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ABSTRACT

Live streaming platforms need to store a lot of recorded live videos
on a daily basis. An important problem is how to automatically
extract highlights (i.e., attractive short video clips) from these mas-
sive, long recorded live videos. One approach is to directly apply
a highlight detection algorithm to video content. While various
algorithms have been proposed, it is still hard to generalize them
well to different types of videos without large training data or high
computing resources. In this paper, we propose to tackle this prob-
lem with a novel implicit crowdsourcing approach, called Lightor.
The key insight is to collect users’ natural interactions with a live
streaming platform, and then leverage them to detect highlights.
Lightor consists of two major components. Highlight Initializer
collects time-stamped chat messages from a live video and then
uses them to predict approximate highlight positions. Highlight
Extractor keeps track of how users interact with these approximate
highlight positions and then refines these positions iteratively. We
find that the collected user chat and interaction data are very noisy,
and propose effective techniques to deal with noise. Lightor can
be easily deployed into existing live streaming platforms, or be
implemented as a web browser extension. We recruit hundreds of
users fromAmazonMechanical Turk, and evaluate the performance
of Lightor on real live video data. The results show that Lightor
can achieve high extraction precision with a small set of training
data and low computing resources.

1 INTRODUCTION

Video data is booming and will account for 90% of all internet traffic
by 2020 as predicted by Cisco [11]. Applying data science to improve
video-related services is of growing interest in the data mining and
database community [13, 17, 18, 27]. As an important type of video
service, live streaming platforms such as Twitch, Mixer, YouTube
Live, and Facebook Live fulfill the mission of democratizing live
video broadcasting. With these platforms, anyone can be a broad-
caster to record a video and broadcast it in real time; anyone can be
a viewer to watch the live video and chat about it in real time. This
unique experience makes these platforms more and more popular
nowadays. For example, by 2018, Twitch has reached 3.1 million
unique monthly broadcasters, and over 44 billion minutes of videos
are watched each month [3].

Once a live stream is complete, the recorded video along with
time-stamped chat messages will be archived. A recorded video is
often very long (from half an hour to several hours). Many users do
not have the patience to watch the entire recorded video but only
look for a few highlights to watch. A highlight represents a small
∗Both authors contributed equally to this research.

part of the video that makes people feel excited or interested, and
it typically lasts from a few seconds to less than one minute. For
example, a highlight in a Dota2 game video could be an exciting
battle or a critical knockdown.

We study how to automatically extract highlights from a recorded
live video. The impact of this work on live-streaming business is two
folds. First, it save users’ time in manually finding the highlights,
potentially increasing the user engagement of a live streaming
platform. Second, it is a fundamental task in video processing, en-
abling a live streaming platform to improve other profitable video
applications (e.g., video search, video recommendation).

One approach is to apply an existing highlight detection algo-
rithm to video content [5, 7, 21, 30, 31]. However, these algorithms
either only work for a certain type of video (e.g., Baseball [21],
Soccer [5]), or require large training data and high computing re-
sources [7, 30, 31]. See Section 2 for a more detailed discussion of
related work.

Unlike these existing works, we propose a novel implicit crowd-
sourcing to tackle this problem [2]. Implicit crowdsourcing is the
idea of collecting implicit feedback from users (i.e., user’s natural
interactions with the system) and then leveraging the feedback to
solve a challenging problem. It has achieved great success in many
domains. For example, reCAPTCHA [25] leverages this idea to dig-
itize old books. Search engines collect implicit clickthrough data to
optimize web search ranking [12]. To apply this idea, we face two
challenges. The first one is how to design an implicit crowdsourcing
workflow so that video viewers interact with the system naturally
but provide useful feedback implicitly. The second one is how to
use the implicit (and noisy) feedback to detect and extract video
highlights. We address these two challenges as follows.

Implicit Crowdsourcing Workflow. We design a novel implicit
crowdsourcing workflow, called Lightor. Lightor consists of two
components. i) Highlight Initializer takes a recorded live video as
input and uses its time-stamped chat messages to detect which
part of the video could have a highlight. For example, when a
large number of chat messages pop up within a short period of
time, users may talk about a highlight that has just happened. Note
that Highlight Initializer can only get an approximate position
of a highlight. It is still not clear about the exact boundary (i.e.,
exact start and end points) of a highlight. ii) Highlight Extractor
is designed to address this problem. At each approximate position,
it puts a “red dot” on the progress bar of the video, which informs
users that there could be a highlight at this position. Note that users
will not be forced to watch this highlight. Instead, they can watch
the video as usual. Highlight Extractor collects user interaction data
w.r.t. each red dot to identify the exact boundary of each highlight.
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Figure 1: Lightor: An implicit crowdsourcing workflow for extracting highlights from a recorded live video.

Noisy User Data. One major challenge in our implicit crowdsourc-
ing design is how to handle the high noise in the implicit feedback
from users. For example, in Highlight Initializer, when a user leaves
a chat message, she might not comment on the video content but
chat with other users. In Highlight Extractor, when a user watches
a certain part of video, she might not be attracted by the video
content but check whether this part of video has something inter-
esting. Therefore, we have to be able to separate noise from signal.
We analyze real-world user data and derive a number of interest-
ing observations. Based on these observations, we develop several
effective techniques to deal with noisy user interaction data.

Lightor can be easily deployed on an existing live streaming
platform. The only change is to add red dots to the progress bar of
recorded videos. Based on a user survey, we find that most users
prefer this change since red dots help them find more interesting
highlights. Furthermore, Lightor can be implemented as a web
browser extension, which has the potential to support any platform.

We recruit about 500 users from Amazon Mechanical Turk and
evaluate Lightor using real live video data from Twitch. The results
show that (1) our proposed data-science techniques make Lightor
achieve very high precision (up to 70%− 90%) in the returned top-k
highlights, which changes the system from unusable to usable, and
(2) Lightor requires 122× fewer training examples and over 10000×
less training time compared to the state-of-the-art deep learning
based approach, thus it is much preferable when there is a lack of
training data or computing resources.

To summarize, our contributions are:
• We study how to leverage implicit crowdsourcing to extract
highlights from a recorded live video. We propose Lightor, a
novel workflow to achieve this goal.
• Lightor consists of Highlight Initializer and Highlight Extractor.
For each component, we analyze real-world user data and propose
effective techniques to deal with the noisy user data.
• Lightor can be easily deployed on an existing live streaming
platform or implemented as a web extension to support any
platform. We evaluate Lightor using real data and real users.
The results show that Lightor can achieve high precision with
a small set of training data and low computing resources.
The remainder of this paper is organized as follows. Section 2

reviews the related work. Section 3 presents the Lightor workflow.
We discuss how Highlight Initializer and Highlight Extractor are
built in Section 4 and Section 5, respectively. Section 6 discusses how
to deploy Lightor in practice. Experimental results are presented in
Section 7. We discuss our findings and lessons learned in Section 8,
and present conclusions and future work in Section 9. We provide
a reproducibility report in the Appendix, and release all the code
and datasets at the project page: http://tiny.cc/lightor.

2 RELATEDWORK

Computer Vision. There is a recent trend to apply deep learning
to highlight detection [7, 24, 31]. For example, a frame-based CNN

model [24] was trained to detect the frames with significant visual
effects for e-sports. In [7], a joint model of CNN on video and LSTM
on chat was trained to detect highlights in game videos. While these
deep-learning based approaches achieve good performance, they
require large training sets and high computing resources. Unlike
these studies, we focus on the use of implicit crowdsourcing which
requires much less training data and computational cost. In addi-
tion to deep learning, there are some other algorithms proposed for
highlight detection, but they are mainly designed for a certain type
of video (e.g., Baseball [21], Soccer [5]) rather than focus on a gen-
eral approach that works for any video type. There are also many
studies on video summarization [19, 31], which aim to generate a
condensed video to summarize the story of the entire video. High-
light detection often serves as the first step of video summarization
and generates a small number of candidate highlights.

Explicit Crowdsourcing. There are some works using explicit
crowdsourcing for video analysis [10, 14, 26, 29]. That is, they ask
crowd workers to do a certain video-related task explicitly, e.g.,
video segmentation [14], video tagging [29]. However, none of
these studies attempt to apply implicit crowdsourcing to video
highlight detection, which is a more monetary-cost efficient and
natural way to collect essential data.

Implicit Crowdsourcing (User Comments). There are some
works on the use of user comments [20, 27] for video analysis.
A LDA model was proposed to generate video tags from time-
stamped comments [27]. Another work uses word embedding to
extract highlights from time-stamped comments for movies [20].
They are different from Lightor in three aspects. (1) They only
focus on user commenting data while Lightor considers both user
commenting data and user viewing behavioral data (see Section 5).
(2) They use bag of words or word embedding as features while
Lightor use more general features (see Section 4.2). (3) They use
time-stamped comments rather than live chat messages, thus they
do not face the challenge that there is a delay between video content
and the comments (see Section 4.3).

Twitter data has been leveraged to detect events in some stud-
ies [6, 9, 22, 28]. However, live chat messages are usually shorter
and more noisy, thus requiring the development of new techniques.

Implicit Crowdsourcing (User Viewing Behaviors). HCI and
Web researchers have designed systems using click-through or
interaction data to measure user engagement. For example, the
research on MOOC videos or how-to videos leverage interactions
as engagement measurement to detect interesting or difficult parts
of videos (e.g., [4], [15]). Some studies have also leveraged inter-
action data to predict audience’s drop-out rate and analyzed the
cause of interaction peak [16, 23]. These works simply sum up all
users’ watching sessions along the video and get curves between
watched frequency and video timestamps. We have tried this simple
method, but found that it did not perform well on our collected
user interaction data since when users interact with a casual video,
their viewing behaviors are much more unpredictable.
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3 THE LIGHTORWORKFLOW

Figure 1 depicts the Lightor workflow. The workflow consists
of two major components: Highlight Initializer and Highlight Ex-
tractor. The former determines which part of the video could be a
highlight, and the latter identifies the exact boundary (start and end
time) of each highlight. We will use a simple example to illustrate
how they work as well as the challenges that they face. Consider
a one-hour video V = [0, 3600], which starts at 0s and ends at
3600s. Suppose the video has a highlight between 1900s and 2005s,
denoted by h = [1990, 2005]. The goal is to extract h fromV .

Highlight Initializer. Highlight Initializer aims to identify an
approximate start position of each highlight so that if a user starts
watching the video from this position, she can tell that there is a
highlight nearby. For example, 2000 is a good position since it is
within the highlight range [1990, 2005] but 2100 is a bad one since
it is very far away from the highlight. We observe that most live
videos allow users to leave chat messages in real time. This can be
leveraged as a kind of implicit feedback. However, time-stamped
chat messages are short and noisy, thus it is challenging to use them
to implement an accurate Highlight Initializer. We will discuss how
to address this challenge in Section 4.

Highlight Extractor. Suppose the above component returns 2000
as a result. We will add a “red dot” at this position on the progress
bar of the recorded video (see Figure 1). A red dot can be seen as a
hint, which informs users that there could be a highlight nearby.
Users can click on the red dot and start watching the video. If they
indeed see a highlight, they may want to watch the highlight again
by dragging the progress bar backward. This user interaction data
can be leveraged as another kind of implicit feedback since users
help revise the start and end positions of the highlight implicitly.
However, users behave quite differently. It is challenging to lever-
age the user interaction data to implement an accurate Highlight
Extractor. We will discuss how to address this challenge in Section 5.

4 HIGHLIGHT INITIALIZER

This section presents the design of our Highlight Initializer compo-
nent. We first define the design objective, then discuss the design
choices, and finally propose the detailed implementation.

4.1 Design Objective

There could be many highlights in a video, but most users are only
interested in viewing the top-k ones. Highlight Initializer aims to
find an approximate start position for each top-k highlight.

Next, we formally define what is a good approximate start po-
sition (i.e., what is a good red dot). The goal is to make users see
a highlight shortly after they start watching the video from a red
dot. Let h = [s, e] denote a highlight and r denote the red dot w.r.t.
h. We call r a good red dot if it meets three requirements.

First, the red dot should not be put after the end of the highlight
(i.e., r ≤ e). Otherwise, a user is very likely to miss the highlight.
This is because a user typically clicks the red dot r and starts watch-
ing the video for a short period of time. If nothing interesting
happens, she may skip to the next red dot. Second, the red dot
should not be put at more than 10s before the start of the highlight
(i.e., r ≥ s − 10). Based on existing studies (e.g., [1]), people can
accept less than 10s delay, but may lose their patience when the
delay is longer. Third, it is not useful to generate two red dots that
are very close to each other. Thus, we require that there does not

exist another red dot r ′ such that |r − r ′ | ≤ δ , where δ is a system
parameter and is set to 120s by default.

With the definition of good red dots, we formally define the
design objective of Highlight Initializer.

Objective. Given a recorded live video along with time-stamped
messages, and a user-specified threshold k , Highlight Initializer aims
to identify a set of k good red dots.

4.2 Design Choices

We face different choices when designing the Highlight Initializer.
We will explain how the decision is made for each choice.

Video vs. Chat Data.We choose to only use chat data instead of
video data to identify red dots. This design choice has two advan-
tages. First, we can use a small set of training data (e.g., 1 labeled
video) to train a good model over chat data. But, it is hard to achieve
this for video data. Second, processing video data often requires
high computing resources. Since chat data is much smaller in size
than video data, this limitation can be avoided. On the other hand,
a chat-data based approach may not work well for videos with few
chat messages. Nevertheless, as will be shown in the experiment,
our model performs well on the videos with 500 chat messages per
hour. We find that the majority (more than 80%) of popular videos in
Twitch meet this requirement. For the remaining unpopular videos,
there may not be a strong demand to generate highlights for them.

General vs. Domain-specific Features. We seek to build a Ma-
chine Learning (ML) model to identify red dots. There are two kinds
of features that can be used by the model. General features are ap-
plicable to any domain. For example, message number can be seen
as a kind of general feature because we can extract this feature for
any type of video and use it as a strong predictor for highlights.
In contrast, domain-specific features are highly dependent on the
selected domains. For example, the keyword “Goal” is a domain-
specific feature since it can be used to detect highlights in a Soccer
game, but not in a Dota game. We choose to use general features
rather than domain-specific features. This will allow us to handle a
large variety of video types in live streaming platforms.

4.3 Implementation

We implement the Highlight Initializer component based on the
above design choices. In the following, we first present a naive
implementation and identify its limitations. We then propose our
implementation to overcome these limitations.

4.3.1 Naive Implementation.

A naive implementation is to count which part of the video has
the largest message number and put a red dot at that position. Fig-
ure 2(a) shows a real-world example (without otherwise specified,
the reproducibility of all the experimental figures can be found in
the Appendix). It plots a histogram along with the smoothed curve
of the message number in a Twitch live video. We can see that 2332s
has the largest message number, thus this naive implementation
will put a red dot at 2332s.

Unfortunately, this implementation does not perform well
in practice due to two reasons. The first reason is that having
the largest message number does not always mean that users
are chatting about a highlight. For instance, there could be
advertisement chat-bots which post quite a few messages in a very
short period of time. The second reason is that in a live video, users
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Figure 2: Analysis of the Chat Data in a Twitch Video.

will only chat about a highlight after they have seen a highlight.
Thus, there is a delay between the start position of a highlight and
its comments. For example, in Figure 2(a), we can see the delay (the
distance between the green dotted line and the red dot) is around
20s. This naive implementation fails to capture the delay.

4.3.2 Our Implementation.

Our implementation consists of two stages.

Prediction. The prediction stage aims to address the first issue
mentioned above. Given a set of chat messages within a short
sliding window (e.g., 25s), we build a predictive model to determine
whether the messages in the sliding window are talking about a
highlight or not. We propose three general features for the model.

• Message Number is the number of the messages in the sliding
window. The naive implementation only considers this feature.
• Message Length calculates the average length of the messages in
the sliding window, where the length of a message is defined as
the number of words in the message. We observe that if view-
ers see a highlight, they tend to leave short messages. If their
messages are long, they typically chat about something else.
• Message Similarity measures the similarity of the messages in the
sliding window. If the messages are similar to each other, they
are more likely to chat about the same topic, instead of random
chatting. We use Bag of Words to represent each message as a
binary vector and apply one-cluster K-means to find the center
of messages. The message similarity is computed as the average
similarity of each message to the center.

To make these features generalize well, we normalize them to the
range in [0, 1] and build a logistic regressionmodel to combine them.
We examine the effectiveness of each feature on Twitch chat data.
Figure 2(b) shows the analysis results of a random video. The video
contains 1860 chat messages in total. We divide them into 109 non-
overlapping sliding windows, where 13 are labeled as highlights
and 96 are labeled as non-highlights. For each feature, we compare
the feature-value distributions of highlights and non-highlights.
We can see that their distributions are quite different. For example,
for the message-length feature, all the highlights are between 0 and
0.4, but non-highlights can be any length.

Adjustment. The adjustment stage aims to overcome the second
limitation of the naive implementation. Given a set of messages in a
sliding window which are predicted to be talking about a highlight,
we aim to estimate the start position of the highlight.

The key observation is that people can only comment on a high-
light after they have seen it. Based on this observation, we first
detect the peak in the sliding window, where a peak represents the
time when the message number reaches the top. After that, we train
a model to capture the relationship between the peak’s position
(timepeak) and the highlight’s start position (timestart).

The current implementation considers a simple linear relation-
ship, i.e., timestart = timepeak − c , where c is a constant value. We
can learn the optimal value of c from training data. Specifically, for

each labeled highlight i , the highlight’s start position is denoted by
timestarti . Since it is predicated as timepeaki − c , the red dot will be
put at timepeaki − c . Our goal is to identify as many good red dots
as possible. Thus, we aim to find the best c such that

argmax
c

∑
i
reward(timepeaki − c, timestarti ),

where reward(·) = 1 if it is a good red dot; reward(·) = 0, otherwise.
Once c is obtained, we can use it to get the red dot positions.

For example, suppose the learned c = 20s. It means that we will
move the peak backward by 20s. Imagine timepeak = 2010s. Then
we will select timepeak - 20s = 1990s as a red dot’s position. This
simple linear relationship leads to good performance as shown
in later experiments. We defer the exploration of more complex
relationships to future work.

Algorithm Description. To put everything together, Algorithm 1
shows the pseudo-code of the Highlight Initializer component. The
input consists of the setM of all the time-stampedmessages of video
v , the video length t , the number of one’s desired highlights k , the
sliding window size l , the adjustment value c and Trained Logistic
Regression Model, LRmodel . The output is the highlight sliding win-
dow list, H = {(sj , ej )|j = 0, ...,k − 1}, where (sj , ej ) is respectively
the start and end time of a sliding window j.

In line 1, we initially generate the sliding window list W =

{(si , ei )|i = 0, ...,n}. When two sliding windows have an overlap,
we keep the one with more messages. From line 2 to line 6, for each
sliding windowwi = (si , ei ), we apply the trained logistic regres-
sion model on the feature vector fi = (numi , leni , simi ) which is
extracted from the massages whose timestamps are in the range of
(si , ei ). Lines 7 and 8 retrieve the top-k highlight sliding windows
H . InTop function, we make sure that H does not contain too close
highlights. From line 9 to 11, we adjust the start time by c for each
sliding window in H . Finally, we return H as an output.

Algorithm 1: Highlight Initializer for one video v .
Input :M : all the messages; t : video length; k : # of desired

highlights; l : sliding window size; c : adjustment value;
LRmodel : trained logistic regression model

Output :H : top-k sliding window list.
1 W ← get_sliding_wins(M, l )
2 foreach sliding windowW [i] do
3 fi ← Feature_vec(W [i], M ) // Normalized f=(num, len, sim)
4 pi ← LRmodel .predict(fi ) // Get predicted probability
5 W [i] ←W [i].append(pi )
6 end

7 Wsorted ←SortW by p
8 H ←Top(k,W ′sorted)
9 foreach highlight window H [j] do

10 H [j] ← (sj − c, ej ) // Adjustment

11 end

12 return H
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5 HIGHLIGHT EXTRACTOR

This section presents the design of our Highlight Extractor com-
ponent. We first define the design objective, then discuss the chal-
lenges, and finally propose the detailed implementation.

5.1 Design Objective

The Highlight Extractor aims to identify the boundary (start and
end positions) of each highlight using user interaction data.
User Interaction Data. While watching a video, a user may have
different kinds of interactions with the video (e.g., Play, Pause, Seek
Forward, and Seek Backward). We analyze user interaction data,
and find that if users often watch the same part of video again
and again, this part is very likely to be a highlight. Based on this
observation, we transform user interaction data into play data,
where each record is in the form of: ⟨user , play(s, e)⟩. For example,
⟨Alice, play(100, 120)⟩ means that the user Alice starts playing the
video at 100s, and stops at 120s. If the context is clear, we will
abbreviate it as play(s, e) and call play(s, e) a play.

We leverage the play data to extract highlights. Note that if a
play is far away from a red dot, it may be associated with another
highlight. Thus, we only consider the plays within [−∆,∆] around
a red dot (∆ = 60s by default).

The following formally defines the objective.

Objective. Given the play data play(s1, e1) , · · · , play(sn , en ) w.r.t. a
red dot, Highlight Extractor aims to identify the start and end positions
of the highlight of the red dot.

5.2 Challenges

There are several challenges in order to achieve the objective.

How to filter play data? Play data could be very noisy. For exam-
ple, a user may randomly pick up a position s , and watch for a few
seconds (e.g., 5s) to check whether this part of video is interesting or
not. If uninteresting, she may jump to another position. Obviously,
we should filter this play(s, s + 5) since it cannot be interpreted as
the user enjoying watching [s, s + 5]. Note that this example only
shows one type of noisy play. There could be many others that
need to be identified and filtered.

How to aggregate play data? Let play(s ′1, e
′
1), · · · , play(s

′
m , e

′
m )

denote the play data after the filtering. Each play can be considered
as a vote for the highlight. For example, play(1990, 2010)means that
the user votes 1990s and 2010s as the start and end positions of the
highlight. Users may have different opinions about the highlight.
We can aggregate their opinions using median because it is robust
to outliers. Thus, the new start and end positions are computed as
median(s ′1, s

′
2, · · · , s

′
m ) and median(e ′1, e

′
2, · · · , e

′
m ).

Unfortunately, when applying this idea to real-world user inter-
action data, it does not always work well. We have a very interesting
observation: whether this idea works well or not strongly depends
on the relative position between the red dot and the highlight. There
are two possible relative positions:

Type I : the red dot is after the end of the highlight;
Type II : the red dot is before the end of the highlight.
Since many users start watching the video from a red dot, if they

do not find anything interesting, they may skip to the next red dot.
Imagine the red dot is put after the end of the highlight (i.e., Type I).
Many users may miss the highlight, thus their play data are not
reliable indicators of the highlight. Imagine the red dot is put before
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Figure 3: Distribution of the difference between each play’s

start position and the ground-truth start position.

the start of the highlight (i.e., Type II). Many users will watch the
same highlight, thus their play data follow a similar pattern.

To further examine this observation, we calculate the difference
of each play’s start position and the ground-truth start position.
Figure 3(a) shows the distribution of all plays of Type I. We can see
the curve approximately follows a uniform distribution between
-40 and +20. It shows that the play activities for Type I are quite
diverse. Users may either play back randomly in order to find the
highlight or skip to the next highlight. In comparison, Figure 3(b)
shows the distribution of all plays of Type II. We can see the curve
approximately follows a normal distribution. It implies that most
plays for Type II correspond to highlight watching.

This observation poses two new questions. The first one is that
given a red dot, how to determine whether it belongs to Type I or
Type II? The second one is that after a red dot is classified as Type I
(or Type II), how to aggregate its play data?

5.3 Implementation

We propose a series of techniques to address these challenges. The
following shows our detailed implementation.

Filtering. The main idea is to filter the plays that are not about
watching the highlight but about doing something else (e.g., looking
for a highlight). We observe that if a play is far away from the red
dot, it typically does not cover the highlight. Thus, we remove such
plays from the data. We also notice that if a play is too long or too
short, it tends to have little value. A too short play could indicate
that viewers watch for a few seconds and find it uninteresting, while
a too long play means that viewers may be watching the entire
video. Thus, we remove such plays from the data. Third, there could
be some outliers, i.e., the play that is far away from the other plays.
We adopt an outlier detection method to find the outliers and then
remove them. More details about this filtering process can be found
in the Appendix.

Classification. Given a red dot, we build a classification model
to determine whether it belongs to Type I or Type II. More specifi-
cally, we need to classify the relative position between the red dot
and the end of the highlight into Type I or Type II. We find that
this (unknown) relative position has a strong correlation with the
(known) relative position between the red dot and observed play
data. Therefore, we identify the following three features.
• # Plays after red dot computes the number of plays which start at
or after the red dot.
• # Plays before red dot computes the number of plays which end
before the red dot.
• # Plays across red dot computes the number of plays which starts
before the red dot and ends after the red dot.
Figure 4 shows an example to illustrate the three features. For

Type I, since the highlight ends before the red dot, some users
play before or across the red dot in order to find the highlight.
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Type I Type II

Play# after red dot 1

Play# before red dot 1

Play# across red dot 1

End of highlight

Play Data
Play Data

End of highlight

Play# after red dot 3

Play# before red dot 0

Play# across red dot 0

Figure 4: An illustration of three features for classifying the

relative position between red dot and the end of highlight.

In comparison, there is no such play in Type II since if a user
starts watching the video at the red dot, she will see the highlight.
Our experiments show that our classification model achieves high
accuracy (around 80%).

Aggregation. Different aggregation strategies are proposed for
Type I and Type II, respectively.

For Type II, as Figure 3(b) shows, the play patterns of most users
are similar. The median of the start time offsets is between 5 and 10.
This is because that the most exciting part of the highlight usually
happens a few seconds after its start point, which causes users to
skip the beginning of the highlight. This kind of error is tolerable.
Therefore, we can use median to aggregate their play data.

For Type I, as seen from Figure 3(a), the distribution of start
time offsets is rather random. Therefore, we need to collect more
play data. Our main idea is to convert a red point from Type I
to Type II. Given that Type II can collect high-quality play data,
once a red dot is converted to Type II, we can get high-quality play
data as well. Specifically, once a red dot is classified as Type I, we
will move it backward by a constant time (e.g., 20s) and collect
new interaction data based on the new red dot location. If the new
red dot is classified as Type II, we apply the Type II’s aggregation
approach; otherwise, we move it backward by another 20s.

Algorithm Description. To put everything together, Algorithm 2
shows the pseudo-code of the entire Highlight Extractor component.
The input consists of a highlight h = (s, e), and a moving duration
m forTypeI , which is a constant described above to convert aTypeI
to a TypeI I . The output is the updated h = (s ′, e ′).

In lines 2 and 3, we get the user interactions I for the current h
and filter them to get a list of plays, P . In lines 4 and 5, we extract the
feature f from P and perform the binary classification to decide h’s
label . From lines 6 to 14, as we describe above in Aggregation, we
update h = (s ′, e ′). If label is Type II, it means the red dot is before
the end of the highlight. From lines 7 to 10, we remove the plays
whose ends are before the red dot. Then we calculate the median
to update h. If label is Type I, it means the red dot is after the end
of the highlight. So we move h.s backward bym. We iterate this
procedure until the red dot position is stable (e.g., |h.s − h.s ′ | < ϵ).

6 DEPLOY LIGHTOR IN PRACTICE

In this section, we discuss two ways to deploy the Lightor work-
flow: one is to wrap it as a web browser extension and the other is
to integrate it into existing live streaming platforms.

6.1 Web Browser Extension

Figure 5 depicts the architecture of our web browser extension. It
has the potential to support any live streaming platform. We will
use Twitch as an example to illustrate how it works.

In addition to the Lightor’s core components, we need two
additional components: Web Service and Web Crawler.

Web Service

Web
Crawler

User	Chat &
Interaction Data

Highlight
Extractor

Highlight
Initializer

Lightor Core

Front End Back End

Figure 5: Lightor Web Browser Extension.

Algorithm 2: Highlight Extractor for one highlight h
Input :Highlight h = (s, e);

Moving duration for Type I,m.
Output :Highlight refined boundaries, h = (s′, e′).

1 repeat

2 I ← get_interact()
3 P ← filter(I ) // Filtering

4 f ← feature_vec(P ) // f=(before_red, after_red, across_red)
5 label ← classification(f ) // Classification

// Aggregation

6 if label = Type I I then
7 foreach p in P do

8 if p.e < h.s then
9 Remove(p) // Remove plays before red dots

10 end

11 h .s′ ← median(P .s ) ; h .e′ ← median(P .e )
12 else

13 h .s′ ← h .s −m
14 end

15 until Red dot position converge
16 return h

Web Service.When a user opens up a web page in Twitch, if the
URL of the web page is a recorded video, Lightor will be automat-
ically activated. It extracts the Video ID from the web page and
sends it to the back end server. The server receives the Video ID and
checks whether the video’s chat messages have been crawled and
stored in the database. If not, it will call the web crawler component
to crawl the chat messages. After that, it will use the chat data to
identify the positions of top-k highlights and return them to the
front end. The returned results will be rendered on the original web
page by adding red dots on the progress bar of the video. Mean-
while, the user interaction data will be logged. Highlight Extractor
will use the data to refine the results. The refined results will be
stored in the database continuously.
Web Crawler. The web crawler component crawls the chat mes-
sages of recorded videos in Twitch. The crawled chat messages will
be stored into the database. The crawling process can be executed
both offline and online. The offline crawling periodically checks a
given list of popular channels. If new videos are uploaded in those
channels, their chat messages will be crawled accordingly. The
online crawling will crawl the chat messages on the fly. It will be
triggered if the chat messages of a video do not exist in the database.

6.2 Integrate Into Live Streaming Platforms

Another way to deploy Lightor is to integrate it into existing live
streaming platforms. The only change is to add red dots to the
progress bar of recorded videos. It is easy to implement this feature
from a technical point of view. Moreover, based on our user study,
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Figure 6: Evaluation of Highlight Initializer.

this new interface is more attractive since it can help users find
more interesting highlights.

Lightor is also useful for improving existing features. For exam-
ple, Twitch allows broadcasters to cut and upload the highlights of
their recorded videos manually. Lightor can provide broadcasters
with a set of highlight candidates. This will help broadcasters save
a lot of time when they need to edit highlights repeatedly.

7 EXPERIMENTS

We evaluate Lightor on real live video data. The experiments aim
to answer three questions. (1) How well does Highlight Initial-
izer perform? (2) How well does Highlight Extractor perform? (3)
How does Lightor compare with deep-learning based approaches?
We will first describe experimental settings and then present the
experimental results. We provide a reproduciblility report in the
Appendix, including detailed data description, detailed data prepro-
cessing, model parameters and configurations, software versions,
hardware configuration, and a jupyter notebook to reproduce all
experimental figures.

7.1 Experimental Settings

Video Data. Game videos dominate mainstream live streaming
platforms such as Twitch and Mixer. They were also used to evalu-
ate the state-of-the-art highlight detection approaches [7, 24]. We
evaluated Lightor on two popular games: Dota2 and LoL.

(1) Dota2. We crawled eight live videos in Dota 2 using Twitch
APIs. The length of each video is between 1 hour to 2 hours. We
asked experienced game players to watch each video and manu-
ally label the start and end positions of each highlight. Each video
contains 10 labeled highlights on average. The length of each high-
light is between 5s to 50s. (2) LoL. We randomly selected eight live
videos in League of Legends (LoL) from [7]. The length of each
video is between 0.5 hour to 1 hour. The labels were obtained by
matching with highlight collections of a YouTube channel. Each
video contains 14 labeled highlights on average. The length of each
highlight is between 2s to 81s.

TheDota2 and LoL datasets are different in two aspects. First, the
game types are different, and thus raw visual and textual features
do not generalize well. Second, the Dota2 videos were from Twitch
personal channels, but the LoL videos came from North America
League of Legends Championship Series. Thus, their chat data have
different characteristics.
User Data. Lightor relies on two kinds of user data: chat data and
play data. For chat data, live streaming platforms make the data
accessible. We used their APIs to crawl the data. The number of
chat messages crawled for each video is between 800 to 4300.

Play data are not accessible from live streaming platforms. So,
we recruited game fans from Amazon Mechanical Turk (AMT),
and asked them to watch the recorded live videos. Each video’s
progress bar has a single red dot since we would like to get rid
of the influence of nearby red dots and study user interactions on
one red dot directly. We collected the user interaction data and
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Figure 7: Evaluation of Highlight Extractor.

then generated the play data. Note that we did not ask the crowd to
enter the start and end positions of a highlight. Therefore, the crowd
provided us with the boundary of a highlight implicitly. There were
492 workers participating our experiments and we spent about $750
to create the dataset. We have published the dataset. To the best of
our knowledge, this is the first publicly available play data. More
details can be found in the Appendix.

Evaluation Metrics: We used Precision@K to evaluate the per-
formance since most users are only interested in watching a small
number of highlights (e.g., k = 5 to 10). We defined three Preci-
sion@K metrics in the experiments.

(1) Chat Precision@K is to evaluate the effectiveness of the
prediction stage in Highlight Initializer. The prediction stage sorts
chat-message sliding windows based on how likely they are talking
about a highlight, and returns the top-k sliding windows. Chat
Precision@K is defined as the percentage of correctly identified
sliding windows out of the k identified sliding windows.

(2) Video Precision@K (start) is to evaluate the precision of
the identified start positions of highlights. Since people typically
cannot tolerate more than 10s delay, we say a start position x is
correct if there exists a highlight h = [s, e] such that x ∈ [s − 10, e].
Video Precision@K (start) is defined as the percentage of correctly
identified start positions out of the k identified start positions.

(3) Video Precision@K (end) is to evaluate the precision of the
identified end positions of highlights. It is similar to Video Preci-
sion@K (start). We say an end position y is correct if there exists a
highlighth = [s, e] such thaty ∈ [s, e+10].Video Precision@K (end)
is defined as the percentage of correctly identified end positions
out of the k identified end positions.

7.2 Evaluation of Lightor

In this section, we first evaluate the Highlight Initializer and
Highlight Extractor of Lightor, and then examine the applicability
of Lightor on the Twitch platform.

7.2.1 Evaluation of Highlight Initializer.

Highlight Initializer consists of prediction and adjustment stages.
We evaluated their performance on the Dota2 video data.
Prediction Stage. The prediction stage is designed to get top slid-
ing windows corresponding to highlights. We propose three fea-
tures, message number (msg num), message length (msg len), and
message similarity (msg sim), and build a logistic regression model
based on them. To evaluate the effectiveness of the proposed fea-
tures, we build two additional logistic regression models using msg
num and msg num + msg len. We used 1 video’s sliding windows as
training data and used other 7 videos’ sliding windows as test data.

Figure 6a shows the average Chat Precision@K of the 7 test-
ing videos on different k from 1 to 10. We have two interesting
observations. First, msg num was an effective feature for small k
(≤ 5) but did not perform well as k got larger (e.g., k = 10). This
is because that as k increased, it would be more and more chal-
lenging to detect new highlights. If we only used the msg num
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Figure 8: Cumulative distribution over recorded videos.

feature, these messages sometimes were sent because viewers were
discussing something on random topics which were not related
to the highlights. Second, the ML model using all three features
was better at capturing the nature of highlight messages especially
when one wants to detect more than 5 highlights. The reason is
that when viewers saw a highlight, their messages tend to be in
a similar pattern. In addition to actively sending more messages,
they would send more short messages such as Emojis or Stickers
which make the average length of messages in the sliding win-
dows shorter than common ones. When viewers were talking about
something particular in the highlights, the messages would have a
higher similarity.
Adjustment Stage. Suppose the prediction stage returns k sliding
windows as highlights. Then, the adjustment stage aims to find the
approximate start positions of the highlights (i.e., red dots). It first
finds the peak in each sliding window and subtracts it by a constant
value (learned from labeled data) to get the red dot. We used one
video as training data to get the constant value, and evaluated Video
Precision@K (start) on the other seven videos. The ideal situation
of the adjustment stage is to be able to get a correct red dot for
every top-k highlight. So the Ideal curve in Figure 6b is the same
as the red line in Figure 6a. We can see that without adjustment,
precision was below 20%. The adjustment improved the precision
by around 3×. It shows that the adjustment stage performs well on
capturing the delay between highlights andmessage-number peaks.

7.2.2 Evaluation of Highlight Extractor.

Highlight Extractor aims to leverage user interactions to identify
the boundary of each highlight. We selected 35 red dots (5 per
video) from 7 testing videos, and created 35 tasks. We first published
these tasks to AMT. After receiving 10 responses for each task, we
computed the new position of each red dot, and published a set of
new tasks with updated red-dot positions to AMT. We repeated this
process until users reached a consensus on the extracted highlights.

Figure 7 shows how Video Precision@K (start) and Video
Precision@K (end) change over iterations. We can see that Video
Precision@K (start) had a big improvement, increasing from 0.6 to
0.9. This improvement came from two sources. On one hand, it
removed the red dots that did not talk about a highlight (i.e., improv-
ing the prediction stage in Highlight Initializer); on the other hand,
it made a better adjustment about where a red dot should be put (i.e.,
improving the adjustment stage in Highlight Initializer). We also
noticed that although Video Precision@K (end) got improved as
well, the improvement was not as big as Video Precision@K (start).
The main reason is that users tend to watch longer even after
the end of highlights to guarantee not missing anything interesting.

7.2.3 Applicability of Lightor in Twitch.

Based on our experiments, in order to achieve high precision, High-
light Initializer requires the number of chat messages per hour
larger than 500 and Highlight Extractor requires more than 100
viewers per video. We examine the applicability of Lightor with
these requirements in Twitch.
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Figure 9: Comparison of Lightor and deep learning.

We selected the tenmost popular channels in Doda 2 and crawled
twenty most recently recorded videos from each channel. We plot
the CDF of the number of chat messages and the number of viewers,
respectively. Figure 8 shows the results. We can see that more than
80% of recorded videos have more than 500 chat messages per hour
and all the recorded videos have more than 100 viewers. These
results indicate that Lightor is applicable to themajority of popular
videos in Twitch.
7.3 Comparison with Deep Learning

We compared Lightor with the state-of-the-art deep learning ap-
proach [7]. The approach can use either chat data, video data,
or both to train a model. Since Lightor only uses chat data, we
adopted their chat model. In fact, if video data are included, the
deep-learning model would take several days to train and also
does not generalize well [7]. The chat model, L-Char-LSTM, is a
character-level LSTM-RNN [8] model. For each frame, it treats all
chat messages that occur in the next 7-second sliding window as
input for the 3-layer L-Char-LSTM. We used the model to predict
the probability of each frame being a highlight, and selected the
top-k frames. Note that if two frames are close to each other (within
2 mins), we only pick up the one with higher probability.

We first compared Lightor with Deep Learning in terms of
training data size. Figure 9a shows the result. We can see that
Lightor only needs to label a single video in order to achieve high
precision, but the deep learning model did not perform well with
a single labeled video. In the experiment of [7], the deep learning
model was trained on 122 labeled videos. As shown in Figure 9a,
even with such large training data size, the deep learning model still
performed worse than Lightor for k = 1, 2. Lightor needs very
little training data because it only selects three generic features
and adopts a simple logistic regression model. We then compared
Lightor with Deep Learning in terms of generalization. Figure 9b
shows the result. We can see that for Lightor, the model trained
on the LoL data can still achieve high precision on both LoL and
Dota2 data. In comparison, for deep learning, the model trained on
the LoL data only got high precision on the LoL data but not on the
Dota2 data. Lightor has good generalization because the selected
features are very general. Finally, we compared Lightor with Deep
Learning in terms of computing resources. The training time for
Lightor was seconds versus hours for the Deep Learning model.

The experimental results indicate that Lightor has great advan-
tages over the deep-learning based approach in terms of training
data size, computational cost, and generalization. Nevertheless, we
do not argue to totally replace the deep-learning based approach
with Lightor. Deep learning has its own advantages. For example,
if a deep learning model is trained over video data, it does not need
chat messages or user interaction data to detect highlights. An inter-
esting future direction is to explore how to combine Lightor with
Deep Learning, where Lightor is used to generate high-quality
labeled data and Deep Learning is then applied to train a model.

8 FINDINGS & LESSONS LEARNED

We present interesting findings and lessons learned.
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• It is important to do a pilot test and analyze real user interaction
data. For example, we originally thought that Seek Backward
could be a useful interaction to detect start positions of highlights.
However, from real data we find that since there are various
reasons to trigger this interaction (e.g., re-watch a highlight, look
for a new highlight), it is not easy to infer users’ true intent.
• The recorded live videos in Twitch typically attract thousands of
viewers on average. In our experiments, we recruited around 500
viewers and showed promising results. Based on these findings,
we believe that there is no obstacle for Lightor to collect enough
user interaction data in real live streaming platforms.
• Users prefer spreading the red dots over the entire progress bar,
instead of cluttering them in a narrow region. They think the
former can help them have a broader overview of the whole video,
while the latter only shows the content of part of the video.
• Viewers sometimes get excited about the interesting clips that are
not related to a video’s main theme, such as the break between
two games, or the preparation for a game. Lightor may identify
these clips as highlights. But it may not work if one only wants
to watch highlights in a game. We will study how to overcome
this limitation in future work.

9 CONCLUSION & FUTUREWORK

We presented Lightor, a novel implicit crowdsourcing workflow
to extract highlights for recorded live videos. Lightor consists of
two components. In Highlight Initializer, we explored different de-
sign choices and justified our decisions. We proposed three generic
features (message number, message length, and message similarity)
and built a model to predict highlight positions. We also noticed
that there is a delay between a highlight and its comments, and
proposed a simple learning-based approach to estimate the delay. In
Highlight Extractor, we identified the challenges to use noisy user
interaction data to extract highlights, and proposed a three-stage
dataflow (filtering→ classification→ aggregation) to address these
challenges. We discussed how to implement Lightor as a web
browser extension and how to integrate Lightor into existing live
streaming platforms. We recruited about 500 real users and evalu-
ated Lightor using real Dota 2 and LoL data. We compared with
the state-of-the-art deep learning approach. The results showed
that Lightor achieved very high detection accuracy (Precision@K:
70%-90%). Furthermore, it only needed to label a single video and
spend a few seconds on training, and the obtained model had good
generalization.

There are many future research directions to explore. First, we
were told by the data science team at a well-known live stream-
ing platform that they stored several terabytes of chat data, but
have not tried to extract value from the data. We are planning to
deploy Lightor on their platform, and conduct more large-scale
experiments. Second, we want to further optimize the workflow,
especially on the adjustment stage. The current implementation
assumes that there is a simple linear relationship between timepeak
and timestart. We plan to relax this assumption and build a more
sophisticated regression model. Third, we plan to further evaluate
the generalization of our system using data collected from other
domains (e.g., celebrity events) and other live streaming platforms
(e.g., YouTube Live). Fourth, this paper demonstrates a great poten-
tial of the application of implicit crowdsourcing to video highlight
detection. It is promising to investigate how to design an implicit
crowdsourcing workflow for other video analysis tasks (e.g., video
querying, video search, and video indexing).
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APPENDIX: REPRODUCIBILITY SUPPLEMENT

In this supplement section, we first show how to reproduce all
experimental plots in batch, and then present details related to
experimental settings and the reproducibility of each individual
plot. More detailed explanation and the experiment code can be
found at the project page: https://tiny.cc/lightor.

A. Reproducing All Experiments in Batch

We prepared a jupyter notebook1 to reproduce all experiments in
batch. To set up the environment, Python 3.5 and Jupyter notebook
are required. Other required packages are listed in requirements.txt.
One can easily reproduce all of our experiments by:
• Clone the repo: git clone https://github.com/sfu-db/Lightor_Exp .

• Install required packages: pip3 install -r requirements.txt .
• Open the jupyter notebook file and run the code blocks:

jupyter notebook exp.ipynb .

For details, please refer to README file in our repo.

B. Detailed Experimental Settings

We will discuss more details about our experimental settings.

Data Description: The Dota2 and LoL datasets are 2 datasets we
used in our experiments. They are different in two aspects. First,
the game types are different thus raw visual and textual features
do not generalize well. Second, the Dota2 videos were from Twitch
personal channels, but the LoL videos came from North America
League of Legends Championship Series.

• Dota2 dataset:We used an open-sourced tool, twitch-chat-logger2,
to crawl 8Dota2 videos from Twitch stored asMP4 files and their
corresponding messages stored as CSV files. 6 out of 8 videos are
1 hour long, 1 video is 1.5 hours long, and 1 video is 2 hours long.
Video file names are in the format of channel name + formatted
time-stamp and Message file names are channel_name + format-
ted_timestamp + raw_timestamp, where channel_name is the
name of a Twitch channel. Timestamp is the time that the crawl-
ing got started. In the message data, the schema of the message
is [Message_id, channel_name, sender_ID, Message_content,
timestamp], whereMessage_id is a unique integer to identify a
message; channel_name is a string to indicate the name of the
corresponding channel. sender_ID is a string of the user’s id.
Message_content is a string of the message. timestamp is the
time when the message is sent.
• LoL dataset. This dataset comes from [7]. This dataset includes
321 labeled videos from 2 series games (NALCS and LMS) in
League of Legends (LoL). Their message format is different from
ours. As we know, a video can be transformed into a sequence of
frames. The messages are stored in an array of strings as a JSON
file and each frame corresponds to a message string or an empty
string.

Details Related to Dataset Filtering. In Highlight Initializer, we
filtered all chat messages starting with ‘@’ and ‘http’ (web url).
Chat messages starting with @ represents a chat between viewers
while a web url represents an ad. Both are noisy data. In Highlight
Extractor, we firstly filtered too short and too long playing records

1https://github.com/sfu-db/Lightor_Exp/blob/master/exp.ipynb
2https://github.com/bernardopires/twitch-chat-logger

then adopted an outlier detection algorithm to filter outliers. We set
parameters (ϕ, ∆) = (4, 60) for filtering. For outlier detection, we
constructed an undirected graph G = (V ,E), where V represents
all playing records and (v,w) ∈ E represents that v and w have
overlapping part. Then we find the center node c ∈ V of the graph
which has the largest degree. We used c and its neighbor nodes
while filtered others to analyze boundaries of highlights.

Play Data Collection: We recruited game fans from Amazon Me-
chanical Turk (AMT) and asked them to watch the recorded live
videos. We collected 7 rounds of crowdsourcing results in this stage.
Each round contains 15 tasks for each video. Each task contains a
complete recorded video. The video’s progress bar has a red dot. We
tell the crowd that there could be an interesting highlight around
the red dot. They can either write down what the highlight is about
or skip this task. Note that we do not ask the crowd to enter the
start and end positions of the highlight. And we also do not make
use of their input answers. Therefore, the crowd provides us with
implicit feedback.

One reason that we ask workers to write down their understand-
ing of a highlight is that we want them to really look for a highlight
by watching a video as what real-world game fans do. Otherwise,
they may simply submit a task without watching any part of the
video. The other reason is to understand the distribution of true
game fans. We do not set any qualification test because in the real
world anyone can watch a recorded live video even he/she is not a
game fan. By reviewing their answers, we found that not all workers
are true game fans. There is a small number of malicious workers
who submit random answers, which can represent the noisy data
in the real world.

Ground-Truth Labelling: We recruited two experienced game
players who watch live streaming videos at a regular basis to label
the data as follows:

• Dota2 dataset: (1) Sliding windows labels: In Highlight Initial-
izer, they manually labeled all generated sliding windows as True
or False by examining whether the chat messages in a sliding
window are talking about a highlight event. They labeled them
for evaluating Chat Precision@K. (2) Ground truth labels: They
manually labeled the accurate boundaries of each highlight by
watching them. They labeled them for evaluating Video Preci-
sion@K.
• LoL dataset: Originally this dataset has the ground-truth labels.
In [7], each message (empty string if there is no message content)
corresponds to a frame in the video. If the frames are within
highlights, their messages will be labelled as positive, while the
non-highlight messages are labelled as negative. We used their
ground-truth labels directly and labeled the sliding windows ac-
cording to ground truth manually. Specifically, we only examined
the content of chat messages in sliding windows near ground
truth and labeled them. For other sliding windows, we directly
labeled them as False.

SoftwareVersions andHardwareConfiguration:The Lightor
system was implemented using Python 3.5. Logistic regression
models were trained using scikit-learn 0.20. The experiments were
run over a Ubuntu virtual server with an Intel(R) Xeon(R) CPU
E7-4830 v4 @ 2.00GHz processor and 53GB of RAM. The sliding
window size was set to 25s. The deep learning model was trained
on an Nvidia GTX 1080 GPU.

10

https://tiny.cc/lightor
https://github.com/sfu-db/Lightor_Exp/blob/master/exp.ipynb


C. Reproducing Each Experiment in Detail

Parameters for Highlight Initializer. We set the following pa-
rameters for Highlight Initializer:

(1) L = 25: the length of a sliding window.
(2) N = 200: the number of sliding windows.
(3) δ = 120 for the interval between two predicted highlights.
(4) bin parameters (B,W , P) = (3, 7, 4) for the smoothing and

peak detection algorithm.

Parameters for Highlight Extractor. We set the following pa-
rameters for Highlight Extractor:

(1) (ϕ, ∆) = (4, 60) for filtering too short and long plays.
(2) thresholds (θ , λ) = (20, 40) for converging judgement.
(3) feature vectors f = [[4, 33, 252], [25, 12, 56]] for clustering

red dots type, which are trained by labeled data.
For more detail, please refer to parameter.py file in our repo.

Implementation Details. We implemented Highlight Initializer
as a data loader class for loading chat messages, ground truth and
extracting features of a dataset. Amodel can be trained by or applied
on a instance of such data loader. We encapsulated the process of
analyzing user interaction data in Highlight Extractor, including
filtering, type classification and data aggregation. For details, please
refer highlight_initialzer.py and highlight_extractor.py.

Train/Test Splits. We used the following datasets in our experi-
ments. For more detail, please refer dataset folder in our repo.

• Dotatrain contains 1 Dota2 video’s chat messages used for train-
ing the Lightor model.
• Dotatest contains 7 Dota2 videos’ chat messages used for testing.
• LOLtrain1 contains 1 LOL video’s chat messages used for training
the Lightor model.
• LOLtrain122 contains 122 LOL videos’ chat messages used for
training the deep learning model.
• LOLtest contains 7 LOL video’s chat messages used for testing.
• I contains about 560K user interaction records (i.e. playing times-
tamp and video id) which we collected from Amazon Mechanical
Turk.
• A contains 7 files of crowdsourcing answers (i.e. Assignment
ID, Worker ID and Anwser), which we used to map interaction
records in I .

Trained models.We trained the following models for our exper-
iments (L refers to Lightor and D refers to the deep learning
model): (1) L1dota was trained on dataset Dotatrain using one
feature. (2) L2dota was trained on dataset Dotatrain using two
features. (3) L3dota was trained on dataset Dotatrain using three
features. (4) L3lol was trained on LOLtrain1 using three features.
(5) D122 was trained on LOLtrain122 using the state-of-art deep
learning method[7]. (6) D1 was trained on LOLtrain1 using the
state-of-art deep learning method[7]. (7) E were trained on one
Dotatrain for Adjustment stage in Highlight Initializer. We used
the default hyper-parameters of scikit-learn.

Reproducing Figure 2(a) includes:

• Load Dotatest
• Select a time range in one chat file
• Plot the curve of number of chat messages, peak and ground
truth of highlight.

Reproducing Figure 2(b) includes:
• Load Dotatest
• Plot the feature-value distribution histogram

Reproducing Figure 3 includes:
• Load recorded playing interaction file generated by selecting
records in I .
• Plot the distribution of error interval time of each type.

Reproducing Figure 6(a) includes:
• Apply models L1dota , L2dota , L3dota on Dotatest

• Compute the chat precisions by comparing predicted labels with
ground truth.
• Plot the precision curves.

Reproducing Figure 6(b) includes:
• Apply model L3dota on Dotatest and get predicted labels.
• Compute the chat precision of predicted labels and video preci-
sion of peak points.
• Apply expander model E on predicted labels.
• Compute the video precision of predicted labels after adjustment.
• Plot the precision curves.

Reproducing Figure 7 includes:
• Apply model L3dota on Dotatest and get predicted labels and
ground truth.
• Use Highlight Extractor to process interaction data.
• Compute video precision of start time and end time.
• Plot the precision curves.

Reproducing Figure 8 includes:
• Load the external json file which we crawled from Twitch, con-
taining the number of chat messages and number of viewers on
most recently recorded videos.
• Plot the CDF plots.

Reproducing Figure 9 includes:
• Apply model L3lol on LOLtest and compute chat presicion P1.
• Apply model L3lol on Dotatest and compute chat presicion P2.
• Apply model D122 on LOLtest and compute chat presicion P3.
• Apply model D1 on LOLtest and compute chat presicion P4.
• Apply model D122 on Dotatest and compute chat presicion P5.
• Plot precision curves of P1, P3 and P4.
• Plot precision curves of P1, P2, P3 and P5.
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