
89

AQuick Look at Impredicativity

ALEJANDRO SERRANO, 47 Degrees, Spain and Utrecht University, The Netherlands

JURRIAAN HAGE, Utrecht University, The Netherlands
SIMON PEYTON JONES,Microsoft Research, United Kingdom

DIMITRIOS VYTINIOTIS, DeepMind, United Kingdom

Type inference for parametric polymorphism is wildly successful, but has always suffered from an embarrassing

flaw: polymorphic types are themselves not first class. We present Quick Look, a practical, implemented, and

deployable design for impredicative type inference. To demonstrate our claims, we have modified GHC, a

production-quality Haskell compiler, to support impredicativity. The changes required are modest, localised,

and are fully compatible with GHC’s myriad other type system extensions.

This version has some minor typos fixed, relative to the published ICFP’20 version.

CCS Concepts: • Theory of computation→ Type structures.

Additional Key Words and Phrases: Type systems, impredicative polymorphism, constraint-based inference

ACM Reference Format:
Alejandro Serrano, Jurriaan Hage, Simon Peyton Jones, and Dimitrios Vytiniotis. 2020. A Quick Look at

Impredicativity. Proc. ACM Program. Lang. 4, ICFP, Article 89 (August 2020), 33 pages. https://doi.org/10.1145/
3408971

1 INTRODUCTION
Parametric polymorphism backed by Damas-Milner type inference was first introduced in ML

[Milner 1978], and has been enormously influential and widely used. But despite this impact, it

has always suffered from an embarrassing shortcoming: Damas-Milner type inference, and its many
variants, cannot instantiate a type variable with a polymorphic type; in the jargon, the system is

predicative.
Alas, predicativity makes polymorphism a second-class feature of the type system. The type

∀a.[a] → [a] is fine (it is the type of the list reverse function), but the type [∀a.a → a] is not,
because a ∀ is not allowed inside a list. So ∀-types are not first class: they can appear in some

places but not others. Much of the time that does not matter, but sometimes it matters a lot; and,

tantalisingly, it is often “obvious” to the programmer what the desired impredicative instantiation

should be (Section 2).

Thus motivated, a long succession of papers have tackled the problem of type inference for

impredicativity [Botlan and Rémy 2003; Leijen 2008, 2009; Serrano et al. 2018; Vytiniotis et al. 2006,

2008]. None has succeeded in producing a system that is simultaneously expressive enough to be

useful, simple enough to support robust programmer intuition, compatible with a myriad other

Authors’ addresses: Alejandro Serrano, alejandro.serrano@47deg.com, 47 Degrees, San Fernando, Spain, A.SerranoMena@uu.

nl, Utrecht University, Utrecht, The Netherlands; Jurriaan Hage, J.Hage@uu.nl, Utrecht University, Utrecht, The Netherlands;

Simon Peyton Jones, simonpj@microsoft.com, Microsoft Research, Cambridge, United Kingdom; Dimitrios Vytiniotis,

dvytin@google.com, DeepMind, London, United Kingdom.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/8-ART89

https://doi.org/10.1145/3408971

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 89. Publication date: August 2020.

https://doi.org/10.1145/3408971
https://doi.org/10.1145/3408971
https://doi.org/10.1145/3408971

89:2 A. Serrano, J. Hage, S. Peyton Jones, and D. Vytiniotis

type system extensions, and implementable without an invasive rewrite of a type inference engine

tailored to predicative type inference.

In Section 3 we introduce Quick Look, a new inference algorithm for impredicativity that, for the

first time, (a) handles many “obvious” examples; (b) is expressive enough to handle all of System F;

(c) requires no extension to types, constraints, or intermediate representation; and (d) is easy and

non-invasive to implement in a production-scale type inference engine – indeed we have done so

in GHC. We make the following contributions:

• We formalise a higher-rank baseline system (Section 4), and give the changes required for

Quick Look (Section 5). A key property of Quick Look is that it requires only highly localised

changes to such a specification. In particular, no new forms of types are required, and

programs can be elaborated into a statically typed intermediate language based on System F.

Some other approaches, such as MLF [Botlan and Rémy 2003], require substantial changes to

the intermediate language, but Quick Look does not.

• We prove a number of theorems about our system, including about which transformations

do, and do not, preserve typeability (Section 6).

• We give a type inference algorithm for Quick Look (Section 7). This algorithm is based on the

now-standard approach of first generating typing constraints and then solving them [Pottier

and Rémy 2005]. As in the case of the declarative specification, no new forms of types

or constraints are needed. Section 7 proves its soundness compared with the declarative

specification in Section 5.
1
The implementation is in turn based very closely on this algorithm.

The constraint generation judgements in Sections 7 and 8 also appear to be the first formal

account of the extremely effective combination of bidirectional type inference [Peyton Jones

et al. 2007] with constraint-based type inference [Pottier and Rémy 2005; Vytiniotis et al.

2011],

• Because Quick Look’s impact is so localised, it is simple to implement, even in a production

compiler. Concretely, the implementation of Quick Look in GHC, a production compiler for

Haskell, affected only 1% of GHC’s inference engine.

• To better support impredicativity, we propose to abandon contravariance of the function

arrow (Section 5.8). There are independent reasons for making this change [Peyton Jones

2019], but it is illuminating to see how it helps impredicativity. We also provide data on its

impact (Appendix A).

The paper uses a very small language, to allow us to focus on impredicativity, but Quick Look

scales very well to a much larger language. Section 8 and Appendix B give the details for a much

richer set of features.

We present our work in the concrete setting of (a tiny subset of) Haskell, but there is nothing

Haskell-specific about it. Quick Look could readily be used in any other type inference system.

We cover the rich related work in Section 11.

2 MOTIVATION
The lack of impredicativity means that polymorphism is fundamentally second class: we cannot
abstract over polymorphic types. For example, even something as basic as function composition fails

on functions with higher-rank types (types with foralls in them). Suppose

f :: (∀a.[a] → [a]) → Int g :: Bool → ∀a.[a] → [a]

Then the composition (f ◦ g) fails typechecking, despite the obvious compatibility of the types

involved, simply because the composition requires instantiating the type of (◦) with a polytype.

1
We conjecture that completeness is true as well – we are not aware of any counterexample.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 89. Publication date: August 2020.

AQuick Look at Impredicativity 89:3

head :: ∀p.[p] → p
tail :: ∀p.[p] → [p]
[] :: ∀p.[p]
(:) :: ∀p.p → [p] → [p]
single :: ∀p.p → [p]
(++) :: ∀p.[p] → [p] → [p]
id :: ∀a.a → a
ids :: [∀a.a → a]
map :: ∀p q.(p → q) → [p] → [q]
app :: ∀a b.(a → b) → a → b

revapp :: ∀a b.a → (a → b) → b
runST :: ∀d.(∀s.ST s d) → d
argST :: ∀s.ST s Int
poly :: (∀a.a → a) → (Int,Bool)
inc :: Int → Int
incs :: [Int → Int]
choose :: ∀a.a → a → a
auto :: (∀a.a → a) → (∀a.a → a)
auto′ :: (∀a.a → a) → b → b
compose :: ∀a b c.(b → c) → (a → b) → a → c

Fig. 1. Type signatures for functions used in the text

As another example, Augustsson describes an application [Augustsson 2011] in which it was

crucial to have a function var :: RValue a → IO (∀lr .LR lr ⇒ lr a), an IO action that returns a

polymorphic value. Yet in Haskell today, this is out of reach; instead you have to define a new

named type, thus:

newtype LRType a = MkLR (∀lr .LR lr ⇒ lr a)
var :: RValue a → IO (LRType a)

Every use of var must pattern match to unwrap the newtype. We call this approach “boxed impred-

icativity”, because the forall is wrapped in a named “box”, here LRType. But boxed impredicativity

is tiresome at best, and declaring a new type for every polymorphic shape is gruesome.

Why not simply allow first-class polymorphism, so that [∀a.a → a] is a valid type? The problem
is in type inference.2 Consider the expression (single id), where the type of single and id are given

in Figure 1. It is not clear whether to instantiate p with ∀a.a → a, or with Int → Int , or some other

monomorphic type. Indeed (single id) does not even have a most general (principal) type: it has

two incomparable types: ∀a.[a → a] and [∀a.a → a]. Losing principal types, especially for such an

innocuous program, is a heavy price to pay for first-class polymorphism.

But in many cases there is no such problem. Consider (head ids) where, again, the types are
given in Figure 1. Now there is no choice: the only possibility is to instantiate p with ∀a.a → a.
Our idea, just as in previous work [Serrano et al. 2018], is to exploit that special case. Our overall

goals are these:

• First class polymorphism.We want forall-types to be first class. A function like list reverse ::
∀a.[a] → [a] should work as uniformly over [∀a.a → a] as it does over [Int] and [Bool], and
should do so without type annotations. No mainstream deployed language allows that; and

not being able to do so is a fundamental failure of abstraction. Using boxed impredicativity is

an anti-modular second best.

• Predictable type inference: it should be possible for programmers to acquire a robust mental

model of what will typecheck and what will not. Typically they do so through a process

of trial and error, but our formalism in Section 5 is specifically designed to enshrine the

common-sense idea that when there is clear evidence (through the argument or result type)

about how to instantiate a call, type inference should take advantage of it.

2
Type inference is in fact undecidable for System F [Pfenning 1995; Wells 1993].

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 89. Publication date: August 2020.

89:4 A. Serrano, J. Hage, S. Peyton Jones, and D. Vytiniotis

• Minimize type annotations: “obviously typeable” programs should be typeable without annota-

tion. To substantiate this necessarily-qualitative claim we give numerous examples, especially

in Figure 12.

• Conservative extension of Damas-Milner and its extensions to type classes, higher rank, etc.

That is, existing programs continue to typecheck (Section 6.1).

• Can express all of System F, with the use of type annotations (Section 6.1).

• Localised, in both specification and implementation. We seek a system that affects only a

small part of the specification, and the implementation, of the type system and its inference

algorithm. Modern type systems, such as that of Haskell, OCaml, or Scala, are subtle and

complicated; anything that requires pervasive changes is unlikely to be implemented.

3 THE QUICK LOOK
Our new approach works as follows:

• Treat applications as a whole: a function applied to a list of arguments. The list of argu-

ments can be empty, in which case the “function” is not necessarily a function: it can be a

polymorphic value, such as the empty list [] :: ∀p.[p].
• When instantiating the function, take a quick look at the arguments to guide that (possibly

impredicative) instantiation.

• If Quick Look produces a definite answer, use it; otherwise instantiate with a monotype (as

usual in Hindley-Damas-Milner type inference).

In our example (head ids), we have to instantiate the type of head :: ∀p.[p] → p. The argument

ids :: [∀a.a → a] must be compatible with the type head expects, namely [p]. So we are forced to

instantiate p := ∀a.a → a.
On the other hand for (single id), Quick Look sees that the argument id :: ∀a.a → a must

be compatible with the type single expects, namely p. But that does not tell us what p must be:

should we instantiate that ∀a or not? So Quick Look produces no advice, and we revert to standard

Hindley-Damas-Milner type inference by instantiating p with a monotype τ → τ . (Operationally,
the inference algorithm will instantiate p with a unification variable.)

Why is (head ids) easier? Because the type variable p in head’s type appears guarded, under
the list type constructor; but not so for single. Exploiting this guardedness was the key insight of

earlier work [Serrano et al. 2018].

The Quick Look approach scales nicely to handle multiple arguments. For example, consider

the expression (id : ids), where (:) is Haskell’s infix cons operator. How should we instantiate the

type of (:) given in Figure 1? Taking a quick look at the first argument, id, yields no information; it

is like the (single id) case. But at the second argument, ids, it immediately tells us that p must be

instantiated with ∀a.a → a. We gain a lot from taking a quick look at all the arguments before

committing to any instantiation.

3.1 Quick Look at the Result
So far we have concentrated on using the arguments of a call to guide instantiation, but we can

also use the result type. Consider this expression, which has a user-written type signature:

(single id) :: [∀a.a → a]

When considering how to instantiate single, we know that it produces a result of type [p], which
must fit the user-specified result type [∀a.a → a]. So again there is only one possible choice of

instantiation, namely p := ∀a.a → a.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 89. Publication date: August 2020.

AQuick Look at Impredicativity 89:5

This same mechanism works when the “expected” type comes from an enclosing call. Suppose

foo :: [∀a.a → a] → Int, and consider foo (single id). The context of the call (single id) specifies
the result type of the call, just as the type signature did before. We need to “push down” the type

expected by the context into an expression, but fortunately this ability is already well established

in the form of bidirectional type inference [Peyton Jones et al. 2007; Pierce and Turner 2000] as

Section 4 discusses.

Taking a quick look at the result type is particularly important for lone variables and constants.

We can treat those as degenerate forms of call with zero arguments. Its instantiation cannot be

informed by a quick look at the arguments, since it has none; but it can benefit from the result

type. A ubiquitous example is the empty list [] :: ∀p.[p]. Consider the task of instantiating [] in

the context of a call foo []. Since foo expects an argument of type [∀a.a → a], the only way to

instantiate [] is with p := ∀a.a → a.
Finally, here is a more complicated example. Consider the call ([] ++ ids), where the types are

given in Figure 1. First we decide how to instantiate (++) and, as in the case of head, we can discover

its instantiation p := ∀a.a → a from its second argument ids. Having made that decision we now

typecheck its first argument, [], knowing that the result type must be [∀a.a → a], and that in turn

tells us the instantiation of [].

3.2 Richer Arguments
So far the argument of every example call has been a simple variable. But what if it was a list

comprehension? A lambda? Another call?

One strength of the Quick Look approach is that we are free to make restrictions without affecting

anything fundamental. For example, we could say (brutally) that Quick Look yields no advice for an

argument other than a variable. The “no advice” case simply means that we will look for information

in other arguments or, if none of them give advice, revert to monomorphic instantiation.

We have found, however, that it is both easy and beneficial to allow nested calls. For example,

consider (id : (id : ids)). We can only learn the instantiation of the outer (:) by looking at its second

argument (id : ids), which is a call. It would be a shame if simple call nesting broke type inference.

However, allowing nested calls is (currently) where we stop: if you put a list comprehension as

an argument, Quick Look will ignore that argument. Allowing calls seems to be a sweet spot. One

could go further, but the cost/benefit trade-off seems much less attractive.

The alert reader will note that Quick Look appears to have complexity quadratic in the depth

of function call nesting. In our example (id : (id : ids)) the depth was two, but if there were many

elements in the list, each nested call would take a quick look into its argument, with cost linear

in the depth of that argument. Happily, our implementation completely avoids this complexity

change, by retaining and re-using results of the recursive quick looks (Section 9).

3.3 Uncurried Functions
We have focused on exploiting n-ary calls of curried functions, but Quick Look works equally

well on uncurried functions. For example, suppose cons :: ∀p.(p, [p]) → [p], and we have the

call cons (id, ids). Quick Look only has one argument to consult, namely a nested call to the pair

constructor. So again, supporting nested calls is necessary, and it rapidly discovers that the only

possible instantiation is p := ∀a.a → a.

3.4 Interim Summary
The new Quick Look phase guides instantiation of a call based on the context of the call: its

arguments and expected result type. Quick Look is a modular addition: it guides instantiation at

call sites, but the entire inference algorithm is otherwise undisturbed. That is in sharp contrast to

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 89. Publication date: August 2020.

89:6 A. Serrano, J. Hage, S. Peyton Jones, and D. Vytiniotis

Type constructors ∋ F,G, T, . . . Includes (→)

Type variables ∋ a,b, . . .
Term variables ∋ x ,y, f ,д, . . .
Instantiation variables ∋ κ, µ,υ
Polymorphic types σ ,ϕ ::= ∀a.σ | ρ
Top-level mono. types ρ ::= κ | τ | Tσ
Fully mono. types τ ::= a | Tτ
Typechecking direction δ ::= ⇑ | ⇓ Inference and checking respectively

Application heads h ::= x Variable

| e :: σ Annotation

| e (not an application)

Arguments π ::= σ | e
Terms / expressions e ::= h π1 . . . πn Application (n ⩾ 0)

| λx . e Abstraction

Environments Γ ::= ϵ | Γ,x :σ | Γ,a

Mono-substitutions θ ,ψ ::= [α := τ]
Poly-substitutions Θ,Ψ ::= [κ := σ]

fiv(σ) Free instantiation vars. of σ
dom(θ) Domain of θ
rng(θ) Range of θ

valargs(π) Value arguments in π

Fig. 2. Syntax

earlier approaches, which have a pervasive effect throughout type inference. It seems plausible,

therefore, that the Quick Look approach would work equally well in other languages with very

different type inference engines.

4 BIDIRECTIONAL, HIGHER-RANK INFERENCE
We begin our formalisation by giving a solid baseline, closely based on Practical type inference for
arbitrary-rank types [Peyton Jones et al. 2007], which we abbreviate PTIAT. We simplify PTIAT by

omitting the so called “deep skolemisation” and instantiation, and covariance and contravariance in

function arrows, a choice we discuss in Section 5.8. We handle function application in an unusual

way, one that will extend nicely for Quick Look, and we add visible type application [Eisenberg

et al. 2016].

4.1 Syntax
The syntax of our language is given in Figure 2.

Types. The syntax of types is unsurprising. Type constructors T include the function arrow

(→), although we usually write it infix. So (τ1 → τ2) is syntactic sugar for ((→) τ1 τ2). A top-

level monomorphic type, ρ, has no top-level foralls, but may contain nested foralls; while a fully

monomorphic type, or monotype, τ , has no foralls anywhere. Notice that in a polytype σ the foralls

can occur arbitrarily nested, including to the left or right of a function arrow. However, a top-level
monomorphic type ρ has no foralls at the top.

Terms. In order to focus on impredicativity, we restrict ourselves to a tiny term language: just

the lambda calculus plus type annotations. We do not even support let or case. However, nothing

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 89. Publication date: August 2020.

AQuick Look at Impredicativity 89:7

Γ ⊢∀
⇓
e : σ

Γ,a ⊢⇓ e : ρ
gen

Γ ⊢∀
⇓
e : ∀a. ρ

Γ ⊢⇑ e : ρ Γ ⊢⇓ e : ρ

Γ ⊢h
⇑
h : σ Γ ⊢inst σ ; π ; ϕ ; ρr e = valargs(π)

dom(θ) = fiv(ϕ, ρr) Γ ⊢∀
⇓
ei : θϕi ρ = θρr

app-δ
Γ ⊢δ h π : ρ

Γ,x :τ ⊢⇑ e : ρ
abs-⇑

Γ ⊢⇑ λx . e : τ → ρ

Γ,x :σa ⊢∀
⇓
e : σr

abs-⇓
Γ ⊢⇓ λx . e : σa → σr

Γ ⊢h
⇑
h : σ

x : σ ∈ Γ
h-var

Γ ⊢h
⇑
x : σ

Γ ⊢∀
⇓
e : σ

h-ann

Γ ⊢h
⇑
(e :: σ) : σ

Γ ⊢⇑ e : ρ
h-infer

Γ ⊢h
⇑
e : ρ

Fig. 3. Base type system: expressions

essential is thereby omitted. A major feature of Quick Look is that it is completely localised to

typing applications. It is fully compatible with, and leaves entirely unaffected, all other aspects of

the type system, including ML-style let-generalisation, pattern matching, GADTs, type families,

type classes, existentials, and the like (Section 5.9).

Similar to other works on type inference [Dunfield and Krishnaswami 2019; Leijen 2008; Vytiniotis

et al. 2006] our syntax uses n-ary application. The term (h π1 . . . πn) applies a head, h, to a sequence
of zero or more arguments π1 . . . πn . The head can be a variable x , an expression with a type

annotation (e :: σ), or an expression e other than an application. The intuition is that we want to

use information from the arguments to inform instantiation of the function’s polymorphic variables.

In fact, GHC’s implementation already treats application as an n-ary operation to improve error

messages. Note also that a lone variable x is a valid expression e ; it is just an n-ary application with

no arguments.

An argument π is either a type argument σ or a value argument e . Type arguments allow the

programmer to explicitly instantiate the quantified variables of the function (Section 4.4).

4.2 Bidirectional Typing Rules
The typing rules for our language are given in Figures 3 and 4. Following PTIAT, to support higher

rank types the typing judgment for terms is bidirectional, with two forms: one for checking and

one for inference.

Γ ⊢⇓ e : ρ Γ ⊢⇑ e : ρ

The first should be read “in type environment Γ, check that the term e has type ρ”. The second should
be read “in type environment Γ, the term e has inferred type ρ”. Notice that in both cases the type ρ

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 89. Publication date: August 2020.

89:8 A. Serrano, J. Hage, S. Peyton Jones, and D. Vytiniotis

Γ ⊢inst σ ; π ; ϕ ; ρr

Γ ⊢i σ ; π ; Θ ; ϕ ; ρr
inst

Γ ⊢inst σ ; π ; ϕ ; ρr

Γ ⊢i σ ; π ; Θ ; ϕ ; ρr
Invariants: ϕ and ρr are fixed points of Θ; length(ϕ) = length(valargs(π))

iresult

Γ ⊢i ρr ; ϵ ; ∅ ; ϵ ; ρr

π , σ ,π ′ κ fresh Γ ⊢i [a := κ]ρ ; π ; Θ ; ϕ ; ρr
iall

Γ ⊢i ∀a.ρ ; π ; Θ ; ϕ ; ρr

Γ ⊢i ρ[a := σ] ; π ; Θ ; ϕ ; ρr
ityarg

Γ ⊢i ∀a.ρ ; σ ,π ; Θ ; ϕ ; ρr

Γ ⊢i σ2 ; π ; Θ ; ϕ ; ρr
iarg

Γ ⊢i (σ1 → σ2) ; e,π ; Θ ; Θσ1,ϕ ; ρr

µ,υ fresh Θ1 = [κ := (µ → υ)] Γ ⊢i (µ → υ) ; e,π ; Θ2 ; ϕ ; ρr
ivar

Γ ⊢i κ ; e,π ; Θ2 ◦ Θ1 ; ϕ ; ρr

Fig. 4. Base instantiation

has no top-level quantifiers, but for checking ρ is considered as an input while for inference it is an
output. When a rule has ⊢δ in its conclusion, it is shorthand for two rules, one for ⊢⇑ and one for ⊢⇓.

For example, rule abs-⇑ deals with a lambda (λx .e) in inference mode. The premise extends

the environment Γ with a binding x :τ , for some monotype τ , and infers the type of the body e ,
returning its type ρ. Then the conclusion says that the type of the whole lambda is τ → ρ. Note that
in inference mode the lambda-bound variable must have a monotype. A term like λx . (x True, x 3)

is ill-typed in inference mode, because x (being monomorphic) cannot be applied both to a Boolean

and an integer. As is conventional, the type τ appears “out of thin air”. When constructing a typing

derivation we are free to use any τ , but of course only a suitable choice leads to a valid derivation.

Rule abs-⇓ handles a lambda in checking mode. The type being pushed down must be a function

type σa → σr ; we just extend the environment with x : σa and check the body. Note that in

checking mode the lambda-bound variable can have a polytype, so the lambda term in the previous

paragraph is typeable. Notice that in abs-⇓ the return type σr may have top-level quantifiers. The

judgment ⊢∀
⇓
e : σ , in Figure 3, deals with this case by adding the quantifiers to Γ before checking

the expression against ρ.
The motivation for bidirectionality is that in checking mode we may push down a polytype, and

thereby (as we have seen in abs-⇓) allow a lambda-bound variable to have a polytype. But how do

we first invoke the checking judgment in the first place? One occasion is in rule h-ann, where we

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 89. Publication date: August 2020.

AQuick Look at Impredicativity 89:9

have an explicit, user-written type signature. The second main occasion is in a function application,

where we push the type expected by the function into the argument, as we show next.

4.3 Applications and Instantiation
A function application with n arguments (including n = 0) is dealt with by rule app-δ , whose
premises perform these five steps:

(1) Infer the (polymorphic) type σ of the function h, using ⊢h
⇑
. Usually the function is a variable

x , and in that case we simply look up x in the environment Γ (rule h-var in Figure 3).

(2) Instantiate h’s type σ with fresh instantiation variables, κ, µ, ..., guided by the arguments π
to which it is applied, using the judgment ⊢inst. This judgement returns: a type ϕi for each of

the value arguments in π ; and the top-level-monomorphic result type ρr of the call.

(3) Conjure up a “magic substitution” θ that maps each of the free instantiation variables in ϕ
and ρr to a monotype. Just like the τ in abs-⇑, this θ comes “out of thin air”.

(4) Check that each value argument ei has the expected type θϕi . Note that θϕi can be an

arbitrary polytype, which is pushed into the argument, using the checking judgment ⊢∀
⇓
.

Using the function type to specify the type of each argument is the essence of PTIAT.

(5) Checks that the result type of the call, θϕr fits the expected type ρ; that is ρ = θϕr

Notice that instantiation variables have a very short, local life: they are born in step (2), and have

have completely disappeared by the end of step (3). Instantiation variables never appear in Γ. You
may wonder why we did not simply instantiate with arbitrary monotypes in step (2), and dispense

with instantiation variables, and with θ . That would be simpler, but dividing the process in two

will allow us to modify step (2) to perform Quick Look.

The instantiation judgment, shown in Figure 4, has the form

Γ ⊢inst σ ; π ; ϕ ; ρr

It implements step (2) by instantiating σ , guided by the arguments π1 . . . πn . The type σ and

arguments π should be considered inputs; the argument types ϕ, and result type ρr are outputs.

The returned arguments ϕ correspond 1-1 with the value arguments of π . For example,

Γ ⊢inst (∀ab .a → b → b) ; True ; κ ; (υ → υ)

The environment Γ (an input) is entirely unused, and in π the value-argument terms e are unused.
Both become important later for Quick Look. Moreover, as you can see from inst in Figure 4, ⊢inst

is merely a wrapper around ⊢i, the workhorse for instantiation: ⊢inst calls ⊢i and returns all its results

except the substitution Θ. We discuss Θ when we get to rule ivar.

First though, look at the easy rules for ⊢i, iall, iarg, and iresult. iall instantiates a leading

∀; iarg decomposes a function arrow; and, when the argument list is empty, iresult returns the

result type ρr . Note that the rules deal correctly with function types that have a forall nested to the

right of an arrow, e.g. f :: Int → ∀a.[a] → [a]. For example,

Γ ⊢i (Int → ∀a.[a] → [a]) ; 3,x ; ∅ ; Int , [κ] ; [κ]

We discuss ityarg in Section 4.4. That leaves ivar which deals with the case that the function type

ends in a type variable, but there is another argument to come. For example, consider (id x 3). We

instantiate id with κ, so (id x) has type κ; that appears applied to 3, so we learn that κ must be

µ → υ. We express that knowledge with a little substitution Θ1 = [κ := (µ → υ)], and we return

that substitution, composed with Θ2 which comes back from the recursive call.

Γ ⊢i (∀a.a → a) ; x , 3 ; [κ := (µ → υ)] ; (µ → υ), µ ; υ

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 89. Publication date: August 2020.

89:10 A. Serrano, J. Hage, S. Peyton Jones, and D. Vytiniotis

We must return the substitution Θ so that we can apply it to “earlier” arguments in rule iarg; hence

Θσ1 in the conclusion of that rule. To extend the example, suppose our call was (id x 3 4), where

(id x) is applied not just to one, but two arguments. Then we have

Γ ⊢i (∀a.a → a) ; x , 3, 4 ; [κ := (µ → κ1),κ1 := (ν → κ2)] ; (µ → ν → κ2), µ,ν ; κ2

Finally ⊢inst discards the substitution returned by ⊢i; it was needed only by iarg. This plumbing of

the substitution is a little tiresome, but nothing very deep is happening.

4.4 Visible Type Application
The ⊢inst judgement also implements visible type application (VTA) [Eisenberg et al. 2016], a popular

extension offered by GHC. The programmer can use VTA to explicitly instantiate a function call.

For example, if xs :: [Int] we could say either (head xs) or, using VTA, (head @Int xs).
Adding VTA has an immediate payoff for impredicativity: an explicit type argument can be a

polytype, thus allowing explicit impredicative instantiation of any call. This is not particularly

convenient for the programmer – the glory of Damas-Milner is that instantiation is silent – but it

provides a fall-back that handles all of System F.

More precisely, rule ityarg (Figure 4) deals with a visible type argument, by using it to instantiate

the forall
3
. The argument is a polytype σ : we allow impredicative instantiation. For example,

consider the call (map @(∀a.a → a) f), where we supply one of the two type arguments that map
expects (its type is in Figure 1). The instantiation judgement will then look like:

Γ ⊢inst (∀p q.(p → q) → [p] → [q]) ; @(∀a.a → a), f
; ((∀a.a → a) → κ) ; [∀a.a → a] → [κ]

Here we end up with just one instantiation variable κ, which instantiates q; the other quantifier p
is directly instantiated by the supplied type argument.

The attentive reader may note that our typing rules are sloppy about the lexical scoping of type

variables (for example in rule gen), so that they can appear in user-written type signatures or type

arguments. Doing this properly is not hard, using the approach of Eisenberg et al. [2018], but the

plumbing is distracting so we omit it.

5 QUICK LOOK IMPREDICATIVITY
Building on the baseline of Section 4, we are now ready to present Quick Look, the main contribution

of this paper. The changes to the typing rules are given in Figure 5. We make small changes,

highlighted in grey, in two existing rules:

• Learning from the arguments. During instantiation, in rule iarg, we take a quick look at the

argument, using a new judgement ⊢� to produce a poly-substitution Θ that expresses what

Quick Look learned from the argument (Section 5.1).

• Learning from the result. In rule app-⇓ we match ρr , the result type of the call, with ρ, the
type expected by the context, learning a poly-substitution Θ. The rule then exploits Θ but

otherwise behaves exactly as before. We only learn from the result in checking mode (app-⇓),

because only in checking mode do we have an expected result type to learn from.

Quick Look is focused exclusively on reducing the need for type annotations (in the form of VTA)

when instantiating a call of a polymorphic function. For example, the rules for typing a lambda

(abs-⇑ and abs-⇓) remain unaffected. Hence, just as before, in inference mode we can only infer a

monotype for a lambda-bound variable.

3
Note that we do not address all the details of the design of Eisenberg et al. [2016] In particular, we do not account for the

difference between “specified”‘ and “inferred” quantifiers.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 89. Publication date: August 2020.

AQuick Look at Impredicativity 89:11

Γ ⊢i σ ; π ; Θ ; ϕ ; ρr

Γ ⊢� e : σ1 ; Θ1 Γ ⊢i Θ1σ2 ; π ; Θ2 ; ϕ ; ρr Θ = Θ2 ◦ Θ1

iarg

Γ ⊢i (σ1 → σ2) ; e,π ; Θ ; Θσ1,ϕ ; ρr

Γ ⊢⇓ e : ρ

Γ ⊢h
⇑
h : σ Γ ⊢inst σ ; π ; ϕ ; ρr e = valargs(π)

Θ = mguql(ρr , ρ) ϕ
′
= Θϕ dom(θ) = fiv(ϕ

′
) Γ ⊢∀

⇓
ei : θϕ

′
i

app-⇓
Γ ⊢⇓ h π : ρ

QL argument Γ ⊢� e : σ ; Θ

Γ ⊢h� h : σ Γ ⊢inst σ ; π ; ϕ ; ρr ρ = T σ or fiv(ρr) = ∅
app-�

Γ ⊢� h π : ρ ; mguql(ρ, ρr)

Rule app-� fails
rest-�

Γ ⊢� e : σ ; ∅

QL head Γ ⊢h� h : σ

x : σ ∈ Γ
h-var-�

Γ ⊢h� x : σ
h-ann-�

Γ ⊢h� (e :: σ) : σ

Fig. 5. Quick Look rules

5.1 AQuick Look at the Argument
Rule iarg (Figure 5) uses ⊢� to take a quick look at the argument e . This judgement has the form:

Γ ⊢� e : ϕ ; Θ

Here e is the argument, ϕ is the type expected by the function (called σ1 in iarg), and Θ is the

knowledge (expressed as a poly-substitution for some of the instantiation variables) gained from

comparing e with ϕ. The rules of this judgement are given in Figure 5.

Looking first at rule app-�, when the argument is itself a call (h π) (including the degenerate case
of a bare variable), and the expected type is a top-level-monomorphic type (the ρ in the conclusion),

we perform Quick Look in four steps:

(1) Infer the type σ of the head h of the application. The judgement ⊢h� , also given in Figure 5, is

extremely simple and somewhat similar to ⊢h
⇑
in Figure 3.

(2) Instantiate the function type σ , given arguments π , using the same ⊢inst judgement as before.

(3) We will discuss the mysterious premise ρ = T σ or fiv(ρr) = ∅ in Sections 5.3 and 5.4. If

neither holds we revert to rest-�.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 89. Publication date: August 2020.

89:12 A. Serrano, J. Hage, S. Peyton Jones, and D. Vytiniotis

(4) Return the poly-substitution gained by unifying ρr , the result type of the call, with ρ, the
type expected by the function, using a standard most-general-unifier mguql(ρ, ρr).

For example, when typechecking the call (head ids), we instantiate head’s type with κ, and take

a quick look at the argument ids. For that, we look up ids :: [∀a.a → a] in Γ, and unify head’s
expected argument type [κ] against it. That yields Θ = [κ := ∀a.a → a].

Rule rest-� deals with the cases where app-� does not apply. Specifically: if the expected type σ is

not a ρ-type; if the argument is more complicated than a call (a list comprehension, case expression,

lambda, etc – Section 3.2); or if the side conditions in app-� fail. In effect, we simply give up on

using that argument for Quick Look. Remember: the quick look produces a substitution if it is easy

and unambiguous to do so; but it is always free to to bale out, producing an empty substitution. In

the end app-⇓ will fill in any un-substituted instantiation variables with monotypes, via θ .

5.2 Quick Look Unification
The unification function mguql(σ ,ϕ) unifies two polytypes, returning a poly-substitution, binding

instantiation variables (only) to polytypes. Ordinary type variables a are treated as skolems; they

cannot be unified by mguql.
Why do we need to unify during Quick Look, rather than just one-way match? Suppose

f :: ∀a.(σ ,a) → Int x :: ∀c .(c, c)
where σ is any polytype (e.g. ∀b .b → b). Now consider the call (f x). In rule app we instantiate f ’s
type with [a := κ]. Now we take a quick look at the argument x in rule iarg. In turn we instantiate

x ’s type (in rule app-�), with [c := µ]. Finally we call mguql((σ ,κ), (µ, µ)). This is easily solved by

the substitution [κ := σ , µ := σ], but note that we had to unify variables on both sides of the call to
do so. The unification function needs to cope with polymorphic types. For example:

mguql(∀a. a → κ,∀b .b → Int) = [κ := Int]
mguql(∀a. a → κ,∀b .b → b) fails

The second case fails, because κ cannot be bound to a locally-quantified variable. This kind of

unification that checks for escaping of inner quantified variables is standard. For example Pottier

and Rémy [2005] describe constraint solving with scope extrusion rules past universal quantifiers.

A more general setting than ours, where unification variables can be introduced at arbitrary nested

scopes, is mixed-prefix unification [Miller 1992].

5.3 Guarded Arguments
The purpose of rule app-� is to discover if the argument h π of some enclosing call (corresponding

to e from rule iarg) unambiguously specifies how to instantiate some variables of ρ (corresponding

to σ1 from iarg). It does so by unifying ρ, the type expected by the enclosing call, with ρr , the type
of the argument h π .
But this unification risks making an arbitrary choice among possible instantiations. Consider

these two calls (the types are in Figure 1 as usual):

Call 1: (:) id ids Call 2: (:) id incs

In the first we must instantiate (:) with type ∀a.a → a, while in the second we must instantiate it

with Int → Int. Plainly cannot discover this instantiation from the first argument, which is id in

both cases. In contrast, the necessary instantiation becomes absolutely plain when we look at the

second argument.

In Call 1, suppose we instantiate (:) with [a := κ]. Then the expected type of the first argument

is κ, a bare variable, while the actual argument, id, has type ∀a.a → a. So should we instantiate

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 89. Publication date: August 2020.

AQuick Look at Impredicativity 89:13

κ with ∀a.a → a? Or should we instantiate the argument id, and then bind its type to κ? Since
there is more than one choice, we should make neither; perhaps one of the other arguments of the

application will fix κ instead.

And so it proves: the expected type of the second argument is [κ], while the actual argument,

ids, has type [∀a.a → a]. In Call 2, the expected type is again [κ], but the actual argument, incs,
has type Int → Int; so κ must be equal to Int → Int. We say that κ appears guarded by the list type

constructor, in the type of the second argument. That is the meaning of the premise ρ = T σ in

app-�: if the argument type ρ is headed by a type constructor, we are free to unify.

5.4 Unguarded Arguments
Sometimes, though, the instantiation is unambiguous even when the argument type is un-guarded.
Consider single :: ∀a.a → [a], and the call (single ids). After instantiating with [a := κ], single
expects an argument of type κ, while the actual argument, ids, has type [∀a.a → a]. Despite the
fact that single’s argument has an unguarded type, κ, there is no ambiguity here: the only possible

instantiation is [κ 7→ [∀a.a → a]].
Why is this the only possible instantiation? Because the result type of the argument, ρr =

[∀a.a → a], has no free instantiation variables, so cannot be generalised, and hence no well-typed

program can instantiate κ with a top-level forall. This is the role of the side condition fiv(ρr) = ∅

in app-� in Figure 5

Note that this condition works equally well when the argument is an application, not just a

bare variable. For example consider: д1 :: ∀a.Bool → a → a and the application: single (д1 True).
In this case we’d get back ρr = (κa → κa), which has a free instantiation variable (κa), arising
from instantiating д1. We should not commit to a monomorphic [κ := (κa → κa)] because there’s
genuine ambiguity: another typing with [κ := (∀a.a → a)] is also possible. The two choices would

correspond to two different explicit System F derivations (after also fixing κa to, say, Int):

Instantiation 1 Instantiation 2

single @(Int → Int) (g1 @Int True) single @(∀a.a → a) (Λa . g1 @a True)

Technically, the condition fiv(ρr) = ∅ does not fully eliminate ambiguity due to implicit generaliza-

tion, if vacuous quantification is allowed. Consider this expression:

single ids :: [∀c.[∀a.a → a]]

Here app-� will instantiate single at [∀a.a → a]. That contradicts the type signature, which has a

vacuous quantification over c , so the program will be rejected in our system. We choose to ignore

such vacuous possibilities, in exchange for making Quick Look a bit more powerful; for example,

cases A3, A5, A7, and A12 in Figure 12 all require the side condition. This rather subtle point is a

free design choice. We could simplify the system slightly by dropping the condition fiv(ρr) = ∅ in

app-�, but then these examples would require type annotations.

Here are some additional examples and the result of Quick Look:

Call where QL argument instantiation

(1) single g1 g1 :: ∀a.Bool → a → a ∅

(2) single g2 g2 :: Bool → ∀a.a → a [κ := Bool → ∀a.a → a]
(3) single (g2 True) ∅

(4) single (g3 True) g3 :: ∀a.a → (∀b.b → b) → a [κ := (∀b.b → b) → Bool]

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 89. Publication date: August 2020.

89:14 A. Serrano, J. Hage, S. Peyton Jones, and D. Vytiniotis

To demonstrate that we should learn nothing from the argument of single in examples (1), and (3),

here are two distinct valid instantiations for each, expressed in System F:

Instantiation 1 Instantiation 2

(1) single @(Bool → Int → Int) (g1 @Int) single @(∀a.Bool → a → a) g1
(3) single @(Int → Int) (g2 True @Int) single @(∀a.a → a) (g2 True)

Since there is more than one possibility, Quick Look should commit to neither, instead allowing

some other argument (or result type) to unambiguously fix the instantiation. We return to this

topic in Section Section 6.2.

5.5 Quick Look at the Result
So much for taking a quick look at arguments. As we saw in Section 3.1, we can also glean

instantiation information from the result type, at least in checking mode. The highlighted part

of rule app-⇓ in Figure 5 therefore uses mguql to match ρr , the result type of the call, with ρ,
the result “pushed down” from the context by bidirectional type inference. We can use the same

mguql function as before, but this time it really only performs matching, because ρ is devoid of

instantiation variables.

For example, consider the expression ([] :: [∀a.a → a]), where [] is the empty list, whose

type is ∀p.[p] (Figure 1). The user-written type signature [∀a.a → a] is pushed down by rule

h-ann (Figure 3). Then we find the (degenerate) call []; instantiating its type with κ we get the

result type [κ]. Rule app-⇓ now calls mguql([κ], [∀a.a → a]), which succeeds with substitution

Θ = [κ 7→ ∀a.a → a], as desired.
All this happens only in the checking case (δ = ⇓). For the inference case, rule app-⇑ is unchanged,

and we perform no Quick Look on the result type. We can’t — we are inferring the result type. But

even in inference mode, we will still take a quick look at the arguments, of course.

5.6 Over-saturated Functions
Consider the call (head ids True). This is a tricky one! We have head :: ∀p.[p] → p, which looks

as if it takes one argument, yet here it is applied to two. That is fine: ids is a list of polymorphic

functions, so we extract the head, instantiate it, and apply the result to True. If we put in the type

applications it would look like (head @(∀a.a → a) ids @Bool True).
It is for this reason that rule iarg in Figure 5 applies the substitution Θ1 (gleaned from Quick

Look at the argument) to the result type σ2 before instantiating the rest of the function. In this

example, suppose we instantiate head with κ to yield the type [κ] → κ. Then in rule iarg we take

a quick look at the argument ids, yielding Θ1 = [κ := ∀a.a → a]. We apply Θ1 to the result type κ,
giving ∀a.a → a. Then we instantiate with ityarg and use iarg on the argument True. In the end

Γ ⊢inst (∀p.[p] → p) ; ids,True ; [∀a.a → a],Bool ; Bool

5.7 Argument Order
Suppose f1 and f2 are the same function, but take their two arguments in a different order. Then we

would expect (f1 e1 e2) to typecheck if and only if (f2 e2 e1) typechecks; typechecking should not be
sensitive to the vagaries of argument order. In the system we have presented so far this property

does not quite hold. Consider:

f1 :: ∀a.[a] → a → Int x1 :: ∀b.[[b]]
f2 :: ∀a.a → [a] → Int x2 :: [∀c.c → c]

Then (f1 x1 x2) typechecks, but (f2 x2 x1) does not. Why? Suppose we instantiate f1 with [a := κ],
and its first argument x1 with [b := µ]. The first argument is guarded, so Quick Look learns

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 89. Publication date: August 2020.

AQuick Look at Impredicativity 89:15

[κ := [µ]]. Moving on to the second argument, we apply what we have learned so far (the Θ1σ2 in
iarg), so the expected type is not κ but [µ] and that is guarded. So we can learn [µ := ∀c.c → c].
But if we try to typecheck (f2 x2 x1), the first argument is unguarded, so we learn nothing. From

the second we learn [κ := [µ]] as before, but that is all we get, and it is not enough to type the

term. The difference arises because iarg applies the substitution Θ as it goes – and it must do so to

handle over-saturated functions (Section 5.6).

There are several ways out of this dilemma. We could (1) reject both calls, by computing a

guardedness flag for each argument based on the uninstantiated type of the function, and use those

precomputed flags (unaffected by Quick Look’s progress) to determine guardedness in rule app-�.
As a more complex alternative, we could (2) accept both calls, by typing guarded arguments first,

and then unguarded ones (in the hope that they are now guarded). This is similar in spirit to the

approach taken by HMF [Leijen 2008, §6.6]. Even more obscure examples show that one would

have to iterate this process to a fixed point. Finally, we could (3) ignore the problem: the typing

rules are simple and predictable, and the order-sensitive examples are pretty obscure.

In our implementation we use approach (1): it requires simpler reasoning from the programmer,

and is straightforward to implement.

5.8 Co- and Contravariance of Function Types
The presentation so far treats the function arrow (→) uniformly with other type constructors T .
Suppose that

f :: (∀a.Int → a → a) → Bool g :: Int → ∀b.b → b

Then the call (f g) is ill-typed because we use equality when comparing the expected and actual

result types in rule app. The call would also be rejected if the foralls in f and g’s types were the
other way around. Only if they line up will the call be accepted. The function is neither covariant

nor contravariant with respect to polymorphism; it is invariant.

We make this choice for three reasons. First, and most important for this paper, treating the

function arrow invariantly means that it acts as a guard, which in turn allows more impredicative

instantiations to be inferred. For example, without an invariant function arrow (app runST argST)
cannot be typed.

Second, such mismatches are rare (we give data in Appendix A), and even when one occurs it

can readily be fixed by η-expansion. For example, the call (f (λx . g x)) is accepted regardless of

the position of the foralls.

Finally, as well as losing guardedness, co/contra-variance in the function arrow imposes other

significant costs. One approach, used by GHC, is to perform automatic η-expansion, through so-

called “deep skolemisation” and “deep instantiation” [Peyton Jones et al. 2007, §4.6]. But, aside from

adding significant complexity to the type system, this automatic η-expansion changes the semantics

of the program (both in call-by-name and call-by-need settings), which is highly questionable.

Instead of actually η-expanding, one could make the type system behave as if η-expansion had

taken place. This would, however, impact the compiler’s intermediate language. GHC elaborates

the source program to a statically-typed intermediate language based on System F; we would have

to extend this along the lines of Mitchell’s System Fη [Mitchell 1988], a major change that would in

turn impact GHC’s entire downstream optimisation pipeline.

In short, an invariant function arrow provides better impredicative inference, costs the program-

mer little, and makes the type system significantly simpler. Indeed, a GHC Proposal to simplify

the language by adopting an invariant function arrow has been adopted by the community, inde-

pendently of impredicativity [Peyton Jones 2019]. In Appendix A we quantify the impact of this

change in the broader Haskell ecosystem.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 89. Publication date: August 2020.

89:16 A. Serrano, J. Hage, S. Peyton Jones, and D. Vytiniotis

5.9 Modularity
Quick Look is like many other works in that it exploits programmer-supplied type annotations to

guide type inference (Section 11). But Quick Look’s truly distinctive feature is that it is modular
and highly localised.

Highly localised. Through half-closed eyes the changes in Figure 5may seem substantial. However,

rule app-⇓ is the only rule of the expression judgement that is changed. When scaling up to all

of Haskell, the expression judgement in Figure 3 gains dozens and dozens of rules, one for each

syntactic construct. But the only change to support Quick Look impredicativity remains rule app-⇓.

So Quick Look scales well to a very rich source language.

Modular. This paper has presented only a minimalistic type system, but GHC offers many, many

more features, including let-generalisation, data types and pattern matching, GADTs, existentials,

type classes, type families, higher kinds, quantified constraints, kind polymorphism, dependent

kinds, and so on. GHC’s type inference engine works by generating constraints solving them

separately, and elaborating the program into System F [Vytiniotis et al. 2011]. All of these extensions,
and the inference engine that supports them, are unaffected by Quick Look. Indeed, we conjecture the
Quick Look would be equally compatible with quite different type systems, such as ones involving

subtyping, or dependent object types.

To substantiate these claims, Section 8 gives the extra rules for a much larger language; and

we have built a full implementation in GHC (Section 9). This implementation is the first working

implementation of impredicativity in GHC, despite several attempts over the last decade, each of

which became mired in complexity.

6 PROPERTIES OF QUICK LOOK
In this section we give a comprehensive account of various properties of Quick Look.

6.1 Expressiveness and Backward Compatibility
Our system is able to type any program typeable in System F, maybe with additional annotations.

In order to do so, we define a type-directed translation from System F into our source language,

in a fashion very similar to Serrano et al. [2018]. Every variable, and application is recursively

translated, and in addition:

• A System F abstraction (λ(x :: σ). e) is translated as (λx . e ′ :: σ → ϕ), where e ′ is the
translation of e , and ϕ is the type of e .

• A System F type application (e @σ) is translated as (e′ @σ), where e ′ is the translation of e .
• A System F type abstraction (Λa. e) is translated as the annotated term (e ′ :: ∀a.σ), where e ′
is the recursive translation of e , and σ is the type of e .

Theorem 6.1 (Embedding of System F). Let e be a well-typed System F expression with type σ
under an environment Γ, and e ′ the translation as defined above. Then Γ ⊢⇓ e

′
: σ .

The inverse translation, from our language into System F, is also simple to define. In particular, uses

of the ⊢inst judgment translate into type applications, and uses of ⊢∀
⇓
translate into type abstractions.

The fact that we elaborate to System F – a provably type-safe system where types can be erased –

means that the proposed system is type-safe.

The theorem above shows that there exists a compositional translation of System F into typeable

programs in Quick Look but it is heavy on type annotations. In terms of practical guidance about
where type annotations may be needed, programmers need (1) annotate all lambdas with poly-

morphic argument types (or annotate just bound polymorphic variables if present in the syntax),

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 89. Publication date: August 2020.

AQuick Look at Impredicativity 89:17

(2) give a visible type argument for every polymorphic (impredicative) instantiation that does not

have a variable at the head of the instantiated function argument type, or that is not fixed by taking

a quick look at the arguments or result type. This in turn means that although the naive translation

of System F is heavy on type annotations, in practice very few annotations are needed.

Theorem 6.2 (Compatibility with rank-1 polymorphism). Let e be an expression with type τ
under λ-calculus with predicative polymorphism, in an environment Γ whose types only have top-level
polymorphism. Then Γ ⊢⇑ e : τ in the system presented in this paper.

The theorem holds because, given the conditions on Γ, all the argument types ϕ in rule app will

be monotypes, so Quick Look will recover no useful information, and will effectively be a no-op.

Technically, Damas-Milner also includes generalizing let bindings, but adding those in our system

poses no technical challenges (Appendix B).

6.2 Uniqueness ofQuick Look
A crucial intuition is that if Quick Look returns a substitution of the instantiation variables then that

is unambiguously the most general substitution we could use to type an application. For example,

in Section 5.4 we showed examples where, since more than one instantiation is possible, we choose

neither, thanks to the side-conditions in rule app-�.
This is of great practical importance, because if Quick Look for one argument makes an “incorrect”

choice among multiple possibilities, that choice might contradict an unambiguous choice (the

“correct” answer) gotten from another.

It would clearly be desirable to formalise this principle. Intuitively, the quick-look substitution

should always be “on theway to” the substitution that wouldwitness any valid typing derivation. But
any valid typing derivation in what system? Presumably in a system allowing arbitrary polymorphic

instantiation, as in System F. We have a theorem along these lines, but even the statement of the

theorem requires significant technical scaffolding, including instrumented derivations in a variant

of System F with n-ary applications, and a slightly different presentation of our instantiation

judgement with an accumulating substitution, to name a few. Hence we leave a proper formal

presentation of this result as future work.

6.3 Program Transformations
In this section we consider how several program transformations affect typeability in Quick Look.

Relating inference and checking mode. A desirable property of a type system is that if we can

infer a type for a term then we can certainly check that the term can be assigned this type. The

next theorem guarantees this; the proof is given in Appendix C.

Theorem 6.3. If Γ ⊢⇑ e : ρ then Γ ⊢⇓ e : ρ.

As a consequence of this theorem, adding a type annotation (which changes the typechecking

direction to checking) is a valid program transformation.

Let abstraction and inlining. One desirable property, at the heart of ML, is let-abstraction:

let x = e in b ≡? b [e / x]

This property does not hold in in our system; but nor does it hold in our baseline system PTIAT,

because they use the context of the call to guide the typing of the argument. For example, suppose

that f :: ((∀a.a → a) → Int) → Bool. Then let-abstracting the argument can render the program

ill-typed. However, it can always be fixed by adding a type signature:

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 89. Publication date: August 2020.

89:18 A. Serrano, J. Hage, S. Peyton Jones, and D. Vytiniotis

Unification variables ∋ α , β,γ
Fully mono. types τ ::= α | . . .
Constraints C ::= ϵ | C ∧C | σ ∼ ϕ | ∀a. ∃α .C

Fig. 6. Extra syntax for inference

f (λx . (x True, x 3)) Well typed

let g = λx . (x True, x 3) in f g Not well typed

let g :: (∀a.a → a) → Int
g = λx . (x True, x 3)

in f g
Well typed

What about the opposite of let-abstraction, namely let-inlining? With PTIAT, inlining a let-binding

always improves typeability, but not so for Quick Look. Suppose f :: ∀a.(Int → a) → a. Then we

have

f (λx . ids) Not well typed

let g = λx . ids in f g Well typed

f ((λx . ids) :: Int → [∀a.a → a]) Well typed

The trouble here is that Quick Look does not look inside lambda arguments. Again, a type signature

makes the program robust to such transformation, so that this equivalence always holds:

let x = e :: σ in b ≡ b [e :: σ / x]

η-expansion. Sometimes, as we have seen in Section 5.8, η-expansion is necessary to make a

program typecheck. But sometimes the reverse is the case. For example, we cannot in general

η-expand runST to become (λx . runST x), because then x would have to have a polytype, and in

inference mode it can only have a monotype (rule app-⇑).

Argument permutation. As discussed in Section 5.7, Quick Look as described in Figure 5 is sensitive
to permutation of function arguments. It is possible to achieve argument order independence by

pre-computing a guardedness flag for each argument, and our implementation does so.

7 TYPE INFERENCE
In this section we give a type inference algorithm that implements the specification given in Section 5,

and discuss its soundness.

7.1 Inference Algorithm
Typically type inference algorithms work in two stages: generating constraints, and then solving
them, as described in OutsideIn(X): Modular type inference with local assumptions [Vytiniotis et al.
2011], which we abbreviate MTILA. To focus on impredicativity, we simplify MTILA by omitting

local typing assumptions, along with data types, GADTs, and type classes – but our approach to

impredicativity scales to handle all these features, as the full rules in Section 8 demonstrate.

Our algorithm generates constraints whose syntax is shown in Figure 6. Simple constraints are

bags of equality constraints ϕ1 ∼ ϕ2, but we will also need mixed-prefix constraints ∀a.∃α .C . These
forms are not new; they are described in MTILA, and used in GHC’s constraint solver. This is a key

point of our approach: it requires zero changes to GHC’s actual constraint language and solver.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 89. Publication date: August 2020.

AQuick Look at Impredicativity 89:19

Γ ⊢∀
⇓
e : σ ; C

Γ,a ⊢⇓ e : ρ ; C α = fuv(C) − fuv(Γ, ρ)
gen

Γ ⊢∀
⇓
e : ∀a. ρ ; ∀a. ∃α .C

Γ ⊢⇑ e : ρ ; C Γ ⊢⇓ e : ρ ; C

Γ ⊢h
⇑
h : σ ; Ch Γ ⊢inst σ ; π ; ϕ ; ρr ; Cinst

α fresh θ = [fiv(ϕ, ρr) := α] Γ ⊢∀
⇓
ei : θϕi ; Ci

app-⇑
Γ ⊢⇑ h π : θρr ; Ch ∧Cinst ∧Ci

Γ ⊢h
⇑
h : σ ; Ch Γ ⊢inst σ ; π ; ϕ ; ρr ; Cinst

Θ = mguql(ρr , ρ) ϕ
′
= Θϕ ρ ′r = Θρr

α fresh θ = [fiv(ϕ
′
, ρ ′r) := α] Γ ⊢∀

⇓
ei : θϕ

′
i ; Ci

app-⇓
Γ ⊢⇓ h π : ρ ; Ch ∧Cinst ∧Ci ∧ (θρ ′r ∼ ρ)

α fresh Γ,x : α ⊢⇑ e : ρ ; C
abs-⇑

Γ ⊢⇑ λx . e : α → ρ ; C

βa , βr fresh Γ,x : βa ⊢⇓ e : βr ; C
absv-⇓

Γ ⊢⇓ λx . e : α ; C ∧ (α ∼ βa → βr)

Γ,x : σa ⊢∀
⇓
e : σr ; C

absf-⇓
Γ ⊢⇓ λx . e : σa → σr ; C

Γ ⊢h
⇑
h : σ ; C

x : σ ∈ Γ
h-var

Γ ⊢h
⇑
x : σ ; ϵ

Γ ⊢⇑ e : ρ ; C
h-infer

Γ ⊢h
⇑
e : ρ ; C

Γ ⊢∀
⇓
e : σ ; C

h-annot

Γ ⊢h
⇑
(e :: σ) : σ ; C

Fig. 7. Inference algorithm: expressions

Algorithm: expressions. Figure 7 presents constraint generation for expressions. It closely follows

the declarative specification in Figure 3, as modified in Figure 5. For example, the judgement Γ ⊢δ e :

ρ ; C is very similar to that in Figure 3, but in addition generates constraintsC . The big difference
is that instead of clairvoyantly selecting monomorphic types τ for λ-abstraction arguments and for

other instantiations (e.g. the range of substitution θ in rule app-δ) the constraint-generation rules

create fresh unification variables, α , β,γ . Unification variables stand for monomorphic types, and

are solved during a subsequent constraint solving pass. In contrast, instantiation variables stand

for polytypes, and are solved immediately by Quick Look; the constraint solver never sees them.

Hence the following invariant:

Lemma 7.1. If Γ ⊢δ e : ρ ; C (with fiv(Γ) = ∅) then fiv(C) = ∅.

Rule gen generates a mixed-prefix constraint (a degenerate implication constraint in the MTILA

jargon), that encodes the fact that the unification variables α generated inC are allowed to unify to

types mentioning the bound variables a.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 89. Publication date: August 2020.

89:20 A. Serrano, J. Hage, S. Peyton Jones, and D. Vytiniotis

Γ ⊢inst σ ; π ; ϕ ; ρr ; C

Γ ⊢i σ ; π ; Θ ; ϕ ; ρr ; C
inst

Γ ⊢inst σ ; π ; ϕ ; ρr ; C

Γ ⊢i σ ; π ; Θ ; ϕ ; ρr ; C
Invariants: ϕ and ρr are fixed points of Θ; length(ϕ) = length(π)

iresult

Γ ⊢i ρr ; ϵ ; ∅ ; ϵ ; ρr ; ϵ

π , σ ,π ′ κ fresh Γ ⊢i [a := κ]ρ ; π ; Θ ; ϕ ; ρr ; C
iall

Γ ⊢i ∀a.ρ ; π ; Θ ; ϕ ; ρr ; C

Γ ⊢i ρ[a := σ] ; π ; Θ ; ϕ ; ρr ; C
ityarg

Γ ⊢i ∀a.ρ ; σ ,π ; Θ ; ϕ ; ρr ; C

Γ ⊢� e : σ1 ; Θ1 Γ ⊢i Θ1σ2 ; π ; Θ2 ; ϕ ; ρr ; C Θ = Θ2 ◦ Θ1

iarg

Γ ⊢i (σ1 → σ2) ; e,π ; Θ ; Θσ1,ϕ ; ρr ; C

β,γ fresh Γ ⊢i (β → γ) ; e,π ; Θ ; ϕ ; ρr ; C
ivarm

Γ ⊢i α ; e,π ; Θ ; ϕ ; ρr ; C ∧ α ∼ (β → γ)

µ,υ fresh Θ1 = [κ := (µ → υ)] Γ ⊢i (µ → υ) ; e,π ; Θ2 ; ϕ ; ρr ; C
ivard

Γ ⊢i κ ; e,π ; Θ2 ◦ Θ1 ; ϕ ; ρr ; C

Fig. 8. Inference algorithm: instantiation

Rules absv-⇓ and abs-⇑ generate fresh unification variables, as expected
4
. Note that they preserve

the invariant that environments and constraints only mention unification variables but never

instantiation variables.

Rules app-⇑ and app-⇓ follow their declarative counterparts in Figure 3 and Figure 5, with a

few minor deviations. First, while rule app-⇓ in Figure 5 clairvoyantly selects a monomorphic θ to

“monomorphise” any instantiation variables that are not given values by Quick Look, its algorithmic

counterpart in Figure 7 generates fresh unification variables α . Second, rule app-⇓ generates further

constraints about the result type; whereas the rule in Figure 5 has readily ensured that ρ = θρr .

Algorithm: instantiation. The algorithmic instantiation judgement in Figure 8 collects constraints

generated in rule ivarm. In that case we have a unification variable α that we have to further unify

to a function type β → γ . Note how the constraintC only mentions unification but no instantiation
variables. Instantiation variables κ are born and eliminated in a single round of Quick Look.

4
The alert reader will notice that absv-⇓ is redundant; we can instead use app-⇓ with an empty π and h = λx .e ; that rule

would in turn invoke ⊢h
⇑
h : σ and thence (via h-infer) land in abs-⇑. But this chain is pretty indirect, so we prefer to give

absv-⇓ directly.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 89. Publication date: August 2020.

AQuick Look at Impredicativity 89:21

Expressions e ::= · · · | case e0 of {Ki xi → ei }
Constraints Q ::= ϵ | Q ∧Q

| σ ∼ ϕ
| . . . extensible

Polymorphic types σ ,ϕ ::= ∀a.Q ⇒ ρ a and Q may be empty

Constructor signatures k ::= K : ∀a b .Q ⇒ σ → Ta
Environments Γ ::= · · · | Γ,k | Γ,Q

Fig. 9. Syntax for extended language

7.2 Soundness of Type Inference
We write θ |= C to mean that a monomorphic idempotent substitution θ (from any sort of variables)

is a solution to constraint C .5 Due to Lemma 7.1, a solution θ to a constraint C need only refer to

unification variables, but never instantiation variables, that must be resolved only through the QL

mechanism. The main soundness theorem follows:

Theorem 7.2 (Soundness). If Γ ⊢δ e : ρ ; C , θ is a substitution from unification variables to
monotypes, fiv(θ) = ∅, and θ |= C then θΓ ⊢δ e : θρ.

The theorem relies on a chain of other lemmas for every auxiliary judgement used in our

specification and the algorithm. We give proofs in Appendix C.

We additionally conjecture that completeness is true of our algorithm, but have not attempted a

detailed proof.

8 EXTENDING THE LANGUAGEWITH QUALIFIED TYPES AND GADTS
As discussed in Section 5.9, one of the salient features of Quick Look is its modularity with respect

to other type system features. In this section we describe the integration with qualified types and

GADTs, and leave let bindings for Appendix B.
Haskell has a much richer vocabulary of polymorphic types than simply ∀a. ρ. In addition to

quantified type variables, a set of constraints may appear, as described in Figure 9. Those constraints

must be satisfied by the chosen instantiation in order for the program to be accepted.

Following Vytiniotis et al. [2011] we leave the language of constraints open; in the case of GHC

this language includes type class constraints and equalities with type families. Figure 10 shows

that the changes required to support qualified types are fairly minimal:

• Environments Γ may now also mention local constraints. This is a slight departure from

Vytiniotis et al. [2011], in which variable environments and local constraints were kept in

separate sets; this change allows us to control better the scope of each type variable.

• Rules gen and iapp now have to deal with constraints. In the former case, Q is added to

the set of local constraints. In the case of iapp, the constraints are returned as part of the

instantiation judgment.

• Rule app needs to check that the constraints obtained from instantiation hold for the chosen

set of types. We use an auxiliary constraint entailment judgment Γ ⊩ Q which states that

constraints Q hold in the given environment (which may contain local assumptions). This

judgment can be freely instantiated, as explained by Vytiniotis et al. [2011].

5
For implication constraints θ is a substitution nesting – see [Serrano et al. 2018].

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 89. Publication date: August 2020.

89:22 A. Serrano, J. Hage, S. Peyton Jones, and D. Vytiniotis

Γ ⊢∀
⇓
e : σ

Γ,a, Q ⊢⇓ e : ρ
gen

Γ ⊢∀
⇓
e : ∀a. Q ⇒ ρ

Γ ⊢⇑ e : ρ Γ ⊢⇓ e : ρ

Γ ⊢h
⇑
h : σ Γ ⊢inst σ ; π ; Q ; ϕ ; ρr e = valargs(π)

dom(θ) = fiv(ϕ, ρr) Γ ⊢∀
⇓
ei : θϕi ρ = θρr Γ ⊩ θQ

app-δ
Γ ⊢δ h π : ρ

Γ ⊢⇑ e0 : Tσ

for each branch Ki xi → ei do:

Ki : ∀a b .Q ⇒ vi → Ta ∈ Γ

Γ,xi : [a := σ]vi , b,Q ⊢δ ei : ρ
case

Γ ⊢δ case e0 of {Ki xi → ei } : ρ

Γ ⊢i σ ; π ; Θ ; Q ; ϕ ; ρr

π , σ ,π ′ κ fresh Γ ⊢i ([a := κ]ρ) ; π ; Θ ; Q ′
; ϕ ; ρr

iall

Γ ⊢i (∀a.Q ⇒ ρ) ; π ; Θ ; ΘQ ∧Q ′
; ϕ ; ρr

Constraint entailment Γ ⊩ Q

Fig. 10. Qualified types and GADTs

GADTs extend the language by allowing local constraints and quantification also in data type

constructors. These constraints are in scope whenever pattern matching consider that case. The

integration of pattern matching in a bidirectional type system can be done in several ways, depend-

ing on the direction in which the expression being matched is type checked. In the rule case in

Figure 10 we look at that expression e0 in inference mode; the converse choice is to look at how

branches are using the value to infer the instantiation.

In principle, Quick Look is not affected by these changes. But we could also use some information

about the usage of types in the rest of constraints to guide the choice of impredicativity. For example,

Haskell does not allow type class instances over polymorphic types; so if we find a constraint Eq a,
we know that a should not be impredicatively instantiated.

9 IMPLEMENTATION
One of our main claims is that Quick Look can be added, in a modular and non-invasive way, to

an existing, production-scale type inference engine. To substantiate the claim, we implemented

Quick Look on top of the latest incarnation of GHC (ghc-8.11.0.20200529). The changes were

straightforward, and were highly localised. Overall we added about 450 lines to GHC’s 90,000 line

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 89. Publication date: August 2020.

AQuick Look at Impredicativity 89:23

type inference engine. (These figures include comment-only lines, since they are a good proxy for

tricky code.) By way of comparison, attempts to implement Guarded Instantiation [Serrano et al.

2018] in GHC floundered in a morass of complexity. The Quick Look implementation is publicly

available.
6

Our implementation completely avoids the potentially-quadratic cost of Quick Look (Section 3.2)

by retaining and re-using the results of recursive quick looks. Happily, this turned out to require

only simple and localised changes to our initial implementation of Quick Look.

Type classes proved to be the only really tricky point. Consider wcs :: (HasCallStack ⇒ c) → c,
and the innocent-looking call (app wcs True). We instantiate app with [a := κ,b := µ]. Then from

app’s first argument (which is guarded) we rightly conclude that [κ := HasCallStack ⇒ ν , µ := ν],
where we instantiate wcs with ν . Quick Look is a no-op on the second argument because the

expected argument type HasCallStack ⇒ ν is not a top-level monomorphic type, so app-� rule does
not apply. So the call typechecks fine.

But now consider the call (revapp True wcs), where we reverse the argument order. After

instantiating revapp with [a := κ,b := µ], a quick look on the first argument succeeds, even though

revapp’s first argument type is unguarded, because the type of the argument, Bool, has no free

instantiation variables. So we conclude [κ := Bool]. Disaster: that instantiation does not allow the

application to be typechecked. Permuting the arguments changes behaviour!

The problem is that the reasoning about unguarded arguments in Section 5.4 is undermined by

type classes: although a vacuous type abstraction is not useful, a type class abstraction that binds

no type variables may be very useful indeed. In this case, the quick look at the first argument of

revapp True wcs should not have yielded a substitution.

The simplest way to restore insensitivity to argument order is to drop the condition fiv(ρr) from
app-� entirely, along with Section 5.4. We are reluctant to do this, because it means that some

apparently-simple examples (including ones in existing libraries) are no longer typeable without

annotations. Instead, we accept a measure of order-dependence in applications, by recognising that

the first argument of app has already fixed a to be a qualified type, and so app-� should not apply

to the second. But we stress that this is a free (and debatable) design choice.

10 APPLICATIONS
A reasonable question to ask is how the implementation of Quick Look in GHC discussed in

Section 9 benefits the user. It is hard to say how useful a feature will be in practice when it does

not yet exist, but we can give some indicative data.

First, GHC has had an unreliable, unsupported, and entirely un-specified implementation of

impredicativity for many years. We scanned the source code of a collection of packages obtained

from Stackage (LTS 13.6). This repository contains 607 packages that that use the extensions

RankNTypes, Rank2Types or ImpredicativeTypes. Of these we found 20 that used ImpredicativeTypes,
suggesting that impredicativity is regarded as nigh essential by some authors. Of these 20 packages,

10 compiled directly with our new GHC, 4 needed eta expansions due to GHC now using an

invariant arrow (see Appendix A for more details), and 6 could not be compiled due to missing

dependencies and other issues unrelated to our work.

Second, in our set of 607 packages, we identified 48 packages with at least one source file that

had newtype and forall on the same line, indicating that the programmer had used a wrapper for

a higher-rank type. Our scan was rather superficial, and we will have missed a number of cases,

e.g., if a line contains newtype and a synonym that hides the forall.

6
https://gitlab.haskell.org/ghc/ghc/-/merge_requests/3220

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 89. Publication date: August 2020.

https://gitlab.haskell.org/ghc/ghc/-/merge_requests/3220

89:24 A. Serrano, J. Hage, S. Peyton Jones, and D. Vytiniotis

The questions then is: can we get rid of such wrapper types? We investigated in some detail 26

out of those 48 packages
7
. For 17 out of 26 packages, all wrapped types were used in an instance

declaration. Quick Look has nothing to say here, making this is an important future direction.

In 6 of the remaining 9 cases, removing the wrapping on higher-rank types was an unqualified

success. Consider the well-known Scrap Your Boilerplate package syb, that is depended on by more

than 300 packages on Hackage.
8
In module Data.Generics.Aliases we find several types that wrap a

higher-rank type:

type GenericM m = ∀a.Data a ⇒ a → m a
type GenericQ r = ∀a.Data a ⇒ a → r
type GenericT = ∀a.Data a ⇒ a → a

newtype GenericM ′ m = GM {unGM :: GenericM m}

newtype GenericQ′ r = GQ {unGQ :: GenericQ r }
newtype GenericT ′ = GT {unGT :: GenericT }

These newtypes are exported and (only) used in the module Data.Generics.Twins. Here is a use of
GenericM ′

, seen in the use of GM and unGM (we have elided some irrelevant code):

gzipWithM :: ∀m.Monad m ⇒ GenericQ (GenericM m) → GenericQ (GenericM m)

gzipWithM f x y = case gmapAccumM perkid funs y of ...
where perkid a d = (tail a, unGM (head a) d)

funs = gmapQ (λk → GM (f k)) x

Our goal is to get rid of GenericM ′
and replace it with GenericM , in other words, to remove the

wrapping GM and unwrapping unGM from the definitions of perkid and funs. To do so we have to

add signatures, since polymorphic types are never inferred for function arguments, thus:

where perkid :: ∀b.Data b ⇒ [GenericM m] → b → ([GenericM m],m b)
perkid a d = (tail a, (head a) d)
funs :: [GenericM m]

funs = gmapQ f x

These type signatures are desirable anyway, making the code far more comprehensible. We did

the same for the other two types, GenericQ′
and GenericT ′

, and were able to completely remove all
three auxiliary newtypes from the implementation.

Three of the remaining packages were harder to deal with. In the case of streamly one wrapper

type was easily removed, but two other wrapped types were harder to deal with because of the

interaction between Quick Look and type families, and the desugaring of do notation. For fixed-
vector , one type had a class instance problem, one type could be dealt with, essentially by replacing

pattern matches by function calls to help Quick Look along. Interestingly, this package depended

on the primitive package we had already successfully dealt with. The changes to the latter did not

lead to issues with fixed-vector . For reflection the results are still inconclusive.

11 RELATEDWORK
This section explores many different strands of work on first-class polymorphism; another excellent

review can be found in [Botlan and Rémy 2009, §5]. Figure 11 shows how various impredicative

systems impinge on users, by requiring them to understand new term forms, new type forms,

or new type constraints. The fourth column shows whether type annotations may be necessary,

beyond the binders of polymorphic lambdas. In this figure “no” is good! QL does not require any

new terms, types, or constraints; but in exchange, QL sometimes requires an annotation on a

non-guarded instantiation. HMF achieves a similar combination of features, but QL is better suited

7
Of the remaining 22, 18 depended on packages we could not compile, because of different reasons, and in 4 cases the

wrapped type was in code that was not used in a standard compile.

8
https://packdeps.haskellers.com/reverse/syb version 0.7.1.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 89. Publication date: August 2020.

https://packdeps.haskellers.com/reverse/syb

AQuick Look at Impredicativity 89:25

Name New terms New types New constraints

Annotation needed

beyond poly. lambdas

QL (this paper) No No No Yes

GI [Serrano et al. 2018] No No Yes Yes

MLF [Botlan and Rémy 2003] No Yes Yes No

HMF [Leijen 2008] No No No Yes

FPH [Vytiniotis et al. 2008] No No Yes No

HML [Leijen 2009] No Yes Yes No

Boxy [Vytiniotis et al. 2006] No Yes No Yes

QML [Russo and Vytiniotis 2009] No Yes No Yes

FreezeML [Emrich et al. 2019] Yes No No No

PolyML [Garrigue and Rémy 1999] Yes No No No

Fig. 11. Various impredicative systems features (“No” is good)

for the type inference engine of GHC since the quick look is a separate step before actual constraint

generation. We continue below with a detailed discussion of related work for polymorphic type

inference.

Figure 12 compares the expressiveness of some of these systems, using examples from their

papers and more. As we see, QL performs well despite its simplicity.

Higher-rank polymorphism. Type inference for higher-rank polymorphism (in which foralls can

appear to the left or right of the function arrow) is a well-studied topic with successful solutions

using bidirectional type inference as discussed in Section 4 [Peyton Jones et al. 2007]. Follow-up

modern presentations [Dunfield and Krishnaswami 2013] re-frame the problem within a more

logical setting, and describe extensions to indexed types [Dunfield and Krishnaswami 2019]. The

“C” examples are all about higher-rank inference, and mostly do not use impredicativity at all.

Boxed polymorphism. Impredicativity goes beyond higher-rank, by allowing quantified types

to instantiate polymorphic types and data structures. Both Haskell and OCaml have supported

impredicative polymorphism, in an inconvenient form, for over a decade.

In Haskell, one can wrap a polytype in a new, named data type or newtype, which then behaves

like a monotype [Odersky and Läufer 1996]. This boxed polymorphism mechanism is easy to

implement, but the programmer has to declare new data types and explicitly box and unbox the

polymorphic value. Nevertheless, boxed polymorphism is widely used in Haskell.

OCaml supports polymorphic object methods, based on the theory of Poly-ML [Garrigue and

Rémy 1999]. The programmer does not have to declare new data types, but polymorphic values

must still be wrapped and unwrapped. In practice, the mechanism is little used, perhaps because it

is only exposed through the object system.

In FreezeML [Emrich et al. 2019] the programmer chooses explicitly when to not instantiate a

polymorphic type by using the freeze operator ⌈−⌉, similar to how it is done in FX-89 [OâĂŹToole

and Gifford 1989] with explicit open and close operations. Another variant of this line of work is

QML [Russo and Vytiniotis 2009], which has two different universal quantifiers, one that can be

implicitly instantiated and one that requires explicit instantiation. Introducing and eliminating the

explicit quantifier is akin to the wrapping and unwrapping. Explicit wrapping and unwrapping

may be tedious, especially since it often seems unnecessary, so our goal is to allow polymorphic

functions to be implicitly instantiated with quantified types.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 89. Publication date: August 2020.

89:26 A. Serrano, J. Hage, S. Peyton Jones, and D. Vytiniotis

QL GI MLF HMF FPH HML

A polymorphic instantiation

A1 const2 = λx y. y ✓ ✓ ✓ ✓ ✓ ✓
MLF infers (b ⩾ ∀c. c → c) ⇒ a → b, QL and GI infer a → b → b.

A2 choose id ✓ ✓ ✓ ✓ ✓ ✓
MLF and HML infer (a ⩾ ∀b. b → b) ⇒ a → a, FPH, HMF, QL, and GI infer (a → a) → a → a.

A3 choose [] ids ✓ ✓ ✓ ✓ ✓ ✓
A4 λ(x :: ∀a. a → a). x x ✓ ✓ ✓ ✓ ✓ ✓

MLF infers (∀a. a → a) → (∀a. a → a), QL and GI infer (∀a. a → a) → b → b.
A5 id auto ✓ ✓ ✓ ✓ ✓ ✓
A6 id auto′ No ✓ ✓ ✓ ✓ ✓
A7 choose id auto ✓ ✓ ✓ ✓ No ✓
A8 choose id auto′ No No ✓ No No ✓

QL and GI need an ann. on id :: (∀a. a → a) → (∀a. a → a).
A9 f (choose id) ids ✓ ✓∗ ✓ No ✓ ✓

where f :: ∀a. (a → a) → [a] → a
GI needs an annotation on (choose id) :: (∀a. a → a) → (∀a. a → a).

A10 poly id; poly (λx . x); id poly (λx . x) ✓ ✓ ✓ ✓ ✓ ✓
A11 k (λf . (f 1, f True) xs ✓ No No No No No

where k :: ∀a. a → [a] → Int, xs :: [(∀a. a → a) → (Int, Bool)]
Note the example requires impredicativity and bidirectionality.

A12 poly id; app poly id; revapp id poly ✓ ✓ ✓ ✓ ✓ ✓
A13 app runST argST ; revapp argST runST ✓ ✓ ✓ ✓ ✓ ✓
B functions on polymorphic lists

B1 length ids; tail ids; head ids; single id ✓ ✓ ✓ ✓ ✓ ✓

B2 id : ids ✓ ✓ ✓ ✓† ✓ ✓

B3 (λx . x) : ids ✓ ✓ ✓ ✓† ✓ ✓
B4 single inc ++ single id ✓ ✓ ✓ ✓ ✓ ✓
B5 single id ++ ids ✓ No ✓ No ✓ ✓
B6 map poly (single id) ✓ No ✓ ✓ ✓ ✓

GI needs an ann. on single id :: [∀a. a → a] in the previous two.

B7 map head (single ids); head ids True ✓ ✓ ✓ ✓ ✓ ✓
C inference of polymorphic lambda binders and generalization points

C1a λf . (f 1, f True) No No No No No No

C1b λ(f :: ∀a. a → a). (f 1, f True) ✓ ✓ ✓ ✓ ✓ ✓

C1c g (λf . (f 1, f True)) ✓ No No ✓†
No No

where g :: ((∀a. a → a) → (Int, Bool)) → Char
C2 r (λx y. y) ✓ ✓∗ ✓ ✓†

No No

where r :: (∀a. a → ∀b. b → b) → Int
E η-expansion k :: ∀a. a → [a] → a, h :: Int → ∀a. a → a, lst :: [∀a. Int → a → a]
E1a k h lst No No No No No No

E1b k (λx . h x) lst ✓ ✓ ✓ No ✓ ✓
E2a λx . poly x No No ✓ No No No

E2b (λx . poly x) :: (∀a. a → a) → (Int,Bool) ✓ No ✓ ✓†
No No

E3a app poly id ✓ ✓ ✓ ✓ ✓ ✓
E3b app (λx . poly x) id No No ✓ No No No

E4a map poly ids ✓ ✓ ✓ ✓ ✓ ✓
E4b map (λx . poly x) ids ✓ No ✓ No No No

E5a compose poly head ✓ ✓ ✓ ✓ ✓ ✓
E5b λxs. poly (head xs) No No ✓ No No No

∗
in gi requires extensions [Serrano et al. 2018].

†
in HMF requires n-ary apps. and annotation propagation [Leijen 2008].

Fig. 12. Comparison of impredicative type systems

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 89. Publication date: August 2020.

AQuick Look at Impredicativity 89:27

Guarded impredicativity. Quick Look builds on ideas originating in previous work on Guarded

Impredicative Polymorphism (GI) [Serrano et al. 2018]. Specifically, GI figures out the polymorphic

instantiation of variables that are “guarded” in the type of the instantiated function, or the types of

the arguments; meaning they occur under some type constructor. However, GI relied on extending

the constraint language with two completely new forms of constraints, one of which (delayed

generalisation) was very tricky to conceptualise and implement. With Quick Look we instead

eagerly figure out impredicative instantiations, quite separate from constraint solving, which can

remain unmodified.

HMF [Leijen 2008] comes the closest to Quick Look in terms of expressiveness, with a simple type

vocabulary, and an equation-based unification algorithm. HMF presents a declarative application

typing rule that requires the “polymorphic weight” of the instantiated function type to be minimal, a

condition encoding the fact that polymorphism cannot be guessed. The paper includes an extension

of the basic system with n-ary applications, performing a subsumption between each function

argument type and the (inferred and eagerly generalized) type of the corresponding argument. The

order in which to perform these subsumption checks is delicate: it is first performed for guarded

arguments and then on naked ones – this helps to establish some order-independence properties.

All this bears a strong similarity to QL and to GI, but there is a significant difference that affects

expressiveness: in Quick Look we more aggressively combine the propagation of annotations and

impredicative instantiation with a deep quick look into nested applications before we perform

traditional type inference. Hence we can type programs that require nested impredicative instan-

tiation (such as B5 in Table 12) and programs that must be typed with a polymorphic binder in

the environment but whose type we can only deduce via some other impredicative instantiation

(such as E4b). There are other implementation differences; for example Quick Look does not need

to generalize eagerly every argument in an application.

Stratified inference. The idea of Quick Look as a restricted pass prior to actual type inference

has appeared before in the work on Stratified Type Inference (STI) [Pottier and Régis-Gianas 2006;

Rémy 2005]. In the first pass, each term is annotated with a shape, a form of type that expresses

the quantifier structure of the term’s eventual type, while leaving its monomorphic components as

flexible unification variables that will be filled in by the (conventional, predicative) second pass. To

avoid shortcomings with the order in which arguments are checked this process may need to be

iterated [Pottier and Régis-Gianas 2006, §7]. STI was probably the first work that demonstrated

how annotation propagation in the form of a shape inference pass could be used to recover some

impredicativity [Rémy 2005], using an order-dependent resolution of impredicative instantiations.

QL has a similar flavor, but instead of performing annotation propagation before inference, it
interweaves the two phases. It remains an interesting future direction to describe formally our

system as an interweaving of these two separate mechanisms.

Beyond System F. Move beyond System F types impacts the language the programmer sees, the

type inference algorithm, and the compiler’s statically-typed intermediate language. However, once

that Rubicon is crossed, there is a rich seam of work in systems with more expressive types or more

expressive unification algorithms than first-order unification. The gold standard is MLF [Botlan

and Rémy 2003], but there are several subsequent variants, including HML [Leijen 2009], and

FPH [Vytiniotis et al. 2008].

MLF extends type schemes with instantiation constraints, and makes the unification algorithm

aware of them. As a result it achieves the remarkable combination of: (i) typeability of the whole of

System F by only annotating function arguments that must be used polymorphically, (ii) principal

types and a sound and complete type inference algorithm, (iii) the “defining” ML property that any

sub-term can be lifted and let-bound with no type annotations, without affecting typeability. In

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 89. Publication date: August 2020.

89:28 A. Serrano, J. Hage, S. Peyton Jones, and D. Vytiniotis

terms of expressiveness, MLF will unconditionally accept programs with polymorphic binders in

the environment without any annotations if these arguments are not really used polymorphically

(example E3b in Figure 12). This subsumes uses of η-expansion for functions with polymorphic

argument types (example E2a) that will fail to be inferred in QL. On the other hand because QL

uses the impredicative instantiation to check the arguments (via the bidirectional mechanism of

Section 4) it can type some programs that involve polymorphic binders that are genuinely used at

multiple types (example A11). It is worth mentioning that it is entirely possible to extend MLF with

bidirectional propagation of annotations or even inferred polymorphic types (which would also

type examples like A11 and C1c); in fact some small amount of annotation propagation has been

implemented in MLF prototypes. However, such extensions would cause MLF to lose its simple

specification and easy to describe typeability guarantees.

MLF and variants also require intrusive modifications to a constraint solver (in the case of GHC,

a complex one with type classes, implication constraints, type families, and more) and to the type

structure. Though some attempts have been made to integrate MLF with qualified types [Leijen

and Löh 2005], a full integration is uncharted territory. Quick Look is a pragmatic compromise,

trading off a little expressiveness for a lot of simplicity and ease of integration in the existing GHC

inference engine.

ACKNOWLEDGMENTS
We warmly thank Richard Eisenberg, Matthew Fluet, Sam Lindley, Stephanie Weirich, Edward

Yang, and the ICFP reviewers for their feedback. We are deeply grateful to Didier Rémy for his

particularly detailed review and subsequent email dialogue, going far beyond the call of duty.

REFERENCES
Lennart Augustsson. 2011. Impredicative polymorphism: a use case. http://augustss.blogspot.com/2011/07/impredicative-

polymorphism-use-case-in.html.

Didier Le Botlan and Didier Rémy. 2003. ML
F
: raising ML to the power of system F. In Proceedings of the Eighth ACM

SIGPLAN International Conference on Functional Programming, ICFP 2003, Uppsala, Sweden, August 25-29, 2003, Colin
Runciman and Olin Shivers (Eds.). ACM, 27–38. https://doi.org/10.1145/944705.944709

Didier Le Botlan and Didier Rémy. 2009. Recasting MLF. Inf. Comput. 207, 6 (2009), 726–785.
Joshua Dunfield and Neelakantan R. Krishnaswami. 2013. Complete and easy bidirectional typechecking for higher-

rank polymorphism. In ACM SIGPLAN International Conference on Functional Programming, ICFP’13, Boston, MA, USA -
September 25 - 27, 2013, Greg Morrisett and Tarmo Uustalu (Eds.). ACM, 429–442. https://doi.org/10.1145/2500365.2500582

Joshua Dunfield and Neelakantan R. Krishnaswami. 2019. Sound and Complete Bidirectional Typechecking for Higher-rank

Polymorphism with Existentials and Indexed Types. Proc. ACM Program. Lang. 3, POPL, Article 9 (Jan. 2019), 28 pages.
https://doi.org/10.1145/3290322

Richard A. Eisenberg, Joachim Breitner, and Simon Peyton Jones. 2018. Type variables in patterns. In Proceedings of the 11th
ACM SIGPLAN International Symposium on Haskell, Haskell@ICFP 2018, St. Louis, MO, USA, September 27-17, 2018. 94–105.
https://doi.org/10.1145/3242744.3242753

Richard A. Eisenberg, Stephanie Weirich, and Hamidhasan G. Ahmed. 2016. Visible Type Application. In Proceedings of the
25th European Symposium on Programming Languages and Systems - Volume 9632. Springer-Verlag New York, Inc., New

York, NY, USA, 229–254. https://doi.org/10.1007/978-3-662-49498-1_10

Frank Emrich, Sam Lindley, Jan Stolarek, and James Cheney. 2019. FreezeML: Complete and Easy Type Inference for

First-Class Polymorphism. Presented at TyDe 2019.

Jacques Garrigue and Didier Rémy. 1999. Semi-Explicit Higher-Order Polymorphism for ML. Information and Computation
155, 1/2 (1999), 134–169. http://www.springerlink.com/content/m303472288241339/ A preliminary version appeared in

TACS’97.

Jurriaan Hage and Bastiaan Heeren. 2009. Strategies for Solving Constraints in Type and Effect Systems. Electronic Notes
in Theoretical Computer Science 236 (2009), 163 – 183. Proceedings of the 3rd International Workshop on Views On

Designing Complex Architectures (VODCA 2008).

Daan Leijen. 2008. HMF: simple type inference for first-class polymorphism. In Proceeding of the 13th ACM SIGPLAN
international conference on Functional programming, ICFP 2008, Victoria, BC, Canada, September 20-28, 2008. 283–294.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 89. Publication date: August 2020.

http://augustss.blogspot.com/2011/07/impredicative-polymorphism-use-case-in.html
http://augustss.blogspot.com/2011/07/impredicative-polymorphism-use-case-in.html
https://doi.org/10.1145/944705.944709
https://doi.org/10.1145/2500365.2500582
https://doi.org/10.1145/3290322
https://doi.org/10.1145/3242744.3242753
https://doi.org/10.1007/978-3-662-49498-1_10
http://www.springerlink.com/content/m303472288241339/

AQuick Look at Impredicativity 89:29

https://doi.org/10.1145/1411204.1411245

Daan Leijen. 2009. Flexible types: robust type inference for first-class polymorphism. In Proceedings of the 36th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2009, Savannah, GA, USA, January 21-23,
2009. 66–77. https://doi.org/10.1145/1480881.1480891

Daan Leijen and Andres Löh. 2005. Qualified types for MLF. In Proceedings of the 10th ACM SIGPLAN International Conference
on Functional Programming, ICFP 2005, Tallinn, Estonia, September 26-28, 2005, Olivier Danvy and Benjamin C. Pierce

(Eds.). ACM, 144–155. https://doi.org/10.1145/1086365.1086385

Dale Miller. 1992. Unification under a Mixed Prefix. J. Symb. Comput. 14, 4 (Oct. 1992), 321âĂŞ358. https://doi.org/10.1016/

0747-7171(92)90011-R

Robin Milner. 1978. A Theory of Type Polymorphism in Programming. J. Comput. Syst. Sci. 17, 3 (1978), 348–375.

https://doi.org/10.1016/0022-0000(78)90014-4

John C. Mitchell. 1988. Polymorphic Type Inference and Containment. Inf. Comput. 76, 2-3 (Feb. 1988), 211–249. https:

//doi.org/10.1016/0890-5401(88)90009-0

Martin Odersky and Konstantin Läufer. 1996. Putting type annotations to work. In Principles of Programming Languages,
POPL. 54–67.

J. W. OâĂŹToole and D. K. Gifford. 1989. Type Reconstruction with First-Class Polymorphic Values. In Proceedings of the
ACM SIGPLAN 1989 Conference on Programming Language Design and Implementation (Portland, Oregon, USA) (PLDI
âĂŹ89). Association for Computing Machinery, New York, NY, USA, 207âĂŞ217. https://doi.org/10.1145/73141.74836

Simon Peyton Jones. 2019. GHC Proposal: “Simplify subsumption”. https://github.com/ghc-proposals/ghc-proposals/pull/

287

Simon L. Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark Shields. 2007. Practical type inference for

arbitrary-rank types. Journal of Functional Programming 17, 1 (2007), 1–82.

Frank Pfenning. 1995. On the Undecidability of Partial Polymorphic Type Reconstruction. Fundamenta Informaticae 19
(1995). Issue 1/2.

Benjamin C. Pierce and David N. Turner. 2000. Local type inference. ACM Trans. Program. Lang. Syst. 22, 1 (2000), 1–44.
https://doi.org/10.1145/345099.345100

François Pottier and Yann Régis-Gianas. 2006. Stratified Type Inference for Generalized Algebraic Data Types. In Conference
Record of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Charleston, South Carolina,
USA) (POPL ’06). ACM, New York, NY, USA, 232–244. https://doi.org/10.1145/1111037.1111058

François Pottier and Didier Rémy. 2005. The Essence of ML Type Inference. In Advanced Topics in Types and Programming
Languages, Benjamin C. Pierce (Ed.). MIT Press, Chapter 10, 389–489. http://cristal.inria.fr/attapl/

Didier Rémy. 2005. Simple, Partial Type-inference for System F Based on Type-containment. In Proceedings of the Tenth
ACM SIGPLAN International Conference on Functional Programming (Tallinn, Estonia) (ICFP ’05). ACM, New York, NY,

USA, 130–143. https://doi.org/10.1145/1086365.1086383

Claudio V. Russo and Dimitrios Vytiniotis. 2009. QML: Explicit First-class Polymorphism for ML. In Proceedings of
the 2009 ACM SIGPLAN Workshop on ML (Edinburgh, Scotland) (ML ’09). ACM, New York, NY, USA, 3–14. https:

//doi.org/10.1145/1596627.1596630

Alejandro Serrano, Jurriaan Hage, Dimitrios Vytiniotis, and Simon Peyton Jones. 2018. Guarded impredicative polymorphism.

In Proc ACM SIGPLAN Conference on Programming Languages Design and Implementation. ACM. https://www.microsoft.

com/en-us/research/publication/guarded-impredicative-polymorphism/

Dimitrios Vytiniotis, Simon L. Peyton Jones, Tom Schrijvers, and Martin Sulzmann. 2011. OutsideIn(X): Modular type

inference with local assumptions. J. Funct. Program. 21, 4-5 (2011), 333–412. https://doi.org/10.1017/S0956796811000098

Dimitrios Vytiniotis, Stephanie Weirich, and Simon L. Peyton Jones. 2006. Boxy types: inference for higher-rank types

and impredicativity. In Proceedings of the 11th ACM SIGPLAN International Conference on Functional Programming,
ICFP 2006, Portland, Oregon, USA, September 16-21, 2006, John H. Reppy and Julia L. Lawall (Eds.). ACM, 251–262.

https://doi.org/10.1145/1159803.1159838

Dimitrios Vytiniotis, Stephanie Weirich, and Simon L. Peyton Jones. 2008. FPH: first-class polymorphism for Haskell. In

Proceeding of the 13th ACM SIGPLAN international conference on Functional programming, ICFP 2008, Victoria, BC, Canada,
September 20-28, 2008. 295–306. https://doi.org/10.1145/1411204.1411246

J. B. Wells. 1993. Typability and Type Checking in the Second-Order Lambda-Calculus Are Equivalent and Undecidable.
Technical Report. Boston, MA, USA.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 89. Publication date: August 2020.

https://doi.org/10.1145/1411204.1411245
https://doi.org/10.1145/1480881.1480891
https://doi.org/10.1145/1086365.1086385
https://doi.org/10.1016/0747-7171(92)90011-R
https://doi.org/10.1016/0747-7171(92)90011-R
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1016/0890-5401(88)90009-0
https://doi.org/10.1016/0890-5401(88)90009-0
https://doi.org/10.1145/73141.74836
https://github.com/ghc-proposals/ghc-proposals/pull/287
https://github.com/ghc-proposals/ghc-proposals/pull/287
https://doi.org/10.1145/345099.345100
https://doi.org/10.1145/1111037.1111058
http://cristal.inria.fr/attapl/
https://doi.org/10.1145/1086365.1086383
https://doi.org/10.1145/1596627.1596630
https://doi.org/10.1145/1596627.1596630
https://www.microsoft.com/en-us/research/publication/guarded-impredicative-polymorphism/
https://www.microsoft.com/en-us/research/publication/guarded-impredicative-polymorphism/
https://doi.org/10.1017/S0956796811000098
https://doi.org/10.1145/1159803.1159838
https://doi.org/10.1145/1411204.1411246

89:30 A. Serrano, J. Hage, S. Peyton Jones, and D. Vytiniotis

yes

607

no

1725

uses higher-rank or

impredicative types?

no

150

yes

399

with changes

58

out of those which use

them:

do they compile?

type sig.

2η-exp. 54

issues

2

out of those which need

changes: what changes?

Fig. 13. Summary of the evaluation, using Stackage LTS 13.6

A IMPACT OF AN INVARIANT FUNCTION ARROW
In Section 5.8 we propose to make the function arrow invariant, and to drop deep instantiation

and deep skolemisation. This change is independently attractive, and is the subject of a recently

adopted GHC Proposal. How much effect does this change have on existing Haskell code?

To answer this question we used our implementation to compile a large collection of packages

from Hackage; we summarize the results in Figure 13. We started from collection of packages for a

recent version of GHC, obtained from Stackage (LTS 13.6), containing a total of 2,332 packages.

We then selected only the 607 packages that used the extensions RankNTypes, Rank2Types or
ImpredicativeTypes; the other 1,725 packages are certainly unaffected. We then compiled the library

sections of each package. Of the 607 packages, 150 fail to compile for reasons unrelated to Quick

Look – they depend on external libraries and tools we do not have available; or they do not compile

with GHC 8.9 anyway. Of the remaining 457 packages, 399 compiled with no changes whatsoever;

two had issues we could not solve, e.g., because of Template Haskell. We leave these two to the

authors of these packages.

The remaining 56 packages could be made compilable with modest source code changes, almost

all of which were a simple η-expansion on a line that was clearly identified by the error message. In

total we performed 283 η-expansions in 104 of the total of 963 source files. The top three packages

in this case needed 7, 7 and 9 files changed. The majority of the packages, 37, needed only one file

to be changed, and 20 packages needed only a single η-expansion. In the case of two packages,

massiv and drinkery, we additionally had to provide type signatures for local definitions.

In conclusion, of the 2,332 packages we started with, 74% (1,725/2,332) do not use extensions

that interact with first-class polymorphism; of those that do, 87% (399/457) needed no source code

changes; of those that needed changes, 97% (56/58) could be made to compile without any intimate

knowledge of these packages. All but two were fixed by a handful of well-diagnosed η-expansions,
two of them also needed some local type signatures.

B LOCAL BINDINGS
Our description of local bindings, whose syntax is given in Figure 14, follows Vytiniotis et al. [2011]

closely. As described in Figure 15a, the type of a let binding is not generalized unless an explicit

annotation is given. This design enables the most information to propagate between the definition

of a local binding and its use sites when using a constraint-based formulation.

Figure 15b shows another possible design, in which generalization is performed on non-annotated

lets. The main disadvantage is that when implemented in a constraint-based system, this forces us

to solve the constraints obtained from e1 before looking at e2. Otherwise, we cannot be sure about

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 89. Publication date: August 2020.

AQuick Look at Impredicativity 89:31

Expressions e ::= . . .
| let x = e in e
| let x :: σ = e in e

Fig. 14. Syntax for local bindings

Γ ⊢⇑ e : ρ Γ ⊢⇓ e : ρ

Γ ⊢⇑ e1 : ρ1 Γ,x : ρ1 ⊢δ e2 : ρ2
let

Γ ⊢δ let x = e1 in e2 : ρ2

Γ ⊢∀
⇓
e1 : σ1 Γ,x : σ1 ⊢δ e2 : ρ2

annlet

Γ ⊢δ let x :: σ1 = e1 in e2 : ρ2

(a) No generalization

Γ ⊢⇑ e1 : ρ1 a = fv(ρ1) − fv(Γ) Γ,x : ∀a. ρ1 ⊢δ e2 : ρ2
letgen

Γ ⊢δ let x = e1 in e2 : ρ2

(b) With generalization

Fig. 15. Local bindings

which type variables to generalize. Another possibility, taken by Pottier and Rémy [2005] and Hage

and Heeren [2009], is to extend the language of constraints with generalization and instantiation,

making the solver aware of the order in which these constraints ought to be solved.

C PROOFS
C.1 Relating Inference and Checking Mode (Section 6.3)

Theorem C.1. If Γ ⊢⇑ e : ρ then Γ ⊢⇓ e : ρ.

Proof. The proof is straightforward induction on the typing derivation. The interesting case is

the case for rule app-⇑. In that case we have:

Γ ⊢h
⇑
h : σ Γ ⊢inst σ ; π ; ϕ ; ρr e = valargs(π)

dom(θ1) = fiv(ϕ, ρr) Γ ⊢∀
⇓
ei : θ1ϕi

app-⇑
Γ ⊢⇑ h π : θ1ρr

We need to show that Γ ⊢⇓ h π : θ1ρr by using rule app-⇓. To do that it suffices to form the following

derivation:

Γ ⊢h
⇑
h : σ Γ ⊢inst σ ; π ; ϕ ; ρr e = valargs(π)

Θ = mguql(ρr ,θ1ρr) dom(θ2) = fiv(Θϕ) Γ ⊢∀
⇓
ei : θ2Θϕi

app-⇓
Γ ⊢⇓ h π : θ1ρr

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 89. Publication date: August 2020.

89:32 A. Serrano, J. Hage, S. Peyton Jones, and D. Vytiniotis

First, note that the ⊢h and ⊢inst relations are used in exactly the same way in both rules. Second,

since the domain of θ1 is the free instantiation variables of ϕ and ρr , it must hold that:

Θ = mguql(ρr ,θ1ρr) = θ1|fiv(ρr)

In particular we can split θ1 in two independent substitutions, each covering a distinct domain of

instantiation variables:

θ1 = θ1|fiv(ϕ)\fiv(ρr) ·θ1|fiv(ρr)

Choose θ2 in rule app-⇓ to be θ1 |fiv(ϕ)\fiv(ρr). Then we have that θ2 · Θ = θ1. In particular, the

last premise, which typechecks the arguments recursively, pushes the same types in both rules.

(θ2Θϕi = θ1ϕi) □

C.2 Soundness of Type Inference (Section 7.2)
We give a set of auxiliary lemmas necessary to prove the main soundness results. We will be

assuming that fiv(Γ) = ∅, that is, the environment can only contain unification variables but not

instantiation variables. That is certainly true and preserved during constraint generation.

Lemma C.2. If mguql(ρ1, ρ2) = Θ and fiv(θ) = ∅ then mguql(θρ1,θρ2) = (θ ·Θ)|dom(Θ).

Proof. By definition of mguql, we have that Θρ1 = Θρ2, and for any other Θ′
such that Θ′ρ1 =

Θ′ρ2 there exists Θ⋆
such that Θ′ = Θ⋆ · Θ. Note that the domain of Θ, Θ′

, and Θ⋆
are the

instantiation variables of ρ1 and ρ2.
We have to check now that (θ ·Θ)|dom(Θ) satisfies the conditions to be mguql(θρ1,θρ2). First:

(θ ·Θ)|dom(Θ) θρi = θ (Θ(θρi))

since ρi only contains free instantiation variables, which is exactly dom(Θ). We can swap θ and Θ
because they refer to disjoint sets of variables:

θ (Θ(θρi)) = θ (θ (Θρi))

Since Θρ1 = Θρ2, we have the desired equality.

To prove that θΘ is the most general, chose any other Θ′
. If we repeat this process we reach:

θ (θ (Θ′ρi))

Appealing to the fact that Θ is the most general unifier of ρi , we can rewrite that expression as:

θ (θ (Θ⋆(Θρi)))

By swapping θ to the deepmost position again, we see that (θ ·Θ)|dom(Θ) is indeed themguql(θρ1,θρ2)
□

Lemma C.3. If Γ ⊢h� h : σ and fiv(θ) = ∅ then θΓ ⊢h� h : θσ .

Proof. Easy case analysis. □

Lemma C.4.

(1) If Γ ⊢inst σ ; π ; ϕ ; ρr and fiv(θ) = ∅ then Γ ⊢inst θσ ; π ; θϕ ; θρr .
(2) If Γ ⊢� e : ϕ ; Θ and fiv(θ) = ∅ then θΓ ⊢� e : θϕ ; θ ·Θ|fiv(ϕ).

Proof. By mutual induction on the size of the term.

(1) Straightforward, by noticing that the substitution θ may not modify any of the instantiation

variables generated during instantiation.

(2) Straightforward, by Lemma C.3, (1), and Lemma C.2.

□

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 89. Publication date: August 2020.

AQuick Look at Impredicativity 89:33

As notational convenience, we write below θ |=• C to mean that fiv(θ) = ∅ and θ |= C .

Lemma C.5. If Γ ⊢inst σ ; π ; ϕ ; ρr ; C and θ |=• C then Γ ⊢inst θσ ; π ; θϕ ; θρr .

Proof. The only interesting case are rule ivarm, where we have to apply rule iarg in the

declarative specification; and rule iarg, where we need to apply Lemma C.4. The rest of the cases

go through by directly invoking the induction hypothesis or are trivial. □

Lemma C.6.

(1) If Γ ⊢h
⇑
h : σ ; C and θ |=• C then θΓ ⊢h

⇑
h : θσ .

(2) If Γ ⊢∀
⇓
e : σ ; C and θ |=• C then θΓ ⊢∀

⇓
e : θσ .

(3) If Γ ⊢⇑ e : ρ ; C and θ |=• C then θΓ ⊢⇑ e : θρ.
(4) If Γ ⊢⇓ e : ρ ; C and θ |=• C then θΓ ⊢⇓ e : θρ.

Proof. By mutual induction on the size of the term. □

Theorem C.7 (Soundness). If Γ ⊢δ e : ρ ; C , θ is a substitution from unification variables to
monotypes, fiv(θ) = ∅, and θ |= C then θΓ ⊢δ e : θρ.

Proof. Follows directly from Lemma C.6. □

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 89. Publication date: August 2020.

	Abstract
	1 Introduction
	2 Motivation
	3 The Quick Look
	3.1 Quick Look at the Result
	3.2 Richer Arguments
	3.3 Uncurried Functions
	3.4 Interim Summary

	4 Bidirectional, Higher-Rank Inference
	4.1 Syntax
	4.2 Bidirectional Typing Rules
	4.3 Applications and Instantiation
	4.4 Visible Type Application

	5 Quick Look Impredicativity
	5.1 A Quick Look at the Argument
	5.2 Quick Look Unification
	5.3 Guarded Arguments
	5.4 Unguarded Arguments
	5.5 Quick Look at the Result
	5.6 Over-saturated Functions
	5.7 Argument Order
	5.8 Co- and Contravariance of Function Types
	5.9 Modularity

	6 Properties of Quick Look
	6.1 Expressiveness and Backward Compatibility
	6.2 Uniqueness of Quick Look
	6.3 Program Transformations

	7 Type inference
	7.1 Inference Algorithm
	7.2 Soundness of Type Inference

	8 Extending the Language with Qualified Types and GADTs
	9 Implementation
	10 Applications
	11 Related Work
	Acknowledgments
	References
	A Impact of an Invariant Function Arrow
	B Local Bindings
	C Proofs
	C.1 Relating Inference and Checking Mode (Section 6.3)
	C.2 Soundness of Type Inference (Section 7.2)

