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Lower Your Guards
A Compositional Pattern-Match Coverage Checker

SEBASTIAN GRAF, Karlsruhe Institute of Technology, Germany
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One of a compiler’s roles is to warn if a function defined by pattern matching does not cover its inputs—that

is, if there are missing or redundant patterns. Generating such warnings accurately is difficult for modern

languages due to the myriad of interacting language features when pattern matching. This is especially true in

Haskell, a language with a complicated pattern language that is made even more complex by extensions offered

by the Glasgow Haskell Compiler (GHC). Although GHC has spent a significant amount of effort towards

improving its pattern-match coverage warnings, there are still several cases where it reports inaccurate

warnings.

We introduce a coverage checking algorithm called Lower Your Guards, which boils down the complexities

of pattern matching into guard trees. While the source language may have many exotic forms of patterns,

guard trees only have three different constructs, which vastly simplifies the coverage checking process. Our

algorithm is modular, allowing for new forms of source-language patterns to be handled with little changes to

the overall structure of the algorithm. We have implemented the algorithm in GHC and demonstrate places

where it performs better than GHC’s current coverage checker, both in accuracy and performance.

Draft March 2020. We would appreciate any comments or feedback to the email addresses below.

1 INTRODUCTION
Pattern matching is a tremendously useful feature in Haskell and many other programming lan-

guages, but it must be used with care. Consider this example of pattern matching gone wrong:

f :: Int → Bool
f 0 = True
f 0 = False

The function f has two serious flaws. One obvious problem is that there are two clauses that match

on 0, and due to the top-to-bottom semantics of pattern matching, this makes the f 0 = False clause
completely unreachable. Even worse is that f never matches on any patterns besides 0, making it

not fully defined. Attempting to invoke f 1, for instance, will fail.

To avoid these mishaps, compilers for languages with pattern matching often emit warnings

(or errors) if a function is missing clauses (i.e., if it is non-exhaustive), if one of its right-hand sides

will never be entered (i.e., if it is inaccessible), or if one of its equations can be deleted altogether

(i.e., if it is redundant). We refer to the combination of checking for exhaustivity, redundancy, and

accessibility as pattern-match coverage checking. Coverage checking is the first line of defence in
catching programmer mistakes when defining code that uses pattern matching.

Coverage checking for a set of equations matching on algebraic data types is a well studied

(although still surprisingly tricky) problem—see Section 7 for this related work. But the coverage-

checking problem becomes much harder when one includes the raft of innovations that have

become part of a modern programming language like Haskell, including: view patterns, pattern

guards, pattern synonyms, overloaded literals, bang patterns, lazy patterns, as-patterns, strict data

constructors, empty case expressions, and long-distance effects (Section 4). Particularly tricky are

Authors’ addresses: Sebastian Graf, Karlsruhe Institute of Technology, Karlsruhe, Germany, sebastian.graf@kit.edu; Simon

Peyton Jones, Microsoft Research, Cambridge, UK, simonpj@microsoft.com; Ryan G. Scott, Indiana University, Bloomington,

Indiana, USA, rgscott@indiana.edu.
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GADTs [Xi et al. 2003], where the type of a match can determine what values can possibly appear;

and local type-equality constraints brought into scope by pattern matching [Vytiniotis et al. 2011].

The current state of the art for coverage checking in a richer language of this sort is GADTs Meet
Their Match [Karachalias et al. 2015], or GMTM for short. It presents an algorithm that handles the

intricacies of checking GADTs, lazy patterns, and pattern guards. However GMTM is monolithic

and does not account for a number of important language features; it gives incorrect results in

certain cases; its formulation in terms of structural pattern matching makes it hard to avoid some

serious performance problems; and its implementation in GHC, while a big step forward over its

predecessors, has proved complex and hard to maintain.

In this paper we propose a new, compositional coverage-checking algorithm, called Lower Your

Guards (LYG), that is simpler, more modular, and more powerful than GMTM (see section 7.1).

Moreover, it avoids GMTM’s performance pitfalls. We make the following contributions:

• We characterise some nuances of coverage checking that not even GMTM handles (Section 2).

We also identify issues in GHC’s implementation of GMTM.

• We describe a new, compositional coverage checking algorithm, LYG, in Section 3. The key

insight is to abandon the notion of structural pattern matching altogether, and instead desugar

all the complexities of pattern matching into a very simple language of guard trees, with just

three constructs (Section 3.1). Coverage checking on these guard trees becomes remarkably

simple, returning an annotated tree (Section 3.2) decorated with refinement types. Finally,
provided we have access to a suitable way to find inhabitants of a refinement type, we can

report accurate coverage errors (Section 3.3).

• We demonstrate the compositionality of LYG by augmenting it with several language exten-

sions (Section 4). Although these extensions can change the source language in significant

ways, the effort needed to incorporate them into the algorithm is comparatively small.

• We discuss how to optimize the performance of LYG (Section 5) and implement a proof of

concept in GHC (Section 6).

We discuss the wealth of related work in Section 7.

2 THE PROBLEMWEWANT TO SOLVE
What makes coverage checking so difficult in a language like Haskell? At first glance, implementing

a coverage checking algorithm might appear simple: just check that every function matches on

every possible combination of data constructors exactly once. A function must match on every

possible combination of constructors in order to be exhaustive, and it must must on them exactly

once to avoid redundant matches.

This algorithm, while concise, leaves out many nuances. What constitutes a “match”? Haskell

has multiple matching constructs, including function definitions, case expressions, and guards.

How does one count the number of possible combinations of data constructors? This is not a simple

exercise since term and type constraints can make some combinations of constructors unreachable

if matched on. Moreover, what constitutes a “data constructor”? In addition to traditional data

constructors, GHC features pattern synonyms [Pickering et al. 2016], which provide an abstract

way to embed arbitrary computation into patterns. Matching on a pattern synonym is syntactically

identical to matching on a data constructor, which makes coverage checking in the presence of

pattern synonyms challenging.

Prior work on coverage checking (discussed in Section 7) accounts for some of these nuances,

but not all of them. In this section we identify some key language features that make coverage

checking difficult. While these features may seem disparate at first, we will later show in Section 3

that these ideas can all fit into a unified framework.
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2.1 Guards
Guards are a flexible form of control flow in Haskell. Here is a function that demonstrates various

capabilities of guards:

guardDemo :: Char → Char → Int
guardDemo c1 c2
| c1== ’a’ = 0

| ’b’← c1 = 1

| let c1′ = c1, ’c’← c1′, c2 == ’d’ = 2

| otherwise = 3

This function has four guarded right-hand sides or GRHSs for short. The first GRHS has a boolean
guard, (c1== ’a’), that succeeds if the expression in the guard returns True. The second GRHS has

a pattern guard, (’b’← c1), that succeeds if the pattern in the guard successfully matches. The

next line illustrates that a GRHS may have multiple guards, and that guards include let bindings,
such as let c1′ = c2. The fourth GRHS uses otherwise, which is simply defined as True.
Guards can be thought of as a generalization of patterns, and we would like to include them

as part of coverage checking. Checking guards is significantly more complicated than checking

ordinary structural pattern matches, however, since guards can contain arbitrary expressions.

Consider this implementation of the signum function:

signum :: Int → Int
signum x | x > 0 = 1

| x == 0 = 0

| x < 0 = −1

Intuitively, signum is exhaustive since the combination of (>), (==), and (<) covers all possible
Ints. This is much harder for a machine to check, however, since that would require knowl-

edge about the properties of Int inequalities. Clearly, coverage checking for guards is undecid-

able in general. However, while we cannot accurately check all uses of guards, we can at least

give decent warnings for some common use-cases. For instance, take the following functions:

not :: Bool → Bool
not b | False← b = True

| True← b = False

not2 :: Bool → Bool
not2 False = True
not2 True = False

not3 :: Bool → Bool
not3 x | x ← False = True
not3 True = False

Clearly all are equivalent. Our coverage checking algorithm should find that all three are exhaustive,

and indeed, LYG does so.

2.2 Programmable patterns
Expressions in guards are not the only source of undecidability that the coverage checker must

cope with. GHC extends the pattern language in other ways that are also impossible to check in

the general case. We consider two such extensions here: view patterns and pattern synonyms.

2.2.1 View patterns. View patterns allow arbitrary computation to be performed while pattern

matching. When a value v is matched against a view pattern (f → p), the match is successful when

f v successfully matches against the pattern p. For example, one can use view patterns to succinctly

define a function that computes the length of Haskell’s opaque Text data type:

Text.null :: Text → Bool -- Checks if a Text is empty

Text.uncons :: Text → Maybe (Char, Text) -- If a Text is non-empty, return Just (x, xs),
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-- where x is the first character and xs is the rest

length :: Text → Int
length (Text.null → True) = 0

length (Text.uncons→ Just ( , xs)) = 1 + length xs

Again, it would be unreasonable to expect a coverage checking algorithm to prove that length is

exhaustive, but one might hope for a coverage checking algorithm that handles some common

usage patterns. For example, LYG indeed is able to prove that safeLast function is exhaustive:

safeLast :: [a] → Maybe a
safeLast (reverse→ [ ]) = Nothing
safeLast (reverse→ (x : )) = Just x

2.2.2 Pattern synonyms. Pattern synonyms [Pickering et al. 2016] allow abstraction over patterns

themselves. Pattern synonyms and view patterns can be useful in tandem, as the pattern synonym

can present an abstract interface to a view pattern that does complicated things under the hood.

For example, one can define length with pattern synonyms like so:

pattern Nil :: Text
pattern Nil ← (Text.null → True)
pattern Cons :: Char → Text → Text
pattern Cons x xs← (Text.uncons→ Just (x, xs))

length :: Text → Int
length Nil = 0

length (Cons x xs) = 1 + length xs

How should a coverage checker handle pattern synonyms? One idea is to simply “look through”

the definitions of each pattern synonym and verify whether the underlying patterns are exhaustive.

This would be undesirable, however, because (1) we would like to avoid leaking the implementation

details of abstract pattern synonyms, and (2) even if we did look at the underlying implementation,

it would be challenging to automatically check that the combination of Text.null and Text.uncons
is exhaustive.

Nevertheless, Text.null and Text.uncons together are in fact exhaustive, and GHC allows pro-

grammers to communicate this fact to the coverage checker using a COMPLETE pragma [GHC team

2020]. A COMPLETE set is a combination of data constructors and pattern synonyms that should

be regarded as exhaustive when a function matches on all of them. For example, declaring {-#
COMPLETE Nil, Cons #-} is sufficient to make the definition of length above compile without any

exhaustivity warnings. Since GHC does not (and cannot, in general) check that all of the members

of a COMPLETE set actually comprise a complete set of patterns, the burden is on the programmer

to ensure that this invariant is upheld.

2.3 Strictness
The evaluation order of pattern matching can impact whether a pattern is reachable or not. While

Haskell is a lazy language, programmers can opt into extra strict evaluation by giving the fields of

a data type strict fields, such as in this example:

data Void -- No data constructors; only inhabitant is bottom

data SMaybe a = SJust !a | SNothing

v :: SMaybe Void → Int
v SNothing = 0

v (SJust ) = 1 -- Redundant!
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The “!” in the definition of SJust makes the constructor strict, so (SJust ⊥) = ⊥. Curiously, this
makes the second equation of v redundant! Since ⊥ is the only inhabitant of type Void, the only
inhabitants of SMaybe Void are SNothing and ⊥. The former will match on the first equation; the

latter will make the first equation diverge. In neither case will execution flow to the second equation,

so it is redundant and can be deleted.

2.3.1 Redundancy versus inaccessibility. When reporting unreachable cases, we must distinguish

between redundant and inaccessible cases. Redundant cases can be removed from a function without

changing its semantics, whereas inaccessible cases have semantic importance. The examples below

illustrate this:

u :: () → Int
u () | False = 1

| True = 2

u = 3

u′ :: () → Int
u′ () | False = 1

| False = 2

u′ = 3

Within u, the equations that return 1 and 3 could be deleted without changing the semantics of

u, so they are classified as redundant. Within u′, one can never reach that right-hand sides of the

equations that return 1 and 2, but they cannot be removed so easily. Using the definition above,

u′ ⊥ = ⊥, but if the first two equations were removed, then u′ ⊥ = 3. As a result, LYG warns

that the first two equations in u′ are inaccessible, which suggests to the programmer that u′ might

benefit from a refactor to avoid this (e.g., g′ () = 3).

Observe that u and u′ have completely different warnings, but the only difference between the

two functions is whether the second equation uses True or False in its guard. Moreover, this second

equation affects the warnings for other equations. This demonstrates that determining whether

code is redundant or inaccessible is a non-local problem. Inaccessibility may seem like a tricky

corner case, but GHC’s users have reported many bugs of this sort (Section 6.2).

2.3.2 Bang patterns. Strict fields are one mechanism for adding extra strictness in ordinary Haskell,

but GHC adds another in the form of bang patterns. A bang pattern such as !pat indicates that
matching a value v against pat always evaluates v to weak-head normal form (WHNF). Here is a

variant of v , this time using the standard, lazy Maybe data type:

v ′ ::Maybe Void → Int
v ′ Nothing = 0

v ′ (Just !_) = 1 -- Not redundant, but RHS is inaccessible

The inhabitants of the type Maybe Void are ⊥, Nothing, and (Just ⊥). The input ⊥ makes the first

equation diverge; Nothing matches on the first equation; and (Just ⊥) makes the second equation

diverge because of the bang pattern. Therefore, none of the three inhabitants will result in the

right-hand side of the second equation being reached. Note that the second equation is inaccessible,

but not redundant (section 2.3.1).

2.4 Type-equality constraints
Besides strictness, another way for pattern matches to be rendered unreachable is by way of equality
constraints. A popular method for introducing equalities between types is matching on GADTs [Xi

et al. 2003]. The following examples demonstrate the interaction between GADTs and coverage

checking:
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Meta variables Pattern syntax
x ,y, z, f ,д,h Term variables

a,b, c Type variables

K Data constructors

P Pattern synonyms

T Type constructors

l Literal

expr Expressions

defn F clause

clause F f pat match
pat F x | | K pat | x@pat | !pat | expr → pat

match F = expr | дrhs

дrhs F | дuard = expr
дuard F pat ← expr | expr | let x = expr

Fig. 1. Source syntax

data T a b where
T1 :: T Int Bool
T2 :: T Char Bool

g1 :: T Int b→ b→ Int
g1 T1 False = 0

g1 T1 True = 1

g2 :: T a b→ T a b→ Int
g2 T1 T1 = 0

g2 T2 T2 = 1

When g1 matches against T1, the b in the type T Int b is known to be a Bool, which is why

matching the second argument against False or True will typecheck. Phrased differently, matching

against T1 brings into scope an equality constraint between the types b and Bool. GHC has a powerful

type inference engine that is equipped to reason about type equalities of this sort [Vytiniotis et al.

2011].

Just as important as the code used in the g1 function is the code that is not used in g1. One
might wonder if g1 not matching its first argument against T2 is an oversight. In fact, the exact

opposite is true: matching on T2 would be rejected by the typechecker. This is because T2 is of
type T Char Bool, but the first argument to g1 must be of type T Int b. Matching against T2 would
be tantamount to saying that Int and Char are the same type, which is not the case. As a result, g1
is exhaustive even though it does not match on all of T ’s data constructors.

The presence of type equalities is not always as clear-cut as it is in g1. Consider the more complex

g2 function, which matches on two arguments of the type T a b. While matching the arguments

against T1 T1 or T2 T2 is possible, it is not possible to match against T1 T2 or T2 T1. To see why,
suppose the first argument is matched against T1, giving rise to an equality between a and Int. If
the second argument were then matched against T2, we would have that a equals Char . By the

transitivity of type equality, we would have that Int equals Char . This cannot be true, so matching

against T1 T2 is impossible (and similarly for T2 T1).
Concluding that g2 is exhaustive requires some non-trivial reasoning about equality constraints.

In GHC, the same engine that typechecks GADT pattern matches is also used to rule out cases made

unreachable by type equalities, and LYG adopts a similar approach. Besides GHC’s current coverage

checker [Karachalias et al. 2015], there are a variety of other coverage checking algorithms that

account for GADTs, including those for OCaml [Garrigue and Normand 2011], Dependent ML [Xi

1998a,b, 2003], and Stardust [Dunfield 2007].

3 LOWER YOUR GUARDS: A NEW COVERAGE CHECKER
In this section, we describe our new coverage checking algorithm, LYG. Figure 2 depicts a high-level

overview, which divides into three steps:

• First, we desugar the complex source Haskell syntax into a guard tree t : Gdt (Section 3.1).

The language of guard trees is tiny but expressive, and allows the subsequent passes to be

entirely independent of the source syntax. LYG can readily be adapted to other languages

simply by changing the desugaring algorithm.
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Haskell guard
R

D
A

U G uncovered patterns

redundant and
inaccessible clauses

Θuncov
trees

annotated
trees

Fig. 2. Bird’s eye view of pattern match checking

Guard syntax

k,n,m ∈ N
K ∈ Con

x ,y,a,b ∈ Var
τ ,σ ∈ Type

e ∈ Expr F x
| K τ γ e
| ...

γ ∈ TyCt F τ1 ∼ τ2 | ...
p ∈ Pat F _

| K p
| ...

д ∈ Grd F let x : τ = e
| K a γ y : τ ← x
| !x

Refinement type syntax

Γ F ∅ | Γ,x : τ | Γ,a Context

φ F � | × | K a γ y : τ ← x | x 0 K | x ≈ ⊥ | x 0 ⊥ | let x = e Literals

Φ F φ | Φ ∧ Φ | Φ ∨ Φ Formula

Θ F ⟨ Γ | Φ ⟩ Refinement type

Clause tree syntax

t ∈ Gdt F GRhs n | t1; t2 | Guard д t
u ∈ Ant F ARhs Θ n | u1;u2 | Bang Θ u

Graphical notation

t1

t2
F t1; t2

д1, ... ,дn t F Guard д1 ... (Guard дn t)

n F GRhs n

u1

u2
F u1;u2

Θ � u F Bang Θ u

Θn F ARhs Θ n

Fig. 3. IR syntax

• Next, the resulting guard tree is then processed by two different functions (Section 3.2). The

function A(t) produces an annotated tree u : Ant, which has the same general branching

structure as t but describes which clauses are accessible, inaccessible, or redundant. The

function U(t), on the other hand, returns a refinement type Θ [Rushby et al. 1998; Xi and

Pfenning 1998] that describes the set of uncovered values, which are not matched by any of

the clauses.

• Finally, an error-reporting pass generates comprehensible error messages (Section 3.3). Again

there are two things to do. The function R processes the annotated tree produced by A

to explicitly identify the accessible, inaccessible, or redundant clauses. The function G(Θ)
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produces representative inhabitants of the refinement type Θ (produced byU) that describes

the uncovered values.

LYG’s main contribution when compared to other coverage checkers, such as GMTM, is its

incorporation of many small improvements and insights, rather than a single defining breakthrough.

In particular, LYG’s advantages are:

• Correctly accounting for strictness in identifying redundant and inaccessible code (sec-

tion 7.4).

• Using detailed term-level reasoning (figs. 6 to 8), which GMTM does not.

• Using negative information to sidestep serious performance issues in GMTMwithout changing

the worst-case complexity (section 7.3). This also enables graceful degradation (section 5.2)

and the ability to handle COMPLETE sets properly (section 5.3).

• Achieving modularity by clearly separating the source syntax (fig. 1) from the intermediate

language (fig. 3).

• Fixing various bugs present in GMTM, both in the paper [Karachalias et al. 2015] and in

GHC’s implementation thereof (section 6.2).

3.1 Desugaring to guard trees
The first step is to desugar the source language into the language of guard trees. The syntax of

the source language is given in Figure 1. Definitions defn consist of a list of clauses, each of which

has a list of patterns, and a list of guarded right-hand sides (GRHSs). Patterns include variables
and constructor patterns, of course, but also a representative selection of extensions: wildcards,

as-patterns, bang patterns, and view patterns. We explore several other extensions in Section 4.

The language of guard trees Gdt is much smaller; its syntax is given in Figure 3. All of the

syntactic redundancy of the source language is translated into a minimal form very similar to

pattern guards. We start with an example:

f (Just (!xs, )) ys@Nothing = 1

f Nothing (g → True) = 2

This desugars to the following guard tree:

!x1, Just t1 ← x1, !t1, (t2, t3) ← t1, !t2, let xs = t2, let ys =x2, !ys,Nothing ← ys 1

!x1,Nothing ← x1, let t3 = g x2, !y, True← t3 2

Here we use a graphical syntax for guard trees, also defined in Figure 3. The first line says “evaluate

x1; then match x1 against Just t1; then match t1 against (t2, t3); and so on”. If any of those matches

fail, we fall through into the second line.

More formally, matching a guard tree may succeed (with some bindings for the variables bound

in the tree), fail, or diverge. Matching is defined as follows:

• Matching a guard tree (GRhs n) succeeds.
• Matching a guard tree (t1; t2) means matching against t ; if that succeeds, the overall match

succeeds; if not, match against t2.
• Matching a guard tree (Guard !x t) evaluates x ; if that diverges the match diverges; if not

match t .
• Matching a guard tree (Guard (K y1 . . .yn ← x) t) matches x against constructor K . If the
match succeeds, bind y1 . . .yn to the components, and match t ; if the constructor match fails,

then the entire match fails.

• Matching a guard tree (Guard (let x = e) t) binds x (lazily) to e , and matches t .
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D(de f n) = Gdt,D(clause) = Gdt,D(дrhs) = Gdt

D(дuard) = Grd,D(x ,pat) = Grd

D(clause1 ... clausen) = D(clause1)

...

D(clausen)

D(f pat1 ...patn = expr ) = D(x1,pat1) ...D(xn ,patn) krhs

D(f pat1 ...patn дrhs1 ...дrhsm) = D(x1,pat1) ...D(xn ,patn) D(дrhs1)

...

D(дrhsm)

D(| дuard1 ...дuardn = expr ) = D(дuard1) ...D(дuardn) k

D(pat ← expr ) = let x = expr ,D(x ,pat)
D(expr ) = let b = expr ,D(b, True)
D(let x = expr ) = let x = expr

D(x ,y) = let y =x
D(x , ) = ϵ
D(x ,K pat1 ...patn) = !x ,K y1 ...yn ← x ,D(y1,pat1), ...,D(yn ,patn)
D(x ,y@pat) = let y =x ,D(y,pat)
D(x , !pat) = !x ,D(x ,pat)
D(x , expr → pat) = let y = expr x ,D(y,pat)

Fig. 4. Desugaring from source language to Gdt

The desugaring algorithm, D, is given in Figure 4. It is a straightforward recursive descent over

the source syntax, with a little bit of administrative bureaucracy to account for renaming. It also

generates an abundance of fresh temporary variables; in practice, the implementation of D can be

smarter than this by looking at the pattern (which might be a variable match or as-pattern) when

choosing a name for a temporary variable.

Notice that both “structural” pattern-matching in the source language (e.g. the match on Nothing
in the second equation), and view patterns (e.g. g → True) can readily be compiled to a single

form of matching in guard trees. The same holds for pattern guards. For example, consider this

(stylistically contrived) definition of liftEq, which is inexhaustive:

liftEq Nothing Nothing = True
liftEq mx (Just y) | Just x ← mx, x == y = True

| otherwise = False

It desugars thus:
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Operations on Θ

⟨ Γ | Φ ⟩ Û∧φ = ⟨ Γ | Φ ∧ φ ⟩
⟨ Γ | Φ1 ⟩ ∪ ⟨ Γ | Φ2 ⟩ = ⟨ Γ | Φ1 ∨ Φ2 ⟩

Checking guard trees

U(Θ, t) = Θ

U(⟨ Γ | Φ ⟩, GRhs n) = ⟨ Γ | × ⟩
U(Θ, t1; t2) = U(U(Θ, t1), t2)
U(Θ, Guard (!x) t) = U(Θ Û∧ (x 0 ⊥), t)
U(Θ, Guard (let x = e) t) = U(Θ Û∧ (let x = e), t)
U(Θ, Guard (K a γ y : τ ← x) t) = (Θ Û∧ (x 0 K)) ∪ U(Θ Û∧ (K a γ y : τ ← x), t)

A(Θ, t) = u

A(Θ, GRhs n) = ARhs Θ n
A(Θ, (t1; t2)) = A(Θ, t1);A(U(Θ, t1), t2)
A(Θ, Guard (!x) t) = Bang (Θ Û∧ (x ≈ ⊥)) A(Θ Û∧ (x 0 ⊥), t)
A(Θ, Guard (let x = e) t) = A(Θ Û∧ (let x = e), t)
A(Θ, Guard (K a γ y : τ ← x) t) = A(Θ Û∧ (K a γ y : τ ← x), t)

Fig. 5. Coverage checking

!mx , Nothing←mx , !my, Nothing←my 1

!my, Just y ←my !mx , Just x ←mx , let t = x == y, !t , True← t 2

!otherwise, True← otherwise 3

Notice that the pattern guard (Just x ← mx) and the boolean guard (x == y) have both turned into

the same constructor-matching construct in the guard tree.

In a way there is nothing very deep here, but it took us a surprisingly long time to come up with

the language of guard trees. We recommend it!

3.2 Checking guard trees
In the next step, we transform the guard tree into an annotated tree, Ant, and an uncovered set, Θ.

Taking the latter first, the uncovered set describes all the input values of the match that are not

covered by the match. We use the language of refinement types to describe this set (see Figure 3).
The refinement type Θ = ⟨x1:τ1, . . . ,xn :τn | Φ ⟩ denotes the vector of values x1 . . . xn that satisfy

the predicate Φ. For example:

⟨x :Bool | � ⟩ denotes {⊥, True, False}
⟨x :Bool | x 0 ⊥ ⟩ denotes {True, False}

⟨x :Bool | True← x ⟩ denotes {True}
⟨mx :Maybe Bool | Just x ←mx ,x 0 ⊥ ⟩ denotes {Just True, Just False}

The syntax ofΦ is given in Figure 3. It consists of a collection of literalsφ, combinedwith conjunction

and disjunction. Unconventionally, however, a literal may bind one or more variables, and those

bindings are in scope in conjunctions to the right. This can readily be formalised by giving a type

system for Φ, but we omit that here. The literal � means “true”, as illustrated above; while ×means

“false”, so that ⟨Gamma | × ⟩ denotes ∅.
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The uncovered set functionU(Θ, t), defined in Figure 5, computes a refinement type describing

the values in Θ that are not covered by the guard tree t . It is defined by a simple recursive descent

over the guard tree, using the operation Θ Û∧φ (also defined in Figure 5) to extend Θ with an extra

literal φ.
While U finds a refinement type describing values that are not matched by a guard tree, the

function A finds refinements describing values that are matched by a guard tree, or that cause

matching to diverge. It does so by producing an annotated tree, whose syntax is given in Figure 3. An
annotated tree has the same general structure as the guard tree from whence it came: in particular

the top-to-bottom compositions “;” are in the same places. But in an annotated tree, each Rhs leaf

is annotated with a refinement type describing the input values that will lead to that right-hand

side; and each Bang node is annotated with a refinement type that describes the input values on

which matching will diverge. Once again, A can be defined by a simple recursive descent over the

guard tree (Figure 5), but note that the second equation usesU as an auxiliary function
1
.

3.3 Reporting errors
The final step is to report errors. First, let us focus on reporting missing equations. Consider the

following definition

data T = A | B | C
f (Just A) = True

If t is the guard tree obtained from f , the expressionU(⟨x : Maybe T | � ⟩, t) will produce this
refinement type describing values that are not matched:

Θf = ⟨x :Maybe T | x 0 ⊥ ∧ (x 0 Just ∨ (Just y ← x ∧ y 0 ⊥ ∧ (y 0 A ∨ (A← y ∧ ×)))) ⟩

But this is not very helpful to report to the user. It would be far preferable to produce one or

more concrete inhabitants of Θf to report, something like this:

Missing equations for function 'f':
f Nothing = ...
f (Just B) = ...
f (Just C) = ...

Producing these inhabitants is done by G(Θ) in Figure 6, which we discuss next in Section 3.4. But

before doing so, notice that the very same function G allows us to report accessible, inaccessible,

and redundant GRHSs. The function R, also defined in Figure 6 does exactly this, returning a triple

of (accessible, inaccessible, redundant) GRHSs:

• Having reached a leaf ARhs Θ n, if the refinement type Θ is uninhabited (G(Θ) = ∅), then no

input values can cause execution to reach this right-hand side, and it is redundant.

• Having reached a node Bang Θ t , if Θ is inhabited there is a possibility of divergence. Now

suppose that all the GRHSs in t are redundant. Then we should pick the first of them and

mark it as inaccessible.

• The case for R(t ;u) is trivial: just combine the classifications of t and u.

To illustrate the second case consider u′ from section 2.3.1 and its annotated tree:

u′ () | False = 1

| False = 2

u′ = 3

;

Θ1 � Θ2 1

Θ3 2

Θ4 3

1
Our implementation avoids this duplicated work – see Section 5.1 – but the formulation in Figure 5 emphasises clarity

over efficiency.
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Collect accessible (k), inaccessible (n) and redundant (m) GRHSs

R(u) = (k,n,m)

R(ARhs Θ n) =

{
(ϵ, ϵ,n), if G(Θ) = ∅

(n, ϵ, ϵ), otherwise

R(t ;u) = (k k ′,n n′,mm′) where
(k,n,m) =R(t)

(k ′,n′,m′)=R(u)

R(Bang Θ t) =

{
(ϵ,m,m′), if G(Θ) , ∅ and R(t) = (ϵ, ϵ,mm′)

R(t), otherwise

Normalised refinement type syntax

∇ F × | ⟨Γ ∥∆⟩ Normalised refinement type

∆ F ∅ | ∆,δ Set of constraints

δ F γ | x ≈ K a y | x 0 K | x ≈ ⊥ | x 0 ⊥ | x ≈ y Constraints

Generate inhabitants of Θ

G(Θ) = P(p)

G(⟨ Γ | Φ ⟩) = {E(∇, dom(Γ)) | ∇ ∈ C(⟨Γ ∥∅⟩,Φ)}

Construct inhabited ∇s from Φ

C(∇,Φ) = P(∇)

C(∇,φ) =

{
{⟨Γ′ ∥∆′⟩} where ⟨Γ′ ∥∆′⟩ = ∇ ⊕φ φ

∅ otherwise

C(∇,Φ1 ∧ Φ2) =
⋃
{C(∇′,Φ2) | ∇

′ ∈ C(∇,Φ1)}

C(∇,Φ1 ∨ Φ2) = C(∇,Φ1) ∪ C(∇,Φ2)

Expand variables to Pat with ∇

E(∇,x) = p

E(∇, ϵ) = ϵ

E(⟨Γ ∥∆⟩,x1...xn) =


(K q1...qm)p2...pn if ∆(x1) ≈ K a y ∈ ∆

and (q1...qm p2...pn) = E(⟨Γ ∥∆⟩,y1...ymx2...xn)
_ p2...pn where (p2...pn) = E(⟨Γ ∥∆⟩,x2...xn)

Finding the representative of a variable in ∆

∆(x) = y

∆(x) =

{
∆(y) x ≈ y ∈ ∆

x otherwise

Fig. 6. Generating inhabitants of Θ via ∇
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Θ2 and Θ3 are uninhabited (because of the False guards). But we cannot delete both GRHSs as

redundant, because that would make the call u′ ⊥ return 3 rather than diverging. Rather, we want

to report the first GRHSs as inaccessible, leaving all the others as redundant.

3.4 Generating inhabitants of a refinement type
Thus far, all our functions have been very simple, syntax-directed transformations, but they all

ultimately depend on the single function G, which does the real work. That is our new focus. As

Figure 6 shows, G(Θ) takes a refinement type Θ = ⟨ Γ | Φ ⟩ and returns a (possibly-empty) set of

patterns p (syntax in Figure 3) that give the shape of values that inhabit Θ. We do this in two steps:

• Flatten Θ into a set of normalised refinement types ∇, by the call C(⟨Γ ∥∅⟩,Φ); see Section 3.6.

• For each such ∇, expand Γ into a list of patterns, by the call E(∇, dom(Γ)); see Section 3.5.

A normalised refinement type ∇ is either empty (×) or of the form ⟨Γ ∥ ∆⟩. It is similar to a

refinement type Θ = ⟨ Γ | Φ ⟩, but is in a much more restricted form:

• ∆ is simply a conjunction of literals δ ; there are no disjunctions. Instead, disjunction reflects

in the fact that C returns a set of normalised refinement types.

Beyond these syntactic differences, we enforce the following semantic invariants on a ∇ = ⟨Γ ∥∆⟩:

I1 Mutual compatibility: No two constraints in ∆ should conflict with each other, where x ≈ ⊥
conflicts with x 0 ⊥ and x ≈ K conflicts with x 0 K for all x .

I2 Triangular form: A x ≈ y constraint implies absence of any other constraints mentioning x
in its left-hand side.

I3 Single solution: There is at most one positive constructor constraint x ≈ K a y for a given x.
I4 Incompletely matched: If x :τ ∈ Γ and τ reduces to a data type under type constraints in

∆, there must be at least one constructor K (or ⊥) which x can be instantiated to without

contradicting I1; see Section 3.7.

It is often helpful to think of a ∆ as a partial function from x to its solution, informed by the single

positive constraint x ≈ K a y ∈ ∆, if it exists. For example, x ≈ Nothing can be understood as a

function mapping x to Nothing. This reasoning is justified by I3. Under this view, ∆ looks like a

substitution. As we’ll see in section 3.6, this view is supported by a close correspondence with

unification algorithms.

I2 is actually a condition on the represented substitution. Whenever we find out that x ≈ y, for
example when matching a variable pattern y against a match variable x, we have to merge all the

other constraints on x into y, and say that y is the representative of x’s equivalence class. This is
so that every new constraint we record on y also affects x and vice versa. The process of finding

the solution of x in x ≈ y,y ≈ Nothing then entails walking the substitution, because we have to

look up constraints twice: The first lookup will find x’s representative y, the second lookup on y
will then find the solution Nothing.

We use ∆(x) to look up the representative of x in ∆ (see Figure 6). Therefore, we can assert that

x has Nothing as a solution simply by writing ∆(x) ≈ Nothing ∈ ∆.

3.5 Expanding a normalised refinement type to a pattern
Expanding a ∇ to a pattern vector, by calling E(∇) in Figure 6, is syntactically heavy, but straight-

forward. When there is a solution like ∆(x) ≈ Just y in ∆ for the head x of the variable vector of

interest, expand y in addition to the rest of the vector and wrap it in a Just. Invariant I3 guarantees
that there is at most one such solution and E is well-defined.
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Add a formula literal to ∇ ∇ ⊕φ φ = ∇

∇ ⊕φ × = × (1)

∇ ⊕φ � = ∇ (2)

⟨Γ ∥∆⟩ ⊕φ K a γ y:τ ← x = ⟨Γ,a,y:τ ∥∆⟩ ⊕δ γ ⊕δ y ′ 0 ⊥ ⊕δ x ≈ K a y (3)

where y ′ bind strict fields

⟨Γ ∥∆⟩ ⊕φ let x :τ =K σ γ e = ⟨Γ,x :τ ,a ∥∆⟩ ⊕δ a ∼ σ ⊕δ x ≈ K a y ⊕φ let y:τ ′ = e (4)

where ay # Γ, e:τ ′

⟨Γ ∥∆⟩ ⊕φ let x :τ =y = ⟨Γ,x :τ ∥∆⟩ ⊕δ x ≈ y (5)

⟨Γ ∥∆⟩ ⊕φ let x :τ = e = ⟨Γ,x :τ ∥∆⟩ (6)

⟨Γ ∥∆⟩ ⊕φ φ = ⟨Γ ∥∆⟩ ⊕δ φ (7)

Add a constraint to ∇ ∇ ⊕δ δ = ∇

× ⊕δ δ = × (8)

⟨Γ ∥∆⟩ ⊕δ γ =


⟨Γ ∥ (∆,γ )⟩ if type checker deems γ compatible with ∆

and ∀x ∈ dom(Γ) : ⟨Γ ∥ (∆,γ )⟩ ⊢ ∆(x)
× otherwise

(9)

⟨Γ ∥∆⟩ ⊕δ x ≈ K a y =


⟨Γ ∥∆⟩ ⊕δ a ∼ b ⊕δ y ≈ z if ∆(x) ≈ K b z ∈ ∆

× if ∆(x) ≈ K ′ b z ∈ ∆

⟨Γ ∥ (∆,∆(x) ≈ K a y)⟩ if ∆(x) 0 K < ∆

× otherwise

(10)

⟨Γ ∥∆⟩ ⊕δ x 0 K =


× if ∆(x) ≈ K a y ∈ ∆

× if not ⟨Γ ∥ (∆,∆(x) 0 K)⟩ ⊢ ∆(x)

⟨Γ ∥ (∆,∆(x) 0 K)⟩ otherwise

(11)

⟨Γ ∥∆⟩ ⊕δ x ≈ ⊥ =

{
× if ∆(x) 0 ⊥ ∈ ∆

⟨Γ ∥ (∆,∆(x) ≈ ⊥)⟩ otherwise

(12)

⟨Γ ∥∆⟩ ⊕δ x 0 ⊥ =


× if ∆(x) ≈ ⊥ ∈ ∆

× if not ⟨Γ ∥ (∆,∆(x) 0 ⊥)⟩ ⊢ ∆(x)

⟨Γ ∥ (∆,∆(x) 0 ⊥)⟩ otherwise

(13)

⟨Γ ∥∆⟩ ⊕δ x ≈ y =

{
⟨Γ ∥∆⟩ if x ′ = y ′

⟨Γ ∥ ((∆\x ′),x ′≈y ′)⟩ ⊕δ (∆ |x ′ [y
′/x ′] otherwise

(14)

where x ′ = ∆(x) and y ′ = ∆(y)

∆ \ x = ∆ ∆ |x= ∆

∅ \x = ∅
(∆,x ≈ K a y) \x = ∆ \ x
(∆,x 0 K) \x = ∆ \ x
(∆,x ≈ ⊥) \x = ∆ \ x
(∆,x 0 ⊥) \x = ∆ \ x
(∆,δ ) \x = (∆ \ x),δ

∅ |x = ∅
(∆,x ≈ K a y) |x = ∆ |x , x ≈ K a y
(∆,x 0 K) |x = ∆ |x , x 0 K
(∆,x ≈ ⊥) |x = ∆ |x , x ≈ ⊥
(∆,x 0 ⊥) |x = ∆ |x , x 0 ⊥
(∆,δ ) |x = ∆ |x

Fig. 7. Adding a constraint to the normalised refinement type ∇
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3.6 Normalising a refinement type
Normalisation, carried out by C in Figure 6, is largely a matter of repeatedly adding a literal φ to a

normalised type, thus ∇ ⊕φ φ. This function is where all the work is done, in Figure 7. It does so

by expressing a φ in terms of once again simpler constraints δ and calling out to ⊕δ . Specifically, in

Equation (3) a pattern guard extends the context and adds suitable type constraints and a positive

constructor constraint arising from the binding. Equation (4) of ⊕φ performs some limited, but

important reasoning about let bindings: it flattens possibly nested constructor applications, such as

let x = Just True. Note that equation (6) simply discards let bindings that cannot be expressed in ∇;

we’ll see an extension in section 4.3 that avoids this information loss.

That brings us to the prime unification procedure, ⊕δ . When adding x ≈ Just y, equation (10),

the unification procedure will first look for a solution for x with that same constructor. Let’s say
there is ∆(x) ≈ Just u ∈ ∆. Then ⊕δ operates on the transitively implied equality Just y ≈ Just u by

equating type and term variables with new constraints, i.e. y ≈ u. The original constraint, although
not conflicting, is not added to the normalised refinement type because of I2.

If there is a solution involving a different constructor like ∆(x) ≈ Nothing or if there was a

negative constructor constraint ∆(x) 0 Just, the new constraint is incompatible with the existing

solution. Otherwise, the constraint is compatible and is added to ∆.
Adding a negative constructor constraint x 0 Just is quite similar (equation (11)), except that we

have to make sure that x still satisfies I4, which is checked by the ∇ ⊢ ∆(x) judgment (cf. section 3.7)

in fig. 8. Handling positive and negative constraints involving ⊥ is analogous.

Adding a type constraint γ (equation (9)) entails calling out to the type checker to assert that

the constraint is consistent with existing type constraints. Afterwards, we have to ensure I4 is

upheld for all variables in the domain of Γ, because the new type constraint could have rendered

a type empty. To demonstrate why this is necessary, imagine we have ⟨x : a ∥ x 0 ⊥⟩ and try to

add a ∼ Void. Although the type constraint is consistent, x in ⟨x : a ∥x 0 ⊥,a ∼ Void⟩ is no longer

inhabited. There is room for being smart about which variables we have to re-check: For example,

we can exclude variables whose type is a non-GADT data type.

Equation (14) of ⊕δ equates two variables (x ≈ y) by merging their equivalence classes. Consider

the case where x and y aren’t in the same equivalence class. Then ∆(y) is arbitrarily chosen to be

the new representative of the merged equivalence class. To uphold I2, all constraints mentioning

∆(x) have to be removed and renamed in terms of ∆(y) and then re-added to ∆, one of which in

turn might uncover a contradiction.

3.7 Testing for inhabitation
The process for adding a constraint to a normalised type above (which turned out to be a unification

procedure in disguise) makes use of an inhabitation test ∇ ⊢ x , depicted in fig. 8. This tests whether

there are any values of x that satisfy ∇. If not, ∇ does not uphold I4. For example, the conjunction

x 0 Just ,x 0 Nothinд,x 0 ⊥ does not satisfy I4, because no value of x satisfies all those constraints.

The ⊢Bot judgment of ∇ ⊢ x tries to instantiate x to ⊥ to conclude that x is inhabited. ⊢Inst

instantiates x to one of its data constructors. That will only work if its type ultimately reduces to a

data type under the type constraints in ∇. Rule ⊢NoCpl will accept unconditionally when its type

is not a data type, i.e. for x : Int → Int.
Note that the outlined approach is complete in the sense that ∇ ⊢ x is derivable (if and) only

if x is actually inhabited in ∇, because that means we don’t have any ∇s floating around in the

checking process that actually aren’t inhabited and trigger false positive warnings. But that also

means that the ⊢ relation is undecidable! Consider the following example:
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Test if x is inhabited considering ∇ ∇ ⊢ x

(⟨Γ ∥∆⟩ ⊕δ x ≈ ⊥) , ×
⊢Bot

⟨Γ ∥∆⟩ ⊢ x

x : τ ∈ Γ Cons(⟨Γ ∥∆⟩,τ ) = ⊥
⊢NoCpl

⟨Γ ∥∆⟩ ⊢ x

Inst(⟨Γ ∥∆⟩,x ,K) , ×
x : τ ∈ Γ K ∈ Cons(⟨Γ ∥∆⟩,τ )

⊢Inst
⟨Γ ∥∆⟩ ⊢ x

Find data constructors of τ Cons(⟨Γ ∥∆⟩,τ ) = K

Cons(⟨Γ ∥∆⟩,τ ) =


K τ = T σ and T data type with constructors K

(after normalisation according to the type constraints in ∆)
⊥ otherwise

Instantiate x to data constructor K Inst(∇,x ,K) = ∇

Inst(⟨Γ ∥∆⟩,x ,K) = ⟨Γ,a,y : σ ∥∆⟩ ⊕δ τx ∼ τ ⊕δ γ ⊕δ x ≈ K a y ⊕δ y ′ 0 ⊥

where K : ∀a.γ ⇒ σ → τ , ay # Γ, x : τx ∈ Γ, y ′ bind strict fields

Fig. 8. Testing for inhabitation

data T = MkT !T
f :: SMaybe T → ()
f SNothing = ()

This is exhaustive, because T is an uninhabited type. Upon adding the constraint x 0 SNothing on

the match variable x via ⊕δ , we perform an inhabitation test, which tries to instantiate the SJust
constructor via ⊢Inst. That implies adding (via ⊕δ ) the constraints x ≈ SJust y,y 0 ⊥, the latter
of which leads to an inhabitation test on y. That leads to instantiation of the MkT constructor,

which leads to constraints y ≈ MkT z, z 0 ⊥, and so on for z etc.. An infinite chain of fruitless

instantiation attempts!

In practice, we implement a fuel-based approach that conservatively assumes that a variable

is inhabited after n such iterations and consider supplementing that with a simple termination

analysis in the future.

4 POSSIBLE EXTENSIONS
LYG is well equipped to handle the fragment of Haskell it was designed to handle. But GHC (and

other languages, for that matter) extends Haskell in non-trivial ways. This section exemplifies

easy accommodation of new language features and measures to increase precision of the checking

process, demonstrating the modularity and extensibility of our approach.

4.1 Long-distance information
Coverage checking should also work for case expressions and nested function definitions, like

f True = 1

f x = ...(case x of {False→ 2; True→ 3}) ...
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LYG as is will not produce any warnings for this definition. But the reader can easily make the

“long distance connection” that the last GRHS of the case expression is redundant! That simply

follows by context-sensitive reasoning, knowing that x was already matched against True.
In terms of LYG, the input values of the second GRHS Θ2 (which determine whether the GRHS is

accessible) encode the information we are after. We just have to start checking the case expression
starting from Θ2 as the initial set of reaching values instead of ⟨x : Bool | � ⟩.

4.2 Empty case
As can be seen in fig. 1, Haskell function definitions need to have at least one clause. That leads to

an awkward situation when pattern matching on empty data types, like Void:

absurd1 = ⊥

absurd2 !_ = ⊥

absurd1, absurd2, absurd3 :: Void → a
absurd3 x = case x of { }

absurd1 returns ⊥ when called with ⊥, thus masking the original ⊥ with the error thrown by ⊥.

absurd2 would diverge alright, but LYG will report its RHS as inaccessible! Hence GHC provides an

extension, called EmptyCase, that allows the definition of absurd3 above. Such a case expression
without any alternatives evaluates its argument to WHNF and crashes when evaluation returns.

It is quite easy to see that Gdt lacks expressive power to desugar EmptyCase into, since all leaves
in a guard tree need to have corresponding RHSs. Therefore, we need to introduce GEmpty to Gdt
and AEmpty to Ant. This is how they affect the checking process:

U(Θ, GEmpty) = Θ A(Θ, GEmpty) = AEmpty

Since EmptyCase, unlike regular case, evaluates its scrutinee to WHNF before matching any of

the patterns, the set of reaching values is refined with a x 0 ⊥ constraint before traversing the

guard tree, thusU(⟨ Γ | x 0 ⊥ ⟩, GEmpty).

4.3 View patterns
Our source syntax had support for view patterns to start with (cf. fig. 1). And even the desugaring

we gave as part of the definition of D in fig. 4 is accurate. But this desugaring alone is insufficient

for the checker to conclude that safeLast from section 2.2.1 is an exhaustive definition! To see why,

let’s look at its guard tree:

let y1 = reverse x1, !y1,Nothing ← y1 1

let y2 = reverse x1, !y2, Just t1 ← y2, !t1, (t2, t3) ← t1 2

As far as LYG is concerned, the matches on both y1 and y2 are non-exhaustive. But that’s actually
too conservative: Both bind the same value! By making the connection between y1 and y2 , the
checker could infer that the match was exhaustive.

This can be fixed by maintaining equivalence classes of semantically equivalent expressions in

∆, similar to what we already do for variables. We simply extend the syntax of δ and change the

last let case of ⊕φ . Then we can handle the new constraint in ⊕δ , as follows:

δ = ... | e ≈ x ⟨Γ ∥∆⟩ ⊕φ let x : τ = e = ⟨Γ,x : τ ∥∆⟩ ⊕δ e ≈ x

⟨Γ ∥∆⟩ ⊕δ e ≈ x =

{
⟨Γ ∥∆⟩ ⊕δ x ≈ y, if e ′ ≈ y ∈ ∆ and e ≡∆ e ′

⟨Γ ∥∆, e ≈ ∆(x)⟩, otherwise

Where ≡∆ is (an approximation to) semantic equivalence modulo substitution under ∆. A clever

data structure is needed to answer queries of the form e ≈ ∈ ∆, efficiently. In our implementation,
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we use a trie to index expressions rapidly and sacrifice reasoning modulo ∆ in doing so. Plugging

in an SMT solver to decide ≡∆ would be more precise, but certainly less efficient.

4.4 Pattern synonyms
To accommodate checking of pattern synonyms P , we first have to extend the source syntax and IR

syntax by adding the syntactic concept of a ConLike:

cl F K | P
pat F x | | cl pat | x@pat | ...

P ∈ PS
C ∈ CL F K | P
p ∈ Pat F _ | C p | ...

Assuming every definition encountered so far is changed to handle ConLikes C now instead of

data constructors K , everything should work almost fine. Why then introduce the new syntactic

variant in the first place? Consider

pattern P = ()
pattern Q = ()
n = case P of Q → 1; P → 2

Knowing that the definitions of P and Q completely overlap, we can see that the match on Q will

cover all values that could reach P , so clearly P is redundant. A sound approximation to that would

be not to warn at all. And that’s reasonable, after all we established in section 2.2.2 that reasoning

about pattern synonym definitions is undesirable.

But equipped with long-distance information from the scrutinee expression, the checker would

mark the first case alternative as redundant, which clearly is unsound! Deleting the first alternative

would change its semantics from returning 1 to returning 2. In general, we cannot assume that

arbitrary pattern synonym definitions are disjoint, in stark contrast to data constructors.

The solution is to tweak the clause of ⊕δ dealing with positive ConLike constraints x ≈ C a y:

⟨Γ ∥∆⟩ ⊕δ x ≈ C a y =


⟨Γ ∥∆⟩ ⊕δ a ∼ b ⊕δ y ≈ z if ∆(x) ≈ C b z ∈ ∆

× if ∆(x) ≈ C ′ b z ∈ ∆ and C ∩C ′ = ∅

⟨Γ ∥ (∆,∆(x) ≈ C a y)⟩ if ∆(x) 0 C < ∆ and ⟨Γ ∥∆⟩ ⊢ ∆(y)

× otherwise

Where the suggestive notation C ∩C ′ = ∅ is only true if C and C ′ don’t overlap, if both are data

constructors, for example.

Note that the slight relaxation means that the constructed ∇ might violate I3, specifically when

C ∩C ′ , ∅. In practice that condition only matters for the well-definedness of E, which in case

of multiple solutions (i.e. x ≈ P ,x ≈ Q) has to commit to one them for the purposes of reporting

warnings. Fixing that requires a bit of boring engineering.

4.5 COMPLETE pragmas
In a sense, every algebraic data type defines its own builtin COMPLETE set, consisting of all its data

constructors, so the coverage checker already manages a single COMPLETE set.

We have ⊢Inst from fig. 8 currently making sure that this COMPLETE set is in fact inhabited. We

also have ⊢NoCpl that handles the case when we can’t find any COMPLETE set for the given type
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(think x : Int → Int). The obvious way to generalise this is by looking up all COMPLETE sets attached
to a type and check that none of them is completely covered:

(⟨Γ ∥∆⟩ ⊕δ x ≈ ⊥) , ×
⊢Bot

⟨Γ ∥∆⟩ ⊢ x Inst(⟨Γ ∥∆⟩,x ,Cj ) , ×
i

x : τ ∈ Γ Cons(⟨Γ ∥∆⟩,τ ) = C1, ...,Cni
i

⊢Inst
⟨Γ ∥∆⟩ ⊢ x

Cons(⟨Γ ∥∆⟩,τ ) =


C1, ...,Cni

i
τ = T σ and T type constructor with COMPLETE sets C1, ...,Cni

i

(after normalisation according to the type constraints in ∆)
ϵ otherwise

Cons was changed to return a list of all available COMPLETE sets, and ⊢Inst tries to find an

inhabiting ConLike in each one of them in turn. Note that ⊢NoCpl is gone, because it coincides

with ⊢Inst for the case where the list returned by Cons was empty. The judgment has become

simpler and and more general at the same time! Note that checking against multiple COMPLETE sets

so frequently is computationally intractable. We will worry about that in section 5.

4.6 Other extensions
We consider further extensions, including overloaded literals, newtypes, and a strict-by-default

source syntax, in Appendix A.

5 IMPLEMENTATION
The implementation of LYG in GHC accumulates quite a few tricks that go beyond the pure

formalism. This section is dedicated to describing these.

Warning messages need to reference source syntax in order to be comprehensible by the user.

At the same time, coverage checks involving GADTs need a type checked program, so the only

reasonable design is to run the coverage checker between type checking and desugaring to GHC

Core, a typed intermediate representation lacking the connection to source syntax. We perform

coverage checking in the same tree traversal as desugaring.

5.1 InterleavingU and A
The set of reaching values is an argument to bothU and A. Given a particular set of input values

and a guard tree, one can see by a simple inductive argument that both U and A are always

called at the same arguments! Hence for an implementation it makes sense to compute both results

together, if only for not having to recompute the results ofU again in A.

But there’s more: Looking at the last clause of U in fig. 5, we can see that we syntactically

duplicate Θ every time we have a pattern guard. That can amount to exponential growth of the

refinement predicate in the worst case and for the time to prove it empty!

What we really want is to summarise a Θ into a more compact canonical form before doing these

kinds of splits. But that’s exactly what ∇ is! Therefore, in our implementation we don’t pass around

and annotate refinement types, but the result of calling C on them directly.

You can see the resulting definition in fig. 9. The readability is clouded by unwrapping of pairs.

UA requires that each ∇ individually is non-empty, i.e. not ×. This invariant is maintained by

adding φ constraints through Û⊕φ , which filters out any ∇ that would become empty.

5.2 Throttling for graceful degradation
Even with the tweaks from section 5.1, checking certain pattern matches remains NP-hard Sekar

et al. [1995]. Naturally, there will be cases where we have to conservatively approximate in order
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∇ Û⊕φ φ = ∇

ϵ Û⊕φ φ = ϵ

(∇1 ...∇n) Û⊕φ φ =

{
(⟨Γ ∥∆⟩) (∇2 ...∇n Û⊕φ φ) if ⟨Γ ∥∆⟩ = ∇ ⊕φ φ

(∇2 ...∇n) Û⊕φ φ otherwise

UA(∇, t) = (∇,Ant)

UA(∇, GRhs n) = (ϵ, ARhs ∇ n)

UA(∇, t1; t2) = (∇2,u1;u2) where
(∇1,u1)=UA(∇, t1)

(∇2,u2)=UA(∇1, t2)

UA(∇, Guard (!x) t) = Bang (∇ Û⊕φ (x ≈ ⊥)) u

where (∇
′
,u) = UA(∇ Û⊕φ (x 0 ⊥), t)

UA(∇, Guard (let x = e) t) = UA(∇ Û⊕φ (let x = e), t)
UA(∇, Guard (K a γ y : τ ← x) t) = ((∇ Û⊕φ (x 0 K)) ∇

′
,u)

where (∇
′
,u) = UA(∇ Û⊕φ (K a γ y : τ ← x), t)

Fig. 9. Fast coverage checking

not to slow down compilation too much. Consider the following example and its corresponding

guard tree:

data T = A | B; f1, f2 :: Int → T
g
| A← f1 1, A← f2 1 = ()

| A← f1 2, A← f2 2 = ()

...

| A← f1 N ,A← f2 N = ()

let a1 = f1 1, !a1,A← a1, let b1 = f2 1, !b1,A← b1 1

let a2 = f1 2, !a2,A← a2, let b2 = f2 2, !b2,A← b2 2

... ...

let aN = f1 N , !aN ,A← aN , let bN = f2 N , !bN ,A← bN N

Each of the N GRHS can fall through in two distinct ways: By failure of either pattern guard

involving f1 or f2. Initially, we start out with a single input ∇. After the first equation it will split

into two sub-∇s, after the second into four, and so on. This exponential pattern repeats N times,

and leads to horrible performance!

Instead of refining ∇ with the pattern guard, leading to a split, we could just continue with

the original ∇, thus forgetting about the a1 0 A or b1 0 A constraints. In terms of the modeled

refinement type, ∇ is still a superset of both refinements, and thus a sound overapproximation.

In our implementation, we call this throttling: We limit the number of reaching ∇s to a constant.

Whenever a split would exceed this limit, we continue with the original input ∇s, a conservative

estimate, instead. Intuitively, throttling corresponds to forgetting what we matched on in that

particular subtree. Throttling is refreshingly easy to implement! Only the last clause ofUA, where

splitting is performed, needs to change:

UA(∇, Guard (K a γ y : τ ← x) t)= (
⌊
(∇ Û⊕φ (x 0 K)) ∇

′
⌋
∇
,u)

where (∇
′
,u) = UA(∇ Û⊕φ (K a γ y : τ ← x), t)
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where the new throttling operator ⌊ ⌋ is defined simply as⌊
∇

⌋
∇
′ =

{
∇ if |{∇}| ⩽ K

∇
′

otherwise

with K being an arbitrary constant. We use 30 as an arbitrary limit in our implementation

(dynamically configurable via a command-line flag) without noticing any false positives in terms of

exhaustiveness warnings outside of the test suite.

5.3 Maintaining residual COMPLETE sets
Our implementation tries hard to make the inhabitation test as efficient as possible. For exam-

ple, we represent ∆s by a mapping from variables to their positive and negative constraints for

easier indexing. But there are also asymptotical improvements. Consider the following function:

data T = A1 | ... | A1000
pattern P = ...
{-# COMPLETE A1, P #-}

f A1 = 1

f A2 = 2

...

f A1000 = 1000

f is exhaustively defined. To see that we need to perform an inhabitation test for the match

variable x after the last clause. The test will conclude that the builtin COMPLETE set was completely

overlapped. But in order to conclude that, our algorithm tries to instantiate x (via ⊢Inst) to each

of its 1000 constructors and try to add a positive constructor constraint! What a waste of time,

given that we could just look at the negative constraints on x before trying to instantiate x. But
asymptotically it shouldn’t matter much, since we’re doing this only once at the end.

Except that is not true, because we also perform redundancy checking! At any point in f ’s
definition there might be a match on P , after which all remaining clauses would be redundant by

the user-supplied COMPLETE set. Therefore, we have to perform the expensive inhabitation test after
every clause, involving O(n) instantiations each.

Clearly, we can be smarter about that! Indeed, we cache residual COMPLETE sets in our implemen-

tation: Starting from the full COMPLETE sets, we delete ConLikes from them whenever we add a

new negative constructor constraint, maintaining the invariant that each of the sets is inhabited

by at least one constructor. Note how we never need to check the same constructor twice (except

after adding new type constraints), thus we have an amortised O(n) instantiations for the whole
checking process.

5.4 Reporting uncovered patterns
The expansion function E in fig. 6 exists purely for presenting uncovered patterns to the user.

It is very simple and doesn’t account for negative information, leading to surprising warnings.

Consider a definition like f True = (). The computed uncovered set of f is the refinement type

⟨x : Bool | x 0 ⊥,x 0 True ⟩, which crucially contains no positive information! As a result,

expanding the resulting ∇ (which looks quite similar) with E just unhelpfully reports as an

uncovered pattern. Our implementation thus splits the ∇ into (possibly multiple) sub-∇s with

positive information on variables we have negative information on before handing off to E.

6 EVALUATION
We have implemented LYG in a to-be-released version of GHC. To put the new coverage checker to

the test, we performed a survey of real-world Haskell code using the head.hackage repository 2
.

2
https://gitlab.haskell.org/ghc/head.hackage/commit/30a310fd8033629e1cbb5a9696250b22db5f7045

https://gitlab.haskell.org/ghc/head.hackage/commit/30a310fd8033629e1cbb5a9696250b22db5f7045
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Time (milliseconds) Megabytes allocated
8.8.3 HEAD % change 8.8.3 HEAD % change

T11276 1.16 1.69 45.7% 1.86 2.39 28.6%

T11303 28.1 18.0 -36.0% 60.2 39.9 -33.8%

T11303b 1.15 0.39 -65.8% 1.65 0.47 -71.8%

T11374 4.62 3.00 -35.0% 6.16 3.20 -48.1%

T11822 1,060 16.0 -98.5% 2,010 27.9 -98.6%

T11195 2,680 22.3 -99.2% 3,080 39.5 -98.7%

T17096 7,470 16.6 -99.8% 17,300 35.4 -99.8%

PmSeriesS 44.5 2.58 -94.2% 52.9 6.19 -88.3%

PmSeriesT 48.3 6.86 -85.8% 61.4 17.6 -71.4%

PmSeriesV 131 4.54 -96.5% 139 9.53 -93.2%

Fig. 10. The relative compile-time performance of GHC 8.8.3 (which implements GMTM) and HEAD (which
implements LYG) on test cases designed to stress-test coverage checking.

head.hackage contains a sizable collection of libraries and minimal patches necessary to make

them build with a development version of GHC. We identified those libraries which compiled

without coverage warnings using GHC 8.8.3 (which uses GMTM as its checking algorithm) but

emitted warnings when compiled using our LYG version of GHC.

Of the 361 libraries in head.hackage, seven of them revealed coverage issues that only LYG

warned about. Two of the libraries, pandoc and pandoc-types, have cases that were flagged as re-

dundant due to LYG’s improved treatment of guards and term equalities. One library, geniplate-mirror,
has a case that was redundant by way of long-distance information. Another library, generic-data,
has a case that is redundant due to bang patterns.

The last three libraries—Cabal, HsYAML, and network—were the most interesting. HsYAML in

particular defines this function:

go′ xs | False = error (show xs)
go′ xs = err xs

The first clause is clearly unreachable, and LYG now flags it as such. However, the authors of

HsYAML likely left in this clause because it is useful for debugging purposes. One can uncomment

the second clause and remove the False guard to quickly try out a code path that prints a more

detailed error message. Moreover, leaving the first clause in the code ensures that it is typechecked

and less susceptible to bitrotting over time.

We may consider adding a primitive function keepAlive such that keepAlive False does not get
marked as redundant in order to support use cases like HsYAML’s. The unreachable code in Cabal
and network is of a similar caliber and would also benefit from keepAlive.

6.1 Performance tests
To compare the efficiency of GMTM and LYG quantitatively, we collected a series of test cases

from GHC’s test suite that are designed to test the compile-time performance of coverage checking.

Figure 10 lists each of these 11 test cases. Test cases with a T prefix are taken from user-submitted

bug reports about the poor performance of GMTM. Test cases with a PmSeries prefix are adapted

from Maranget [2007], which presents several test cases that caused GHC to exhibit exponential

running times during coverage checking.

We compiled each test case with GHC 8.8.3, which uses GMTM as its checking algorithm, and

GHC HEAD, which uses LYG. We measured (1) the time spent in the desugarer, the phase of
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compilation in which coverage checking occurs, and (2) how many megabytes were allocated

during desugaring. Figure 10 shows these figures as well as the percent change going from 8.8.3

to HEAD. Most cases exhibit a noticeable improvement under LYG, with the exception of T11276.
Investigating T11276 suggests that the performance of GHC’s equality constraint solver has become

more expensive in HEAD [GHC issue 2020c], and these extra costs outweigh the performance

benefits of using LYG.

6.2 GHC issues
Implementing LYG in GHC has fixed over 30 bug reports related to coverage checking. These

include:

• Better compile-time performance [GHC issue 2015a, 2016e, 2019a,b]

• More accurate warnings for empty case expressions [GHC issue 2015b, 2017f, 2018e,g, 2019c]

• More accurate warnings due to LYG’s desugaring [GHC issue 2016c,d, 2017d, 2018a, 2020d]

• More accurate warnings due to improved term-level reasoning [GHC issue 2016a, 2017a,

2018b,c,d,h, 2019d,e,h]

• More accurate warnings due to tracking long-distance information [GHC issue 2019k, 2020a,b]

• Improved treatment of COMPLETE sets [GHC issue 2016b, 2017b,c,e,g, 2018j, 2019f,g,i]

• Better treatment of strictness, bang patterns, and newtypes [GHC issue 2018f,i, 2019j,l]

7 RELATEDWORK
7.1 Comparison with GADTs Meet Their Match
Karachalias et al. [2015] present GADTs Meet Their Match (GMTM), an algorithm which handles

many of the subtleties of GADTs, guards, and laziness mentioned in section 2. Despite this, the

GMTM algorithm still gives incorrect warnings in many cases.

7.1.1 GMTM does not consider laziness in its full glory. The formalism in Karachalias et al. [2015]

incorporates strictness constraints, but these constraints can only arise from matching against

data constructors. GMTM does not consider strict matches that arise from strict fields of data

constructors or bang patterns. A consequence of this is that GMTM would incorrectly warn that v
(section 2.3) is missing a case for SJust, even though such a case is unreachable. LYG, on the other

hand, more thoroughly tracks strictness when desugaring Haskell programs.

7.1.2 GMTM’s treatment of guards is shallow. GMTM can only reason about guards through an

abstract term oracle. Although the algorithm is parametric over the choice of oracle, in practice

the implementation of GMTM in GHC uses an extremely simple oracle that can only reason about

guards in a limited fashion. More sophisticated uses of guards, such as in this variation of the

safeLast function from section 2.2.1, will cause GMTM to emit erroneous warnings:

safeLast2 xs
| (x : ) ← reverse xs = Just x
| [ ] ← reverse xs = Nothing

While GMTM’s term oracle is customisable, it is not as simple to customize as one might hope.

The formalism in Karachalias et al. [2015] represents all guards as p← e, where p is a pattern and

e is an expression. This is a straightforward, syntactic representation, but it also makes it more

difficult to analyse when e is a complicated expression. This is one of the reasons why it is difficult

for GMTM to accurately give warnings for the safeLast function, since it would require recognizing
that both clauses scrutinise the same expression in their view patterns.
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LYG makes analysing term equalities simpler by first desugaring guards from the surface syntax

to guard trees. The ⊕φ function, which is roughly a counterpart to GMTM’s term oracle, can then

reason about terms arising from patterns. While ⊕φ is already more powerful than a trivial term

oracle, its real strength lies in the fact that it can easily be extended, as LYG’s treatment of view

patterns (section 4.3) demonstrates. While GMTM’s term oracle could be improved to accomplish

the same thing, it is unlikely to be as straightforward of a process as extending ⊕φ .

7.2 Comparison with similar coverage checkers
7.2.1 Structural and semantic pattern matching analysis in Haskell. Kalvoda and Kerckhove [2019]

implement a variation of GMTM that leverages an SMT solver to give more accurate coverage

warnings for programs that use guards. For instance, their implementation can conclude that the

signum function from section 2.1 is exhaustive. This is something that LYG cannot do out of the

box, although it would be possible to extend ⊕φ with SMT-like reasoning about booleans and

linear integer arithmetic.

7.2.2 Warnings for pattern matching. Maranget [2007] presents a coverage checking algorithm for

OCaml. While OCaml is a strict language, the algorithm claims to be general enough to handle

languages with non-strict semantics such as Haskell. That claim however builds on a broken

understanding of laziness. Given the following definition:

f True = 1

f = 2

Maranget implies that f ⊥ evaluates to 2, which is of course incorrect. Also, replacing the wild

card by a match on False would no longer be a complete match according to their formalism.

7.2.3 Elaborating dependent (co)pattern matching. Cockx and Abel [2018] design a coverage check-

ing algorithm for a dependently typed language with both pattern matching and copatternmatching,

which is a feature that GHC lacks. While the source language for their algorithm is much more

sophisticated than GHC’s, their algorithm is similar to LYG in that it first desugars definitions by

clauses to case trees. Case trees present a simplified form of pattern matching that is easier to check

for coverage, much like guard trees in LYG. Guard trees could take inspiration from case trees

should a future version of GHC add dependent types or copatterns.

7.3 Positive and negative information
LYG’s use of positive and negative constructor constraints is inspired by Sestoft [1996], which

uses positive and negative information to implement a pattern-match compiler for ML. Sestoft

utilises positive and negative information to generate decision trees that avoid scrutinizing the

same terms repeatedly. This insight is equally applicable to coverage checking and is one of the

primary reasons for LYG’s efficiency.

Besides efficiency, the accuracy of redundancy warnings involving COMPLETE sets hinge on nega-

tive constraints. To see why this isn’t possible in other checkers that only track positive information,

such as those of Karachalias et al. [2015] (section 7.1) and Maranget [2007] (section 7.2.2), consider

the following example:

pattern True′ = True
{-# COMPLETE True’, False #-}

f False = 1

f True′ = 2

f True = 3

GMTM would have to commit to a particular COMPLETE set when encountering the match on False,
without any semantic considerations. Choosing {True′, False} here will mark the third GRHS as
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redundant, while choosing {True, False} won’t. GHC’s implementation used to try each COMPLETE
set in turn and would disambiguate using a complicated metric based on the number and kinds of

warnings the choice of each oset would generate [GHC team 2020], which was broken still [GHC

issue 2017g].

Negative constraints make LYG efficient in other places too, such as in this example:

data T = A1 | ... | A1000
h A1 = 1

h A1 = 2

In h, GMTM would split the value vector (which is like LYG’s ∆s without negative constructor
constraints) into 1000 alternatives over the first match variable, and then each of the 999 value

vectors reaching the second GRHS into another 1000 alternatives over the second match variable.

Negative constraints allow LYG to compress the 999 value vectors falling through into a single

one indicating that the match variable can no longer be A1. Maranget detects wildcard matches to

prevent blowup, but only can find a subset of all uncovered patterns in doing so (section 7.2.2).

7.4 Strict fields in inhabitation testing
To our knowledge, the Inst function in fig. 8 is the first inhabitation test in a coverage checking

algorithm to take strict fields into account. This is essential in order to conclude that the v function

from section 2.3 is exhaustive, which is something that even coverage checkers for call-by-value

languages get wrong. For example, we ported v to OCaml and Idris
3
:

type void; ;
let v (None : void option) : int = 0; ;

v :Maybe Void → Int
v Nothing = 0

OCaml 4.07.1 incorrectly warns that v is missing a case on Some . Idris 1.3.2 does not warn, but

if one adds an extra v (Just ) = 1 clause, it will not warn that the extra clause is redundant.

7.5 Refinement types in coverage checking
In addition to LYG, Liquid Haskell uses refinement types to perform a limited form of exhaustivity

checking [Vazou et al. 2014, 2017]. While exhaustiveness checks are optional in ordinary Haskell,

they are mandatory for Liquid Haskell, as proofs written in Liquid Haskell require user-defined

functions to be total (and therefore exhaustive) in order to be sound. For example, consider this

non-exhaustive function:

fibPartial :: Integer → Integer
fibPartial 0 = 0

fibPartial 1 = 1

When compiled, GHCfills out this definition by adding an extrafibPartial = error "undefined"
clause. Liquid Haskell leverages this by giving error the refinement type:

error :: {v : String | false } → a

As a result, attempting to use fibPartial in a proof will yield an inconsistent environment (and

therefore fail to verify) unless the user can prove that fibPartial is only ever invoked with the

arguments 0 or 1.

8 CONCLUSION
In this paper, we describe Lower Your Guards, a coverage checking algorithm that distills rich

pattern matching into simple guard trees. Guard trees are amenable to analyses that are not easily

3
Idris has separate compile-time and runtime semantics, the latter of which is call by value.
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expressible in coverage checkers that work over structural pattern matches. This allows LYG to

report more accurate warnings while also avoiding performance issues when checking complex

programs. Moreover, LYG is extensible, and we anticipate that this will streamline the process of

checking new forms of patterns in the future.
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