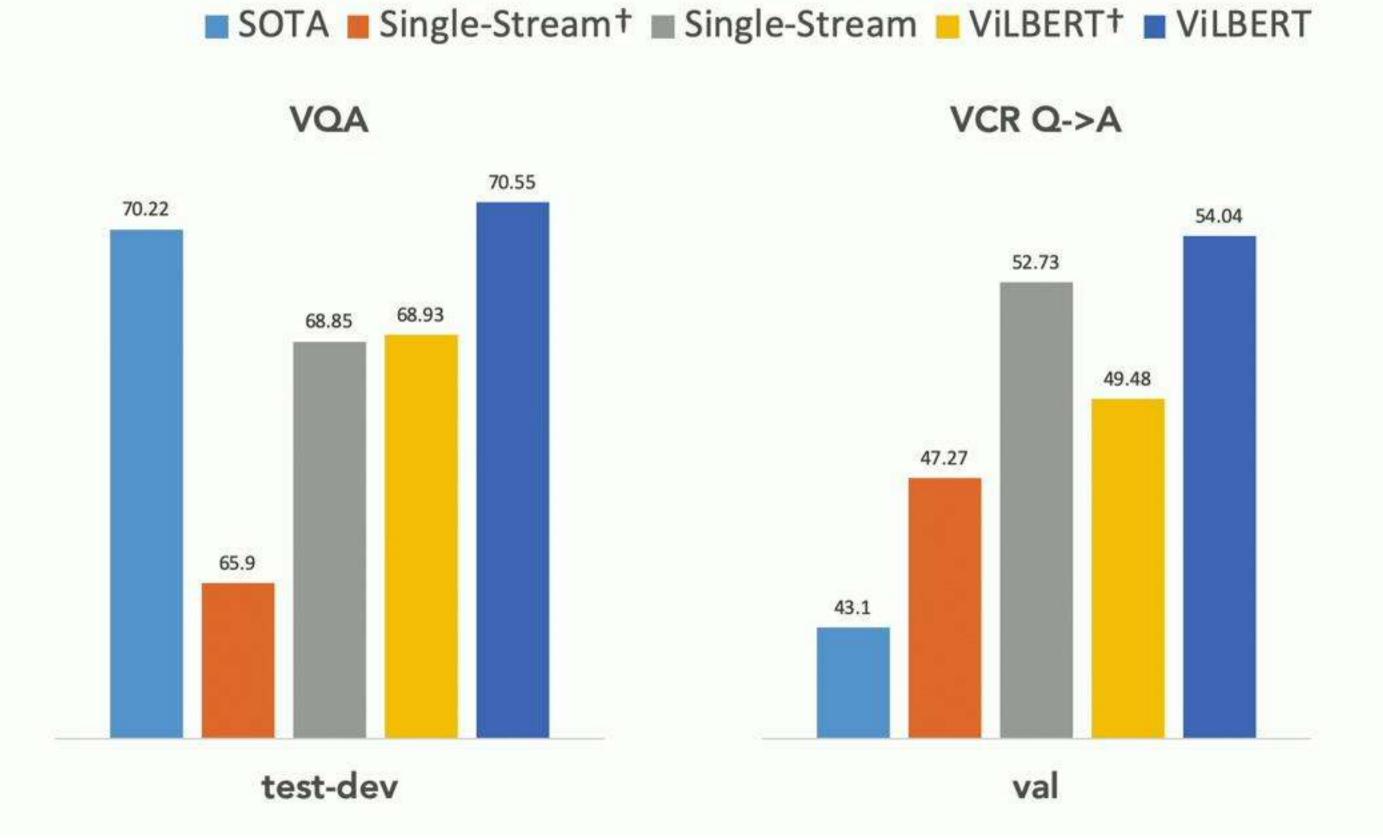
Referring Expressions

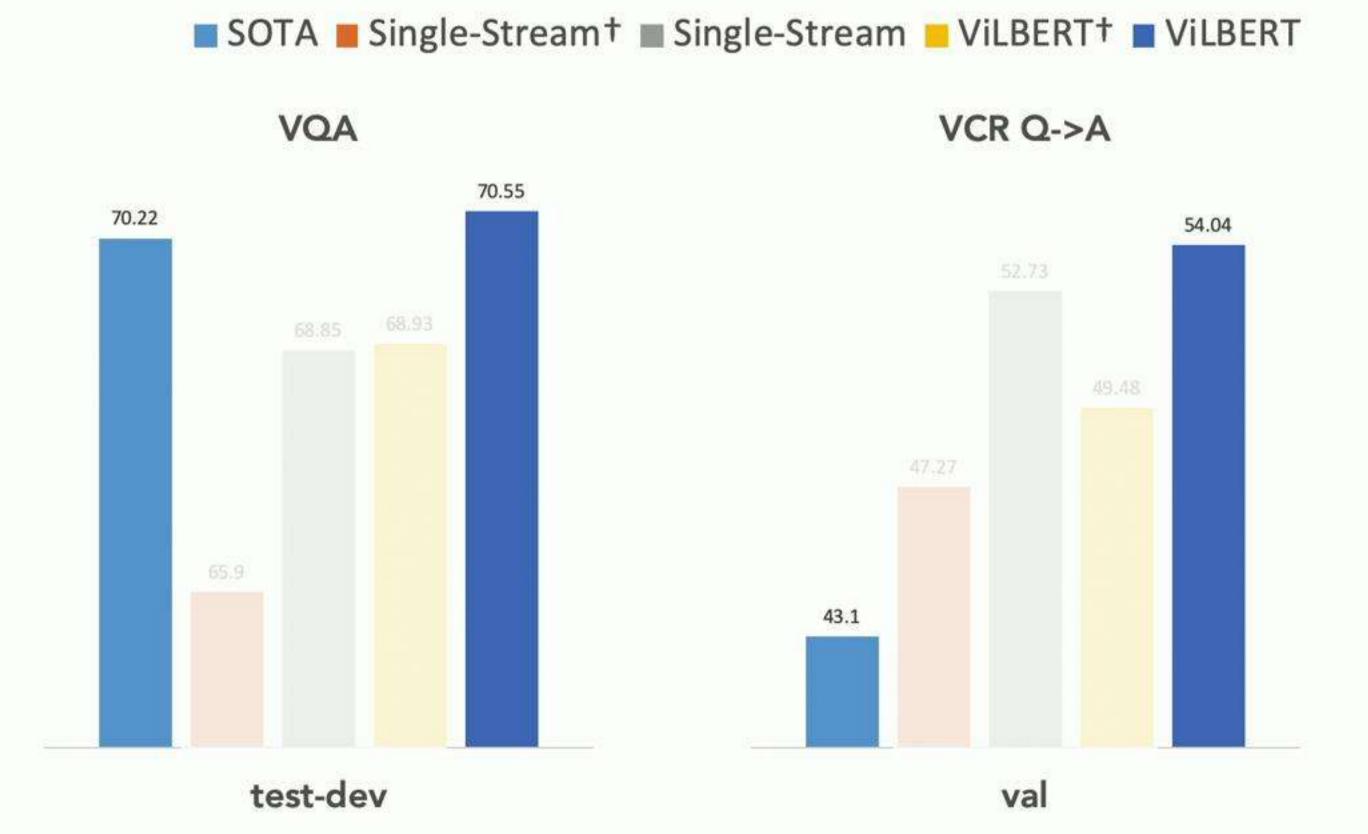


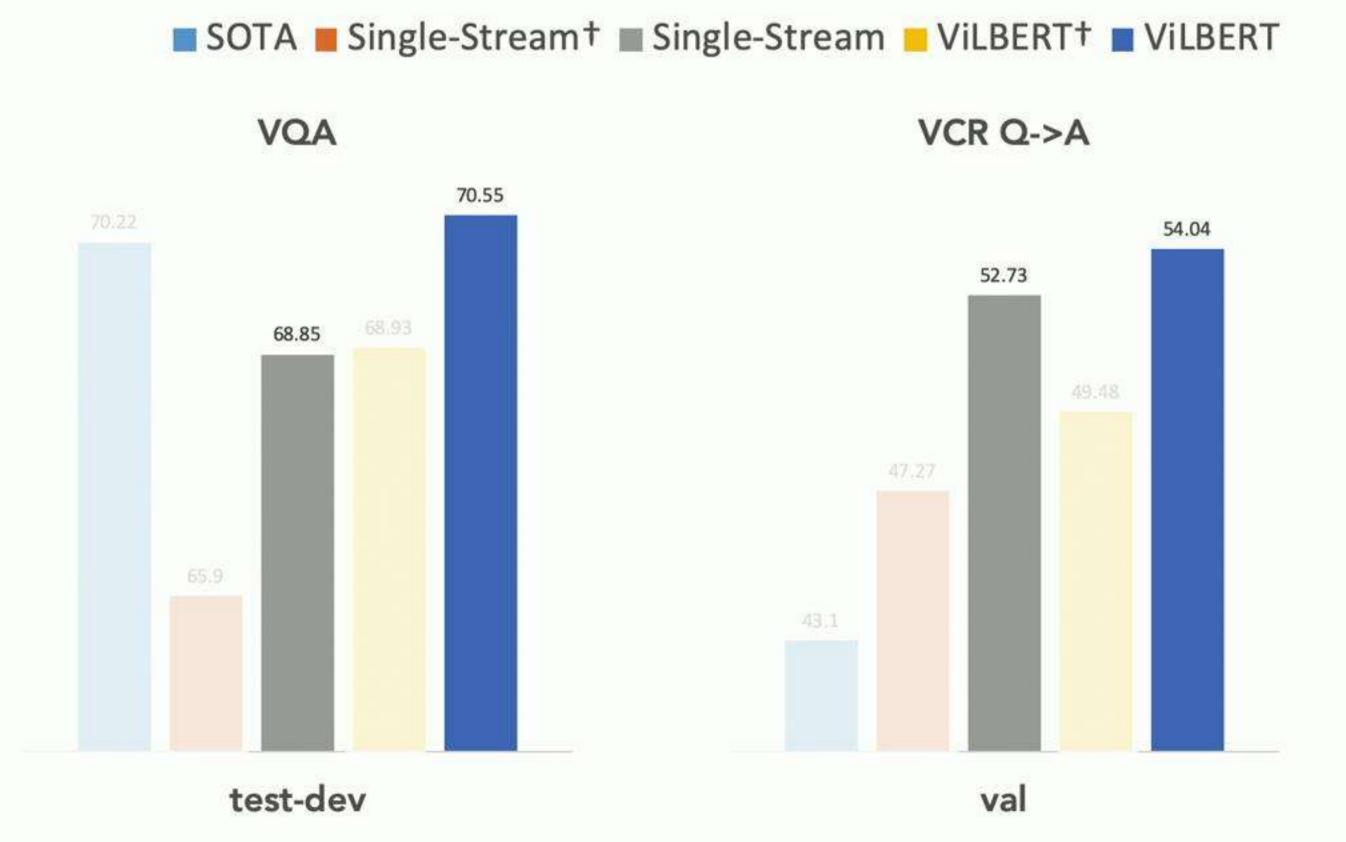
VQA

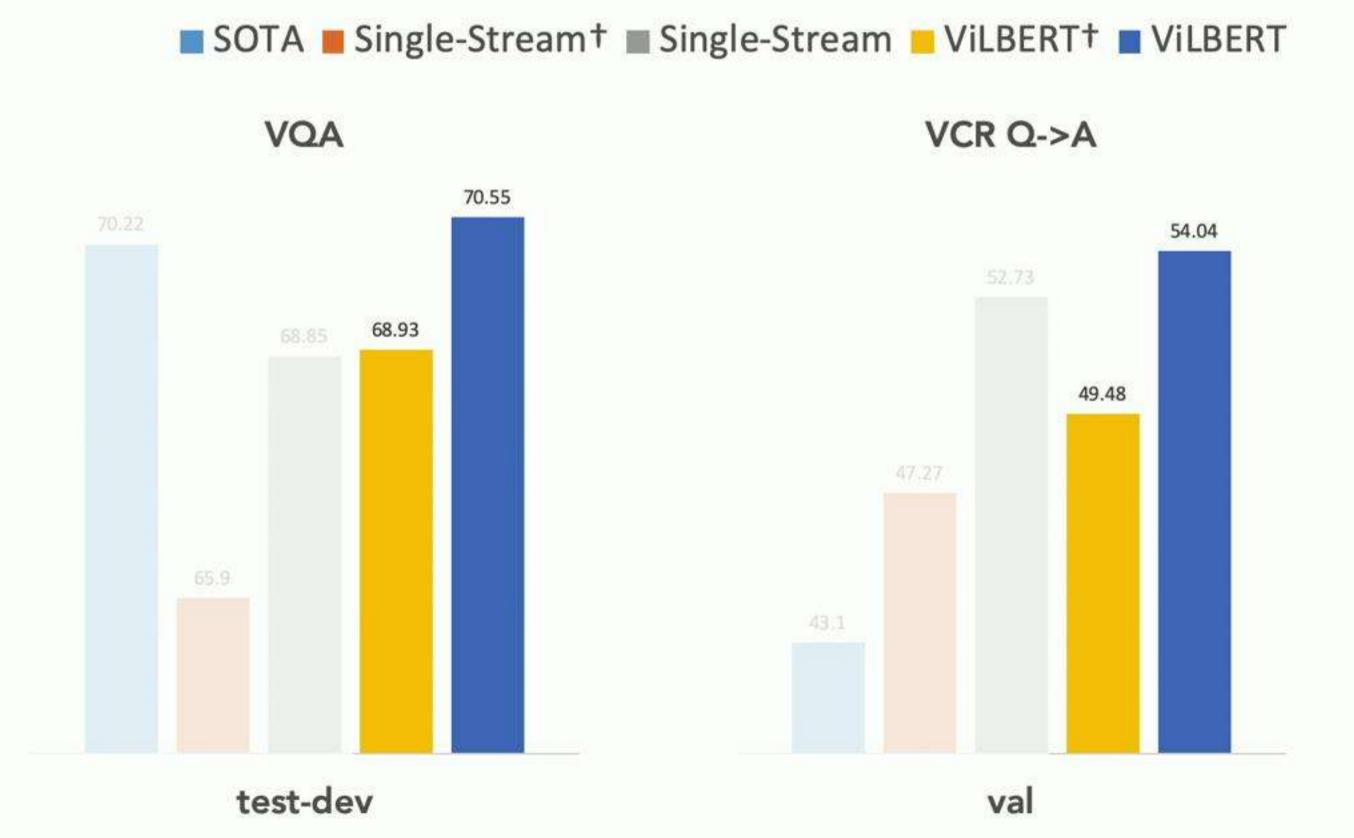
Referring Expressions

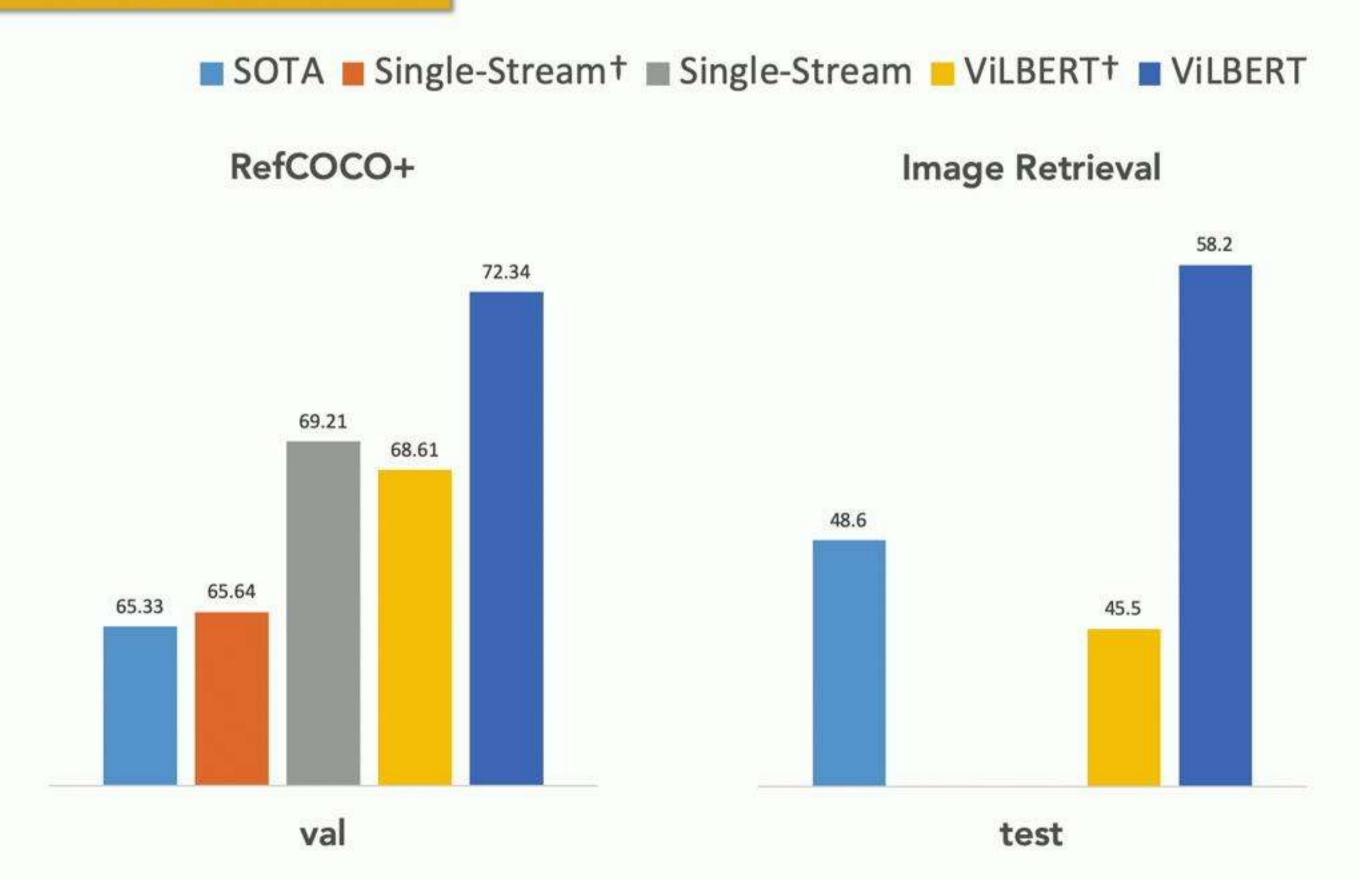




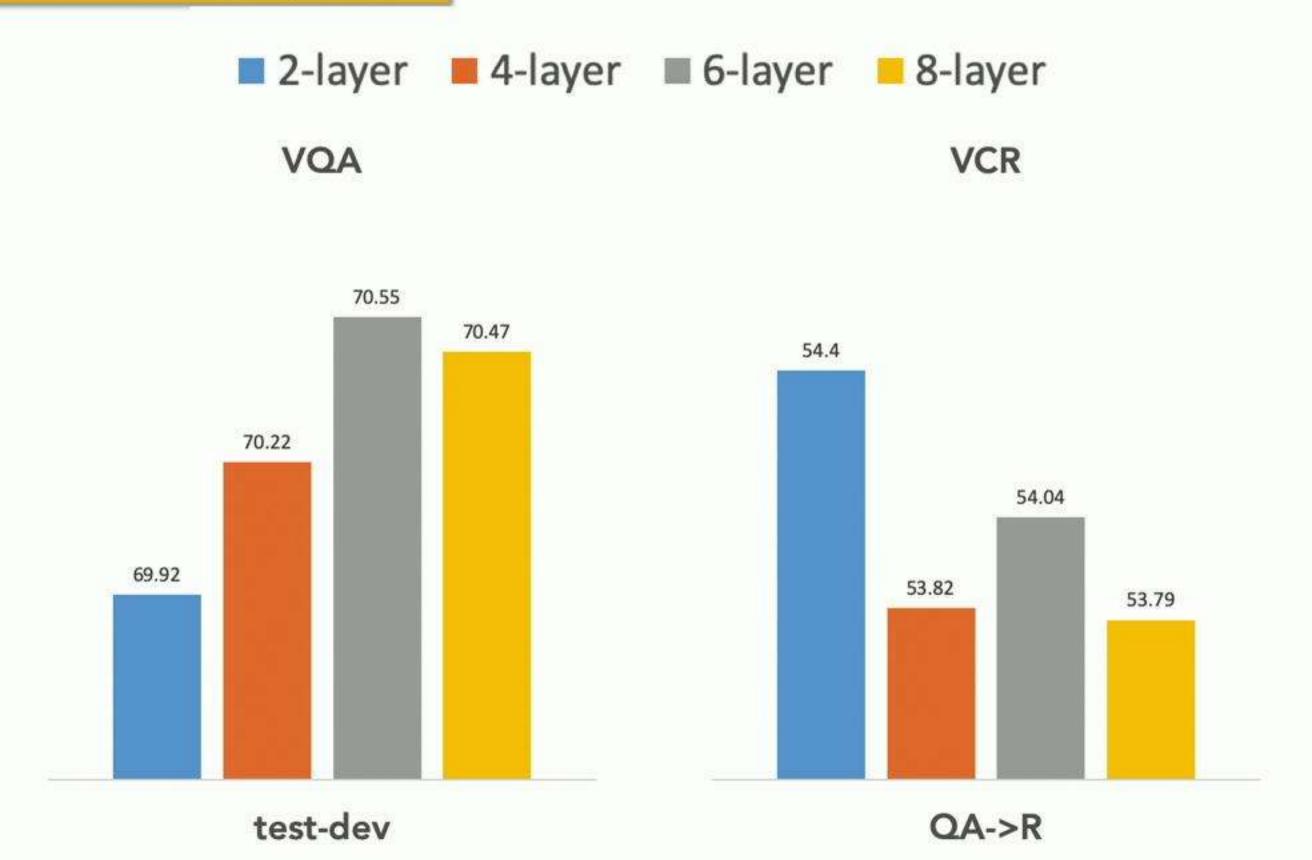




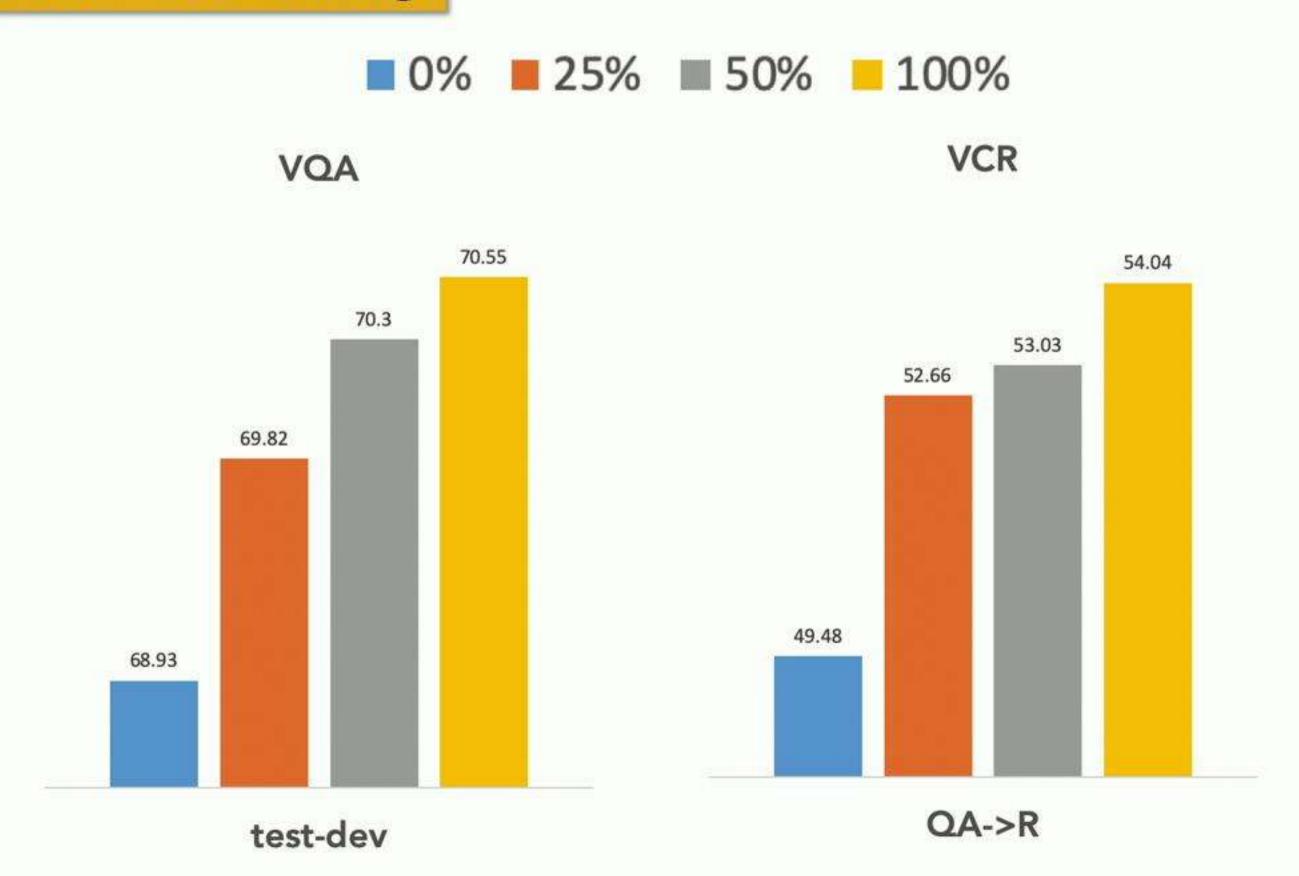




Ablations - Depth



Ablations - Pretraining



Concurrent Work

	Method	Architecture	Visual Token	Pre-train Datasets	Pre-train Tasks	Downstream Tasks
Published Works	VideoBERT (Sun et al. 2019b)	single cross-modal Transformer	video frame	Cooking312K (Sun et al. 2019b)	sentence-image alignment masked language modeling masked visual-words prediction	zero-shot action classification video captioning
Works Under Review / Just Got Accepted	CBT (Sun et al. 2019a)	two single-modal Transformer (vision & language respectively) + one cross-modal Transformer	video frame	Cooking312K (Sun et al. 2019b)	sentence-image alignment masked language modeling masked visual-feature regression	action anticipation video captioning
	ViLBERT (Lu et al. 2019)	one single-modal Transformer (language) + one cross-modal Transformer (with restricted attention pattern)	image RoI	Conceptual Captions (Sharma et al. 2018)	sentence-image alignment masked language modeling masked visual-feature classification	visual question answering visual commonsense reasoning grounding referring expressions image retrieval zero-shot image retrieval
	B2T2 (Alberti et al. 2019)	single cross-modal Transformer	image RoI	Conceptual Captions (Sharma et al. 2018)	sentence-image alignment masked language modeling	visual commonsense reasoning
	LXMERT (Hao Tan, 2019)	two single-modal Transformer (vision & language respectively) + one cross-modal Transformer	image RoI	+ VG Caption + VG QA + VQA + GQA	sentence-image alignment masked language modeling masked visual-feature classification masked visual-feature regression visual question answering	visual question answering atural language visual reasoning
Works in Progress	VisualBERT (Li et al. 2019b)	single cross-modal Transformer	image RoI	COCO Caption (Chen et al., 2015)	sentence-image alignment masked language modeling	visual question answering visual commonsense reasoning natural language visual reasoning grounding phrases
	Unicoder-VL Li et al. 2019a	single cross-modal Transformer	image RoI	Conceptual Captions (Sharma et al. 2018)	sentence-image alignment masked language modeling masked visual-feature classification	image-text retrieval zero-shot image-text retrieval
	Our VL-BERT	single cross-modal Transformer	image RoI	Conceptual Captions (Sharma et al. 2018)	sentence-image alignment masked language modeling masked visual-feature classification	visual question answering visual commonsense reasoning grounding referring expressions

[‡] LXMERT is pre-trained on COCO Caption (Chen et al., 2015), VG Caption (Krishna et al., 2017), VG QA (Zhu et al., 2016), VQA (Antol et al., 2015) and GQA (Hudson & Manning, 2019).

Image credit: VL-BERT

Concurrent Work

	Method	Architecture	Visual Token	Pre-train Datasets	Pre-train Tasks	Downstream Tasks
Published Works	VideoBERT (Sun et al. 2019b)	single cross-modal Transformer	video frame	Cooking312K (Sun et al. 2019b)	sentence-image alignment masked language modeling masked visual-words prediction	zero-shot action classification video captioning
Works Under Review / Just Got Accepted	CBT (Sun et al. 2019a)	two single-modal Transformer (vision & language respectively) + one cross-modal Transformer	video frame	Cooking312K (Sun et al. 2019b)	sentence-image alignment masked language modeling masked visual-feature regression	action anticipation video captioning
	ViLBERT (Lu et al. 2019)	one single-modal Transformer (language) + one cross-modal Transformer (with restricted attention pattern)	image RoI	Conceptual Captions (Sharma et al. 2018)	sentence-image alignment masked language modeling masked visual-feature classification	visual question answering visual commonsense reasoning grounding referring expressions image retrieval zero-shot image retrieval
	B2T2 (Alberti et al. 2019)	single cross-modal Transformer	image RoI	Conceptual Captions (Sharma et al. 2018)	sentence-image alignment masked language modeling	visual commonsense reasoning
	LXMERT (Hao Tan, 2019)	two single-modal Transformer (vision & language respectively) + one cross-modal Transformer	image RoI	+ VG Caption + VG QA + VQA + GQA	sentence-image alignment masked language modeling masked visual-feature classification masked visual-feature regression visual question answering	visual question answering atural language visual reasoning
Works in Progress	VisualBERT Li et al. 2019b	single cross-modal Transformer	image RoI	COCO Caption Chen et al., 2015	sentence-image alignment masked language modeling	visual question answering visual commonsense reasoning natural language visual reasoning grounding phrases
	Unicoder-VL Li et al. 2019a	single cross-modal Transformer	image RoI	Conceptual Captions (Sharma et al. 2018)	sentence-image alignment masked language modeling masked visual-feature classification	image-text retrieval zero-shot image-text retrieval
	Our VL-BERT	single cross-modal Transformer	image RoI	Conceptual Captions (Sharma et al. 2018)	sentence-image alignment masked language modeling masked visual-feature classification	visual question answering visual commonsense reasoning grounding referring expressions

Image credit: VL-BERT

Summary

Summary

Task-agnostic visiolinguistic representations pretraining for visual grounding

- Introduce pretrain-transfer to vision and language tasks.
- Achieve SOTA on multiple vision and language tasks.

Summary

Task-agnostic visiolinguistic representations pretraining for visual grounding

- Introduce pretrain-transfer to vision and language tasks.
- Achieve SOTA on multiple vision and language tasks.

Limitations

The model can still learn inconsistent grounding by task specific finetuning.

Training multiple vision and language task together.

This Talk

Recent & Future Work

Summary

Task-agnostic visiolinguistic representations pretraining for visual grounding

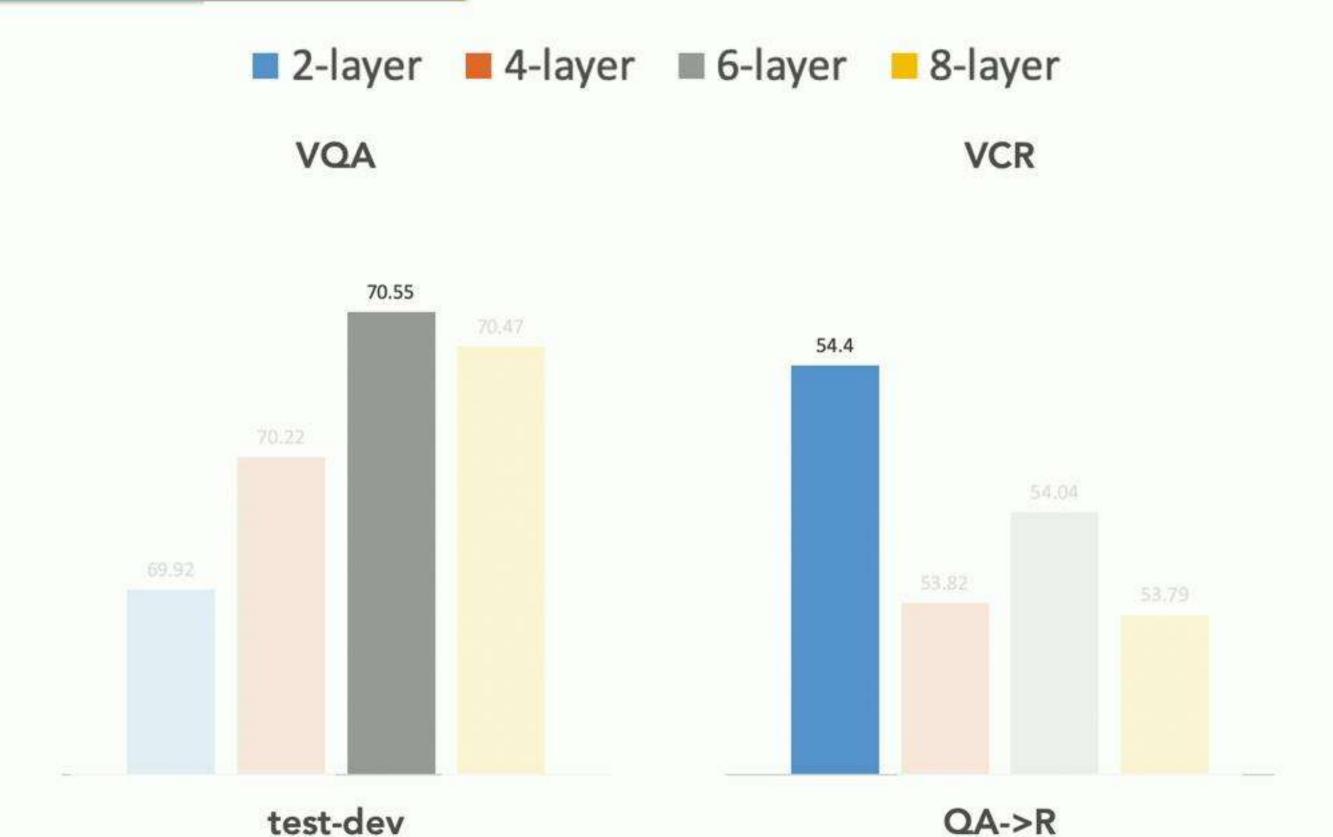
- Introduce pretrain-transfer to vision and language tasks.
- Achieve SOTA on multiple vision and language tasks.

Limitations

The model can still learn inconsistent grounding by task specific finetuning.

Training multiple vision and language task together.

Ablations - Depth



This Talk

Recent & Future Work

VISION AND LANGUAGE MULTI-TASK LEARNING

VISION AND LANGUAGE MULTI-TASK LEARNING

ViLBERT Problems:

- Inconsistent grounding by task specific finetuning.
- Four V&L tasks.
- Model is huge, overfitting.

VISION AND LANGUAGE MULTI-TASK LEARNING

ViLBERT Problems:

- Inconsistent grounding by task specific finetuning.
- Four V&L tasks.
- Model is huge, overfitting.

What we want:

- More tasks.
- Consistent Grounding.
- Explore the limit of the model.

VISION AND LANGUAGE MULTI-TASK LEARNING

ViLBERT Problems:

One Model for ALL V&L:

- Inconsistent grounding by task specific finetuning.
- Four V&L tasks.
- Model is huge, overfitting.

What we want:

- More tasks.
- Consistent Grounding.
- Explore the limit of the model.

VISION AND LANGUAGE MULTI-TASK LEARNING

ViLBERT Problems:

- Inconsistent grounding by task specific finetuning.
- Four V&L tasks.
- Model is huge, overfitting.

What we want:

- More tasks.
- Consistent Grounding.
- Explore the limit of the model.

One Model for ALL V&L:

VQA

- VQA
- Genome QA
- GQA

Image Description

- Caption based Retrieval (COCO)
- Caption based Retrieval (COCO)

Referring Expression

- Ref COCO
- Ref COCO+
- Ref COCOg
- Visual 7w
- GuessWhat

V&L Verification

- NLVR2
- Visual Entailment

VISION AND LANGUAGE MULTI-TASK LEARNING

One Model for ALL V&L:

VQA

- VQA
- Genome QA
- GQA

Image Description

- Caption based Retrieval (COCO)
- Caption based Retrieval (COCO)

Referring Expression

- Ref COCO
- Ref COCO+
- Ref COCOg
- Visual 7w
- GuessWhat

V&L Verification

- NLVR2
- Visual Entailment

VISION AND LANGUAGE MULTI-TASK LEARNING

One Model for ALL V&L:

VQA

- VQA
- Genome QA
- GQA

Image Description

- Caption based Retrieval (COCO)
- Caption based Retrieval (COCO)

Referring Expression

- Ref COCO
- Ref COCO+
- Ref COCOg
- Visual 7w
- GuessWhat

V&L Verification

- NLVR2
- Visual Entailment

 Benchmark ALL vision and language understanding tasks with ViLBERT.

VISION AND LANGUAGE MULTI-TASK LEARNING

One Model for ALL V&L:

VQA

- VQA
- Genome QA
- GQA

Image Description

- Caption based Retrieval (COCO)
- Caption based Retrieval (COCO)

Referring Expression

- Ref COCO
- Ref COCO+
- Ref COCOg
- Visual 7w
- GuessWhat

V&L Verification

- NLVR2
- Visual Entailment

- Benchmark ALL vision and language understanding tasks with ViLBERT.
- Study inter-connections within task group and between task group.

VISION AND LANGUAGE MULTI-TASK LEARNING

One Model for ALL V&L:

VQA

- VQA
- Genome QA
- GQA

Image Description

- Caption based Retrieval (COCO)
- Caption based Retrieval (COCO)

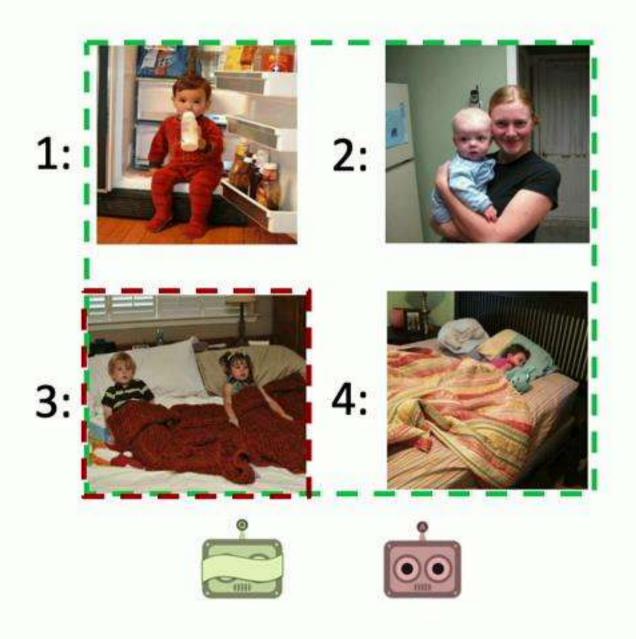
Referring Expression

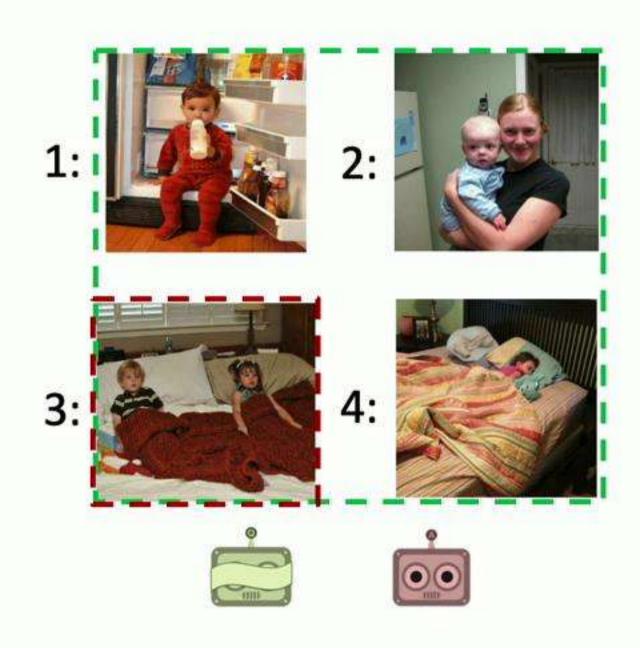
- Ref COCO
- Ref COCO+
- Ref COCOg
- Visual 7w
- GuessWhat

V&L Verification

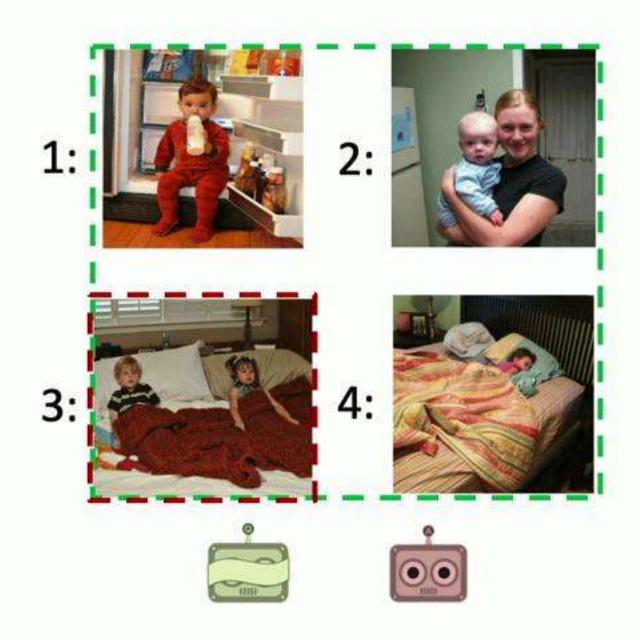
- NLVR2
- Visual Entailment

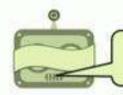
- Benchmark ALL vision and language understanding tasks with ViLBERT.
- Study inter-connections within task group and between task group.
- Explainable AI: Use other task outputs to provide explanations.



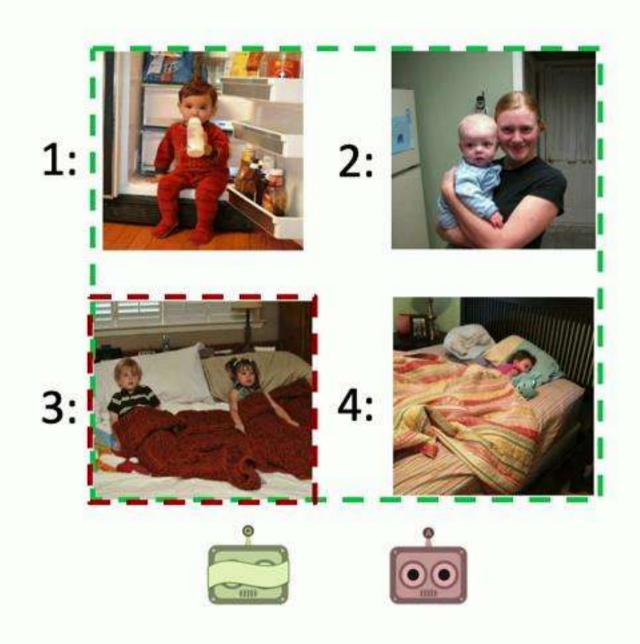


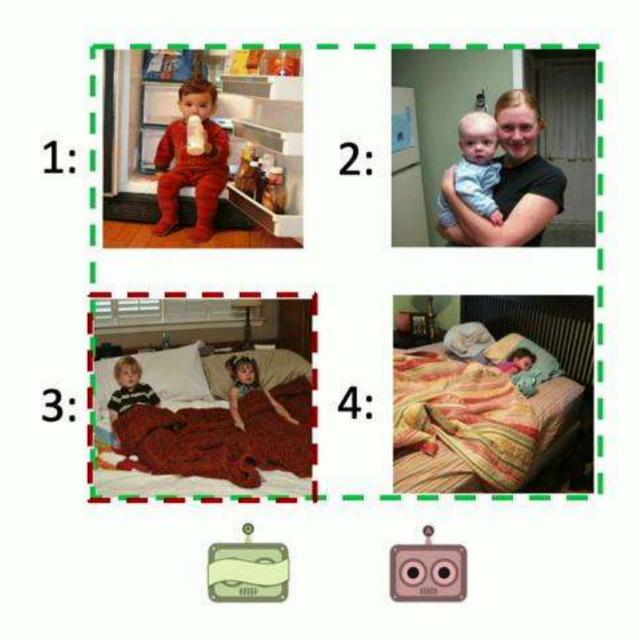
DIALOG WITHOUT DIALOG

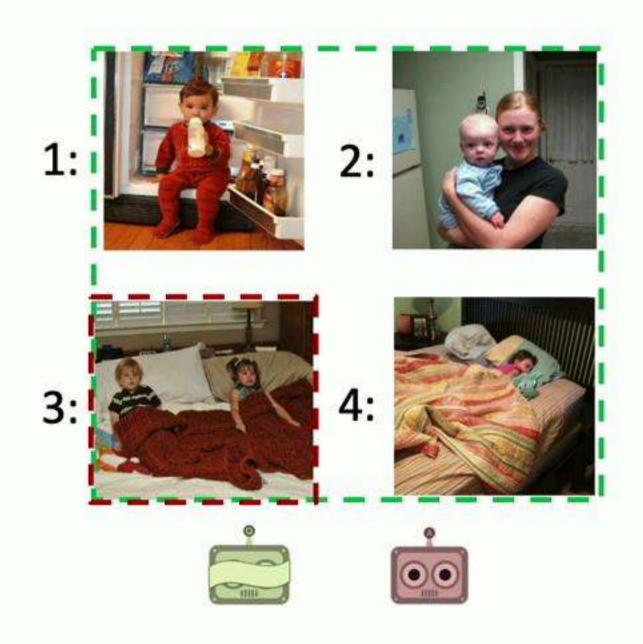


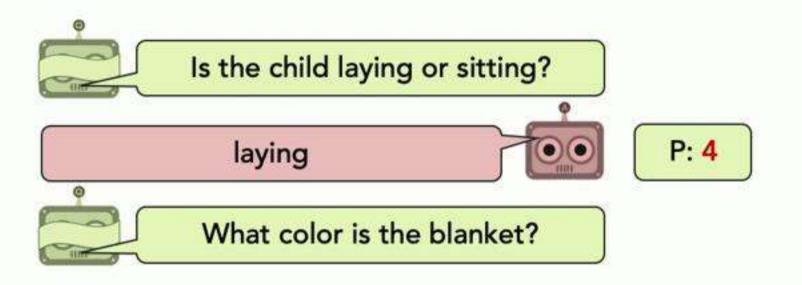


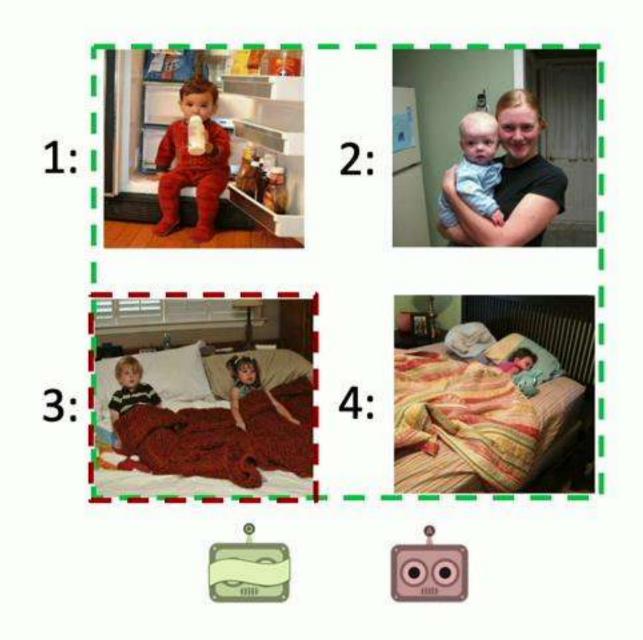
Is the child laying or sitting?

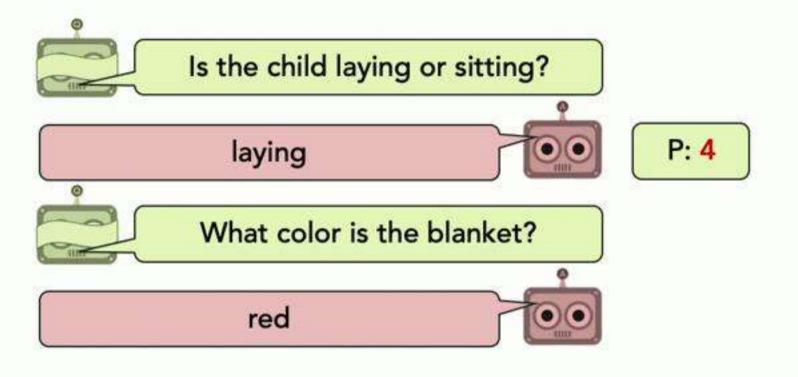


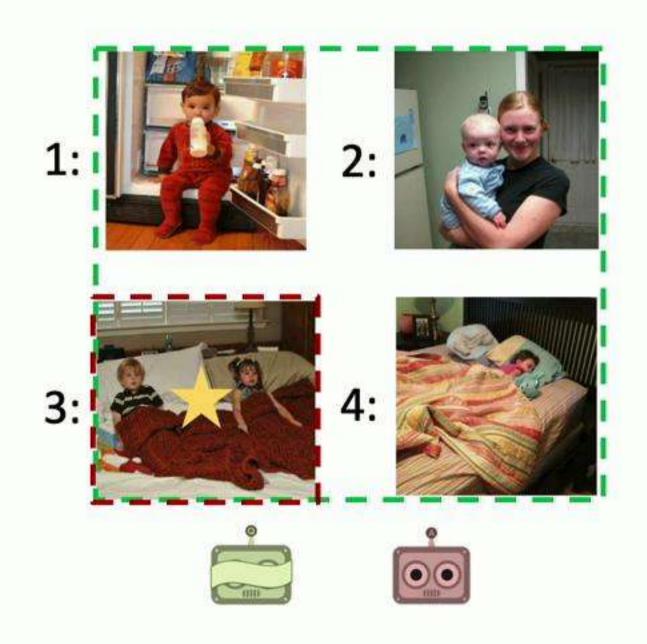


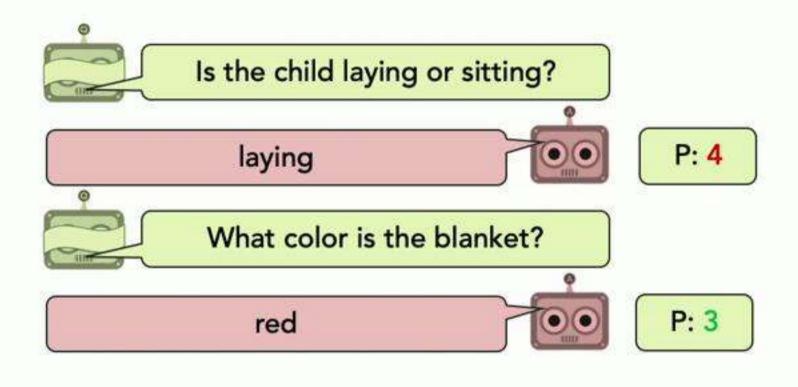




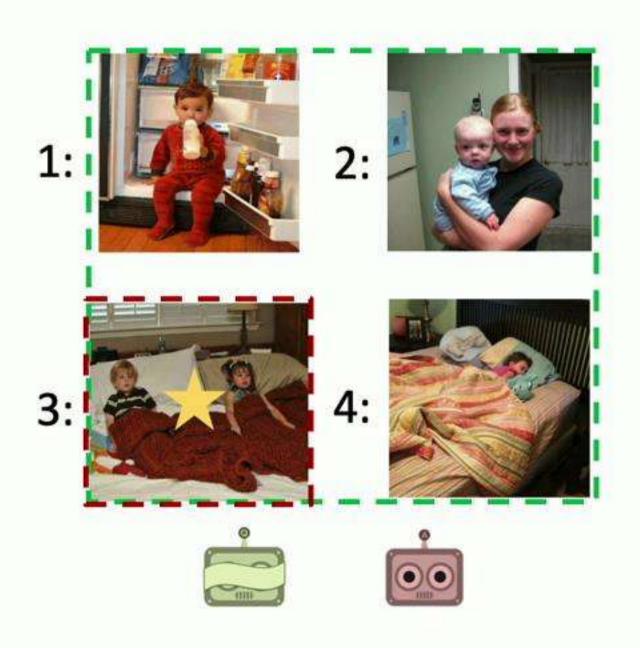




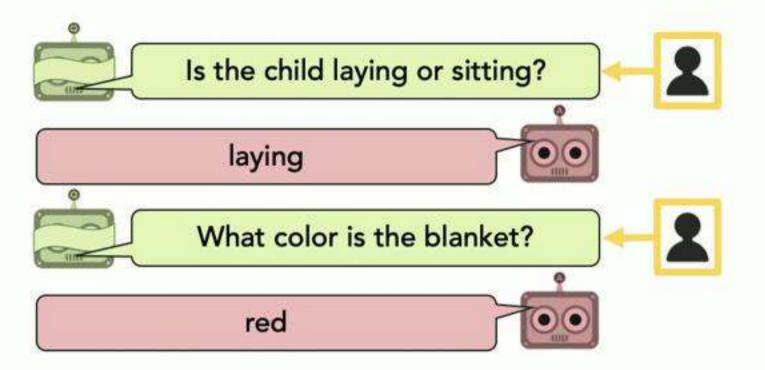




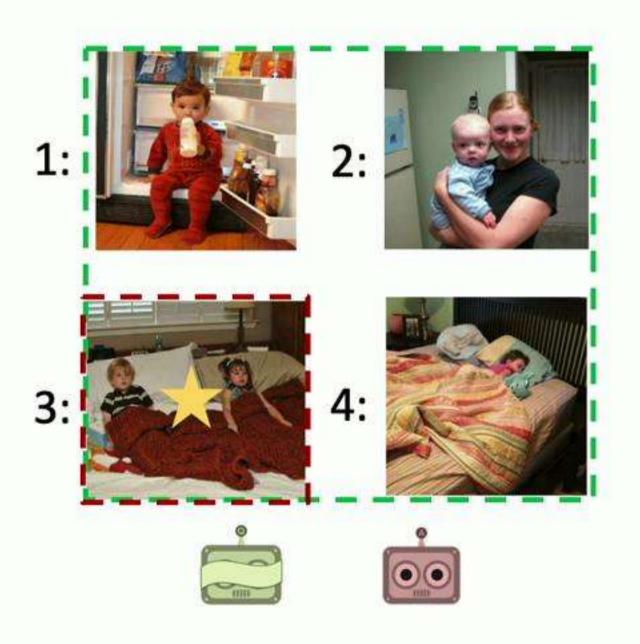
DIALOG WITHOUT DIALOG



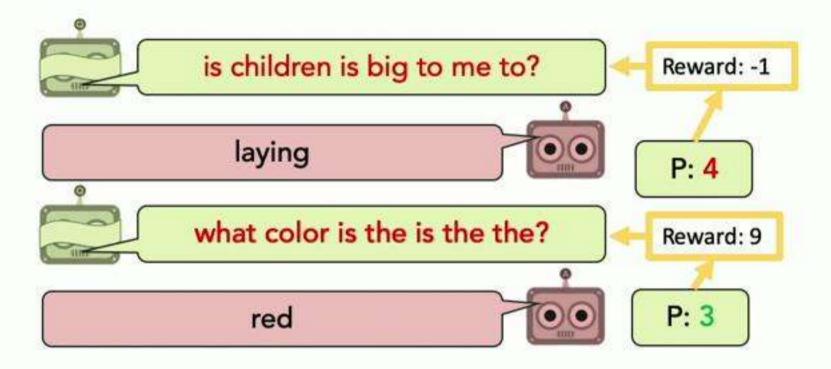
How does Q-Bot know what to say?



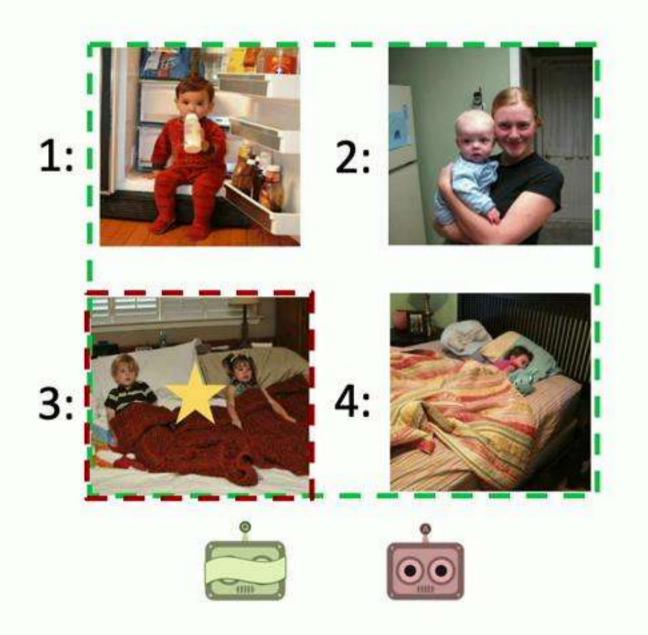
DIALOG WITHOUT DIALOG



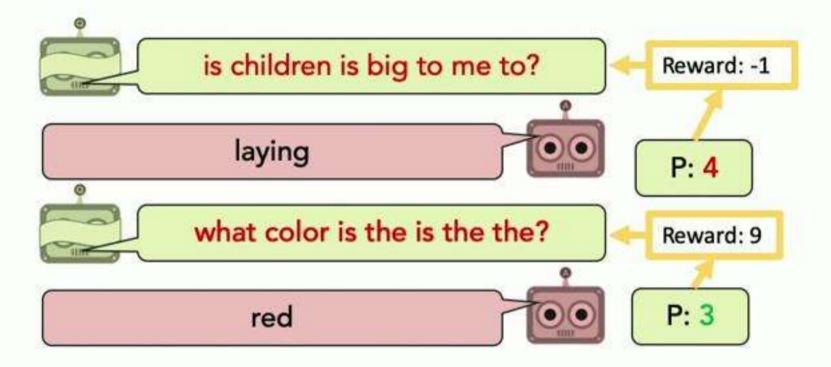
How does Q-Bot know what to say?



DIALOG WITHOUT DIALOG



How does Q-Bot know what to say?



Goals (with sparse reward):

- Language fluency
- 2. Task performance

Language Fluency from VQA

Who is wearing glasses?

Is the umbrella upside down?

Learn how to ask from VQA

Language Fluency from VQA

Who is wearing glasses?

Is the umbrella upside down?

Learn how to ask from VQA

Key Insight: LM with discrete latent action space

Interpolation

1. how many beds?

10.where is he looking?

Language Fluency from VQA

Who is wearing glasses?

Is the umbrella upside down?

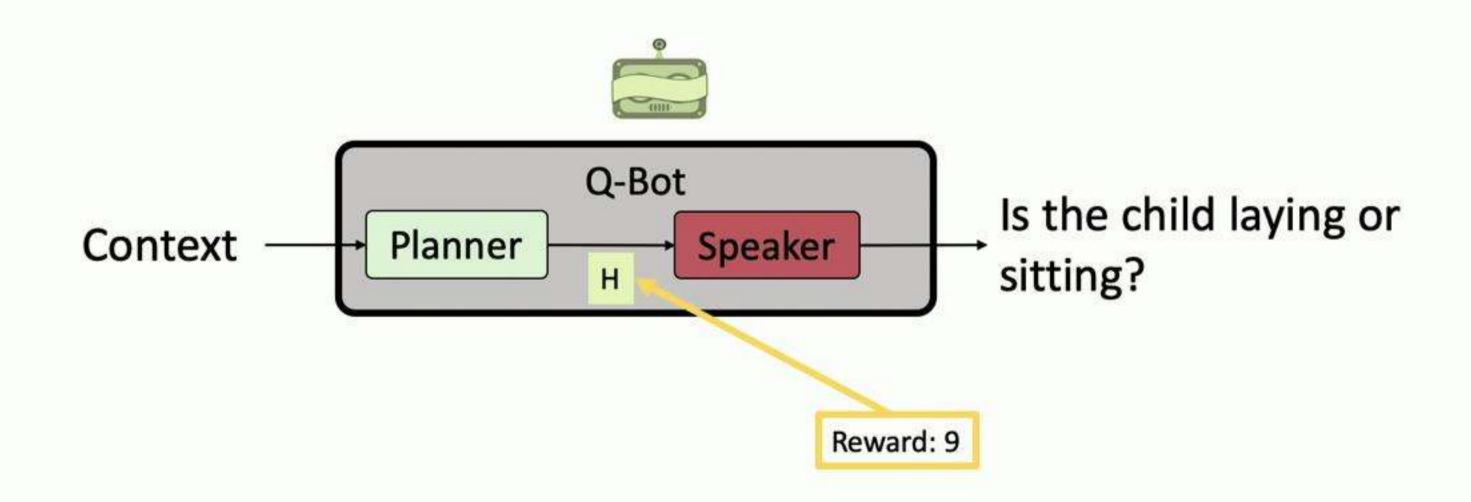
Learn how to ask from VQA

Key Insight: LM with discrete latent action space

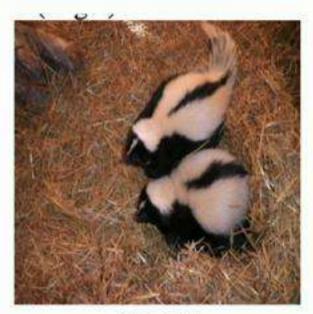
Interpolation

- 1. how many beds?
- 2. how many cats?
- 3. how many dogs?
- 4. where is the dog?
- 5. where is the man?
- 6. where is this man?
- 7. where is this woman?
- 8. where is this?
- 9. where is he?
- 10.where is he looking?

Task Performance via Fine-Tuning without Forgetting Language **Key Insight:** Reinforce discrete latent action space.



target

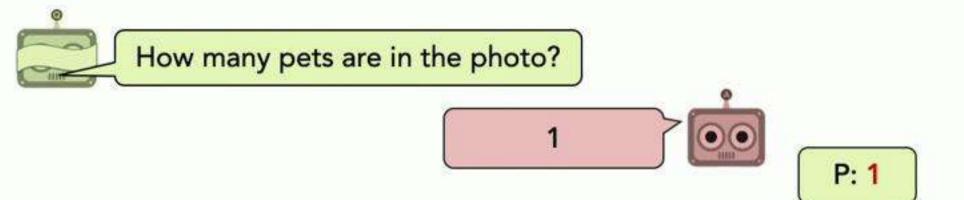


target

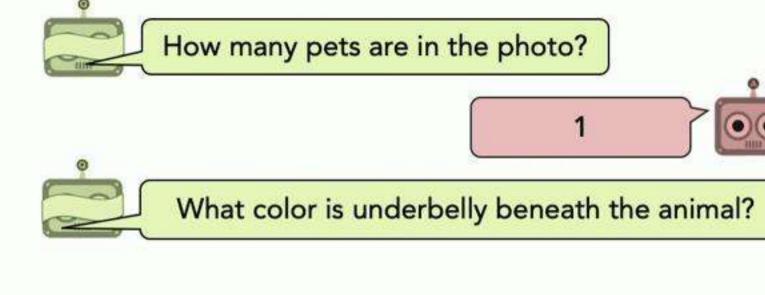
target



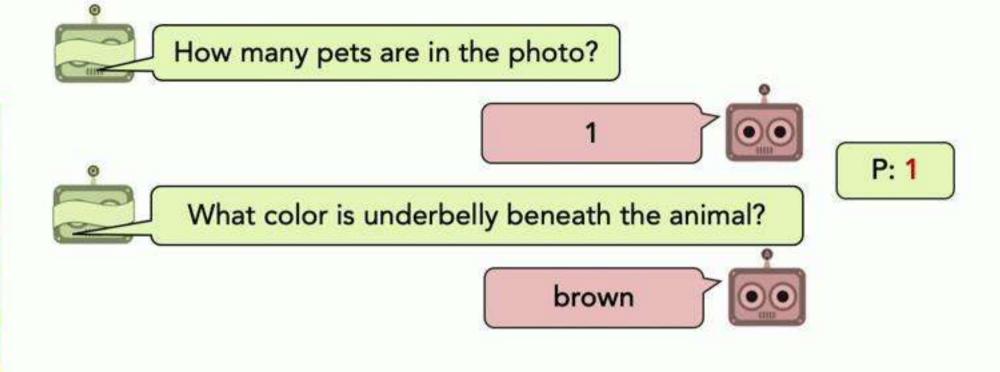
target



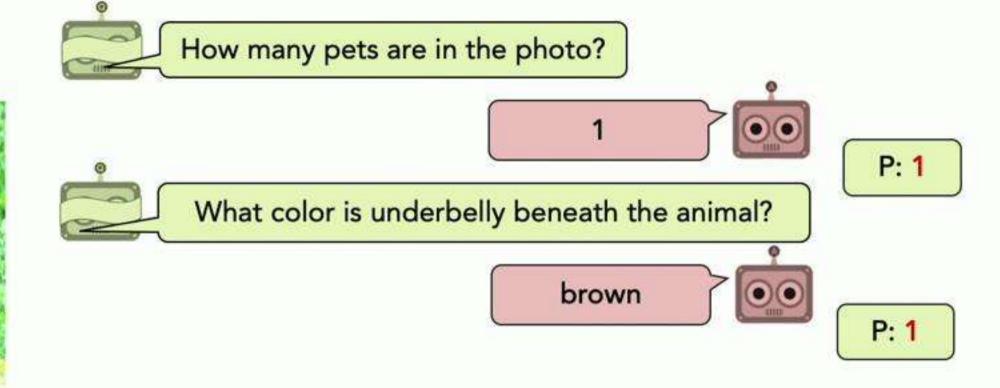
Initial Results

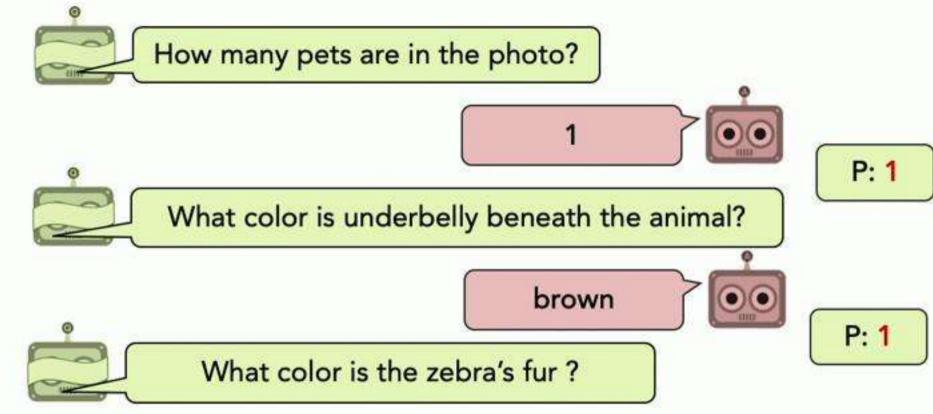


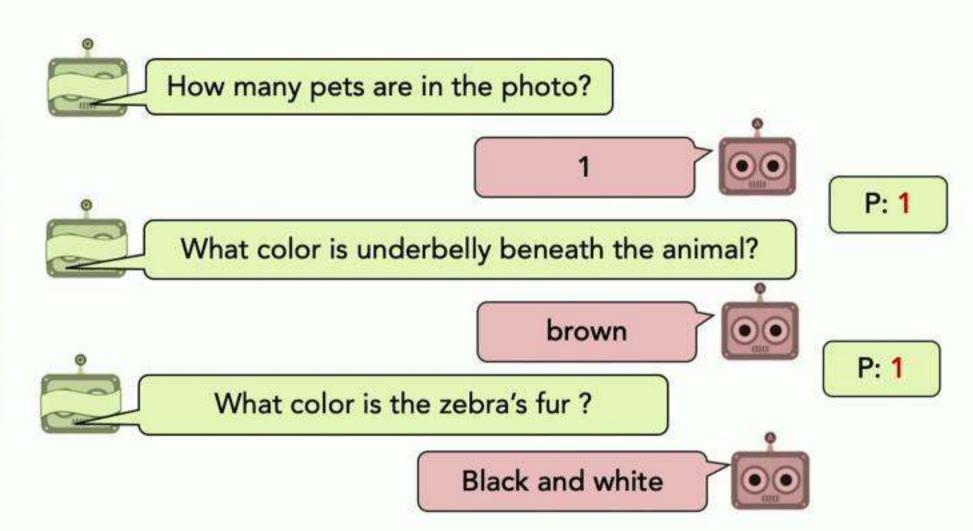
P: 1

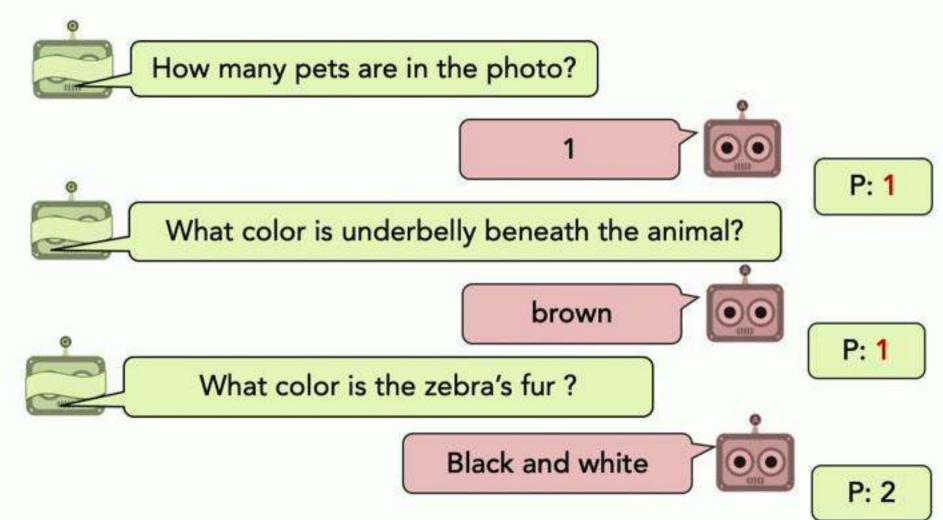


target

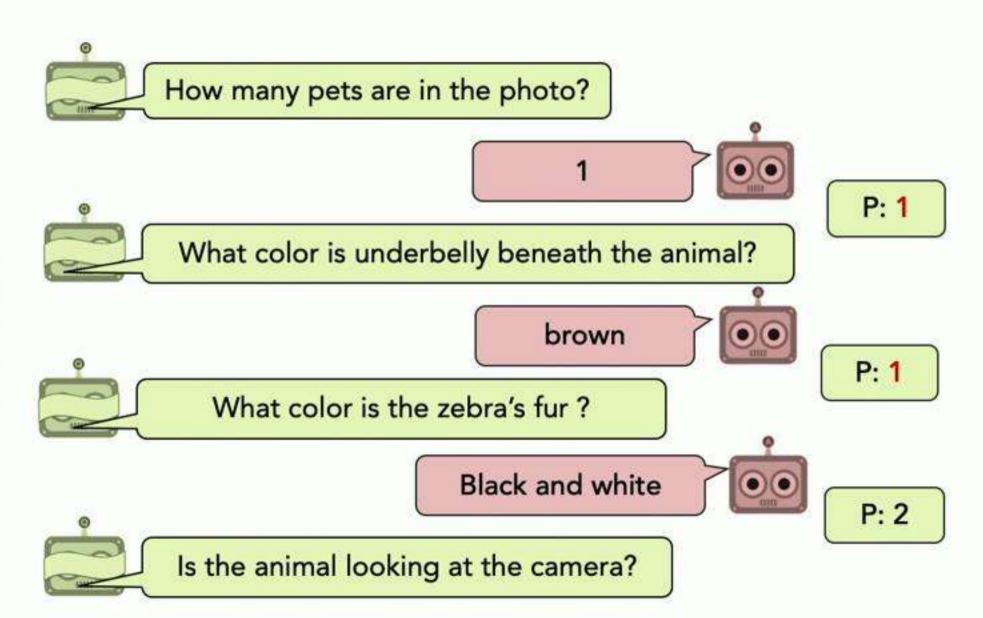








target



Multi-modality representation learning in vision, language, sound and action.

Multi-modality representation learning in vision, language, sound and action.

Environment around us is not un-modal

Multi-modality representation learning in vision, language, sound and action.

Environment around us is not un-modal

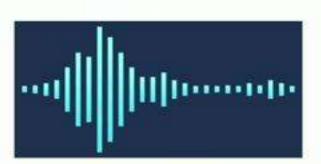
Table:

Multi-modality representation learning in vision, language, sound and action.

Environment around us is not un-modal

Multi-modality representation learning in vision, language, sound and action.

Environment around us is not un-modal



Multi-modality representation learning in vision, language, sound and action.

Environment around us is not un-modal

Providing a level surface on which objects may be placed

Multi-modality representation learning in vision, language, sound and action.

Environment around us is not un-modal

Table:

Providing a level surface on which objects may be placed

- Learn a representation that connect all the modalities.
 - o More complete understanding of the environment.

Emerging of goal orientated dialog with natural language.

Dialog is the most natural way to communicate.

- Dialog is the most natural way to communicate.
 - o Impossible to collect dialog data for all the dialog tasks.

- Dialog is the most natural way to communicate.
 - o Impossible to collect dialog data for all the dialog tasks.
- Emerging of language (machine code) is not useful.

- Dialog is the most natural way to communicate.
 - o Impossible to collect dialog data for all the dialog tasks.
- Emerging of language (machine code) is not useful.
 - People can not understand them

- Dialog is the most natural way to communicate.
 - o Impossible to collect dialog data for all the dialog tasks.
- Emerging of language (machine code) is not useful.
 - People can not understand them
- Emerging of strategy (language that human can understand)

Common sense abstraction and causal reasoning.

• Intrinsic "motivation" behind the "scene".

Common sense abstraction and causal reasoning.

- Intrinsic "motivation" behind the "scene".
- Emerging of the commonsense and reasoning of the "motivation"

Common sense abstraction and causal reasoning.

- Intrinsic "motivation" behind the "scene".
- Emerging of the commonsense and reasoning of the "motivation"
- More human-like and interpretable agent which helps people in the daily life.

End

QUESTIONS?