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Lower Your Guards
A Compositional Pattern-Match Coverage Checker

SEBASTIAN GRAF, Karlsruhe Institute of Technology, Germany
SIMON PEYTON JONES, Microsoft Research, UK
RYAN G. SCOTT, Indiana University, USA

One of a compiler’s roles is to warn if a function defined by pattern matching does not cover its inputs—that
is, if there are missing or redundant patterns. Generating such warnings accurately is difficult for modern
languages due to the myriad of interacting language features when pattern matching. This is especially true in
Haskell, a language with a complicated pattern language that is made even more complex by extensions offered
by the Glasgow Haskell Compiler (GHC). Although GHC has spent a significant amount of effort towards
improving its pattern-match coverage warnings, there are still several cases where it reports inaccurate
warnings.

We introduce a coverage checking algorithm called Lower Your Guards, which boils down the complexities
of pattern matching into guard trees. While the source language may have many exotic forms of patterns,
guard trees only have three different constructs, which vastly simplifies the coverage checking process. Our
algorithm is modular, allowing for new forms of source-language patterns to be handled with little changes to
the overall structure of the algorithm. We have implemented the algorithm in GHC and demonstrate places
where it performs better than GHC’s current coverage checker, both in accuracy and performance.

Draft March 2020. We would appreciate any comments or feedback to the email addresses below.

1 INTRODUCTION

Pattern matching is a tremendously useful feature in Haskell and many other programming lan-
guages, but it must be used with care. Consider this example of pattern matching gone wrong:

f = Int — Bool
f0="True
f 0 = False

The function f has two serious flaws. One obvious problem is that there are two clauses that match
on 0, and due to the top-to-bottom semantics of pattern matching, this makes the f 0 = False clause
completely unreachable. Even worse is that f never matches on any patterns besides 0, making it
not fully defined. Attempting to invoke f 1, for instance, will fail.

To avoid these mishaps, compilers for languages with pattern matching often emit warnings
(or errors) if a function is missing clauses (i.e., if it is non-exhaustive), if one of its right-hand sides
will never be entered (i.e., if it is inaccessible), or if one of its equations can be deleted altogether
(i.e., if it is redundant). We refer to the combination of checking for exhaustivity, redundancy, and
accessibility as pattern-match coverage checking. Coverage checking is the first line of defence in
catching programmer mistakes when defining code that uses pattern matching.

Coverage checking for a set of equations matching on algebraic data types is a well studied
(although still surprisingly tricky) problem—see Section 7 for this related work. But the coverage-
checking problem becomes much harder when one includes the raft of innovations that have
become part of a modern programming language like Haskell, including: view patterns, pattern
guards, pattern synonyms, overloaded literals, bang patterns, lazy patterns, as-patterns, strict data
constructors, empty case expressions, and long-distance effects (Section 4). Particularly tricky are
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GADTs [Xi et al. 2003], where the type of a match can determine what values can possibly appear;
and local type-equality constraints brought into scope by pattern matching [Vytiniotis et al. 2011].

The current state of the art for coverage checking in a richer language of this sort is GADTs Meet
Their Match [Karachalias et al. 2015], or GMTM for short. It presents an algorithm that handles the
intricacies of checking GADTs, lazy patterns, and pattern guards. However GMTM is monolithic
and does not account for a number of important language features; it gives incorrect results in
certain cases; its formulation in terms of structural pattern matching makes it hard to avoid some
serious performance problems; and its implementation in GHC, while a big step forward over its
predecessors, has proved complex and hard to maintain.

In this paper we propose a new, compositional coverage-checking algorithm, called Lower Your
Guards (LYG), that is simpler, more modular, and more powerful than GMTM (see section 7.1).
Moreover, it avoids GMTM’s performance pitfalls. We make the following contributions:

e We characterise some nuances of coverage checking that not even GMTM handles (Section 2).
We also identify issues in GHC’s implementation of GMTM.

e We describe a new, compositional coverage checking algorithm, LYG, in Section 3. The key
insight is to abandon the notion of structural pattern matching altogether, and instead desugar
all the complexities of pattern matching into a very simple language of guard trees, with just
three constructs (Section 3.1). Coverage checking on these guard trees becomes remarkably
simple, returning an annotated tree (Section 3.2) decorated with refinement types. Finally,
provided we have access to a suitable way to find inhabitants of a refinement type, we can
report accurate coverage errors (Section 3.3).

e We demonstrate the compositionality of LYG by augmenting it with several language exten-
sions (Section 4). Although these extensions can change the source language in significant
ways, the effort needed to incorporate them into the algorithm is comparatively small.

e We discuss how to optimize the performance of LYG (Section 5) and implement a proof of
concept in GHC (Section 6).

We discuss the wealth of related work in Section 7.

2 THE PROBLEM WE WANT TO SOLVE

What makes coverage checking so difficult in a language like Haskell? At first glance, implementing
a coverage checking algorithm might appear simple: just check that every function matches on
every possible combination of data constructors exactly once. A function must match on every
possible combination of constructors in order to be exhaustive, and it must must on them exactly
once to avoid redundant matches.

This algorithm, while concise, leaves out many nuances. What constitutes a “match”? Haskell
has multiple matching constructs, including function definitions, case expressions, and guards.
How does one count the number of possible combinations of data constructors? This is not a simple
exercise since term and type constraints can make some combinations of constructors unreachable
if matched on. Moreover, what constitutes a “data constructor”? In addition to traditional data
constructors, GHC features pattern synonyms [Pickering et al. 2016], which provide an abstract
way to embed arbitrary computation into patterns. Matching on a pattern synonym is syntactically
identical to matching on a data constructor, which makes coverage checking in the presence of
pattern synonyms challenging.

Prior work on coverage checking (discussed in Section 7) accounts for some of these nuances,
but not all of them. In this section we identify some key language features that make coverage
checking difficult. While these features may seem disparate at first, we will later show in Section 3
that these ideas can all fit into a unified framework.
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2.1 Guards

Guards are a flexible form of control flow in Haskell. Here is a function that demonstrates various
capabilities of guards:

guardDemo :: Char — Char — Int
guardDemo c1 c2

cl=="a =
| c1 ’a’ 0
| ’b” « cI =1
|letcl’ =cl,’c’ « cl',c2=="d" =2
| otherwise =3

This function has four guarded right-hand sides or GRHSs for short. The first GRHS has a boolean
guard, (c1=="a"), that succeeds if the expression in the guard returns True. The second GRHS has
a pattern guard, (’b’ « cl), that succeeds if the pattern in the guard successfully matches. The
next line illustrates that a GRHS may have multiple guards, and that guards include let bindings,
such as let c1’ = c2. The fourth GRHS uses otherwise, which is simply defined as True.

Guards can be thought of as a generalization of patterns, and we would like to include them
as part of coverage checking. Checking guards is significantly more complicated than checking
ordinary structural pattern matches, however, since guards can contain arbitrary expressions.
Consider this implementation of the signum function:

signum :: Int — Int

signumx | x>0 =1
| x==0=0
| x<0 =-1

Intuitively, signum is exhaustive since the combination of (>), (==), and (<) covers all possible
Ints. This is much harder for a machine to check, however, since that would require knowl-
edge about the properties of Int inequalities. Clearly, coverage checking for guards is undecid-
able in general. However, while we cannot accurately check all uses of guards, we can at least
give decent warnings for some common use-cases. For instance, take the following functions:

not :: Bool — Bool not2 :: Bool — Bool not3 :: Bool — Bool
not b | False < b = True not2 False = True not3 x | x « False = True
| True < b = False not2 True = False not3 True = False

Clearly all are equivalent. Our coverage checking algorithm should find that all three are exhaustive,
and indeed, LYG does so.

2.2 Programmable patterns

Expressions in guards are not the only source of undecidability that the coverage checker must
cope with. GHC extends the pattern language in other ways that are also impossible to check in
the general case. We consider two such extensions here: view patterns and pattern synonyms.

2.2.1 View patterns. View patterns allow arbitrary computation to be performed while pattern
matching. When a value v is matched against a view pattern (f — p), the match is successful when
f v successfully matches against the pattern p. For example, one can use view patterns to succinctly
define a function that computes the length of Haskell’s opaque Text data type:

Text.null :: Text — Bool -- Checks if a Text is empty
Text.uncons :: Text — Maybe (Char, Text) -- If a Text is non-empty, return Just (x, xs),
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-- where x is the first character and xs is the rest

length :: Text — Int
length (Text.null — True) =0
length (Text.uncons — Just (_, xs)) = 1 + length xs

Again, it would be unreasonable to expect a coverage checking algorithm to prove that length is
exhaustive, but one might hope for a coverage checking algorithm that handles some common
usage patterns. For example, LYG indeed is able to prove that safeLast function is exhaustive:

safeLast :: [a] — Maybe a
safeLast (reverse — [ ]) = Nothing
safeLast (reverse — (x: _)) = Just x

2.2.2  Pattern synonyms. Pattern synonyms [Pickering et al. 2016] allow abstraction over patterns
themselves. Pattern synonyms and view patterns can be useful in tandem, as the pattern synonym
can present an abstract interface to a view pattern that does complicated things under the hood.
For example, one can define length with pattern synonyms like so:

pattern Nil :: Text length :: Text — Int
pattern Nil « (Text.null — True) length Nil = 0
pattern Cons :: Char — Text — Text length (Cons x xs) = 1 + length xs

pattern Cons x xs < (Text.uncons — Just (x, xs))

How should a coverage checker handle pattern synonyms? One idea is to simply “look through”
the definitions of each pattern synonym and verify whether the underlying patterns are exhaustive.
This would be undesirable, however, because (1) we would like to avoid leaking the implementation
details of abstract pattern synonyms, and (2) even if we did look at the underlying implementation,
it would be challenging to automatically check that the combination of Text.null and Text.uncons
is exhaustive.

Nevertheless, Text.null and Text.uncons together are in fact exhaustive, and GHC allows pro-
grammers to communicate this fact to the coverage checker using a COMPLETE pragma [GHC team
2020]. A COMPLETE set is a combination of data constructors and pattern synonyms that should
be regarded as exhaustive when a function matches on all of them. For example, declaring {-#
COMPLETE Nil, Cons #-} is sufficient to make the definition of length above compile without any
exhaustivity warnings. Since GHC does not (and cannot, in general) check that all of the members
of a COMPLETE set actually comprise a complete set of patterns, the burden is on the programmer
to ensure that this invariant is upheld.

2.3 Strictness

The evaluation order of pattern matching can impact whether a pattern is reachable or not. While
Haskell is a lazy language, programmers can opt into extra strict evaluation by giving the fields of
a data type strict fields, such as in this example:

data Void -- No data constructors; only inhabitant is bottom
data SMaybe a = Sfust !a | SNothing

v :: SMaybe Void — Int

v SNothing = 0

v (Sfust _) =1 -- Redundant!
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The “!” in the definition of Sjust makes the constructor strict, so (Sfust L) = L. Curiously, this
makes the second equation of v redundant! Since _L is the only inhabitant of type Void, the only
inhabitants of SMaybe Void are SNothing and L. The former will match on the first equation; the
latter will make the first equation diverge. In neither case will execution flow to the second equation,
so it is redundant and can be deleted.

2.3.1 Redundancy versus inaccessibility. When reporting unreachable cases, we must distinguish
between redundant and inaccessible cases. Redundant cases can be removed from a function without
changing its semantics, whereas inaccessible cases have semantic importance. The examples below
illustrate this:

u:() — Int u () —> Int

u ()| False = 1 u' ()| False =1
| True =2 | False = 2

u_ =3 u _ =3

Within u, the equations that return 1 and 3 could be deleted without changing the semantics of
u, so they are classified as redundant. Within #’, one can never reach that right-hand sides of the
equations that return 1 and 2, but they cannot be removed so easily. Using the definition above,
' 1 = 1, butif the first two equations were removed, then v’ L = 3. As a result, LYG warns
that the first two equations in u’ are inaccessible, which suggests to the programmer that 4’ might
benefit from a refactor to avoid this (e.g., g’ () = 3).

Observe that u and v’ have completely different warnings, but the only difference between the
two functions is whether the second equation uses True or False in its guard. Moreover, this second
equation affects the warnings for other equations. This demonstrates that determining whether
code is redundant or inaccessible is a non-local problem. Inaccessibility may seem like a tricky
corner case, but GHC’s users have reported many bugs of this sort (Section 6.2).

2.3.2 Bang patterns. Strict fields are one mechanism for adding extra strictness in ordinary Haskell,
but GHC adds another in the form of bang patterns. A bang pattern such as !pat indicates that
matching a value v against pat always evaluates v to weak-head normal form (WHNF). Here is a
variant of v, this time using the standard, lazy Maybe data type:

v' it Maybe Void — Int
v Nothing = 0
v (Just!_) =1 -- Not redundant, but RHS is inaccessible

The inhabitants of the type Maybe Void are L, Nothing, and (Just L). The input L makes the first
equation diverge; Nothing matches on the first equation; and (Just L) makes the second equation
diverge because of the bang pattern. Therefore, none of the three inhabitants will result in the
right-hand side of the second equation being reached. Note that the second equation is inaccessible,
but not redundant (section 2.3.1).

2.4 Type-equality constraints

Besides strictness, another way for pattern matches to be rendered unreachable is by way of equality
constraints. A popular method for introducing equalities between types is matching on GADTs [Xi
et al. 2003]. The following examples demonstrate the interaction between GADTs and coverage
checking:
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Meta variables Pattern syntax
x,Y,2, f,g,h Term variables defn
a,b,c Type variables

“= clause
clause = f pat match

K Data constructors . —
P Pattern synonyms pat = x| _|K pat|x@pat | \pat | expr — pat
T Type constructors match = = expr | grhs
I Literal grhs = | guard = expr
expr Expressions guard = pat «— expr | expr | let x = expr
Fig. 1. Source syntax
data T a b where glaTIntb— b— Int g2:Tab—Tab— Int
T1:: T Int Bool g1 T1 False =0 g2T1ITiI=0
T2:: T Char Bool g1 Ti True=1 g2T2T2=1

When g1 matches against T1, the b in the type T Int b is known to be a Bool, which is why
matching the second argument against False or True will typecheck. Phrased differently, matching
against T1brings into scope an equality constraint between the types b and Bool. GHC has a powerful
type inference engine that is equipped to reason about type equalities of this sort [Vytiniotis et al.
2011].

Just as important as the code used in the g1 function is the code that is not used in g1. One
might wonder if g1 not matching its first argument against T2 is an oversight. In fact, the exact
opposite is true: matching on T2 would be rejected by the typechecker. This is because T2 is of
type T Char Bool, but the first argument to g1 must be of type T Int b. Matching against T2 would
be tantamount to saying that Int and Char are the same type, which is not the case. As a result, g1
is exhaustive even though it does not match on all of T’s data constructors.

The presence of type equalities is not always as clear-cut as it is in g1. Consider the more complex
g2 function, which matches on two arguments of the type T a b. While matching the arguments
against T1 T1 or T2 T2 is possible, it is not possible to match against T1 T2 or T2 T1. To see why,
suppose the first argument is matched against T1, giving rise to an equality between a and Int. If
the second argument were then matched against T2, we would have that a equals Char. By the
transitivity of type equality, we would have that Int equals Char. This cannot be true, so matching
against T1 T2 is impossible (and similarly for T2 T1).

Concluding that g2 is exhaustive requires some non-trivial reasoning about equality constraints.
In GHC, the same engine that typechecks GADT pattern matches is also used to rule out cases made
unreachable by type equalities, and LYG adopts a similar approach. Besides GHC’s current coverage
checker [Karachalias et al. 2015], there are a variety of other coverage checking algorithms that
account for GADTs, including those for OCaml [Garrigue and Normand 2011], Dependent ML [Xi
1998a,b, 2003], and Stardust [Dunfield 2007].

3 LOWER YOUR GUARDS: A NEW COVERAGE CHECKER

In this section, we describe our new coverage checking algorithm, LYG. Figure 2 depicts a high-level
overview, which divides into three steps:

o First, we desugar the complex source Haskell syntax into a guard tree t : Gdt (Section 3.1).
The language of guard trees is tiny but expressive, and allows the subsequent passes to be
entirely independent of the source syntax. LYG can readily be adapted to other languages
simply by changing the desugaring algorithm.
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A annotated R redundant and
Haskell D guard trees inaccessible clauses
trees e}
Z/{ —UTCOU gy g — uncovered patterns
Fig. 2. Bird’s eye view of pattern match checking
Guard syntax
k,nnme N ye TyCt == 11~1]...
Ke Con pe Pat = _
x,y,a,b € Var | Kp
7,0 € Type | ..
e€ Expr = x ge Grd = letx:7=e
| Kt7ye | Kayy:rtex
| | I
Refinement type syntax
I = @|lLx:7|l,a Context
¢ == V|X|Kayy:te—x|x#2K|x~L1L]|x#% L]|letx=e Literals
P == p|PAD|DOVD Formula
0 = (I'|d) Refinement type

Clause tree syntax

t € Gdt == GRhsn|t;t; | Guardgt
ueAnt = ARhs©n|u;;u; |Bang©®u
Graphical notation
3] U
= Isty I= 0 U Up
ty Uz
s g —1t = Guardg ... (Guard g, t) O4—u = Bang®u
—n = GRhsn ——0®n = ARhsOn

Fig. 3. IR syntax

e Next, the resulting guard tree is then processed by two different functions (Section 3.2). The
function A(t) produces an annotated tree u : Ant, which has the same general branching
structure as t but describes which clauses are accessible, inaccessible, or redundant. The
function U(t), on the other hand, returns a refinement type ® [Rushby et al. 1998; Xi and
Pfenning 1998] that describes the set of uncovered values, which are not matched by any of
the clauses.

o Finally, an error-reporting pass generates comprehensible error messages (Section 3.3). Again
there are two things to do. The function R processes the annotated tree produced by A
to explicitly identify the accessible, inaccessible, or redundant clauses. The function G(®)
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produces representative inhabitants of the refinement type © (produced by U) that describes
the uncovered values.

LYG’s main contribution when compared to other coverage checkers, such as GMTM, is its
incorporation of many small improvements and insights, rather than a single defining breakthrough.
In particular, LYG’s advantages are:

e Correctly accounting for strictness in identifying redundant and inaccessible code (sec-
tion 7.4).

e Using detailed term-level reasoning (figs. 6 to 8), which GMTM does not.

e Using negative information to sidestep serious performance issues in GMTM without changing
the worst-case complexity (section 7.3). This also enables graceful degradation (section 5.2)
and the ability to handle COMPLETE sets properly (section 5.3).

e Achieving modularity by clearly separating the source syntax (fig. 1) from the intermediate
language (fig. 3).

e Fixing various bugs present in GMTM, both in the paper [Karachalias et al. 2015] and in
GHC'’s implementation thereof (section 6.2).

3.1 Desugaring to guard trees

The first step is to desugar the source language into the language of guard trees. The syntax of
the source language is given in Figure 1. Definitions defn consist of a list of clauses, each of which
has a list of patterns, and a list of guarded right-hand sides (GRHSs). Patterns include variables
and constructor patterns, of course, but also a representative selection of extensions: wildcards,
as-patterns, bang patterns, and view patterns. We explore several other extensions in Section 4.

The language of guard trees Gdt is much smaller; its syntax is given in Figure 3. All of the
syntactic redundancy of the source language is translated into a minimal form very similar to
pattern guards. We start with an example:

f (Just (1xs, ) ys@Nothing = 1
f Nothing (g — True) =2

This desugars to the following guard tree:
E Ixy, Just t; < x1,t1, (t2, 13) «— 11,112, let xs =1y, let ys = x3, lys, Nothing < ys — 1

1x1, Nothing < x1,let t3 =g x3,ly, True « t3 2

Here we use a graphical syntax for guard trees, also defined in Figure 3. The first line says “evaluate
x1; then match x; against Just t;; then match #; against (#, #3); and so on”. If any of those matches
fail, we fall through into the second line.

More formally, matching a guard tree may succeed (with some bindings for the variables bound
in the tree), fail, or diverge. Matching is defined as follows:

e Matching a guard tree (GRhs n) succeeds.

e Matching a guard tree (t;; t;) means matching against t; if that succeeds, the overall match
succeeds; if not, match against t,.

e Matching a guard tree (Guard !x f) evaluates x; if that diverges the match diverges; if not
match t.

e Matching a guard tree (Guard (K y; ...y, < x) t) matches x against constructor K. If the
match succeeds, bind y; . . . y, to the components, and match t; if the constructor match fails,
then the entire match fails.

e Matching a guard tree (Guard (let x = e) t) binds x (lazily) to e, and matches t.
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’ D(defn) = Gdt, D(clause) = Gdt, D(grhs) = Gdt

D(guard) = Grd, D(x,pat) = Grd

D(clause ... clausey) = —T1— D(clausey)

— D(clause,)

——AD(x1, paty) ... D(xn, paty) — kyps
—— D(xy, paty) ... D(xp, pat,) —E D(grhs)

D(f paty ... pat, = expr)
D(f paty ... pat, grhs; ... grhsy,)

D(grhsm)

D(| guard, ... guard, = expr) —AD(guard;) ... D(guard,) — k

D(pat « expr) = let x =expr, D(x, pat)

D(expr) = let b=expr, D(b, True)

D(let x = expr) = let x=expr

D(x,y) = lety=x

D(x,_) = €

D(x,K paty ... paty) = ,Kyi...yn < x, Dy, patr), ..., D(yn, pat,)
D(x, y@pat) = lety=x, D(y,pat)

D(x, pat) = Ix, D(x,pat)

D(x, expr — pat) = let y=expr x, D(y, pat)

Fig. 4. Desugaring from source language to Gdt

The desugaring algorithm, D, is given in Figure 4. It is a straightforward recursive descent over
the source syntax, with a little bit of administrative bureaucracy to account for renaming. It also
generates an abundance of fresh temporary variables; in practice, the implementation of O can be
smarter than this by looking at the pattern (which might be a variable match or as-pattern) when
choosing a name for a temporary variable.

Notice that both “structural” pattern-matching in the source language (e.g. the match on Nothing
in the second equation), and view patterns (e.g. § — True) can readily be compiled to a single
form of matching in guard trees. The same holds for pattern guards. For example, consider this
(stylistically contrived) definition of liftEq, which is inexhaustive:

liftEq Nothing Nothing = True
liftEq mx (Fust y) | Just x <« mx,x==7y = True

| otherwise = False

It desugars thus:
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Operations on ©

(T|@)Ae = (T[D2Ag@)
(T[@1) UKT [ Dy) = (T'| DV D)
Checking guard trees
UT | @),GRhs n) = (T'|x)
U(O, t1;ty) = UUO,t ), t)

U(O,Guard (x) t) = UOA(x# 1)t)
U(B,Guard (let x=¢) t) UOA (let x=¢),t)
U(O,Guard (K a7 §77 < x) 1) ©A(x %K) UUOAKGTTTT — x),1)

A(O, GRhs n) = ARhsOn

A(O, (13 12)) = AO,1); A(UO, 1), t2)

A(O, Guard (Ix) t) = Bang OA(x= 1) AOA(x # 1),1)
A(O, Guard (let x=e) t) = AOA(let x=e),t)

AO,Guard (Kayy:7 « x)1t) AOAKayy:t « x),t)

Fig. 5. Coverage checking

E Imx, Nothing < mx, !my, Nothing <« my 1
Imy, Just y « my~|::!mx, Just x «— mx, lett=x==y,!t, True e« t —2

lotherwise, True « otherwise 3

Notice that the pattern guard (Fust x < mx) and the boolean guard (x == y) have both turned into
the same constructor-matching construct in the guard tree.

In a way there is nothing very deep here, but it took us a surprisingly long time to come up with
the language of guard trees. We recommend it!

3.2 Checking guard trees

In the next step, we transform the guard tree into an annotated tree, Ant, and an uncovered set, ©.

Taking the latter first, the uncovered set describes all the input values of the match that are not
covered by the match. We use the language of refinement types to describe this set (see Figure 3).
The refinement type ® = (x;:11,...,X,:7, | ®) denotes the vector of values x; . . . x, that satisfy
the predicate ®. For example:

(x:Bool | V') denotes {.L, True, False}
(x:Bool | x # L) denotes {True, False}
(x:Bool | True < x) denotes {True}
(mx:Maybe Bool | Just x < mx,x # L) denotes {Just True, Just False}

The syntax of @ is given in Figure 3. It consists of a collection of literals ¢, combined with conjunction
and disjunction. Unconventionally, however, a literal may bind one or more variables, and those
bindings are in scope in conjunctions to the right. This can readily be formalised by giving a type
system for @, but we omit that here. The literal v/ means “true”, as illustrated above; while X means
“false”, so that ( Gamma | X ) denotes 0.
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The uncovered set function U(O, t), defined in Figure 5, computes a refinement type describing
the values in © that are not covered by the guard tree t. It is defined by a simple recursive descent
over the guard tree, using the operation ® A ¢ (also defined in Figure 5) to extend © with an extra
literal ¢.

While U finds a refinement type describing values that are not matched by a guard tree, the
function A finds refinements describing values that are matched by a guard tree, or that cause
matching to diverge. It does so by producing an annotated tree, whose syntax is given in Figure 3. An
annotated tree has the same general structure as the guard tree from whence it came: in particular
the top-to-bottom compositions “;” are in the same places. But in an annotated tree, each Rhs leaf
is annotated with a refinement type describing the input values that will lead to that right-hand
side; and each Bang node is annotated with a refinement type that describes the input values on
which matching will diverge. Once again, A can be defined by a simple recursive descent over the
guard tree (Figure 5), but note that the second equation uses U as an auxiliary function'.

3.3 Reporting errors

The final step is to report errors. First, let us focus on reporting missing equations. Consider the
following definition

dataT=A|B|C
f (Fust A) = True

If t is the guard tree obtained from f, the expression U({x : Maybe T | v ),t) will produce this
refinement type describing values that are not matched:

O = (x:Maybe T | x # L A(x # JustV (Just y = x Ay % LA(y % AV (A« yAX))))

But this is not very helpful to report to the user. It would be far preferable to produce one or
more concrete inhabitants of O to report, something like this:

Missing equations for function 'f':
f Nothing
f (Just B)
f (Just C)

Producing these inhabitants is done by G(0) in Figure 6, which we discuss next in Section 3.4. But
before doing so, notice that the very same function G allows us to report accessible, inaccessible,
and redundant GRHSs. The function R, also defined in Figure 6 does exactly this, returning a triple
of (accessible, inaccessible, redundant) GRHSs:

e Having reached a leaf ARhs @O n, if the refinement type © is uninhabited (G(©) = 0), then no
input values can cause execution to reach this right-hand side, and it is redundant.

e Having reached a node Bang © t, if © is inhabited there is a possibility of divergence. Now
suppose that all the GRHSs in t are redundant. Then we should pick the first of them and
mark it as inaccessible.

e The case for R(t;u) is trivial: just combine the classifications of t and u.

To illustrate the second case consider u’ from section 2.3.1 and its annotated tree:

' ()| False = 1 ——61%1:@21
| False = 2 052
u _ =3

L————— 043

! Our implementation avoids this duplicated work — see Section 5.1 — but the formulation in Figure 5 emphasises clarity
over efficiency.



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588

1:12 Sebastian Graf, Simon Peyton Jones, and Ryan G. Scott

Collect accessible (k), inaccessible (1) and redundant () GRHSs

R(u) = (k, 7, m)
i _
R(ARhs © 1) = (e,e,n), i Q(@)). 0
(n,e,€), otherwise
R(t;u) = (kk’,an’,mm’) where Ez_”n_mr)n_)zggz))
RBang © 1) = (e, m,m’), ifg(@).i 0 and R(t) = (e,e,mm’)
R(t), otherwise
Normalised refinement type syntax
V = X|(T|A) Normalised refinement type
A A AW Set of constraints
0 = yl|lx=Kay|x#K|x~1l|x# L|x~y Constraints
Generate inhabitants of ©
G(©) =P(p)
G(T | @)) ={&(V,dom(I)) | V € C(T'|| @), D)}
Construct inhabited Vs from ¢
C(V,®) =P(V)
C(¥. ) _ {{I'"||A’)} where ('f’ A =V &, ¢
0 otherwise
C(V’q)l A CDZ) = U {C(VI’ q)z) I Ve C(V9 <I)1)}
C(Va q)l \ (DZ) = C(V7 q)l) U C(V’ (1)2)
Expand variables to Pat with V
&(V,x)=p
&E(V,¢) = €

(K q1---qm)p2--pn ifA(x;))xKayeA
and (q1...gm p2--.pn) = ST [ A), y1...ymx2...xn)
_P2---Pn where (p;...pn) = E(T || A), x3...%p)

E(T (| A, x1...xn)

Finding the representative of a variable in A

Ax) = {A(y) xx=y€eA

x otherwise

Fig. 6. Generating inhabitants of © via V
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0, and O3 are uninhabited (because of the False guards). But we cannot delete both GRHSs as
redundant, because that would make the call 4’ L return 3 rather than diverging. Rather, we want
to report the first GRHSs as inaccessible, leaving all the others as redundant.

3.4 Generating inhabitants of a refinement type

Thus far, all our functions have been very simple, syntax-directed transformations, but they all
ultimately depend on the single function G, which does the real work. That is our new focus. As
Figure 6 shows, G(0) takes a refinement type © = (T | @) and returns a (possibly-empty) set of
patterns p (syntax in Figure 3) that give the shape of values that inhabit ©. We do this in two steps:

o Flatten O into a set of normalised refinement types V, by the call C((T'|| @), ®); see Section 3.6.
e For each such V, expand T into a list of patterns, by the call &(V, dom(I')); see Section 3.5.

A normalised refinement type V is either empty (X) or of the form (I || A). It is similar to a
refinement type © = (I" | @), but is in a much more restricted form:

e A is simply a conjunction of literals §; there are no disjunctions. Instead, disjunction reflects
in the fact that C returns a set of normalised refinement types.

Beyond these syntactic differences, we enforce the following semantic invariants on a V = (T'|| A):

I1 Mutual compatibility: No two constraints in A should conflict with each other, where x ~ L
conflicts with x # 1 and x = K _ _ conflicts with x # K for all x.

12 Triangular form: A x ~ y constraint implies absence of any other constraints mentioning x
in its left-hand side.

I3 Single solution: There is at most one positive constructor constraint x ~ K a y for a given x.

14 Incompletely matched: If x:t € T and 7 reduces to a data type under type constraints in
A, there must be at least one constructor K (or L) which x can be instantiated to without
contradicting I1; see Section 3.7.

It is often helpful to think of a A as a partial function from x to its solution, informed by the single
positive constraint x ~ K a y € A, if it exists. For example, x ~ Nothing can be understood as a
function mapping x to Nothing. This reasoning is justified by I3. Under this view, A looks like a
substitution. As we’ll see in section 3.6, this view is supported by a close correspondence with
unification algorithms.

12 is actually a condition on the represented substitution. Whenever we find out that x ~ y, for
example when matching a variable pattern y against a match variable x, we have to merge all the
other constraints on x into y, and say that y is the representative of x’s equivalence class. This is
so that every new constraint we record on y also affects x and vice versa. The process of finding
the solution of x in x = y, y ~ Nothing then entails walking the substitution, because we have to
look up constraints twice: The first lookup will find x’s representative y, the second lookup on y
will then find the solution Nothing.

We use A(x) to look up the representative of x in A (see Figure 6). Therefore, we can assert that
x has Nothing as a solution simply by writing A(x) ~ Nothing € A.

3.5 Expanding a normalised refinement type to a pattern

Expanding a V to a pattern vector, by calling £(V) in Figure 6, is syntactically heavy, but straight-
forward. When there is a solution like A(x) ~ Just y in A for the head x of the variable vector of
interest, expand y in addition to the rest of the vector and wrap it in a Just. Invariant I3 guarantees
that there is at most one such solution and & is well-defined.
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638
639 Add a formula literal to V
:j(l) \Y @(p X = X (1)
642 \Y Ga(p v =V L (2)
o1 {TA) @, Kay yiT « x = <r,ﬁ,y7||_A> Osy sy LB x~Kay (3)
a4 where y’ bind strict fields
645 (TA) @yletx:it=Koye = (I,xit,a||A) ®&sa~oc & x~Kay @, lety:r'=e (4)
646 where ay # T, e:7’
647 (TIA) @, let x:it=y = (Dxr||A) @s x =y (5)
648 (TIA) @, let x:it=e = ([,x:t||A) 6)
649 (TIA) & ¢ = (TlA) & ¢ ()
650
651 Add a constraint to V
652 X @5 5 =X (8)
03 (T||(A,y))y if type checker deems y compatible with A
o (TIIAY @5y = and Vx € dom(T) : (T || (A, y)) + Ax) (9)
Zzz X otherwise
oo (T||AY @s a~b @s ymz ifAx)~KbzeA
X if A(x)~K'bzeA
S s esx~Kag= o MAEKb (10)
659 (T||(A, A(x) = K a 7)) if A(x) % K ¢ A
660 X otherwise
:Z; X ifA(x)~KageA
w63 Tl|Ay @sx # K =4X if not (T' || (A, A(x) # K)) F A(x) (11)
664 (T]|(A,A(x) # K)) otherwise
665 X ifA(x)# LeA
666 (T[|A) dsx =~ L = ) (12)
(T||(A,A(x) = 1)) otherwise
ZZZ X ifA(x)~ L €A
669 (TIA) &sx % L =X if not (T || (A, A(x) # L)) + A(x) (13)
670 (T||(A,A(x) # L)) otherwise
o (Irffa) ifx’ =y’
672 TA) @sx =~y = N ' . (14)
T\, x' =y} @5 (Al [y'/x'] otherwise
s where x” = A(x) and vy’ = A(y)
675 _ _
o o\x = O Ol = o
o (A,x=Kay)\x = A\x A,x~Kay)ly = Al x=Kay
o0 A,x2K)\x = A\x AMx#K)|y = Aly,x#K
(Axx\x = Alx (Axx Dl = Alox~1
o1 (A,x# L)\x = A\x Ax# LDy = Alp,x# L
AO\x = (A\x).5 B8 = Al

683 Fig. 7. Adding a constraint to the normalised refinement type V
684
685

686
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3.6 Normalising a refinement type

Normalisation, carried out by C in Figure 6, is largely a matter of repeatedly adding a literal ¢ to a
normalised type, thus V @, ¢. This function is where all the work is done, in Figure 7. It does so
by expressing a ¢ in terms of once again simpler constraints § and calling out to ®s. Specifically, in
Equation (3) a pattern guard extends the context and adds suitable type constraints and a positive
constructor constraint arising from the binding. Equation (4) of &, performs some limited, but
important reasoning about let bindings: it flattens possibly nested constructor applications, such as
let x = Just True. Note that equation (6) simply discards let bindings that cannot be expressed in V;
we’ll see an extension in section 4.3 that avoids this information loss.

That brings us to the prime unification procedure, ®s. When adding x ~ Just y, equation (10),
the unification procedure will first look for a solution for x with that same constructor. Let’s say
there is A(x) ~ Just u € A. Then @; operates on the transitively implied equality Just y ~ Just uby
equating type and term variables with new constraints, i.e. y ~ u. The original constraint, although
not conflicting, is not added to the normalised refinement type because of 12.

If there is a solution involving a different constructor like A(x) ~ Nothing or if there was a
negative constructor constraint A(x) # Just, the new constraint is incompatible with the existing
solution. Otherwise, the constraint is compatible and is added to A.

Adding a negative constructor constraint x # Just is quite similar (equation (11)), except that we
have to make sure that x still satisfies 14, which is checked by the V + A(x) judgment (cf. section 3.7)
in fig. 8. Handling positive and negative constraints involving L is analogous.

Adding a type constraint y (equation (9)) entails calling out to the type checker to assert that
the constraint is consistent with existing type constraints. Afterwards, we have to ensure 14 is
upheld for all variables in the domain of T', because the new type constraint could have rendered
a type empty. To demonstrate why this is necessary, imagine we have (x : a||x # L) and try to
add a ~ Void. Although the type constraint is consistent, x in (x : a||x # L,a ~ Void) is no longer
inhabited. There is room for being smart about which variables we have to re-check: For example,
we can exclude variables whose type is a non-GADT data type.

Equation (14) of @5 equates two variables (x =~ y) by merging their equivalence classes. Consider
the case where x and y aren’t in the same equivalence class. Then A(y) is arbitrarily chosen to be
the new representative of the merged equivalence class. To uphold 12, all constraints mentioning
A(x) have to be removed and renamed in terms of A(y) and then re-added to A, one of which in
turn might uncover a contradiction.

3.7 Testing for inhabitation

The process for adding a constraint to a normalised type above (which turned out to be a unification
procedure in disguise) makes use of an inhabitation test V + x, depicted in fig. 8. This tests whether
there are any values of x that satisfy V. If not, V does not uphold I4. For example, the conjunction
x # Just,x # Nothing,x # L does not satisfy I4, because no value of x satisfies all those constraints.

The FBoT judgment of V I x tries to instantiate x to L to conclude that x is inhabited. FINST
instantiates x to one of its data constructors. That will only work if its type ultimately reduces to a
data type under the type constraints in V. Rule FNoCpL will accept unconditionally when its type
is not a data type, i.e. for x : Int — Int.

Note that the outlined approach is complete in the sense that V + x is derivable (if and) only
if x is actually inhabited in V, because that means we don’t have any Vs floating around in the
checking process that actually aren’t inhabited and trigger false positive warnings. But that also
means that the  relation is undecidable! Consider the following example:
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Test if x is inhabited considering V

(T|IAY ®s x =~ L) # X x:7t el Cons(T'||A),7)=1
+BoT +NoCrL
(CllAy Fx (TllA) Fx

x:7 el K e Cons(T||A), 1)
Inst({T'|| A), x,K) # X

(Tlayrx

FINST

Find data constructors of 7 | Cons((I'[|A),7) = K

K 1 =T andT data type with constructors K
Cons((T'||A), 1) = (after normalisation according to the type constraints in A)
1 otherwise

Instantiate x to data constructor K ‘ Inst(V,x,K) =V ‘

Inst((T||A), x,K) =(T,a,y:0||A) @s tx ~T ®s ¥ &s x *Kay &s y’ # L
where K : Va.y => o — 7,ay # I, x : 7, € T, y’ bind strict fields

Fig. 8. Testing for inhabitation

data T = MkT !T
f::SMaybe T — ()
f SNothing = ()

This is exhaustive, because T is an uninhabited type. Upon adding the constraint x # SNothing on
the match variable x via @5, we perform an inhabitation test, which tries to instantiate the Sfust
constructor via FINsT. That implies adding (via @s) the constraints x ~ Sfust y,y # L, the latter
of which leads to an inhabitation test on y. That leads to instantiation of the MkT constructor,
which leads to constraints y ¥ MkT z,z # L, and so on for z etc.. An infinite chain of fruitless
instantiation attempts!

In practice, we implement a fuel-based approach that conservatively assumes that a variable
is inhabited after n such iterations and consider supplementing that with a simple termination
analysis in the future.

4 POSSIBLE EXTENSIONS

LYG is well equipped to handle the fragment of Haskell it was designed to handle. But GHC (and
other languages, for that matter) extends Haskell in non-trivial ways. This section exemplifies
easy accommodation of new language features and measures to increase precision of the checking
process, demonstrating the modularity and extensibility of our approach.

4.1 Long-distance information

Coverage checking should also work for case expressions and nested function definitions, like

f True=1
fx = ..(case x of {False — 2; True — 3}) ...
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LYG as is will not produce any warnings for this definition. But the reader can easily make the
“long distance connection” that the last GRHS of the case expression is redundant! That simply
follows by context-sensitive reasoning, knowing that x was already matched against True.

In terms of LYG, the input values of the second GRHS ©; (which determine whether the GRHS is
accessible) encode the information we are after. We just have to start checking the case expression
starting from ©; as the initial set of reaching values instead of { x : Bool | V).

4.2 Empty case

As can be seen in fig. 1, Haskell function definitions need to have at least one clause. That leads to
an awkward situation when pattern matching on empty data types, like Void:

absurdl _ = 1L absurdl, absurd2, absurd3 :: Void — a
absurd2!_ = L absurd3 x = case x of {}

absurdl returns L when called with L, thus masking the original L with the error thrown by L.
absurd2 would diverge alright, but LYG will report its RHS as inaccessible! Hence GHC provides an
extension, called EmptyCase, that allows the definition of absurd3 above. Such a case expression
without any alternatives evaluates its argument to WHNF and crashes when evaluation returns.

It is quite easy to see that Gdt lacks expressive power to desugar EmptyCase into, since all leaves
in a guard tree need to have corresponding RHSs. Therefore, we need to introduce GEmpty to Gdt
and AEmpty to Ant. This is how they affect the checking process:

U(O,GEmpty) = © A(O, GEmpty) = AEmpty

Since EmptyCase, unlike regular case, evaluates its scrutinee to WHNF before matching any of
the patterns, the set of reaching values is refined with a x # L constraint before traversing the
guard tree, thus U((T | x # L), GEmpty).

4.3 View patterns

Our source syntax had support for view patterns to start with (cf. fig. 1). And even the desugaring
we gave as part of the definition of D in fig. 4 is accurate. But this desugaring alone is insufficient
for the checker to conclude that safeLast from section 2.2.1 is an exhaustive definition! To see why,
let’s look at its guard tree:

E let y; = reverse x1,y;, Nothing «— y;——— 1

let yz = reverse x1,!yz, Just t; < y2,t1, (t2, t3) < t; — 2

As far as LYG is concerned, the matches on both y; and y, are non-exhaustive. But that’s actually
too conservative: Both bind the same value! By making the connection between y; and y», the
checker could infer that the match was exhaustive.

This can be fixed by maintaining equivalence classes of semantically equivalent expressions in
A, similar to what we already do for variables. We simply extend the syntax of § and change the
last let case of ®,. Then we can handle the new constraint in ®; , as follows:

b=..|exx (TA) ®p letx:1=e=(T,x:7||A) &5 e~ x

(TIIA) ®s x =y, ife’~yeAande=,e’

TlA) &s e~ x =
(TIA) &5 {(I‘”A,ezA(X)), otherwise

Where =, is (an approximation to) semantic equivalence modulo substitution under A. A clever
data structure is needed to answer queries of the form e ~ _ € A, efficiently. In our implementation,
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we use a trie to index expressions rapidly and sacrifice reasoning modulo A in doing so. Plugging
in an SMT solver to decide =5 would be more precise, but certainly less efficient.

4.4 Pattern synonyms

To accommodate checking of pattern synonyms P, we first have to extend the source syntax and IR
syntax by adding the syntactic concept of a ConLike:

_ Pe PS
ci = K||P| i 52 | ‘) Ce CL = K|P
pa = x| |l pat | x@pat | ... pe Pat == _|Cp]|..

Assuming every definition encountered so far is changed to handle ConLikes C now instead of
data constructors K, everything should work almost fine. Why then introduce the new syntactic
variant in the first place? Consider

pattern P = ()

pattern Q = ()
n=case Pof Q —» ;P — 2

Knowing that the definitions of P and Q completely overlap, we can see that the match on Q will
cover all values that could reach P, so clearly P is redundant. A sound approximation to that would
be not to warn at all. And that’s reasonable, after all we established in section 2.2.2 that reasoning
about pattern synonym definitions is undesirable.

But equipped with long-distance information from the scrutinee expression, the checker would
mark the first case alternative as redundant, which clearly is unsound! Deleting the first alternative
would change its semantics from returning 1 to returning 2. In general, we cannot assume that
arbitrary pattern synonym definitions are disjoint, in stark contrast to data constructors.

The solution is to tweak the clause of &5 dealing with positive ConLike constraints x ~ C a y:

(TIIAY ®@s a~b @s ymz ifA(x)~CbhbzeA

__ X ifA(x)~C’'bze A andCNC =0
(TllA) @sx~Cay = __ . —_—_———
(TI(A, A(x) = Cag)) if A(x) # C ¢ A and (T [|A) + A(y)
X otherwise

Where the suggestive notation C N C’ = 0 is only true if C and C” don’t overlap, if both are data
constructors, for example.

Note that the slight relaxation means that the constructed V might violate I3, specifically when
CNC" # 0. In practice that condition only matters for the well-definedness of &, which in case
of multiple solutions (i.e. x = P, x ~ Q) has to commit to one them for the purposes of reporting
warnings. Fixing that requires a bit of boring engineering.

4.5 COMPLETE pragmas

In a sense, every algebraic data type defines its own builtin COMPLETE set, consisting of all its data
constructors, so the coverage checker already manages a single COMPLETE set.

We have FINST from fig. 8 currently making sure that this COMPLETE set is in fact inhabited. We
also have FNoCpL that handles the case when we can’t find any COMPLETE set for the given type
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(think x: Int — Int). The obvious way to generalise this is by looking up all COMPLETE sets attached
to a type and check that none of them is completely covered:

x:t €l Cons((T'||A),7) = Cy,...,C .i
(A o5 x = 1) % x (T8, 7) = CryosCo

+Bot

(T||A) + x Inst((T || A), x, Cj) # X st
(Tlayrx
Ci, ..o Cnii 7r=Toand T type constructor with COMPLETE sets Cy, ..., Cp,
Cons({T'||A),7) = (after normalisation according to the type constraints in A)
€ otherwise

Cons was changed to return a list of all available COMPLETE sets, and FINST tries to find an
inhabiting ConLike in each one of them in turn. Note that FNoCpL is gone, because it coincides
with FINST for the case where the list returned by Cons was empty. The judgment has become
simpler and and more general at the same time! Note that checking against multiple COMPLETE sets
so frequently is computationally intractable. We will worry about that in section 5.

4.6 Other extensions

We consider further extensions, including overloaded literals, newtypes, and a strict-by-default
source syntax, in Appendix A.

5 IMPLEMENTATION

The implementation of LYG in GHC accumulates quite a few tricks that go beyond the pure
formalism. This section is dedicated to describing these.

Warning messages need to reference source syntax in order to be comprehensible by the user.
At the same time, coverage checks involving GADTs need a type checked program, so the only
reasonable design is to run the coverage checker between type checking and desugaring to GHC
Core, a typed intermediate representation lacking the connection to source syntax. We perform
coverage checking in the same tree traversal as desugaring.

5.1 Interleaving U and A

The set of reaching values is an argument to both U and A. Given a particular set of input values
and a guard tree, one can see by a simple inductive argument that both U and A are always
called at the same arguments! Hence for an implementation it makes sense to compute both results
together, if only for not having to recompute the results of U again in A.

But there’s more: Looking at the last clause of U in fig. 5, we can see that we syntactically
duplicate © every time we have a pattern guard. That can amount to exponential growth of the
refinement predicate in the worst case and for the time to prove it empty!

What we really want is to summarise a © into a more compact canonical form before doing these
kinds of splits. But that’s exactly what V is! Therefore, in our implementation we don’t pass around
and annotate refinement types, but the result of calling C on them directly.

You can see the resulting definition in fig. 9. The readability is clouded by unwrapping of pairs.
UA requires that each V individually is non-empty, i.e. not X. This invariant is maintained by
adding ¢ constraints through &, , which filters out any V that would become empty.

5.2 Throttling for graceful degradation

Even with the tweaks from section 5.1, checking certain pattern matches remains NP-hard Sekar
et al. [1995]. Naturally, there will be cases where we have to conservatively approximate in order

i
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Vé,p=V
€Dy = €
s - e S
UA(V, 1) = (7, Ant)
UA(V, GRhs n) = (e,ARhs V n) B B
UA(V, 115 1) = (Va,u;u) where (Vi,u) =LAV, 1)

. (62, uz) =(Ll7((€1, tz)
Bang (V&, (x ~ L)) u
where (V',u) = UA(V &, (x # L),1)
UAV d,, (let x=e), 1)
(Vé,(x %K)V ,u)
where (V ,u) = m(Ve‘aw (Kayy:t « x),t)

UA(Y, Guard (1x) t)

UA(V, Guard (let x =e) 1)
UA(V,Guard (Kayy 7 « x) t)

Fig. 9. Fast coverage checking

not to slow down compilation too much. Consider the following example and its corresponding
guard tree:

data T=A| B ft,f2:Int > T

g7|A<_f11 A1 =0 let a; =f11,!a;,A « ay,let by =f21,b;,A — b —— 1
|A—fl12, A—f22 =) let ap =f12,!a;, A < az,let by=122,103, A — by ——— 2
| A—fIN,Ae—f2N=() let ay =f1N,lan, A < an,let by =f2 N,!by, A «— by — N

Each of the N GRHS can fall through in two distinct ways: By failure of either pattern guard
involving f1 or f2. Initially, we start out with a single input V. After the first equation it will split
into two sub-Vs, after the second into four, and so on. This exponential pattern repeats N times,
and leads to horrible performance!

Instead of refining V with the pattern guard, leading to a split, we could just continue with
the original V, thus forgetting about the a; # A or b; # A constraints. In terms of the modeled
refinement type, V is still a superset of both refinements, and thus a sound overapproximation.

In our implementation, we call this throttling: We limit the number of reaching Vs to a constant.
Whenever a split would exceed this limit, we continue with the original input Vs, a conservative
estimate, instead. Intuitively, throttling corresponds to forgetting what we matched on in that
particular subtree. Throttling is refreshingly easy to implement! Only the last clause of UA, where
splitting is performed, needs to change:

UAY,Guard (K G 7 77T — ) t):q(ve'eq, (x % K))VJV,u)
where (V, u) = UAV Sy (Kayy:t « x),t)
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where the new throttling operator | _| is defined simply as

m |V V<K
¥ |V otherwise

with K being an arbitrary constant. We use 30 as an arbitrary limit in our implementation
(dynamically configurable via a command-line flag) without noticing any false positives in terms of
exhaustiveness warnings outside of the test suite.

5.3 Maintaining residual COMPLETE sets

Our implementation tries hard to make the inhabitation test as efficient as possible. For exam-
ple, we represent As by a mapping from variables to their positive and negative constraints for
easier indexing. But there are also asymptotical improvements. Consider the following function:

data T = Al ... | A1000 fA1I =1
pattern P = ... fA2 =2
{-# COMPLETE A1, P #-}
f A1000 = 1000

f is exhaustively defined. To see that we need to perform an inhabitation test for the match
variable x after the last clause. The test will conclude that the builtin COMPLETE set was completely
overlapped. But in order to conclude that, our algorithm tries to instantiate x (via FINST) to each
of its 1000 constructors and try to add a positive constructor constraint! What a waste of time,
given that we could just look at the negative constraints on x before trying to instantiate x. But
asymptotically it shouldn’t matter much, since we’re doing this only once at the end.

Except that is not true, because we also perform redundancy checking! At any point in f’s
definition there might be a match on P, after which all remaining clauses would be redundant by
the user-supplied COMPLETE set. Therefore, we have to perform the expensive inhabitation test after
every clause, involving O(n) instantiations each.

Clearly, we can be smarter about that! Indeed, we cache residual COMPLETE sets in our implemen-
tation: Starting from the full COMPLETE sets, we delete ConLikes from them whenever we add a
new negative constructor constraint, maintaining the invariant that each of the sets is inhabited
by at least one constructor. Note how we never need to check the same constructor twice (except
after adding new type constraints), thus we have an amortised O(n) instantiations for the whole
checking process.

5.4 Reporting uncovered patterns

The expansion function & in fig. 6 exists purely for presenting uncovered patterns to the user.
It is very simple and doesn’t account for negative information, leading to surprising warnings.
Consider a definition like f True = (). The computed uncovered set of f is the refinement type
(x : Bool | x # 1,x # True), which crucially contains no positive information! As a result,
expanding the resulting V (which looks quite similar) with & just unhelpfully reports _ as an
uncovered pattern. Our implementation thus splits the V into (possibly multiple) sub-Vs with
positive information on variables we have negative information on before handing off to &.

6 EVALUATION

We have implemented LYG in a to-be-released version of GHC. To put the new coverage checker to
the test, we performed a survey of real-world Haskell code using the head. hackage repository 2.

Zhttps://gitlab.haskell.org/ghc/head hackage/commit/30a310fd8033629e1cbb5a9696250b22db5£7045
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1030 Time (milliseconds) Megabytes allocated

1031 8.8.3 | HEAD | % change | 8.83 [ HEAD | % change
1032 T11276 1.16 1.69 45.7% 1.86 2.39 28.6%
1033 T11303 28.1 18.0 -36.0% 60.2 39.9 -33.8%
1034 T11303b 1.15 0.39 -65.8% 1.65 0.47 -71.8%
1035 T11374 4.62 3.00 -35.0% 6.16 3.20 -48.1%
1036 711822 1,060 16.0 -98.5% | 2,010 27.9 -98.6%
1037 T11195 2,680 22.3 -99.2% | 3,080 39.5 -98.7%
1038 T17096 7,470 16.6 -99.8% | 17,300 354 -99.8%
1039 PmSeriesS | 44.5 2.58 -94.2% 52.9 6.19 -88.3%
1040 PmSeriesT | 48.3 6.86 -85.8% 61.4 17.6 -71.4%
1041 PmSeriesV 131 4.54 -96.5% 139 9.53 -93.2%

1042

1043 Fig. 10. The relative compile-time performance of GHC 8.8.3 (which implements GMTM) and HEAD (which
1044  implements LYG) on test cases designed to stress-test coverage checking.

1045

1046 head.hackage contains a sizable collection of libraries and minimal patches necessary to make

them build with a development version of GHC. We identified those libraries which compiled
without coverage warnings using GHC 8.8.3 (which uses GMTM as its checking algorithm) but
emitted warnings when compiled using our LYG version of GHC.

Of the 361 libraries in head.hackage, seven of them revealed coverage issues that only LYG
warned about. Two of the libraries, pandoc and pandoc-types, have cases that were flagged as re-
dundant due to LYG’s improved treatment of guards and term equalities. One library, geniplate-mirror,
has a case that was redundant by way of long-distance information. Another library, generic-data,
has a case that is redundant due to bang patterns.

The last three libraries—Cabal, HsYAML, and network—were the most interesting. HSYAML in
particular defines this function:

1047
1048
1049
1050
1051
1052
1053
1054
1055
1056

1057
go’ _ _ _ xs | False = error (show xs)

go' _ _ _xs=errxs

1058
1059
1060 The first clause is clearly unreachable, and LYG now flags it as such. However, the authors of
1061 HsYAML likely left in this clause because it is useful for debugging purposes. One can uncomment
1062 the second clause and remove the False guard to quickly try out a code path that prints a more
1063 detailed error message. Moreover, leaving the first clause in the code ensures that it is typechecked
1064 and less susceptible to bitrotting over time.

1065 We may consider adding a primitive function keepAlive such that keepAlive False does not get
1066 marked as redundant in order to support use cases like HsYAML’s. The unreachable code in Cabal
1067 and network is of a similar caliber and would also benefit from keepAlive.

1068

1060 6.1 Performance tests

1070 To compare the efficiency of GMTM and LYG quantitatively, we collected a series of test cases
1071 from GHC’s test suite that are designed to test the compile-time performance of coverage checking.
1072 Figure 10 lists each of these 11 test cases. Test cases with a T prefix are taken from user-submitted
1073 bug reports about the poor performance of GMTM. Test cases with a PmSeries prefix are adapted
1074 from Maranget [2007], which presents several test cases that caused GHC to exhibit exponential
1075 running times during coverage checking.

1076 We compiled each test case with GHC 8.8.3, which uses GMTM as its checking algorithm, and
1077 GHC HEAD, which uses LYG. We measured (1) the time spent in the desugarer, the phase of

1078
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compilation in which coverage checking occurs, and (2) how many megabytes were allocated
during desugaring. Figure 10 shows these figures as well as the percent change going from 8.8.3
to HEAD. Most cases exhibit a noticeable improvement under LYG, with the exception of T11276.
Investigating T11276 suggests that the performance of GHC’s equality constraint solver has become
more expensive in HEAD [GHC issue 2020c], and these extra costs outweigh the performance
benefits of using LYG.

6.2 GHC issues

Implementing LYG in GHC has fixed over 30 bug reports related to coverage checking. These
include:

e Better compile-time performance [GHC issue 2015a, 2016e, 2019a,b]

e More accurate warnings for empty case expressions [GHC issue 2015b, 2017f, 2018e,g, 2019c]

e More accurate warnings due to LYG’s desugaring [GHC issue 2016¢,d, 2017d, 2018a, 2020d]

e More accurate warnings due to improved term-level reasoning [GHC issue 2016a, 2017a,
2018b,c,d,h, 2019d,e,h]

e More accurate warnings due to tracking long-distance information [GHC issue 2019k, 2020a,b]

e Improved treatment of COMPLETE sets [GHC issue 2016b, 2017b,c,e,g, 2018j, 2019f,g,i]

o Better treatment of strictness, bang patterns, and newtypes [GHC issue 2018f,i, 2019j,1]

7 RELATED WORK
7.1 Comparison with GADTs Meet Their Match

Karachalias et al. [2015] present GADTs Meet Their Match (GMTM), an algorithm which handles
many of the subtleties of GADTs, guards, and laziness mentioned in section 2. Despite this, the
GMTM algorithm still gives incorrect warnings in many cases.

7.1.1  GMTM does not consider laziness in its full glory. The formalism in Karachalias et al. [2015]
incorporates strictness constraints, but these constraints can only arise from matching against
data constructors. GMTM does not consider strict matches that arise from strict fields of data
constructors or bang patterns. A consequence of this is that GMTM would incorrectly warn that v
(section 2.3) is missing a case for SFust, even though such a case is unreachable. LYG, on the other
hand, more thoroughly tracks strictness when desugaring Haskell programs.

7.1.2  GMTM’s treatment of guards is shallow. GMTM can only reason about guards through an
abstract term oracle. Although the algorithm is parametric over the choice of oracle, in practice
the implementation of GMTM in GHC uses an extremely simple oracle that can only reason about
guards in a limited fashion. More sophisticated uses of guards, such as in this variation of the
safeLast function from section 2.2.1, will cause GMTM to emit erroneous warnings:

safeLast2 xs
| (x:_) < reverse xs = Just x
[ [] « reverse xs = Nothing

While GMTM'’s term oracle is customisable, it is not as simple to customize as one might hope.
The formalism in Karachalias et al. [2015] represents all guards as p « e, where p is a pattern and
e is an expression. This is a straightforward, syntactic representation, but it also makes it more
difficult to analyse when e is a complicated expression. This is one of the reasons why it is difficult
for GMTM to accurately give warnings for the safeLast function, since it would require recognizing
that both clauses scrutinise the same expression in their view patterns.
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LYG makes analysing term equalities simpler by first desugaring guards from the surface syntax
to guard trees. The @, function, which is roughly a counterpart to GMTM’s term oracle, can then
reason about terms arising from patterns. While &,, is already more powerful than a trivial term
oracle, its real strength lies in the fact that it can easily be extended, as LYG’s treatment of view
patterns (section 4.3) demonstrates. While GMTM’s term oracle could be improved to accomplish
the same thing, it is unlikely to be as straightforward of a process as extending &, .

7.2 Comparison with similar coverage checkers

7.2.1  Structural and semantic pattern matching analysis in Haskell. Kalvoda and Kerckhove [2019]
implement a variation of GMTM that leverages an SMT solver to give more accurate coverage
warnings for programs that use guards. For instance, their implementation can conclude that the
signum function from section 2.1 is exhaustive. This is something that LYG cannot do out of the
box, although it would be possible to extend ®, with SMT-like reasoning about booleans and
linear integer arithmetic.

7.2.2  Warnings for pattern matching. Maranget [2007] presents a coverage checking algorithm for
OCaml. While OCaml is a strict language, the algorithm claims to be general enough to handle
languages with non-strict semantics such as Haskell. That claim however builds on a broken
understanding of laziness. Given the following definition:

f True=1
f- =2

Maranget implies that f L evaluates to 2, which is of course incorrect. Also, replacing the wild
card by a match on False would no longer be a complete match according to their formalism.

7.2.3  Elaborating dependent (co)pattern matching. Cockx and Abel [2018] design a coverage check-
ing algorithm for a dependently typed language with both pattern matching and copattern matching,
which is a feature that GHC lacks. While the source language for their algorithm is much more
sophisticated than GHC'’s, their algorithm is similar to LYG in that it first desugars definitions by
clauses to case trees. Case trees present a simplified form of pattern matching that is easier to check
for coverage, much like guard trees in LYG. Guard trees could take inspiration from case trees
should a future version of GHC add dependent types or copatterns.

7.3 Positive and negative information

LYG’s use of positive and negative constructor constraints is inspired by Sestoft [1996], which
uses positive and negative information to implement a pattern-match compiler for ML. Sestoft
utilises positive and negative information to generate decision trees that avoid scrutinizing the
same terms repeatedly. This insight is equally applicable to coverage checking and is one of the
primary reasons for LYG’s efficiency.

Besides efficiency, the accuracy of redundancy warnings involving COMPLETE sets hinge on nega-
tive constraints. To see why this isn’t possible in other checkers that only track positive information,
such as those of Karachalias et al. [2015] (section 7.1) and Maranget [2007] (section 7.2.2), consider
the following example:

False =1

pattern True’ = True ? Tiusee’ _s
{-# COMPLETE True’, False #-} B

f True =3

GMTM would have to commit to a particular COMPLETE set when encountering the match on False,
without any semantic considerations. Choosing { True’, False} here will mark the third GRHS as
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redundant, while choosing { True, False} won’t. GHC’s implementation used to try each COMPLETE
set in turn and would disambiguate using a complicated metric based on the number and kinds of
warnings the choice of each oset would generate [GHC team 2020], which was broken still [GHC
issue 2017g].

Negative constraints make LYG efficient in other places too, such as in this example:

hA1_ =1

data T = A1 ... | A1000
ata - h_ Al=2

In h, GMTM would split the value vector (which is like LYG’s As without negative constructor
constraints) into 1000 alternatives over the first match variable, and then each of the 999 value
vectors reaching the second GRHS into another 1000 alternatives over the second match variable.
Negative constraints allow LYG to compress the 999 value vectors falling through into a single
one indicating that the match variable can no longer be A1. Maranget detects wildcard matches to
prevent blowup, but only can find a subset of all uncovered patterns in doing so (section 7.2.2).

7.4 Strict fields in inhabitation testing
To our knowledge, the Inst function in fig. 8 is the first inhabitation test in a coverage checking
algorithm to take strict fields into account. This is essential in order to conclude that the v function
from section 2.3 is exhaustive, which is something that even coverage checkers for call-by-value
languages get wrong. For example, we ported v to OCaml and Idris °:

type void;; v: Maybe Void — Int

let v (None : void option) : int = 0;; v Nothing = 0

OCaml 4.07.1 incorrectly warns that v is missing a case on Some _. Idris 1.3.2 does not warn, but

if one adds an extra v (Just _) = 1 clause, it will not warn that the extra clause is redundant.

7.5 Refinement types in coverage checking

In addition to LYG, Liquid Haskell uses refinement types to perform a limited form of exhaustivity
checking [Vazou et al. 2014, 2017]. While exhaustiveness checks are optional in ordinary Haskell,
they are mandatory for Liquid Haskell, as proofs written in Liquid Haskell require user-defined
functions to be total (and therefore exhaustive) in order to be sound. For example, consider this
non-exhaustive function:

fibPartial :: Integer — Integer
fibPartial 0 = 0
fibPartial 1 = 1

When compiled, GHC fills out this definition by adding an extra fibPartial _ = error "undefined"
clause. Liquid Haskell leverages this by giving error the refinement type:

error :: {v: String | false} — a

As a result, attempting to use fibPartial in a proof will yield an inconsistent environment (and
therefore fail to verify) unless the user can prove that fibPartial is only ever invoked with the
arguments 0 or 1.

8 CONCLUSION

In this paper, we describe Lower Your Guards, a coverage checking algorithm that distills rich
pattern matching into simple guard trees. Guard trees are amenable to analyses that are not easily

31dris has separate compile-time and runtime semantics, the latter of which is call by value.
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expressible in coverage checkers that work over structural pattern matches. This allows LYG to
report more accurate warnings while also avoiding performance issues when checking complex
programs. Moreover, LYG is extensible, and we anticipate that this will streamline the process of
checking new forms of patterns in the future.

REFERENCES

Jesper Cockx and Andreas Abel. 2018. Elaborating Dependent (Co)Pattern Matching. Proc. ACM Program. Lang. 2, ICFP,
Article Article 75 (July 2018), 30 pages. https://doi.org/10.1145/3236770

Joshua Dunfield. 2007. A Unified System of Type Refinements. Ph.D. Dissertation. Carnegie Mellon University. CMU-CS-07-
129.

Jacques Garrigue and Jacques Le Normand. 2011. Adding GADTs to OCaml: the direct approach. In Workshop on ML.

GHC issue. 2015a. New pattern-match check can be non-performant. https://gitlab.haskell.org/ghc/ghc/issues/11195

GHC issue. 2015b. No non-exhaustive pattern match warning given for empty case analysis. https://gitlab.haskell.org/ghc/
ghc/issues/10746

GHC issue. 2016a. In a record-update construct:ghc-stage2: panic! (the ‘impossible’ happened). https://gitlab.haskell.org/
ghc/ghc/issues/12957

GHC issue. 2016b. Inaccessible RHS warning is confusing for users. https://gitlab.haskell.org/ghc/ghc/issues/13021

GHC issue. 2016c. Pattern coverage checker ignores dictionary arguments. https://gitlab.haskell.org/ghc/ghc/issues/12949

GHC issue. 2016d. Pattern match incompleteness / inaccessibility discrepancy. https://gitlab.haskell.org/ghc/ghc/issues/
11984

GHC issue. 2016e. Representation of value set abstractions as trees causes performance issues. https://gitlab.haskell.org/
ghc/ghc/issues/11528

GHC issue. 2017a. -Woverlapping-patterns warns on wrong patterns for Int. https://gitlab.haskell.org/ghc/ghc/issues/14546

GHC issue. 2017b. COMPLETE sets don’t work at all with data family instances. https://gitlab.haskell.org/ghc/ghc/issues/
14059

GHC issue. 2017c. COMPLETE sets nerf redundant pattern-match warnings. https://gitlab.haskell.org/ghc/ghc/issues/13965

GHC issue. 2017d. Incorrect pattern match warning on nested GADTs. https://gitlab.haskell.org/ghc/ghc/issues/14098

GHC issue. 2017e. Pattern match checker mistakenly concludes pattern match on pattern synonym is unreachable.
https://gitlab.haskell.org/ghc/ghc/issues/14253

GHC issue. 2017f. Pattern synonym exhaustiveness checks don’t play well with EmptyCase. https://gitlab.haskell.org/ghc/
ghc/issues/13717

GHC issue. 2017g. Wildcard patterns and COMPLETE sets can lead to misleading redundant pattern-match warnings.
https://gitlab.haskell.org/ghc/ghc/issues/13363

GHC issue. 2018a. -Wincomplete-patterns gets confused when combining GADTs and pattern guards. https://gitlab.haskell.
org/ghc/ghc/issues/15385

GHC issue. 2018b. Bogus -Woverlapping-patterns warning with OverloadedStrings. https://gitlab.haskell.org/ghc/ghc/
issues/15713

GHC issue. 2018c. Compiling a function with a lot of alternatives bottlenecks on insertIntHeap. https://gitlab.haskell.org/
ghc/ghc/issues/14667

GHC issue. 2018d. Completeness of View Patterns With a Complete Set of Output Patterns. https://gitlab.haskell.org/ghc/
ghc/issues/15884

GHC issue. 2018e. EmptyCase thinks pattern match involving type family is not exhaustive, when it actually is. https:
//gitlab.haskell.org/ghc/ghc/issues/14813

GHC issue. 2018f. Erroneous “non-exhaustive pattern match” using nested GADT with strictness annotation.  https:
//gitlab.haskell.org/ghc/ghc/issues/15305

GHC issue. 2018g. Inconsistency w.r.t. coverage checking warnings for EmptyCase under unsatisfiable constraints. https:
//gitlab.haskell.org/ghc/ghc/issues/15450

GHC issue. 2018h. Inconsistent pattern-match warnings when using guards versus case expressions. https://gitlab.haskell.
org/ghc/ghc/issues/15753

GHC issue. 2018i. nonVoid is too conservative w.r.t. strict argument types. https://gitlab.haskell.org/ghc/ghc/issues/15584

GHC issue. 2018]. “Pattern match has inaccessible right hand side” with TypeRep. https://gitlab.haskell.org/ghc/ghc/issues/
14851

GHC issue. 2019a. 67-pattern COMPLETE pragma overwhelms the pattern match checker. https://gitlab.haskell.org/ghc/
ghc/issues/17096

GHC issue. 2019b. Add Luke Maranget’s series in “Warnings for Pattern Matching”. https://gitlab.haskell.org/ghc/ghc/
issues/17264


https://doi.org/10.1145/3236770
https://gitlab.haskell.org/ghc/ghc/issues/11195
https://gitlab.haskell.org/ghc/ghc/issues/10746
https://gitlab.haskell.org/ghc/ghc/issues/10746
https://gitlab.haskell.org/ghc/ghc/issues/12957
https://gitlab.haskell.org/ghc/ghc/issues/12957
https://gitlab.haskell.org/ghc/ghc/issues/13021
https://gitlab.haskell.org/ghc/ghc/issues/12949
https://gitlab.haskell.org/ghc/ghc/issues/11984
https://gitlab.haskell.org/ghc/ghc/issues/11984
https://gitlab.haskell.org/ghc/ghc/issues/11528
https://gitlab.haskell.org/ghc/ghc/issues/11528
https://gitlab.haskell.org/ghc/ghc/issues/14546
https://gitlab.haskell.org/ghc/ghc/issues/14059
https://gitlab.haskell.org/ghc/ghc/issues/14059
https://gitlab.haskell.org/ghc/ghc/issues/13965
https://gitlab.haskell.org/ghc/ghc/issues/14098
https://gitlab.haskell.org/ghc/ghc/issues/14253
https://gitlab.haskell.org/ghc/ghc/issues/13717
https://gitlab.haskell.org/ghc/ghc/issues/13717
https://gitlab.haskell.org/ghc/ghc/issues/13363
https://gitlab.haskell.org/ghc/ghc/issues/15385
https://gitlab.haskell.org/ghc/ghc/issues/15385
https://gitlab.haskell.org/ghc/ghc/issues/15713
https://gitlab.haskell.org/ghc/ghc/issues/15713
https://gitlab.haskell.org/ghc/ghc/issues/14667
https://gitlab.haskell.org/ghc/ghc/issues/14667
https://gitlab.haskell.org/ghc/ghc/issues/15884
https://gitlab.haskell.org/ghc/ghc/issues/15884
https://gitlab.haskell.org/ghc/ghc/issues/14813
https://gitlab.haskell.org/ghc/ghc/issues/14813
https://gitlab.haskell.org/ghc/ghc/issues/15305
https://gitlab.haskell.org/ghc/ghc/issues/15305
https://gitlab.haskell.org/ghc/ghc/issues/15450
https://gitlab.haskell.org/ghc/ghc/issues/15450
https://gitlab.haskell.org/ghc/ghc/issues/15753
https://gitlab.haskell.org/ghc/ghc/issues/15753
https://gitlab.haskell.org/ghc/ghc/issues/15584
https://gitlab.haskell.org/ghc/ghc/issues/14851
https://gitlab.haskell.org/ghc/ghc/issues/14851
https://gitlab.haskell.org/ghc/ghc/issues/17096
https://gitlab.haskell.org/ghc/ghc/issues/17096
https://gitlab.haskell.org/ghc/ghc/issues/17264
https://gitlab.haskell.org/ghc/ghc/issues/17264

1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323

Lower Your Guards 1:27

GHC issue. 2019c. “case (x :: Void) of _ -> ()" should be flagged as redundant. https://gitlab.haskell.org/ghc/ghc/issues/17376

GHC issue. 2019d. GHC thinks pattern match is exhaustive. https://gitlab.haskell.org/ghc/ghc/issues/16289

GHC issue. 2019. Incorrect non-exhaustive pattern warning with PatternSynonyms. https://gitlab.haskell.org/ghc/ghc/
issues/16129

GHC issue. 2019f. Minimality of missing pattern set depends on constructor declaration order. https://gitlab.haskell.org/
ghc/ghc/issues/17386

GHC issue. 2019g. Panic during tyConAppArgs. https://gitlab.haskell.org/ghc/ghc/issues/17112

GHC issue. 2019h. Pattern-match checker: True /= False. https://gitlab.haskell.org/ghc/ghc/issues/17251

GHC issue. 2019i. Pattern match checking open unions. https://gitlab.haskell.org/ghc/ghc/issues/17149

GHC issue. 2019j. Pattern match overlap checking doesn’t consider -XBangPatterns. https://gitlab.haskell.org/ghc/ghc/
issues/17234

GHC issue. 2019k. Pattern match warnings are per Match, not per GRHS. https://gitlab.haskell.org/ghc/ghc/issues/17465

GHC issue. 20191. PmCheck treats Newtype patterns the same as constructors. https://gitlab.haskell.org/ghc/ghc/issues/
17248

GHC issue. 2020a. -Wincomplete-record-updates ignores context. https://gitlab.haskell.org/ghc/ghc/issues/17783

GHC issue. 2020b. Pattern match checker stumbles over reasonably tricky pattern-match. https://gitlab.haskell.org/ghc/
ghc/issues/17703

GHC issue. 2020c. Pattern match coverage checker allocates twice as much for trivial program with instance constraint vs.
without. https://gitlab.haskell.org/ghc/ghc/issues/17891

GHC issue. 2020d. Pattern match warning emitted twice. https://gitlab.haskell.org/ghc/ghc/issues/17646

GHC team. 2020. COMPLETE pragmas. https://downloads.haskell.org/~ghc/8.8.3/docs/html/users_guide/glasgow_exts.
html#pragma-COMPLETE

Pavel Kalvoda and Tom Sydney Kerckhove. 2019. Structural and semantic pattern matching analysis in Haskell.
arXiv:cs.PL/1909.04160

Georgios Karachalias, Tom Schrijvers, Dimitrios Vytiniotis, and Simon Peyton Jones. 2015. GADTs meet their match (extended
version). Technical Report. KU Leuven. https://people.cs.kuleuven.be/~tom.schrijvers/Research/papers/icfp2015.pdf

Luc Maranget. 2007. Warnings for pattern matching. Journal of Functional Programming 17 (2007), 387-421. Issue 3.

Matthew Pickering, Gergé Erdi, Simon Peyton Jones, and Richard A. Eisenberg. 2016. Pattern Synonyms. In Proceedings of
the 9th International Symposium on Haskell (Haskell 2016). Association for Computing Machinery, New York, NY, USA,
80-91. https://doi.org/10.1145/2976002.2976013

John Rushby, Sam Owre, and Natarajan Shankar. 1998. Subtypes for specifications: Predicate subtyping in PVS. IEEE
Transactions on Software Engineering 24, 9 (1998), 709-720.

R. C. Sekar, R. Ramesh, and I. V. Ramakrishnan. 1995. Adaptive Pattern Matching. SIAM J. Comput. 24, 6 (Dec. 1995),
120751A$1234‘ https://doi.org/10.1137/S0097539793246252

Peter Sestoft. 1996. ML pattern match compilation and partial evaluation. In Partial Evaluation. Springer, 446—464.

Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton-Jones. 2014. Refinement Types for Haskell.
In Proceedings of the 19th ACM SIGPLAN International Conference on Functional Programming (ICFP ’14). ACM, New York,
NY, USA, 269-282. https://doi.org/10.1145/2628136.2628161

Niki Vazou, Anish Tondwalkar, Vikraman Choudhury, Ryan G. Scott, Ryan R. Newton, Philip Wadler, and Ranjit Jhala. 2017.
Refinement Reflection: Complete Verification with SMT. Proc. ACM Program. Lang. 2, POPL, Article Article 53 (Dec.
2017), 31 pages. https://doi.org/10.1145/3158141

Dimitrios Vytiniotis, Simon Peyton Jones, Tom Schrijvers, and Martin Sulzmann. 2011. Outsidein(x) Modular Type Inference
with Local Assumptions. J. Funct. Program. 21, 4-5 (Sept. 2011), 333-412. https://doi.org/10.1017/S0956796811000098

Hongwei Xi. 1998a. Dead Code Elimination Through Dependent Types. In Proceedings of the First International Workshop on
Practical Aspects of Declarative Languages (PADL °99). Springer-Verlag, London, UK, 228-242.

Hongwei Xi. 1998b. Dependent Types in Practical Programming. Ph.D. Dissertation. Carnegie Mellon University.

Hongwei Xi. 2003. Dependently typed pattern matching. Journal of Universal Computer Science 9 (2003), 851-872.

Hongwei Xi, Chiyan Chen, and Gang Chen. 2003. Guarded Recursive Datatype Constructors. In Proceedings of the 30th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL "03). ACM, New York, NY, USA, 224-235.
https://doi.org/10.1145/604131.604150

Hongwei Xi and Frank Pfenning. 1998. Eliminating Array Bound Checking through Dependent Types. In Proceedings of
the ACM SIGPLAN 1998 Conference on Programming Language Design and Implementation (PLDI ’98). Association for
Computing Machinery, New York, NY, USA, 249-257. https://doi.org/10.1145/277650.277732


https://gitlab.haskell.org/ghc/ghc/issues/17376
https://gitlab.haskell.org/ghc/ghc/issues/16289
https://gitlab.haskell.org/ghc/ghc/issues/16129
https://gitlab.haskell.org/ghc/ghc/issues/16129
https://gitlab.haskell.org/ghc/ghc/issues/17386
https://gitlab.haskell.org/ghc/ghc/issues/17386
https://gitlab.haskell.org/ghc/ghc/issues/17112
https://gitlab.haskell.org/ghc/ghc/issues/17251
https://gitlab.haskell.org/ghc/ghc/issues/17149
https://gitlab.haskell.org/ghc/ghc/issues/17234
https://gitlab.haskell.org/ghc/ghc/issues/17234
https://gitlab.haskell.org/ghc/ghc/issues/17465
https://gitlab.haskell.org/ghc/ghc/issues/17248
https://gitlab.haskell.org/ghc/ghc/issues/17248
https://gitlab.haskell.org/ghc/ghc/issues/17783
https://gitlab.haskell.org/ghc/ghc/issues/17703
https://gitlab.haskell.org/ghc/ghc/issues/17703
https://gitlab.haskell.org/ghc/ghc/issues/17891
https://gitlab.haskell.org/ghc/ghc/issues/17646
https://downloads.haskell.org/~ghc/8.8.3/docs/html/users_guide/glasgow_exts.html#pragma-COMPLETE
https://downloads.haskell.org/~ghc/8.8.3/docs/html/users_guide/glasgow_exts.html#pragma-COMPLETE
http://arxiv.org/abs/cs.PL/1909.04160
https://people.cs.kuleuven.be/~tom.schrijvers/Research/papers/icfp2015.pdf
https://doi.org/10.1145/2976002.2976013
https://doi.org/10.1137/S0097539793246252
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/3158141
https://doi.org/10.1017/S0956796811000098
https://doi.org/10.1145/604131.604150
https://doi.org/10.1145/277650.277732

	Abstract
	1 Introduction
	2 The problem we want to solve
	2.1 Guards
	2.2 Programmable patterns
	2.3 Strictness
	2.4 Type-equality constraints

	3 Lower Your Guards: a new coverage checker
	3.1 Desugaring to guard trees
	3.2 Checking guard trees
	3.3 Reporting errors
	3.4 Generating inhabitants of a refinement type
	3.5 Expanding a normalised refinement type to a pattern
	3.6 Normalising a refinement type
	3.7 Testing for inhabitation

	4 Possible extensions
	4.1 Long-distance information
	4.2 Empty case
	4.3 View patterns
	4.4 Pattern synonyms
	4.5 COMPLETE pragmas
	4.6 Other extensions

	5 Implementation
	5.1 Interleaving U and A
	5.2 Throttling for graceful degradation
	5.3 Maintaining residual COMPLETE sets
	5.4 Reporting uncovered patterns

	6 Evaluation
	6.1 Performance tests
	6.2 GHC issues

	7 Related work
	7.1 Comparison with GADTs Meet Their Match
	7.2 Comparison with similar coverage checkers
	7.3 Positive and negative information
	7.4 Strict fields in inhabitation testing
	7.5 Refinement types in coverage checking

	8 Conclusion
	References

