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1 INTRODUCTION

Parametric polymorphism backed by Damas-Milner type inference was first introduced in ML
[Milner 1978], and has been enormously influential and widely used. But despite this impact, it
has always suffered from an embarrassing shortcoming: Damas-Milner type inference, and its many
variants, cannot instantiate a type variable with a polymorphic type; in the jargon, the system is
predicative.

Alas, predicativity makes polymorphism a second-class feature of the type system. The type
Va.[a] — [4] is fine (it is the type of the list reverse function), but the type [Va.a — 4] is not,
because a V is not allowed inside a list. So V-types are not first class: they can appear in some
places but not others. Much of the time that does not matter, but sometimes it matters a lot; and,
tantalisingly, it is often “obvious” to the programmer what the desired impredicative instantiation
should be (Section 2).

Thus motivated, a long succession of papers have tackled the problem of type inference for
impredicativity [Botlan and Rémy 2003; Leijen 2008, 2009; Serrano et al. 2018; Vytiniotis et al. 2006,
2008]. None has succeeded in producing a system that is simultaneously expressive enough to be
useful, simple enough to support robust programmer intuition, compatible with a myriad other
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type system extensions, and implementable without an invasive rewrite of a type inference engine
tailored to predicative type inference.

In Section 3 we introduce Quick Look, a new inference algorithm for impredicativity that, for the
first time, (a) handles many “obvious” examples; (b) is expressive enough to handle all of System F;
(c) requires no extension to types, constraints, or intermediate representation; and (d) is easy and
non-invasive to implement in a production-scale type inference engine — indeed we have done so
in GHC. We make the following contributions:

e We formalise a higher-rank baseline system (Section 4), and give the changes required for
Quick Look (Section 5). A key property of Quick Look is that it requires only highly localised
changes to such a specification. In particular, no new forms of types are required, and
programs can be elaborated into a statically typed intermediate language based on System F.
Some other approaches, such as MLF [Botlan and Rémy 2003], require substantial changes to
the intermediate language, but Quick Look does not.

e We prove a number of theorems about our system, including about which transformations
do, and do not, preserve typeability (Section 6).

e We give a type inference algorithm for Quick Look (Section 7). This algorithm is based on the
now-standard approach of first generating typing constraints and then solving them [Pottier
and Rémy 2005]. As in the case of the declarative specification, no new forms of types
or constraints are needed. Section 7 proves its soundness compared with the declarative
specification in Section 5.! The implementation is in turn based very closely on this algorithm.
The constraint generation judgements in Sections 7 and 8 also appear to be the first formal
account of the extremely effective combination of bidirectional type inference [Peyton Jones
et al. 2007] with constraint-based type inference [Pottier and Rémy 2005; Vytiniotis et al.
2011],

e Because Quick Look’s impact is so localised, it is simple to implement, even in a production
compiler. Concretely, the implementation of Quick Look in GHC, a production compiler for
Haskell, affected only 1% of GHC’s inference engine.

e To better support impredicativity, we propose to abandon contravariance of the function
arrow (Section 5.8). There are independent reasons for making this change [Peyton Jones
2019], but it is illuminating to see how it helps impredicativity. We also provide data on its
impact (Appendix A).

The paper uses a very small language, to allow us to focus on impredicativity, but Quick Look
scales very well to a much larger language. Section 8 and Appendix B give the details for a much
richer set of features.

We present our work in the concrete setting of (a tiny subset of) Haskell, but there is nothing
Haskell-specific about it. Quick Look could readily be used in any other type inference system.
We cover the rich related work in Section 11.

2 MOTIVATION

The lack of impredicativity means that polymorphism is fundamentally second class: we cannot
abstract over polymorphic types. For example, even something as basic as function composition fails
on functions with higher-rank types (types with foralls in them). Suppose

f:=Wa.la] - [a]) > Int g Bool - Va.[a] — [a]

Then the composition (f o g) fails typechecking, despite the obvious compatibility of the types
involved, simply because the composition requires instantiating the type of (o) with a polytype.

1We conjecture that completeness is true as well — we are not aware of any counterexample.
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head =Vp.[p] = p revapp :VYab.a— (a—b) —> b

tail = Vp.[p] — [p] runST =Vd.(Vs.ST sd) — d

[] =Vp.[p] argST ::Vs.ST s Int

() =Vp.p — [p] = [p] poly = (Ya.a — a) — (Int, Bool)

single = Vp.p — [p] inc  :Int — Int

()  =Vplpl— [p] — [p] incs  :[Int — Int]

id =Va.a— a choose :Va.a —» a — a

ids = [Va.a — a] auto = (Ya.a— a) —» (Ya.a — a)

map :Vp q.(p— q) = [p] = [4] auto’ = (Ya.a—a) —>b—b

app =Vab(a— b —-a—b compose :¥abc(b—c)—>(a—> b —>a—>c
Fig. 1. Type signatures for functions used in the text

As another example, Augustsson describes an application [Augustsson 2011] in which it was
crucial to have a function var :: RValue a — 10 (VIr.LR Ir = Ir a), an IO action that returns a
polymorphic value. Yet in Haskell today, this is out of reach; instead you have to define a new
named type, thus:

newtype LRType a = MkLR (VIr.LR Ir = Ir a)
var :: RValue a — 10 (LRType a)

Every use of var must pattern match to unwrap the newtype. We call this approach “boxed impred-
icativity”, because the forall is wrapped in a named “box”, here LRType. But boxed impredicativity
is tiresome at best, and declaring a new type for every polymorphic shape is gruesome.

Why not simply allow first-class polymorphism, so that [Va.a — a] is a valid type? The problem
is in type inference.” Consider the expression (single id), where the type of single and id are given
in Figure 1. It is not clear whether to instantiate p with Ya.a — a, or with Int — Int, or some other
monomorphic type. Indeed (single id) does not even have a most general (principal) type: it has
two incomparable types: Va.[a — a] and [Va.a — a]. Losing principal types, especially for such an
innocuous program, is a heavy price to pay for first-class polymorphism.

But in many cases there is no such problem. Consider (head ids) where, again, the types are
given in Figure 1. Now there is no choice: the only possibility is to instantiate p with Va.a — a.
Our idea, just as in previous work [Serrano et al. 2018], is to exploit that special case. Our overall
goals are these:

e First class polymorphism. We want forall-types to be first class. A function like list reverse ::
Va.[a] — [a] should work as uniformly over [Va.a — a] as it does over [ Int] and [ Bool], and
should do so without type annotations. No mainstream deployed language allows that; and
not being able to do so is a fundamental failure of abstraction. Using boxed impredicativity is
an anti-modular second best.

e Predictable type inference: it should be possible for programmers to acquire a robust mental
model of what will typecheck and what will not. Typically they do so through a process
of trial and error, but our formalism in Section 5 is specifically designed to enshrine the
common-sense idea that when there is clear evidence (through the argument or result type)
about how to instantiate a call, type inference should take advantage of it.

2Type inference is in fact undecidable for System F [Pfenning 1995; Wells 1993].
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e Minimize type annotations: “obviously typeable” programs should be typeable without annota-
tion. To substantiate this necessarily-qualitative claim we give numerous examples, especially
in Figure 12.

e Conservative extension of Damas-Milner and its extensions to type classes, higher rank, etc.
That is, existing programs continue to typecheck (Section 6.1).

e Can express all of System F, with the use of type annotations (Section 6.1).

e Localised, in both specification and implementation. We seek a system that affects only a
small part of the specification, and the implementation, of the type system and its inference
algorithm. Modern type systems, such as that of Haskell, OCaml, or Scala, are subtle and
complicated; anything that requires pervasive changes is unlikely to be implemented.

3 THE QUICK LOOK

Our new approach works as follows:

e Treat applications as a whole: a function applied to a list of arguments. The list of argu-
ments can be empty, in which case the “function” is not necessarily a function: it can be a
polymorphic value, such as the empty list []:: Vp.[p].

e When instantiating the function, take a quick look at the arguments to guide that (possibly
impredicative) instantiation.

o If Quick Look produces a definite answer, use it; otherwise instantiate with a monotype (as
usual in Hindley-Damas-Milner type inference).

In our example (head ids), we have to instantiate the type of head :: Vp.[p] — p. The argument
ids :: [Va.a — a] must be compatible with the type head expects, namely [p]. So we are forced to
instantiate p:=Va.a — a.

On the other hand for (single id), Quick Look sees that the argument id :: Ya.a — a must
be compatible with the type single expects, namely p. But that does not tell us what p must be:
should we instantiate that Va or not? So Quick Look produces no advice, and we revert to standard
Hindley-Damas-Milner type inference by instantiating p with a monotype ¢ — 7. (Operationally,
the inference algorithm will instantiate p with a unification variable.)

Why is (head ids) easier? Because the type variable p in head’s type appears guarded, under
the list type constructor; but not so for single. Exploiting this guardedness was the key insight of
earlier work [Serrano et al. 2018].

The Quick Look approach scales nicely to handle multiple arguments. For example, consider
the expression (id : ids), where (:) is Haskell’s infix cons operator. How should we instantiate the
type of (:) given in Figure 1? Taking a quick look at the first argument, id, yields no information; it
is like the (single id) case. But at the second argument, ids, it immediately tells us that p must be
instantiated with Ya.a — a. We gain a lot from taking a quick look at all the arguments before
committing to any instantiation.

3.1 Quick Look at the Result

So far we have concentrated on using the arguments of a call to guide instantiation, but we can
also use the result type. Consider this expression, which has a user-written type signature:

(single id) :: [Va.a — a]

When considering how to instantiate single, we know that it produces a result of type [ p], which
must fit the user-specified result type [Va.a — a]. So again there is only one possible choice of
instantiation, namely p :=Va.a — a.
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This same mechanism works when the “expected” type comes from an enclosing call. Suppose
foo::[Va.a — a] — Int, and consider foo (single id). The context of the call (single id) specifies
the result type of the call, just as the type signature did before. We need to “push down” the type
expected by the context into an expression, but fortunately this ability is already well established
in the form of bidirectional type inference [Peyton Jones et al. 2007; Pierce and Turner 2000] as
Section 4 discusses.

Taking a quick look at the result type is particularly important for lone variables and constants.
We can treat those as degenerate forms of call with zero arguments. Its instantiation cannot be
informed by a quick look at the arguments, since it has none; but it can benefit from the result
type. A ubiquitous example is the empty list [ ] :: Vp.[p]. Consider the task of instantiating [ ] in
the context of a call foo [ ]. Since foo expects an argument of type [Va.a — a], the only way to
instantiate [ | is with p :=Va.a — a.

Finally, here is a more complicated example. Consider the call ([ | 4 ids), where the types are
given in Figure 1. First we decide how to instantiate (+) and, as in the case of head, we can discover
its instantiation p := Va.a — a from its second argument ids. Having made that decision we now
typecheck its first argument, [ |, knowing that the result type must be [Va.a — a], and that in turn
tells us the instantiation of [ ].

3.2 Richer Arguments

So far the argument of every example call has been a simple variable. But what if it was a list
comprehension? A lambda? Another call?

One strength of the Quick Look approach is that we are free to make restrictions without affecting
anything fundamental. For example, we could say (brutally) that Quick Look yields no advice for an
argument other than a variable. The “no advice” case simply means that we will look for information
in other arguments or, if none of them give advice, revert to monomorphic instantiation.

We have found, however, that it is both easy and beneficial to allow nested calls. For example,
consider (id : (id : ids)). We can only learn the instantiation of the outer (:) by looking at its second
argument (id : ids), which is a call. It would be a shame if simple call nesting broke type inference.

However, allowing nested calls is (currently) where we stop: if you put a list comprehension as
an argument, Quick Look will ignore that argument. Allowing calls seems to be a sweet spot. One
could go further, but the cost/benefit trade-off seems much less attractive.

The alert reader will note that Quick Look appears to have complexity quadratic in the depth
of function call nesting. In our example (id : (id : ids)) the depth was two, but if there were many
elements in the list, each nested call would take a quick look into its argument, with cost linear
in the depth of that argument. Happily, our implementation completely avoids this complexity
change, by retaining and re-using results of the recursive quick looks (Section 9).

3.3 Uncurried Functions

We have focused on exploiting n-ary calls of curried functions, but Quick Look works equally
well on uncurried functions. For example, suppose cons :: Vp.(p,[p]) — [p], and we have the
call cons (id, ids). Quick Look only has one argument to consult, namely a nested call to the pair
constructor. So again, supporting nested calls is necessary, and it rapidly discovers that the only
possible instantiation is p := Va.a — a.

3.4 Interim Summary

The new Quick Look phase guides instantiation of a call based on the context of the call: its
arguments and expected result type. Quick Look is a modular addition: it guides instantiation at
call sites, but the entire inference algorithm is otherwise undisturbed. That is in sharp contrast to
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Type constructors > FG,T,... Includes (—)
Type variables > ab,...
Term variables 5 %Y. f.9...
Instantiation variables > K, U
Polymorphic types o, == Vaol|p
Top-level mono. types p == k|7|To
Fully mono. types T u= al|T7T
Typechecking direction é (IR Inference and checking respectively
Application heads h == x Variable

| exo Annotation

| e (not an application)
Arguments T ou= ole
Terms / expressions e = hm...m, Application (n > 0)

| Ax.e Abstraction
Environments I == €|I,x:0]|T,a

Mono-substitutions 6,y == [a:=1] fiv(c) Free instantiation vars. of o
Poly-substitutions O,¥ == [k:=0] dom(f) Domain of
rng(f) Range of 0
valargs() Value arguments in 7
Fig. 2. Syntax

earlier approaches, which have a pervasive effect throughout type inference. It seems plausible,
therefore, that the Quick Look approach would work equally well in other languages with very
different type inference engines.

4 BIDIRECTIONAL, HIGHER-RANK INFERENCE

We begin our formalisation by giving a solid baseline, closely based on Practical type inference for
arbitrary-rank types [Peyton Jones et al. 2007], which we abbreviate PTIAT. We simplify PTIAT by
omitting the so called “deep skolemisation” and instantiation, and covariance and contravariance in
function arrows, a choice we discuss in Section 5.8. We handle function application in an unusual
way, one that will extend nicely for Quick Look, and we add visible type application [Eisenberg
et al. 2016].

4.1 Syntax

The syntax of our language is given in Figure 2.

Types. The syntax of types is unsurprising. Type constructors T include the function arrow
(—), although we usually write it infix. So (r; — 1) is syntactic sugar for ((—) 7; 72). A top-
level monomorphic type, p, has no top-level foralls, but may contain nested foralls; while a fully
monomorphic type, or monotype, r, has no foralls anywhere. Notice that in a polytype o the foralls
can occur arbitrarily nested, including to the left or right of a function arrow. However, a top-level
monomorphic type p has no foralls at the top.

Terms. In order to focus on impredicativity, we restrict ourselves to a tiny term language: just
the lambda calculus plus type annotations. We do not even support let or case. However, nothing
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v ..
Fl—ue.o‘

Farge:p
Fl—ﬁe:‘v’a.p

Trven|[Tries]

Fi—'ﬁh:a THS 6. 7T~ s py e = valargs(7)
dom(6) = fiv(,p;)  THje:04  p=0p,
= APP-0
Trsh:p
Ix:thpe:p I,x:0,4 I—Vezar
U
ABS-|| -
FrpAx.e:t—p ThyAx.e: 0, > 0f ass-|
hp.
Fl—ﬂh.o
x:0€eTl I'tle:o TFkye:p
Tihg. g VAR . U H-ANN - H-INFER
Fpx:0o Fkﬂ(e::a):a Thye:p

Fig. 3. Base type system: expressions

essential is thereby omitted. A major feature of Quick Look is that it is completely localised to
typing applications. It is fully compatible with, and leaves entirely unaffected, all other aspects of
the type system, including ML-style let-generalisation, pattern matching, GADTs, type families,
type classes, existentials, and the like (Section 5.9).

Similar to other works on type inference [Dunfield and Krishnaswami 2019; Leijen 2008; Vytiniotis
et al. 2006] our syntax uses n-ary application. The term (h ;. . . 7,) applies a head, h, to a sequence
of zero or more arguments 7; ... ,. The head can be a variable x, an expression with a type
annotation (e :: 0), or an expression e other than an application. The intuition is that we want to
use information from the arguments to inform instantiation of the function’s polymorphic variables.
In fact, GHC’s implementation already treats application as an n-ary operation to improve error
messages. Note also that a lone variable x is a valid expression e; it is just an n-ary application with
no arguments.

An argument 7 is either a type argument o or a value argument e. Type arguments allow the
programmer to explicitly instantiate the quantified variables of the function (Section 4.4).

4.2 Bidirectional Typing Rules

The typing rules for our language are given in Figures 3 and 4. Following PTIAT, to support higher
rank types the typing judgment for terms is bidirectional, with two forms: one for checking and
one for inference.

Frype:p Fkpe:p
The first should be read “in type environment T, check that the term e has type p”. The second should
be read “in type environment T, the term e has inferred type p”. Notice that in both cases the type p
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THS G T~ ¢ p,

Fl—io;EMQ;_;
iﬁ Pr_insT

THS G 7T ~ ¢ p,

THo; 7T ~ ©;¢;p,
Invariants: a and p, are fixed points of ©; Iength(g) = length(valargs())

IRESULT

THp,se~05€;p,

7T#om kfresh THla:=xk]p; 7T ~ @;a;pr

IALL

THYap; 7T~ ©;¢;p,

TH =0]; T~ 0;¢;
L la=ols 7 ~ _d) Pr_ irvarG
IF'tVap;o,m~ O;¢; p,

THoy; T~ ©;¢;pr

X — IARG
't (o1 —02);e,m ~ O;001,¢; pr

pofresh O =[k:=(u—v)] THE-V):eT~ 0;59;pr

X — IVAR
FHk;e,m ~ 030015 ¢; p,

Fig. 4. Base instantiation

has no top-level quantifiers, but for checking p is considered as an input while for inference it is an
output. When a rule has s in its conclusion, it is shorthand for two rules, one for +q and one for +.

For example, rule aBs-f} deals with a lambda (Ax.e) in inference mode. The premise extends
the environment I' with a binding x : 7, for some monotype 7, and infers the type of the body e,
returning its type p. Then the conclusion says that the type of the whole lambda is 7 — p. Note that
in inference mode the lambda-bound variable must have a monotype. A term like Ax. (x True, x 3)
is ill-typed in inference mode, because x (being monomorphic) cannot be applied both to a Boolean
and an integer. As is conventional, the type 7 appears “out of thin air”. When constructing a typing
derivation we are free to use any 7, but of course only a suitable choice leads to a valid derivation.

Rule aBs-|| handles a lambda in checking mode. The type being pushed down must be a function
type 0, — o,; we just extend the environment with x : o, and check the body. Note that in
checking mode the lambda-bound variable can have a polytype, so the lambda term in the previous
paragraph is typeable. Notice that in ABs-|} the return type o, may have top-level quantifiers. The

judgment FK e : 0, in Figure 3, deals with this case by adding the quantifiers to I' before checking

the expression against p.

The motivation for bidirectionality is that in checking mode we may push down a polytype, and
thereby (as we have seen in ABs-|}) allow a lambda-bound variable to have a polytype. But how do
we first invoke the checking judgment in the first place? One occasion is in rule H-ANN, where we
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have an explicit, user-written type signature. The second main occasion is in a function application,
where we push the type expected by the function into the argument, as we show next.

4.3 Applications and Instantiation

A function application with n arguments (including n = 0) is dealt with by rule aApp-§, whose
premises perform these five steps:

(1) Infer the (polymorphic) type o of the function h, using I—?I. Usually the function is a variable
x, and in that case we simply look up x in the environment I' (rule H-vAR in Figure 3).

(2) Instantiate h’s type o with fresh instantiation variables, k, i, ..., guided by the arguments 7
to which it is applied, using the judgment K", This judgement returns: a type ¢; for each of
the value arguments in 7; and the top-level-monomorphic result type p, of the call.

(3) Conjure up a “magic substitution” 8 that maps each of the free instantiation variables in 5
and p, to a monotype. Just like the 7 in ABs-[, this 6 comes “out of thin air”.

(4) Check that each value argument e; has the expected type 0¢;. Note that 6¢; can be an
arbitrary polytype, which is pushed into the argument, using the checking judgment I—K.
Using the function type to specify the type of each argument is the essence of PTIAT.

(5) Checks that the result type of the call, ¢, fits the expected type p; that is p = 0¢,

Notice that instantiation variables have a very short, local life: they are born in step (2), and have
have completely disappeared by the end of step (3). Instantiation variables never appear in T'. You
may wonder why we did not simply instantiate with arbitrary monotypes in step (2), and dispense
with instantiation variables, and with 6. That would be simpler, but dividing the process in two
will allow us to modify step (2) to perform Quick Look.

The instantiation judgment, shown in Figure 4, has the form

THS 6. 77 ~ ¢ pr

It implements step (2) by instantiating o, guided by the arguments 7 ... r,. The type o and
arguments 7 should be considered inputs; the argument types ¢, and result type p, are outputs.
The returned arguments ¢ correspond 1-1 with the value arguments of 7. For example,

[ "t (Vab.a — b — b) ; True ~ k ; (v — v)

The environment I' (an input) is entirely unused, and in 7 the value-argument terms e are unused.
Both become important later for Quick Look. Moreover, as you can see from INST in Figure 4, pinst
is merely a wrapper around ¥, the workhorse for instantiation: #"¢ calls ! and returns all its results
except the substitution ®. We discuss © when we get to rule 1var.

First though, look at the easy rules for H, IALL, IARG, and IRESULT. IALL instantiates a leading
V; 1ARG decomposes a function arrow; and, when the argument list is empty, IRESULT returns the
result type p,. Note that the rules deal correctly with function types that have a forall nested to the
right of an arrow, e.g. f :: Int — Va.[a] — [a]. For example,

T H (Int — Ya.[a] - [a]); 3,x ~ 0; Int,[x] ; []

We discuss ITYARG in Section 4.4. That leaves 1var which deals with the case that the function type
ends in a type variable, but there is another argument to come. For example, consider (id x 3). We
instantiate id with «, so (id x) has type k; that appears applied to 3, so we learn that k must be
1 — v. We express that knowledge with a little substitution ®; = [k := (z — v)], and we return
that substitution, composed with ®; which comes back from the recursive call.

TH(Vaa—a);x3~ [kKi=(u—->v)]:(@g—ov).p:v
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89:10 A. Serrano, J. Hage, S. Peyton Jones, and D. Vytiniotis

We must return the substitution © so that we can apply it to “earlier” arguments in rule 1ARG; hence
Oo; in the conclusion of that rule. To extend the example, suppose our call was (id x 3 4), where
(id x) is applied not just to one, but two arguments. Then we have

TH(Va.a—a); x,3,4~ [kK:=(— k) ki :=0—ok)]; (1= v oK),V Ko

Finally H"! discards the substitution returned by H; it was needed only by 1aRG. This plumbing of
the substitution is a little tiresome, but nothing very deep is happening.

4.4 Visible Type Application

The H™! judgement also implements visible type application (VTA) [Eisenberg et al. 2016], a popular
extension offered by GHC. The programmer can use VTA to explicitly instantiate a function call.
For example, if xs :: [ Int] we could say either (head xs) or, using VTA, (head @Int xs).

Adding VTA has an immediate payoff for impredicativity: an explicit type argument can be a
polytype, thus allowing explicit impredicative instantiation of any call. This is not particularly
convenient for the programmer - the glory of Damas-Milner is that instantiation is silent — but it
provides a fall-back that handles all of System F.

More precisely, rule rTYARrG (Figure 4) deals with a visible type argument, by using it to instantiate
the forall®. The argument is a polytype o: we allow impredicative instantiation. For example,
consider the call (map @(Va.a — a) f), where we supply one of the two type arguments that map
expects (its type is in Figure 1). The instantiation judgement will then look like:

TS (Vp q.(p— q) = [p] = [q]); @Vaa— a),f
~ ((Va.a — a) - x) ; [Va.a - a] — [x]

Here we end up with just one instantiation variable k, which instantiates g; the other quantifier p
is directly instantiated by the supplied type argument.

The attentive reader may note that our typing rules are sloppy about the lexical scoping of type
variables (for example in rule GEN), so that they can appear in user-written type signatures or type
arguments. Doing this properly is not hard, using the approach of Eisenberg et al. [2018], but the
plumbing is distracting so we omit it.

5 QUICK LOOK IMPREDICATIVITY

Building on the baseline of Section 4, we are now ready to present Quick Look, the main contribution
of this paper. The changes to the typing rules are given in Figure 5. We make small changes,
highlighted in grey, in two existing rules:

e Learning from the arguments. During instantiation, in rule 1ARG, we take a quick look at the
argument, using a new judgement + to produce a poly-substitution © that expresses what
Quick Look learned from the argument (Section 5.1).

o Learning from the result. In rule App-|| we match p,, the result type of the call, with p, the
type expected by the context, learning a poly-substitution ©. The rule then exploits ® but
otherwise behaves exactly as before. We only learn from the result in checking mode (app-|}),
because only in checking mode do we have an expected result type to learn from.

Quick Look is focused exclusively on reducing the need for type annotations (in the form of VTA)
when instantiating a call of a polymorphic function. For example, the rules for typing a lambda
(aBs-] and ABs-|}) remain unaffected. Hence, just as before, in inference mode we can only infer a
monotype for a lambda-bound variable.

3 Note that we do not address all the details of the design of Eisenberg et al. [2016] In particular, we do not account for the
difference between “specified” and “inferred” quantifiers.
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THo ;7T ~ O;¢; pr

Thye:o ~ O THO0, ;T ~ 0,50 p, ©=0,00,

, — IARG
I't(oy = 02);e,m ~ O;001,¢; pr
FI—Fh:o THS 6.7 ~ ¢ p, €= valargs(7)
© = mguq(pr, p) ¢ =04 dom(0) = fiv(¢ ) r I—K e; : 0]
— APP-||
F'ryhm:p
QL argument 'y e:0 ~ ©
TH h:o TS 6 T~ s p, p=T7 or fiv(p,) =0
APP-%

[y h7:p ~ mguq(p, pr)

Rule app-% fails

F'roe:o~ 0 ST-7

QLhead TH'h:o

x:0€Tl
Fl—?x:o

VAR —————————— H-ANN-}
H-VAR- FI—Z(e::O'):J

Fig. 5. Quick Look rules

5.1 A Quick Look at the Argument

Rule 1ARG (Figure 5) uses F, to take a quick look at the argument e. This judgement has the form:
F'rye:¢p ~ O

Here e is the argument, ¢ is the type expected by the function (called oy in 1ARG), and © is the
knowledge (expressed as a poly-substitution for some of the instantiation variables) gained from
comparing e with ¢. The rules of this judgement are given in Figure 5.

Looking first at rule App-%, when the argument is itself a call (h 77) (including the degenerate case
of a bare variable), and the expected type is a top-level-monomorphic type (the p in the conclusion),
we perform Quick Look in four steps:

(1) Infer the type o of the head h of the application. The judgement |—2, also given in Figure 5, is

extremely simple and somewhat similar to I—H in Figure 3.

(2) Instantiate the function type o, given arguments 7, using the same K"! judgement as before.
(3) We will discuss the mysterious premise p = T @ or fiv(p,) = 0 in Sections 5.3 and 5.4. If
neither holds we revert to REST-4.
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(4) Return the poly-substitution gained by unifying p,, the result type of the call, with p, the
type expected by the function, using a standard most-general-unifier mgugq(p, p,).

For example, when typechecking the call (head ids), we instantiate head’s type with x, and take
a quick look at the argument ids. For that, we look up ids :: [Va.a — a] in T, and unify head’s
expected argument type [x] against it. That yields © = [k := Va.a — a].

Rule REST-% deals with the cases where App-% does not apply. Specifically: if the expected type o is
not a p-type; if the argument is more complicated than a call (a list comprehension, case expression,
lambda, etc — Section 3.2); or if the side conditions in App-% fail. In effect, we simply give up on
using that argument for Quick Look. Remember: the quick look produces a substitution if it is easy
and unambiguous to do so; but it is always free to to bale out, producing an empty substitution. In
the end app-|| will fill in any un-substituted instantiation variables with monotypes, via 0.

5.2 Quick Look Unification

The unification function mgug(o, ¢) unifies two polytypes, returning a poly-substitution, binding
instantiation variables (only) to polytypes. Ordinary type variables a are treated as skolems; they
cannot be unified by mgug.

Why do we need to unify during Quick Look, rather than just one-way match? Suppose

f =Va.(o,a) — Int x = Ye.(c,c)

where o is any polytype (e.g. Vb.b — b). Now consider the call (f x). In rule App we instantiate s
type with [a := k]. Now we take a quick look at the argument x in rule 1aRG. In turn we instantiate
x’s type (in rule App-%), with [c := p]. Finally we call mguq((c, k), (1, #)). This is easily solved by
the substitution [k := o, u := o], but note that we had to unify variables on both sides of the call to
do so. The unification function needs to cope with polymorphic types. For example:

mguq(Ya.a — k,Vb.b — Int) = [k := Int]
mguq(Ya.a — k,Vb. b — b) fails

The second case fails, because k cannot be bound to a locally-quantified variable. This kind of
unification that checks for escaping of inner quantified variables is standard. For example Pottier
and Rémy [2005] describe constraint solving with scope extrusion rules past universal quantifiers.
A more general setting than ours, where unification variables can be introduced at arbitrary nested
scopes, is mixed-prefix unification [Miller 1992].

5.3 Guarded Arguments

The purpose of rule App-% is to discover if the argument h 7 of some enclosing call (corresponding
to e from rule 1ARG) unambiguously specifies how to instantiate some variables of p (corresponding
to o7 from 1ARG). It does so by unifying p, the type expected by the enclosing call, with p,, the type
of the argument h 7.

But this unification risks making an arbitrary choice among possible instantiations. Consider
these two calls (the types are in Figure 1 as usual):

Call 1: (:) id ids Call 2: (:) id incs

In the first we must instantiate (:) with type Ya.a — a, while in the second we must instantiate it
with Int — Int. Plainly cannot discover this instantiation from the first argument, which is id in
both cases. In contrast, the necessary instantiation becomes absolutely plain when we look at the
second argument.

In Call 1, suppose we instantiate (:) with [a := k]. Then the expected type of the first argument
is k, a bare variable, while the actual argument, id, has type Ya.a — a. So should we instantiate
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k with Ya.a — a? Or should we instantiate the argument id, and then bind its type to k? Since
there is more than one choice, we should make neither; perhaps one of the other arguments of the
application will fix  instead.

And so it proves: the expected type of the second argument is [k], while the actual argument,
ids, has type [Va.a — a]. In Call 2, the expected type is again [«], but the actual argument, incs,
has type Int — Int; so k must be equal to Int — Int. We say that k appears guarded by the list type
constructor, in the type of the second argument. That is the meaning of the premise p = T 7 in
ApP-%: if the argument type p is headed by a type constructor, we are free to unify.

5.4 Unguarded Arguments

Sometimes, though, the instantiation is unambiguous even when the argument type is un-guarded.
Consider single :: Ya.a — [a], and the call (single ids). After instantiating with [a := ], single
expects an argument of type x, while the actual argument, ids, has type [Va.a — a]. Despite the
fact that single’s argument has an unguarded type, k, there is no ambiguity here: the only possible
instantiation is [k  [Va.a — a]].

Why is this the only possible instantiation? Because the result type of the argument, p, =
[Va.a — a], has no free instantiation variables, so cannot be generalised, and hence no well-typed
program can instantiate x with a top-level forall. This is the role of the side condition fiv(p,) = 0
in App-% in Figure 5

Note that this condition works equally well when the argument is an application, not just a
bare variable. For example consider: g; :: Ya.Bool — a — a and the application: single (g, True).
In this case we’d get back p, = (k, — k), which has a free instantiation variable (k,), arising
from instantiating g;. We should not commit to a monomorphic [k := (k, — k)] because there’s
genuine ambiguity: another typing with [k := (Ya.a — a)] is also possible. The two choices would
correspond to two different explicit System F derivations (after also fixing k, to, say, Int):

Instantiation 1 Instantiation 2
single @(Int — Int) (g1 @Int True) single @(Va.a — a) (Aa. g1 @a True)

Technically, the condition fiv(p,) = @ does not fully eliminate ambiguity due to implicit generaliza-
tion, if vacuous quantification is allowed. Consider this expression:

single ids:: [Vc.[Va.a — a]]

Here app-% will instantiate single at [Va.a — a]. That contradicts the type signature, which has a
vacuous quantification over c, so the program will be rejected in our system. We choose to ignore
such vacuous possibilities, in exchange for making Quick Look a bit more powerful; for example,
cases A3, A5, A7, and A12 in Figure 12 all require the side condition. This rather subtle point is a
free design choice. We could simplify the system slightly by dropping the condition fiv(p,) = 0 in
APP-%, but then these examples would require type annotations.

Here are some additional examples and the result of Quick Look:

Call where QL argument instantiation
(1) single g &1 ::Ya.Bool > a— a 0
(2) single g, g2 :: Bool —» Va.a — a [ := Bool — Ya.a — a]
(3) single (g2 True) 0

(4) single (g3 True) g3:=Va.a— (Vb.b—>b)—a [k:=(Vb.b —> b) — Bool]
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To demonstrate that we should learn nothing from the argument of single in examples (1), and (3),
here are two distinct valid instantiations for each, expressed in System F:

Instantiation 1 Instantiation 2
(1) single @(Bool — Int — Int) (g1 @Int) single @(Ya.Bool — a — a) g
(3) single @(Int — Int) (go True @Int) single @(Ya.a — a) (g2 True)

Since there is more than one possibility, Quick Look should commit to neither, instead allowing
some other argument (or result type) to unambiguously fix the instantiation. We return to this
topic in Section Section 6.2.

5.5 Quick Look at the Result

So much for taking a quick look at arguments. As we saw in Section 3.1, we can also glean
instantiation information from the result type, at least in checking mode. The highlighted part
of rule app-|| in Figure 5 therefore uses mgug to match p,, the result type of the call, with p,
the result “pushed down” from the context by bidirectional type inference. We can use the same
mguq function as before, but this time it really only performs matching, because p is devoid of
instantiation variables.

For example, consider the expression ([] :: [Va.a — a]), where [] is the empty list, whose
type is Vp.[p] (Figure 1). The user-written type signature [Va.a — a] is pushed down by rule
H-ANN (Figure 3). Then we find the (degenerate) call []; instantiating its type with k we get the
result type [k]. Rule App-|| now calls mgugq([x], [Va.a — a]), which succeeds with substitution
O = [k — Va.a — a], as desired.

All this happens only in the checking case (6 = |}). For the inference case, rule aApp-{} is unchanged,
and we perform no Quick Look on the result type. We can’t — we are inferring the result type. But
even in inference mode, we will still take a quick look at the arguments, of course.

5.6 Over-saturated Functions

Consider the call (head ids True). This is a tricky one! We have head :: Vp.[p] — p, which looks
as if it takes one argument, yet here it is applied to two. That is fine: ids is a list of polymorphic
functions, so we extract the head, instantiate it, and apply the result to True. If we put in the type
applications it would look like (head @(Va.a — a) ids @Bool True).

It is for this reason that rule 1ARG in Figure 5 applies the substitution ©, (gleaned from Quick
Look at the argument) to the result type o, before instantiating the rest of the function. In this
example, suppose we instantiate head with k to yield the type [x] — k. Then in rule 1aARG we take
a quick look at the argument ids, yielding ®; = [k := Ya.a — a]. We apply O, to the result type «,
giving Ya.a — a. Then we instantiate with ITYARG and use IARG on the argument True. In the end

I Ht (Vp.[p] — p) ; ids, True ~ [VYa.a — al, Bool ; Bool

5.7 Argument Order

Suppose f and f, are the same function, but take their two arguments in a different order. Then we
would expect (f; e; e;) to typecheck if and only if (f; e; e;) typechecks; typechecking should not be
sensitive to the vagaries of argument order. In the system we have presented so far this property
does not quite hold. Consider:

finValal > a— Int  x = Vb.[[b]]

fru:Vaa— [al > Int  x:[Vec— c]
Then (fi x; x2) typechecks, but (f; x; x;) does not. Why? Suppose we instantiate f; with [a := k],
and its first argument x; with [b := p]. The first argument is guarded, so Quick Look learns
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[k := [u]]. Moving on to the second argument, we apply what we have learned so far (the ®;0;, in
IARG), so the expected type is not k but [u] and that is guarded. So we can learn [y := Ve.c — c].
But if we try to typecheck (f; x, x1), the first argument is unguarded, so we learn nothing. From
the second we learn [k := [p]] as before, but that is all we get, and it is not enough to type the
term. The difference arises because 1ARG applies the substitution © as it goes — and it must do so to
handle over-saturated functions (Section 5.6).

There are several ways out of this dilemma. We could (1) reject both calls, by computing a
guardedness flag for each argument based on the uninstantiated type of the function, and use those
precomputed flags (unaffected by Quick Look’s progress) to determine guardedness in rule App-4.

As a more complex alternative, we could (2) accept both calls, by typing guarded arguments first,
and then unguarded ones (in the hope that they are now guarded). This is similar in spirit to the
approach taken by HMF [Leijen 2008, §6.6]. Even more obscure examples show that one would
have to iterate this process to a fixed point. Finally, we could (3) ignore the problem: the typing
rules are simple and predictable, and the order-sensitive examples are pretty obscure.

In our implementation we use approach (1): it requires simpler reasoning from the programmer,
and is straightforward to implement.

5.8 Co- and Contravariance of Function Types

The presentation so far treats the function arrow (—) uniformly with other type constructors T.
Suppose that

f=(aInt - a— a) - Bool guInt—>Vbb—1b

Then the call (f g) is ill-typed because we use equality when comparing the expected and actual
result types in rule App. The call would also be rejected if the foralls in f and g’s types were the
other way around. Only if they line up will the call be accepted. The function is neither covariant
nor contravariant with respect to polymorphism; it is invariant.

We make this choice for three reasons. First, and most important for this paper, treating the
function arrow invariantly means that it acts as a guard, which in turn allows more impredicative
instantiations to be inferred. For example, without an invariant function arrow (app runST argST)
cannot be typed.

Second, such mismatches are rare (we give data in Appendix A), and even when one occurs it
can readily be fixed by n-expansion. For example, the call (f (Ax. g x)) is accepted regardless of
the position of the foralls.

Finally, as well as losing guardedness, co/contra-variance in the function arrow imposes other
significant costs. One approach, used by GHC, is to perform automatic 5-expansion, through so-
called “deep skolemisation” and “deep instantiation” [Peyton Jones et al. 2007, §4.6]. But, aside from
adding significant complexity to the type system, this automatic 7-expansion changes the semantics
of the program (both in call-by-name and call-by-need settings), which is highly questionable.

Instead of actually n-expanding, one could make the type system behave as if n-expansion had
taken place. This would, however, impact the compiler’s intermediate language. GHC elaborates
the source program to a statically-typed intermediate language based on System F; we would have
to extend this along the lines of Mitchell’s System Fy [Mitchell 1988], a major change that would in
turn impact GHC’s entire downstream optimisation pipeline.

In short, an invariant function arrow provides better impredicative inference, costs the program-
mer little, and makes the type system significantly simpler. Indeed, a GHC Proposal to simplify
the language by adopting an invariant function arrow has been adopted by the community, inde-
pendently of impredicativity [Peyton Jones 2019]. In Appendix A we quantify the impact of this
change in the broader Haskell ecosystem.
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5.9 Modularity

Quick Look is like many other works in that it exploits programmer-supplied type annotations to
guide type inference (Section 11). But Quick Look’s truly distinctive feature is that it is modular
and highly localised.

Highly localised. Through half-closed eyes the changes in Figure 5 may seem substantial. However,
rule app-| is the only rule of the expression judgement that is changed. When scaling up to all
of Haskell, the expression judgement in Figure 3 gains dozens and dozens of rules, one for each
syntactic construct. But the only change to support Quick Look impredicativity remains rule App-|].
So Quick Look scales well to a very rich source language.

Modular. This paper has presented only a minimalistic type system, but GHC offers many, many
more features, including let-generalisation, data types and pattern matching, GADTs, existentials,
type classes, type families, higher kinds, quantified constraints, kind polymorphism, dependent
kinds, and so on. GHC’s type inference engine works by generating constraints solving them
separately, and elaborating the program into System F [Vytiniotis et al. 2011]. All of these extensions,
and the inference engine that supports them, are unaffected by Quick Look. Indeed, we conjecture the
Quick Look would be equally compatible with quite different type systems, such as ones involving
subtyping, or dependent object types.

To substantiate these claims, Section 8 gives the extra rules for a much larger language; and
we have built a full implementation in GHC (Section 9). This implementation is the first working
implementation of impredicativity in GHC, despite several attempts over the last decade, each of
which became mired in complexity.

6 PROPERTIES OF QUICK LOOK

In this section we give a comprehensive account of various properties of Quick Look.

6.1 Expressiveness and Backward Compatibility

Our system is able to type any program typeable in System F, maybe with additional annotations.
In order to do so, we define a type-directed translation from System F into our source language,
in a fashion very similar to Serrano et al. [2018]. Every variable, and application is recursively
translated, and in addition:

e A System F abstraction (A(x = o).e) is translated as (Ax.e’ :: ¢ — ¢), where €’ is the
translation of e, and ¢ is the type of e.

e A System F type application (e @o) is translated as (¢’ @c), where e’ is the translation of e.

e A System F type abstraction (Aa. e) is translated as the annotated term (e’ :: Ya.o), where e’
is the recursive translation of e, and ¢ is the type of e.

THEOREM 6.1 (EMBEDDING OF SYSTEM F). Let e be a well-typed System F expression with type o
under an environment T', and e’ the translation as defined above. ThenT | e’ : 0.

The inverse translation, from our language into System F, is also simple to define. In particular, uses
of the K" judgment translate into type applications, and uses of D—K translate into type abstractions.
The fact that we elaborate to System F — a provably type-safe system where types can be erased -
means that the proposed system is type-safe.

The theorem above shows that there exists a compositional translation of System F into typeable
programs in Quick Look but it is heavy on type annotations. In terms of practical guidance about
where type annotations may be needed, programmers need (1) annotate all lambdas with poly-
morphic argument types (or annotate just bound polymorphic variables if present in the syntax),
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(2) give a visible type argument for every polymorphic (impredicative) instantiation that does not
have a variable at the head of the instantiated function argument type, or that is not fixed by taking
a quick look at the arguments or result type. This in turn means that although the naive translation
of System F is heavy on type annotations, in practice very few annotations are needed.

THEOREM 6.2 (COMPATIBILITY WITH RANK-1 POLYMORPHISM). Let e be an expression with type t
under A-calculus with predicative polymorphism, in an environment T’ whose types only have top-level
polymorphism. ThenT vy e : T in the system presented in this paper.

The theorem holds because, given the conditions on I', all the argument types 5 in rule ApP will
be monotypes, so Quick Look will recover no useful information, and will effectively be a no-op.
Technically, Damas-Milner also includes generalizing let bindings, but adding those in our system
poses no technical challenges (Appendix B).

6.2 Uniqueness of Quick Look

A crucial intuition is that if Quick Look returns a substitution of the instantiation variables then that
is unambiguously the most general substitution we could use to type an application. For example,
in Section 5.4 we showed examples where, since more than one instantiation is possible, we choose
neither, thanks to the side-conditions in rule App-4.

This is of great practical importance, because if Quick Look for one argument makes an “incorrect”
choice among multiple possibilities, that choice might contradict an unambiguous choice (the
“correct” answer) gotten from another.

It would clearly be desirable to formalise this principle. Intuitively, the quick-look substitution
should always be “on the way to” the substitution that would witness any valid typing derivation. But
any valid typing derivation in what system? Presumably in a system allowing arbitrary polymorphic
instantiation, as in System F. We have a theorem along these lines, but even the statement of the
theorem requires significant technical scaffolding, including instrumented derivations in a variant
of System F with n-ary applications, and a slightly different presentation of our instantiation
judgement with an accumulating substitution, to name a few. Hence we leave a proper formal
presentation of this result as future work.

6.3 Program Transformations
In this section we consider how several program transformations affect typeability in Quick Look.

Relating inference and checking mode. A desirable property of a type system is that if we can
infer a type for a term then we can certainly check that the term can be assigned this type. The
next theorem guarantees this; the proof is given in Appendix C.

THEOREM 6.3. IfT Fpe:pthenT ke : p.

As a consequence of this theorem, adding a type annotation (which changes the typechecking
direction to checking) is a valid program transformation.

Let abstraction and inlining. One desirable property, at the heart of ML, is let-abstraction:
letx=einb =? ble/x]

This property does not hold in in our system; but nor does it hold in our baseline system PTIAT,
because they use the context of the call to guide the typing of the argument. For example, suppose
that f :: (Va.a — a) — Int) — Bool. Then let-abstracting the argument can render the program
ill-typed. However, it can always be fixed by adding a type signature:
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Unification variables 5 a,py
Fully mono. types T on= al...
Constraints C == €|CAC|lo~¢|VYa.Ta.C

Fig. 6. Extra syntax for inference

f (Ax. (x True, x 3)) Well typed
let g = Ax. (x True,x 3) in f g Not well typed

let g:: (Va.a — a) — Int
g=Ax.(x True,x 3) Well typed
infg
What about the opposite of let-abstraction, namely let-inlining? With PTIAT, inlining a let-binding
always improves typeability, but not so for Quick Look. Suppose f :: Ya.(Int — a) — a. Then we
have
f (Ax. ids) Not well typed
let g=Ax.idsin f g Well typed
f ((Ax. ids) :: Int — [Va.a — a]) Well typed

The trouble here is that Quick Look does not look inside lambda arguments. Again, a type signature
makes the program robust to such transformation, so that this equivalence always holds:

letx=e:ocinb = ble:o/x]

n-expansion. Sometimes, as we have seen in Section 5.8, 5-expansion is necessary to make a
program typecheck. But sometimes the reverse is the case. For example, we cannot in general
n-expand runST to become (Ax. runST x), because then x would have to have a polytype, and in
inference mode it can only have a monotype (rule App-1}).

Argument permutation. As discussed in Section 5.7, Quick Look as described in Figure 5 is sensitive
to permutation of function arguments. It is possible to achieve argument order independence by
pre-computing a guardedness flag for each argument, and our implementation does so.

7 TYPE INFERENCE

In this section we give a type inference algorithm that implements the specification given in Section 5,
and discuss its soundness.

7.1 Inference Algorithm

Typically type inference algorithms work in two stages: generating constraints, and then solving
them, as described in OutsideIn(X): Modular type inference with local assumptions [Vytiniotis et al.
2011], which we abbreviate MTILA. To focus on impredicativity, we simplify MTILA by omitting
local typing assumptions, along with data types, GADTs, and type classes — but our approach to
impredicativity scales to handle all these features, as the full rules in Section 8 demonstrate.

Our algorithm generates constraints whose syntax is shown in Figure 6. Simple constraints are
bags of equality constraints ¢; ~ ¢2, but we will also need mixed-prefix constraints Va.3a.C. These
forms are not new; they are described in MTILA, and used in GHC’s constraint solver. This is a key
point of our approach: it requires zero changes to GHC’s actual constraint language and solver.
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Iy hw:p ~ Ch ACinst ACi A(Bp; ~ p)
a fresh Ix:arpe:p~ C
ABS-I
FrpAdx.e:a—p~ C
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FI—Hh:GMC
. T'koe: ~ C F}‘VBZO"\/)C
hxwf—ef H-VAR E—P H-INFER U HAANNOT
Trix:io~ € Irie:p~C FI—H(e::G):G'\»C

Fig. 7. Inference algorithm: expressions

Algorithm: expressions. Figure 7 presents constraint generation for expressions. It closely follows
the declarative specification in Figure 3, as modified in Figure 5. For example, the judgementI' -5 e :
p ~ Cisvery similar to that in Figure 3, but in addition generates constraints C. The big difference
is that instead of clairvoyantly selecting monomorphic types r for A-abstraction arguments and for
other instantiations (e.g. the range of substitution 6 in rule App-§) the constraint-generation rules
create fresh unification variables, a, 5, y. Unification variables stand for monomorphic types, and
are solved during a subsequent constraint solving pass. In contrast, instantiation variables stand
for polytypes, and are solved immediately by Quick Look; the constraint solver never sees them.
Hence the following invariant:

LEMMA 7.1. IfT ks e: p ~ C (withfiv(l') = 0) then fiv(C) = 0.

Rule GEN generates a mixed-prefix constraint (a degenerate implication constraint in the MTILA
jargon), that encodes the fact that the unification variables @ generated in C are allowed to unify to
types mentioning the bound variables a.
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THS G T~ s prs C

Tdo; 7 ~ @;E;p,;c

TS G 7~ 3 prs C

INST

THo ;T ~ O;¢;p;C
Invariants: ¢ and p, are fixed points of ©; length(¢) = length(7)

IRESULT

THp,se~05€;p5€
T # 0,7 «fresh Fﬂ[a::x]p;ﬁ«»@;a;pr;c
TEVYap; T~ 0;¢;p:C

IALL

Fl—ip[azza];ﬁM ®;$;pr;C

- — ITYARG
I'tVap;o,m~ O;¢;p;C

I‘I—ge:alv®1 Fﬂ@lo'z;ﬁ'\»@z;a;pr;c 6282061

: — IARG
F'H(og > o02);e,T ~ O;001,0; pr; C
B,y fresh I“I—i(ﬁ—>y);e,ﬁfv®;$;prgc
‘ — IVARM
T a;em~ 05¢;p;CAa~(f—y)
u,vfresh  O; =[k:=(u > v)] Fﬂ(yﬁv);e,ﬁ«»@z;a;pr;c
IVARD

THi; e ~ ©,00,;¢;p,;C

Fig. 8. Inference algorithm: instantiation

Rules ABsv-|} and aBs-{) generate fresh unification variables, as expected?. Note that they preserve
the invariant that environments and constraints only mention unification variables but never
instantiation variables.

Rules arp-{] and arp-|} follow their declarative counterparts in Figure 3 and Figure 5, with a
few minor deviations. First, while rule app-|| in Figure 5 clairvoyantly selects a monomorphic 6 to
“monomorphise” any instantiation variables that are not given values by Quick Look, its algorithmic
counterpart in Figure 7 generates fresh unification variables @. Second, rule app-|| generates further
constraints about the result type; whereas the rule in Figure 5 has readily ensured that p = p,.

Algorithm: instantiation. The algorithmic instantiation judgement in Figure 8 collects constraints
generated in rule 1vARM. In that case we have a unification variable « that we have to further unify
to a function type f — y. Note how the constraint C only mentions unification but no instantiation
variables. Instantiation variables x are born and eliminated in a single round of Quick Look.

4 The alert reader will notice that ABsv-| is redundant; we can instead use App-|| with an empty 7 and h = Ax.e; that rule

would in turn invoke D—H h : o and thence (via H-INFER) land in ABs-]. But this chain is pretty indirect, so we prefer to give

ABsv-|] directly.
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Expressions e := ---|caseeof {K;x; — e;}
Constraints Q == €|QAQ
| o~¢
| . extensible
Polymorphic types o, == Va.Q=p @ and Q may be empty
Constructor signatures k == K:Yab.0=5—>Ta
Environments r == ---|LLk|T,Q

Fig. 9. Syntax for extended language

7.2 Soundness of Type Inference

We write 0 |= C to mean that a monomorphic idempotent substitution 6 (from any sort of variables)
is a solution to constraint C.° Due to Lemma 7.1, a solution 6 to a constraint C need only refer to
unification variables, but never instantiation variables, that must be resolved only through the QL
mechanism. The main soundness theorem follows:

THEOREM 7.2 (SOUNDNESS). IfT ks e: p ~ C, 0 is a substitution from unification variables to
monotypes, fiv(0) = 0, and 0 |= C then 0T 5 e : Op.

The theorem relies on a chain of other lemmas for every auxiliary judgement used in our
specification and the algorithm. We give proofs in Appendix C.

We additionally conjecture that completeness is true of our algorithm, but have not attempted a
detailed proof.

8 EXTENDING THE LANGUAGE WITH QUALIFIED TYPES AND GADTS

As discussed in Section 5.9, one of the salient features of Quick Look is its modularity with respect
to other type system features. In this section we describe the integration with qualified types and
GADTs, and leave let bindings for Appendix B.

Haskell has a much richer vocabulary of polymorphic types than simply Va. p. In addition to
quantified type variables, a set of constraints may appear, as described in Figure 9. Those constraints
must be satisfied by the chosen instantiation in order for the program to be accepted.

Following Vytiniotis et al. [2011] we leave the language of constraints open; in the case of GHC
this language includes type class constraints and equalities with type families. Figure 10 shows
that the changes required to support qualified types are fairly minimal:

e Environments I' may now also mention local constraints. This is a slight departure from
Vytiniotis et al. [2011], in which variable environments and local constraints were kept in
separate sets; this change allows us to control better the scope of each type variable.

e Rules GEN and 1aPP now have to deal with constraints. In the former case, Q is added to
the set of local constraints. In the case of 1aPp, the constraints are returned as part of the
instantiation judgment.

e Rule APP needs to check that the constraints obtained from instantiation hold for the chosen
set of types. We use an auxiliary constraint entailment judgment I' IF Q which states that
constraints Q hold in the given environment (which may contain local assumptions). This
judgment can be freely instantiated, as explained by Vytiniotis et al. [2011].

SFor implication constraints @ is a substitution nesting - see [Serrano et al. 2018].
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vV ..
Fl—ue.o‘

T,a, Q Fpe:p
Fi—ﬁe:\fﬁ. 0=p

GEN

W

Fl—ﬁh:a Tiste 7T~ Q ;¢;pr e = valargs(m)
dom(0) = fiv(§,p,)  Trjei:04  p=6p,  TIF6OQ

Trshm:p APP-0
for each branch K; x; — e; do:
Trpe:To K,~:VEE.Q=>07—>T5€F
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CASE
I'+s case ey of {K;X; = e;}:p
THo:; 7T ~ O Q ;a;pr
7T+ o7 «fresh TH([a:=x]p); 7T~ ©; Q ;a;p,
IALL

TH(Va.Q=p); 7T~ 0; OQAQ ;¢; p,

’ Constraint entailment T IFQ ‘

Fig. 10. Qualified types and GADTs

GADTs extend the language by allowing local constraints and quantification also in data type
constructors. These constraints are in scope whenever pattern matching consider that case. The
integration of pattern matching in a bidirectional type system can be done in several ways, depend-
ing on the direction in which the expression being matched is type checked. In the rule cask in
Figure 10 we look at that expression e; in inference mode; the converse choice is to look at how
branches are using the value to infer the instantiation.

In principle, Quick Look is not affected by these changes. But we could also use some information
about the usage of types in the rest of constraints to guide the choice of impredicativity. For example,
Haskell does not allow type class instances over polymorphic types; so if we find a constraint Eq a,
we know that a should not be impredicatively instantiated.

9 IMPLEMENTATION

One of our main claims is that Quick Look can be added, in a modular and non-invasive way, to
an existing, production-scale type inference engine. To substantiate the claim, we implemented
Quick Look on top of the latest incarnation of GHC (ghc-8.11.0.20200529). The changes were
straightforward, and were highly localised. Overall we added about 450 lines to GHC’s 90,000 line
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type inference engine. (These figures include comment-only lines, since they are a good proxy for
tricky code.) By way of comparison, attempts to implement Guarded Instantiation [Serrano et al.
2018] in GHC floundered in a morass of complexity. The Quick Look implementation is publicly
available.®

Our implementation completely avoids the potentially-quadratic cost of Quick Look (Section 3.2)
by retaining and re-using the results of recursive quick looks. Happily, this turned out to require
only simple and localised changes to our initial implementation of Quick Look.

Type classes proved to be the only really tricky point. Consider wes :: (HasCallStack = ¢) — c,
and the innocent-looking call (app wes True). We instantiate app with [a := k, b := p]. Then from
app’s first argument (which is guarded) we rightly conclude that [k := HasCallStack = v, u := v],
where we instantiate wes with v. Quick Look is a no-op on the second argument because the
expected argument type HasCallStack = v is not a top-level monomorphic type, so App-% rule does
not apply. So the call typechecks fine.

But now consider the call (revapp True wcs), where we reverse the argument order. After
instantiating revapp with [a := k, b := ], a quick look on the first argument succeeds, even though
revapp’s first argument type is unguarded, because the type of the argument, Bool, has no free
instantiation variables. So we conclude [k := Bool]. Disaster: that instantiation does not allow the
application to be typechecked. Permuting the arguments changes behaviour!

The problem is that the reasoning about unguarded arguments in Section 5.4 is undermined by
type classes: although a vacuous type abstraction is not useful, a type class abstraction that binds
no type variables may be very useful indeed. In this case, the quick look at the first argument of
revapp True wes should not have yielded a substitution.

The simplest way to restore insensitivity to argument order is to drop the condition fiv(p,) from
APP-% entirely, along with Section 5.4. We are reluctant to do this, because it means that some
apparently-simple examples (including ones in existing libraries) are no longer typeable without
annotations. Instead, we accept a measure of order-dependence in applications, by recognising that
the first argument of app has already fixed a to be a qualified type, and so App-4 should not apply
to the second. But we stress that this is a free (and debatable) design choice.

10 APPLICATIONS

A reasonable question to ask is how the implementation of Quick Look in GHC discussed in
Section 9 benefits the user. It is hard to say how useful a feature will be in practice when it does
not yet exist, but we can give some indicative data.

First, GHC has had an unreliable, unsupported, and entirely un-specified implementation of
impredicativity for many years. We scanned the source code of a collection of packages obtained
from Stackage (LTS 13.6). This repository contains 607 packages that that use the extensions
RankNTypes, Rank2Types or ImpredicativeTypes. Of these we found 20 that used ImpredicativeTypes,
suggesting that impredicativity is regarded as nigh essential by some authors. Of these 20 packages,
10 compiled directly with our new GHC, 4 needed eta expansions due to GHC now using an
invariant arrow (see Appendix A for more details), and 6 could not be compiled due to missing
dependencies and other issues unrelated to our work.

Second, in our set of 607 packages, we identified 48 packages with at least one source file that
had newtype and forall on the same line, indicating that the programmer had used a wrapper for
a higher-rank type. Our scan was rather superficial, and we will have missed a number of cases,
e.g., if a line contains newtype and a synonym that hides the forall.

Chttps://gitlab.haskell.org/ghc/ghc/-/merge_requests/3220
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The questions then is: can we get rid of such wrapper types? We investigated in some detail 26
out of those 48 packages’. For 17 out of 26 packages, all wrapped types were used in an instance
declaration. Quick Look has nothing to say here, making this is an important future direction.

In 6 of the remaining 9 cases, removing the wrapping on higher-rank types was an unqualified
success. Consider the well-known Scrap Your Boilerplate package syb, that is depended on by more
than 300 packages on Hackage.® In module Data. Generics. Aliases we find several types that wrap a
higher-rank type:

type GenericM m = Va.Data a = a — m a newtype GenericM’ m = GM {unGM :: GenericM m}
type GenericQ r =Va.Dataa= a—r  newtype GenericQ" r = GQ {unGQ :: GenericQ r}
type GenericT =~ =Va.Dataa= a— a newtype GenericI’ = GT {unGT :: GenericT}

These newtypes are exported and (only) used in the module Data.Generics. Twins. Here is a use of
GenericM’, seen in the use of GM and unGM (we have elided some irrelevant code):

gzipWithM :: ¥ m.Monad m = GenericQ (GenericM m) — GenericQ (GenericM m)
gzipWithM f x y = case gmapAccumM perkid funs y of ...
where perkid a d = (tail a, unGM (head a) d)
funs = gmapQ (Ak — GM (f k)) x

Our goal is to get rid of GenericM’ and replace it with GenericM, in other words, to remove the
wrapping GM and unwrapping unGM from the definitions of perkid and funs. To do so we have to
add signatures, since polymorphic types are never inferred for function arguments, thus:

where perkid :: Vb.Data b = [ GenericM m] — b — ([ GenericM m], m b)

perkid a d = (tail a,(head a) d)

funs :: [ GenericM m]

funs = gmapQ f x
These type signatures are desirable anyway, making the code far more comprehensible. We did
the same for the other two types, GenericQ’ and GenericT’, and were able to completely remove all
three auxiliary newtypes from the implementation.

Three of the remaining packages were harder to deal with. In the case of streamly one wrapper
type was easily removed, but two other wrapped types were harder to deal with because of the
interaction between Quick Look and type families, and the desugaring of do notation. For fixed-
vector, one type had a class instance problem, one type could be dealt with, essentially by replacing
pattern matches by function calls to help Quick Look along. Interestingly, this package depended
on the primitive package we had already successfully dealt with. The changes to the latter did not
lead to issues with fixed-vector. For reflection the results are still inconclusive.

11 RELATED WORK

This section explores many different strands of work on first-class polymorphism; another excellent
review can be found in [Botlan and Rémy 2009, §5]. Figure 11 shows how various impredicative
systems impinge on users, by requiring them to understand new term forms, new type forms,
or new type constraints. The fourth column shows whether type annotations may be necessary,
beyond the binders of polymorphic lambdas. In this figure “no” is good! QL does not require any
new terms, types, or constraints; but in exchange, QL sometimes requires an annotation on a
non-guarded instantiation. HMF achieves a similar combination of features, but QL is better suited

70f the remaining 22, 18 depended on packages we could not compile, because of different reasons, and in 4 cases the
wrapped type was in code that was not used in a standard compile.
8https://packdeps.haskellers.com/reverse/syb version 0.7.1.
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for the type inference engine of GHC since the quick look is a separate step before actual constraint
generation. We continue below with a detailed discussion of related work for polymorphic type
inference.

Figure 12 compares the expressiveness of some of these systems, using examples from their
papers and more. As we see, QL performs well despite its simplicity.

Higher-rank polymorphism. Type inference for higher-rank polymorphism (in which foralls can
appear to the left or right of the function arrow) is a well-studied topic with successful solutions
using bidirectional type inference as discussed in Section 4 [Peyton Jones et al. 2007]. Follow-up
modern presentations [Dunfield and Krishnaswami 2013] re-frame the problem within a more
logical setting, and describe extensions to indexed types [Dunfield and Krishnaswami 2019]. The
“C” examples are all about higher-rank inference, and mostly do not use impredicativity at all.

Boxed polymorphism. Impredicativity goes beyond higher-rank, by allowing quantified types
to instantiate polymorphic types and data structures. Both Haskell and OCaml have supported
impredicative polymorphism, in an inconvenient form, for over a decade.

In Haskell, one can wrap a polytype in a new, named data type or newtype, which then behaves
like a monotype [Odersky and Laufer 1996]. This boxed polymorphism mechanism is easy to
implement, but the programmer has to declare new data types and explicitly box and unbox the
polymorphic value. Nevertheless, boxed polymorphism is widely used in Haskell.

OCaml supports polymorphic object methods, based on the theory of Poly-ML [Garrigue and
Rémy 1999]. The programmer does not have to declare new data types, but polymorphic values
must still be wrapped and unwrapped. In practice, the mechanism is little used, perhaps because it
is only exposed through the object system.

In FreezeML [Emrich et al. 2019] the programmer chooses explicitly when to not instantiate a
polymorphic type by using the freeze operator [—], similar to how it is done in FX-89 [04AZToole
and Gifford 1989] with explicit open and close operations. Another variant of this line of work is
QML [Russo and Vytiniotis 2009], which has two different universal quantifiers, one that can be
implicitly instantiated and one that requires explicit instantiation. Introducing and eliminating the
explicit quantifier is akin to the wrapping and unwrapping. Explicit wrapping and unwrapping
may be tedious, especially since it often seems unnecessary, so our goal is to allow polymorphic
functions to be implicitly instantiated with quantified types.
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Name New terms New types New constraints Annofation needeg
beyond poly. lambdas
QL (this paper) No No No Yes
GI [Serrano et al. 2018] No No Yes Yes
MLF [Botlan and Rémy 2003] No Yes Yes No
HMF [Leijen 2008] No No No Yes
FPH [Vytiniotis et al. 2008] No No Yes No
HML [Leijen 2009] No Yes Yes No
Boxy [Vytiniotis et al. 2006] No Yes No Yes
OML [Russo and Vytiniotis 2009] No Yes No Yes
FreezeML [Emrich et al. 2019] Yes No No No
PolyML [Garrigue and Rémy 1999] Yes No No No
Fig. 11. Various impredicative systems features (“No” is good)
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| QL | GI | MLF|HMF | FPH | HML

A POLYMORPHIC INSTANTIATION

Al const2=Axy.y ’ v ‘ v ‘ v ‘ v ‘ v ‘ v
MLF infers (b > Yc.¢c — ¢) = a — b, QL and Gl infer a —» b — b.

A2 choose id | vV vV |V |v]V
MLF and HML infer (a > V b. b — b) = a — a, FPH, HMF, QL, and Gl infer (a — a) — a — a.

A3 choose [ ] ids v |V | Y/ v |

A4 Mx=Va.a— a).xx VA VAR IRV EEVAR VAN IV
MLF infers (Va. a — a) — (Ya. a — a), QL and Gl infer (Ya.a — a) > b — b.

A5 id auto vV (V| V| V|V

A6 id auto’ No |V |V |V | V|V

A7  choose id auto v | V| Vv | Vv |No| V

A8  choose id auto’ No [No| v | No |No | V
QL and Gl need an ann. on id :: (Va.a — a) > (Va.a — a).

A9 f (choose id) ids ‘ v ‘ v* ‘ v ‘ No ‘ v ‘ v

where f::Va.(a— a) - [a] > a
GI needs an annotation on (choose id) :: (Va. a — a) = (Ya. a — a).

A10 poly id; poly (Ax.x); id poly (Ax. x) VAR VAN VAN VAR VAN V4
A1l k (Af.(f 1,f True) xs v |[No| No | No | No | No
where k::Va.a — [a] — Int, xs:: [(Ya. a — a) — (Int, Bool)|
Note the example requires impredicativity and bidirectionality.
A12 poly id; app poly id; revapp id poly VAR BVAN IRV BV IV BV
A13 app runST argST; revapp argST runST v (V| VIV
B FUNCTIONS ON POLYMORPHIC LISTS
B1 length ids; tail ids; head ids; single id v v | v v V/
B2 id: ids ovvvT v v
B3 (Ax.x):ids S|
B4  single inc + single id VA BV IRV EEVER VAR BV
B5  single id + ids vV |[No| vV | No | vV | V/
B6  map poly (single id) vV |No| vV | V | V| V
Gl needs an ann. on single id :: [V a. a — a] in the previous two.
B7  map head (single ids); head ids True [ v ‘ v ‘ v ‘ v ‘ v ‘ v

C  INFERENCE OF POLYMORPHIC LAMBDA BINDERS AND GENERALIZATION POINTS

Cla Af.(f 1,f True) No |No| No | No | No | No

Cib Af::Va.a— a).(f 1,f True) vV I VIV V|V

Clc g (Af.(f 1,f True)) v |No|No | vT|No| No
where g :: (Y a. a — a) — (Int, Bool)) — Char

C2 r(Axy.y) ‘ v ‘\/*‘ v ‘\/T‘NO‘NO
where r::(Va.a — Vb.b— b) — Int

E N-EXPANSION k:Va.a— [a] > a h:Int >Va.a— a, Ist:[Va.Int - a— a

Ela k hlst No |No| No | No | No | No
Elb k (Ax. h x) Ist vV | V|V | No| Vv |V
E2a Ax. poly x No |[No| v | No | No | No
E2b (Ax.poly x) :: (Y a. a — a) — (Int, Bool) v [No| v | vT | No| No
E3a app poly id v (V| V| V|V
E3b app (Ax. poly x) id No [No| v/ | No | No | No
E4a map poly ids v (V| V| V|V
E4b map (Ax. poly x) ids v |No| v | No | No | No
E5a compose poly head v (V| VIV
E5b  Axs. poly (head xs) No [No| v/ | No | No | No

* in GI requires extensions [Serrano et al. 2018]. T in HMF requires n-ary apps. and annotation propagation [Leijen 2008].

Fig. 12. Comparison of impredicative type systems

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 89. Publication date: August 2020.



A Quick Look at Impredicativity 89:27

Guarded impredicativity. Quick Look builds on ideas originating in previous work on Guarded
Impredicative Polymorphism (GI) [Serrano et al. 2018]. Specifically, GI figures out the polymorphic
instantiation of variables that are “guarded” in the type of the instantiated function, or the types of
the arguments; meaning they occur under some type constructor. However, GI relied on extending
the constraint language with two completely new forms of constraints, one of which (delayed
generalisation) was very tricky to conceptualise and implement. With Quick Look we instead
eagerly figure out impredicative instantiations, quite separate from constraint solving, which can
remain unmodified.

HMF [Leijen 2008] comes the closest to Quick Look in terms of expressiveness, with a simple type
vocabulary, and an equation-based unification algorithm. HMF presents a declarative application
typing rule that requires the “polymorphic weight” of the instantiated function type to be minimal, a
condition encoding the fact that polymorphism cannot be guessed. The paper includes an extension
of the basic system with n-ary applications, performing a subsumption between each function
argument type and the (inferred and eagerly generalized) type of the corresponding argument. The
order in which to perform these subsumption checks is delicate: it is first performed for guarded
arguments and then on naked ones — this helps to establish some order-independence properties.
All this bears a strong similarity to QL and to GI, but there is a significant difference that affects
expressiveness: in Quick Look we more aggressively combine the propagation of annotations and
impredicative instantiation with a deep quick look into nested applications before we perform
traditional type inference. Hence we can type programs that require nested impredicative instan-
tiation (such as B5 in Table 12) and programs that must be typed with a polymorphic binder in
the environment but whose type we can only deduce via some other impredicative instantiation
(such as E4b). There are other implementation differences; for example Quick Look does not need
to generalize eagerly every argument in an application.

Stratified inference. The idea of Quick Look as a restricted pass prior to actual type inference
has appeared before in the work on Stratified Type Inference (STI) [Pottier and Régis-Gianas 2006;
Rémy 2005]. In the first pass, each term is annotated with a shape, a form of type that expresses
the quantifier structure of the term’s eventual type, while leaving its monomorphic components as
flexible unification variables that will be filled in by the (conventional, predicative) second pass. To
avoid shortcomings with the order in which arguments are checked this process may need to be
iterated [Pottier and Régis-Gianas 2006, §7]. STI was probably the first work that demonstrated
how annotation propagation in the form of a shape inference pass could be used to recover some
impredicativity [Rémy 2005], using an order-dependent resolution of impredicative instantiations.
QL has a similar flavor, but instead of performing annotation propagation before inference, it
interweaves the two phases. It remains an interesting future direction to describe formally our
system as an interweaving of these two separate mechanisms.

Beyond System F. Move beyond System F types impacts the language the programmer sees, the
type inference algorithm, and the compiler’s statically-typed intermediate language. However, once
that Rubicon is crossed, there is a rich seam of work in systems with more expressive types or more
expressive unification algorithms than first-order unification. The gold standard is MLF [Botlan
and Rémy 2003], but there are several subsequent variants, including HML [Leijen 2009], and
FPH [Vytiniotis et al. 2008].

MLF extends type schemes with instantiation constraints, and makes the unification algorithm
aware of them. As a result it achieves the remarkable combination of: (i) typeability of the whole of
System F by only annotating function arguments that must be used polymorphically, (ii) principal
types and a sound and complete type inference algorithm, (iii) the “defining” ML property that any
sub-term can be lifted and let-bound with no type annotations, without affecting typeability. In
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terms of expressiveness, MLF will unconditionally accept programs with polymorphic binders in
the environment without any annotations if these arguments are not really used polymorphically
(example E3b in Figure 12). This subsumes uses of y-expansion for functions with polymorphic
argument types (example E2a) that will fail to be inferred in QL. On the other hand because QL
uses the impredicative instantiation to check the arguments (via the bidirectional mechanism of
Section 4) it can type some programs that involve polymorphic binders that are genuinely used at
multiple types (example A11). It is worth mentioning that it is entirely possible to extend MLF with
bidirectional propagation of annotations or even inferred polymorphic types (which would also
type examples like A11 and C1c); in fact some small amount of annotation propagation has been
implemented in MLF prototypes. However, such extensions would cause MLF to lose its simple
specification and easy to describe typeability guarantees.

MLF and variants also require intrusive modifications to a constraint solver (in the case of GHC,
a complex one with type classes, implication constraints, type families, and more) and to the type
structure. Though some attempts have been made to integrate MLF with qualified types [Leijen
and Loh 2005], a full integration is uncharted territory. Quick Look is a pragmatic compromise,
trading off a little expressiveness for a lot of simplicity and ease of integration in the existing GHC
inference engine.
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do they compile?

Fig. 13. Summary of the evaluation, using Stackage LTS 13.6

A IMPACT OF AN INVARIANT FUNCTION ARROW

In Section 5.8 we propose to make the function arrow invariant, and to drop deep instantiation
and deep skolemisation. This change is independently attractive, and is the subject of a recently
adopted GHC Proposal. How much effect does this change have on existing Haskell code?

To answer this question we used our implementation to compile a large collection of packages
from Hackage; we summarize the results in Figure 13. We started from collection of packages for a
recent version of GHC, obtained from Stackage (LTS 13.6), containing a total of 2,332 packages.
We then selected only the 607 packages that used the extensions RankNTypes, Rank2Types or
ImpredicativeTypes; the other 1,725 packages are certainly unaffected. We then compiled the library
sections of each package. Of the 607 packages, 150 fail to compile for reasons unrelated to Quick
Look — they depend on external libraries and tools we do not have available; or they do not compile
with GHC 8.9 anyway. Of the remaining 457 packages, 399 compiled with no changes whatsoever;
two had issues we could not solve, e.g., because of Template Haskell. We leave these two to the
authors of these packages.

The remaining 56 packages could be made compilable with modest source code changes, almost
all of which were a simple n-expansion on a line that was clearly identified by the error message. In
total we performed 283 n-expansions in 104 of the total of 963 source files. The top three packages
in this case needed 7, 7 and 9 files changed. The majority of the packages, 37, needed only one file
to be changed, and 20 packages needed only a single n-expansion. In the case of two packages,
massiv and drinkery, we additionally had to provide type signatures for local definitions.

In conclusion, of the 2,332 packages we started with, 74% (1,725/2,332) do not use extensions
that interact with first-class polymorphism; of those that do, 87% (399/457) needed no source code
changes; of those that needed changes, 97% (56/58) could be made to compile without any intimate
knowledge of these packages. All but two were fixed by a handful of well-diagnosed n-expansions,
two of them also needed some local type signatures.

B LOCAL BINDINGS

Our description of local bindings, whose syntax is given in Figure 14, follows Vytiniotis et al. [2011]
closely. As described in Figure 15a, the type of a let binding is not generalized unless an explicit
annotation is given. This design enables the most information to propagate between the definition
of a local binding and its use sites when using a constraint-based formulation.

Figure 15b shows another possible design, in which generalization is performed on non-annotated
lets. The main disadvantage is that when implemented in a constraint-based system, this forces us
to solve the constraints obtained from e; before looking at e,. Otherwise, we cannot be sure about
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Expressions e == ...
| letx=eine
| letx:o=eine

Fig. 14. Syntax for local bindings

‘I’Fﬂe:pHFkue:p‘

Thper:ps Ix:pitksex:p
I'tsletx =ejiney: ps

LET

Fl—ﬁel:al Ix:01ksex:py
ANNLET

IFtsletx oy =ejiney: p;
(a) No generalization

I'rkper:p a = fv(p;) — fv(I') I',x:Va.p;tse:p;

g LETGEN
I'tsletx =ejine;: ps

(b) With generalization

Fig. 15. Local bindings

which type variables to generalize. Another possibility, taken by Pottier and Rémy [2005] and Hage
and Heeren [2009], is to extend the language of constraints with generalization and instantiation,
making the solver aware of the order in which these constraints ought to be solved.
C PROOFS
C.1 Relating Inference and Checking Mode (Section 6.3)

TueEOREM C.1. IfT by e:pthenT ke : p.

Proor. The proof is straightforward induction on the typing derivation. The interesting case is
the case for rule aApp-]. In that case we have:

I‘I—tha FI—i"StO';ﬁva;p, e = valargs(m)
dom(6y) = fiv(§,p,) T H] e : 01y
— APP-|
I'rg h7: O1pr

We need to show thatT' -y h7 : 6 p, by using rule app-||. To do that it suffices to form the following
derivation:

FI—Fh:G FI—i”StU;ﬁva;p, e = valargs(m)
© = mgugq(pr, 01pr) dom(6,) = fiv(©¢) r "K e : 0,0¢;
r I—U hr: Hlpr

APP-||
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First, note that the " and F™! relations are used in exactly the same way in both rules. Second,
since the domain of 6; is the free instantiation variables of ¢ and p,, it must hold that:

0 = mguq(pr, 01pr) = Oilfivip,)
In particular we can split 6; in two independent substitutions, each covering a distinct domain of
instantiation variables:
01 = Ol Gy\fivipy) “Olivion)
Choose 6, in rule app-|| to be 6; |ﬁv($)\ﬂv(p ) Then we have that 6, - ® = 6. In particular, the
last premise, which typechecks the arguments recursively, pushes the same types in both rules.

(0:0¢; = 01¢;) ]

C.2 Soundness of Type Inference (Section 7.2)

We give a set of auxiliary lemmas necessary to prove the main soundness results. We will be
assuming that fiv(T') = 0, that is, the environment can only contain unification variables but not
instantiation variables. That is certainly true and preserved during constraint generation.

Lemma C.2. If mguqi(p1, p2) = © and fiv(6) = O then mguq(0p1, 0p2) = (0-0)|dom(e)-

Proor. By definition of mgug|, we have that ©p; = @p,, and for any other ®’ such that ©'p; =
©’p, there exists ©* such that ® = @* - ©. Note that the domain of ©, @', and @* are the
instantiation variables of p; and p;.

We have to check now that (6-0)|4om(e) satisfies the conditions to be mguq(0p1, 6p2). First:

(0-0)ldom(e) Opi = 0(0(0p:))
since p; only contains free instantiation variables, which is exactly dom(©). We can swap 6 and ©
because they refer to disjoint sets of variables:

0(©(6p:)) = 0(6(©p;))

Since ©p; = Op,, we have the desired equality.
To prove that 0O is the most general, chose any other ©’. If we repeat this process we reach:

0(6(’pi))
Appealing to the fact that © is the most general unifier of p;, we can rewrite that expression as:
0(6(©*(©p1)))

By swapping 0 to the deepmost position again, we see that (6-0)|4om(e) is indeed the mguq(0p1, 0p2)
|

Lemma C3. IfT l—Z‘ h: o andfiv(0) = (O then 0T l—? h:#bo.
Proor. Easy case analysis. O

Lemma C.4.

(1) IfFT it 5. T~ ¢ 5 pr and fiv(0) = O thenT ¥™t fo ; T ~ 0¢ ; Op,.
2)IfTFye:¢p ~ O andfiv(f) =0 then 0T +. e : 0 ~ 0'®|ﬁv(¢).
Proor. By mutual induction on the size of the term.

(1) Straightforward, by noticing that the substitution § may not modify any of the instantiation
variables generated during instantiation.
(2) Straightforward, by Lemma C.3, (1), and Lemma C.2.
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As notational convenience, we write below 6 [=C to mean that fiv(9) = 0 and 6 |= C.
LEMMA C5. IfT # 6 ;. T~ ¢ ; p, ; Cand 0 [=C thenT " 0o ; 7 ~ 04 ; Op,.

Proor. The only interesting case are rule 1varM, where we have to apply rule 1ARG in the
declarative specification; and rule 1ARG, where we need to apply Lemma C.4. The rest of the cases
go through by directly invoking the induction hypothesis or are trivial. O

Lemma C.6.

(1) IfT FFh:a ~ C and 0 [=C then 0T k%h:Qo.
2) IfT I—K e:0 ~ Cand0 [=C then 0T I—K e:fo.
(3) IfTrpe:p ~ Cand0 |=C then 0T ry e : Op.
(4) IfTrype:p ~ Cand@ |=C then 6T Fy e : Op.

Proor. By mutual induction on the size of the term. O

THEOREM C.7 (SOUNDNESS). IfT' k5 e: p ~ C, 0 is a substitution from unification variables to
monotypes, fiv(0) = 0, and 0 |= C then 0T Fs e : Op.

Proor. Follows directly from Lemma C.6. O
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