Auditing Outsourced Services

Cheng Tan
Courant Institute, New York University
chengtan@cs.nyu.edu

Does my remote service Are there unexpected Are there
behave as promised? internal failures? external attacks?

Remote servers (clouds) make mistakes

threat@:os]Dangerous Kubernetes Bugs Allow
e bugs: Authentication Bypass, DoS

' " Security misconfigurations:
».
Code for human error

e misconfigs:

Remote servers (clouds) make mistakes

threatEos)Dangerous Kubernetes Bugs Allow
Authentication Bypass, DoS

* pbugs:

» misconfigs: s. 'Securlty misconfigurations: s
. Code for human error s Gk A2

e untrusted cloud: —

Tencent Cloud denies technical attack against rival

Tencent Cloud

% SIRFUp ML service
company

Remote servers (clouds) make mistakes

threat@:os)Dangerous Kubernetes Bugs Allow
Authentication Bypass, DoS

* bugs:

» misconfigs: ». .Securlty misconfigurations: P
. Code for human error v kA2

* untrusted cloud: —_—

Tencent Cloud denies technical attack against rival

)\&
A 4
L quality drops 20-30%!
Tencent Cloud

S StArp ML service
company

Remote servers (clouds) make mistakes

threatEos]Dangerous Kubernetes Bugs Allow
Authentication Bypass, DoS

' " Security misconfigurations:
Code for human error

* bugs:

* misconfigs:

e untrusted cloud:
Tencent Cloud denies technical attack against rival

)\&
A
L quality drops 20-30%! Tencent Inc.
Tencent Cloud another
[a startup } , department

ML service
ey \

VS.

b.

Verify outsourced services with systems

Verify outsourced services with systems

databasej

KV-store cache ‘

app

search service

Verify outsourced services with systems

databasej

KV-store cache |

search service

[users] —

app

 Honest servers can convince users that app is faithfully executed.
 Buggy or malicious servers cannot pass users’' checks.

Execution integrity...

...Is about executing code faithfully.

...IS separate from program verification.

low

overhead

high

some trust

trust

zero trust

low

overhead

high

replication
(e.g., PBFT, Ethereum)

some trust

trust

zero trust

low

overhead

high

attestation
(e.g., SGX, TPM)

replication
(e.g., PBFT, Ethereum)

some trust

trust

zero trust

low

overhead

high

attestation
(e.g., SGX, TPM)

replication
(e.g., PBFT, Ethereum)

some trust

trust

probabilistic proofs
(e.g., IPs, PCPs, SNARKS)

zero trust

low attestation
(e.g., SGX, TPM)

replication
(e.g., PBFT, Ethereum)

my solution
(systems approaches)

overhead

probabilistic proofs

high (e.g., IPs, PCPs, SNARKS)

zero trust

some trust

trust

- offline
low ol L) verification

overhead

probabilistic proofs

high (e.g., IPs, PCPs, SNARKS)

some trust

trust zero trust

attestation
(e.g., SGX, TPM)

low

replication -
= (e.g., PBFT, Ethereum) Specitic
- services
D
£
(«b)
>
(=]
<
s
high

zero trust

some trust

trust

low

overhead

high

some trust

offline
verification

trust

specific
services

zero trust

Rest of the talk: verifiable infrastructure

databasej verifiable

app

KV-store cache |

search service

Rest of the talk: verifiable infrastructure

databasej verifiable

i E KV-store cache |
[usirs J(il search service
[verifier]"

Rest of the talk: verifiable infrastructure

databasej verifiable

KV-store cache |

search service

(D verify white-box services
[verifier]

Rest of the talk: verifiable infrastructure

|
| databasej ifi
verifiable

KV-store cache

search service

(D verify white-box services (2) verify black-box services
[verifier J

Rest of the talk: verifiable infrastructure

|
| databasej ifi
verifiable

KV-store cache

search service

(D verify white-box services @ verify black-box services

[verifier] %/—/

@ compose verifications of multiple services

Rest of the talk: verifiable infrastructure

users

(D Verify white-box services (Orochi [SOSP'17])

() Verify black-box services (Cobra) | Gatase

KV-store cache

1’

T search service
N

(@) Build composable verifiable framework (future work) B

(&) Other past work
- Troubleshooting data center networks [NSDI'19]
- Protecting secret via security-oriented offloading [EuroSys'15]

Rest of the talk: verifiable infrastructure

users

(D Verify white-box services (Orochi [SOSP'17])

() Verify black-box services (Cobra) | (Gatase

KV-store cache

.rT

T>| search service
N

(3 Build composable verifiable framework (future work) i

(&) Other past work
- Troubleshooting data center networks [NSDI'19]
- Protecting secret via security-oriented offloading [EuroSys'15]

company

web app | [Dana |

1\

| employee |

| employee |

Amazon Web Services

company Amazon Web Services

| Dana databas;
web app
(employee |2 Lullol libraries KV store
response web server
| employee | 0S
hypervisor
hardware

company

| Dana |

request

Amazon Web Services

web app

| employee [

response

| employee |

* A lot of things can go wrong...

libraries

<§atabas@
KV store

web server

0S

bugs, attacks,
misconfigs,

hypervisor

unexpected failures, ...

hardware

company Amazon Web Services

Eatabas;]
web app <
request KV store

libraries

| Dana |

| employee

FESHOMSE web server

bugs, attacks,
= 0S misconfigs,
hypervisor unexpected failures, ...

| employee |2

hardware

* A lot of things can go wrong...

company Amazon Web Services

request

employee

response

employee

 Dana wants to audit the end-to-end execution

responses| . |actual application |+|requests

company Amazon Web Services

request

N
oonse ‘)

What about naive re-execution?

employee

« Dana wants to audit the end-to-end execution

responses ? actual application |+| requests

The Efficient Server Audit Problem

Server

program

The Efficient Server Audit Problem

online phase

Server

requests program

. %‘ l
clients g—y
—e LS shared
e objects

reSponses

The Efficient Server Audit Problem

online phase
trace server
collector
requests program
il
| 1 =< 1
clients

—— L han shared

e LS objects
responses

trace

company Amazon Web Services

\databasej
web app <‘
request | KV store

libraries

| Dana

| employee [

LeRROlRg web server

bugs, attacks,
x 0S misconfigs,
hypervisor unexpected failures, ...

| employee |2

hardware

company Amazon Web Services

\databasa
web app <‘
request KV store

libraries

| Dana

| employee [

response

‘ bl bugs, attacks,
| employee | — - 0S misconfigs,
trace hypervisor unexpected failures, ...

collector i

The Efficient Server Audit Problem

online phase

trace server
collector
requests program
ol
| 1 e l
clients
Tinmss———— S . shared
P 1 S (T, objects
responses

trace

audit phase

verifier

The Efficient Server Audit Problem

|
online phase ! audit phase
trace server E verifier

collector .

requests program | || | requests+ | program | =?
il '
1 i, e l :
clients .
——— s shared :
P | [(S (— objects | |

responses | 5

trace

The Efficient Server Audit Problem

online phase
trace server
collector
requests program
e
1 l
clients
TImR——————| S IR shared
— s objects
responses

audit phase

verifier

requests +

= responses ™ ACCEPT

program

trace

The Efficient Server Audit Problem

online phase

trace server
collector
requests program
ahc
o = l
clients
vImm—————y N S| IS shared
VI) S " objects
responses

audit phase

verifier

requests +

= responses ™ ACCEPT
responses = REJECT

program

i)

trace

The Efficient Server Audit Problem

online phase
trace server
collector
requests program
Al
o P 1
clients
mess———— S W shared
— 1N objects
responses

audit phase

verifier

requests +

= responses ™ ACCEPT
responses = REJECT

program

{)

trace

1. server can behave arbitrarily

The Efficient Server Audit Problem

online phase
trace server
collector
requests program
dl
) = l
clients
— L L shared
P () S objects
responses

audit phase

verifier

requests +

= responses ™ ACCEPT
responses = REJECT

program

i)

trace

1. server can behave arbitrarily
2. server is concurrent

The Efficient Server Audit Problem

online phase
trace server
collector
requests program
al
el l
clients
— N L LnT shared
S I [S (R, objects
responses

audit phase

verifier

requests +

program

= responses ™ ACCEPT
responses = REJECT

i)

trace

1. server can behave arbitrarily
2.server is concurrent

3. verifier requires less computation power than server

The Efficient Server Audit Problem

online phase E audit phase
trace server E verifier
collector .
requests program | || requests + | program
A LI '
........... |
clients) § l : = responses ™= ACCEPT
shar |
. obﬁ,;ﬂ : # responses = REJECT
responses ; x
trace :

1. server can behave arbitrarily
2. server is concurrent

3. verifier requires less computation power than server

4. server overhead is low; legacy applications supported

The Efficient Server Audit Problem

online phase

trace server
collector
requests program
e
I l
clients
Tnss——| S A shared
— | s objects
responses

audit phase

1. server is untrusted...

2. server is concurrent

3. verifier is weaker than server
4. server overhead is low...

verifier

requests +

= responses ™ ACCEPT
responses = REJECT

program

i)

trace

What about naive re-execution?

online phase

frace

collector server
requests)

o “ | program
clients % % -

(.................. ~
(........
(.................
responses

audit phase

1. server is untrusted...

2. server is concurrent

3. verifier is weaker than server
4. server overhead is low...

verifier

IVQServer is untrusted...

What about naive re-execution? 2. server is concurrent

X verifier is weaker than server
server overhead is low...

online phase 1 audit phase
trace :
collector server . verifier
requests i ! =
— AT S
I=>.. | Pros :
. f,,»"' |
clients ? < | g
———— |— i 15 55 5 a0 & |
(........ | .
A e T e EELTETREPRRPRPR I /)"MJ
responses . | S
| delivered E
trace : responses
| 2 i
| —3 L I
: produced
. responses

 This does not save the verifier work.

What about naive re-execution?

N server is untrusted...
?. server is concurrent
X verifier is weaker than server
server overhead is low...

online phase 1 audit phase
trace :
collector server : verifier
requests) : =
> - “- | program . ; =
50T = ,
_ P [
clients < |
Ce—— |— « NS a0 B & |
p R | S
responses ! : <
| dellvered e
trace : responses
I 2 i
: — I &
: produced
. responses

e This does not save the verifier work.

 Due to concurrency, verifier must explore many schedules.

trace

naive verifier

dellvered
responses

i

>

?

<

produced
responses

naive verifier

Problem: naive re-execution doesn’t save work

Proposal: (somehow) accelerate re-execution

delivered
responses

trace 1 = €

produced
responses

naive verifier Problem: naive re-execution doesn't save work

Proposal: (somehow) accelerate re-execution

delivered

responses

trace o I

oroduced Problem: many schedules to explore

responses

Proposal: ask server for advice, use-and-check it

naive verifier Problem: naive re-execution doesn't save work

Proposal: (somehow) accelerate re-execution

delivered

responses

trace M L K

oroduced Problem: many schedules to explore

responses

Proposal: ask server for advice, use-and-check it

naive verifier

Problem: naive re-execution doesn’t save work

Proposal: (somehow) accelerate re-execution

delivered
responses

trace M = [

produced
responses

Accelerating re-execution: a 30,000-foot view

server (online) verifier (offline)

% § Y i§<

deduplicate computation across requests

T. Kim, R. Chandra, and N. Zeldovich.
Efficient patch-based auditing for web applications. OSDI, 2012

An observation: repeated computation

web app: [
HotCRP s

Submission (PDF, max 100MB)
}T 400kB © 8 Oct 2017 1:59:08pm EDT

p a g e 1 Replace: mmlmrnchosen

Authors

List the authors one per line, including email af
not be able to see author information. Any aut

1. Lingfan Yu
2.

Title
Another Paper

Submission (PDF, max 100MB)
)-- 400kB O 9 Oct 2017 12:56:56pm EOT

Replace: ' Choose File |~o file choson

Authors

List the authors one per line, including email aq
reviewers will not be able to see author informg
edit the submission.

Name
1. Cheng Tan

2.

page 2

T. Kim, R. Chandra, and N. Zeldovich.
Efficient patch-based auditing for web applications. OSDI, 2012

An observation: repeated computation

web app: [ue

HotCRP]

Submission (PDF, max 100MB)

}T 400kB © 9 Oct 2017 1:59:08pm EDT

p a g e 1 Replace: ChooseFile INofiechosen

Authors

List the authors one per line, including email af
not be able to see author information. Any aut

Submission (PDF, max 100MB)
)-: 400kB ©® 9 Oct 2017 12:56:56pm EOT

Replace: = Choose File INohlo choson

Authors

List the authors one per line, including email aq
roviewers will not be able to see author informa
edit the submission.

Name

]

2,

page 2

T. Kim, R. Chandra, and N. Zeldovich.
Efficient patch-based auditing for web applications. OSDI, 2012

An observation: repeated computation

Web app: Title
L O
HotCRP [=] o O

[4230] FPushClsMethodD
[4231] FCall O {
Submission (PDF, max 100MB) [4232] String

Ju [4233] String

A 400kB @ 9 Oct 2017 1:59:08pm EDT eyt
[4234] AGetC

Replace: amoﬂn|~ouechosen (4235] CGetS
[4236] RetC

[4237] UnboxR

page 1

Authors [4238] String () { /home/chs
List the authors one per line, including email af [4239] NSame () 1 /home/cher
| ’ 424 ol () I /home /chens
not be able to see author information. Any aut [4240] JmpZ O {1 /home/che
[4241] FPushClsMethodD |
AL

[4242] FCall

1.jLingfan Yu [4243)] String

4244
2.

> have the same control flow

Title s - . .
[4228] Ret(() { /home/cheng/orochi
{4229] Pop(() { /home/cheng/orochi
(4230] FPushClsMethodD () { /bome/
[4231] FCall () { /home/cheng/oroct
Submission (PDF, max 100MB) (4232] String (Navigation::p

[4233] String (Navigatio
[4234] AGetC
Replace: mmINohlochown (4235] CGetS

2 [4236] RetC (Navigatio
p a g e [4237] UnboxR () { /home

M 400kB ® 9 Oct 2017 12:56:56pm EDT

Authors [4238] String O {

List the authors one per line, Including email ag [4239] NSame () { /home/cheng/orx

reviewers will not be able to see author informd [4240] JmpZ () { /home/cheng/orochi

edit the submission. [4241] FPush(lsMethodD O ¢
Name [(4242] FCall () 4 /home/cheng/oroc

[4243] String (Navigation: :page;
1. §Cheng Tan 4244 4 =490 et

2.

T. Kim, R. Chandra, and N. Zeldovich.

Efficient patch-based auditing for web applications. OSDI, 2012

An observation: repeated computation

web app:
HotCRP

page 1

page 2

Title

Submission (PDF, max 100MB)

A 400kB ©® 8 0Oct 2017 1:59:08pm EDT

Replace: ChooseFile INo file chosen

Authors

List the authors one per line, including email 8§
not be able to see author information. Any aut

AL

1. |Lingfan Yu|

2.

Title
Another Paper

Submission (PDF, max 100MB)
)T 400kB O 9 Oct 2017 12:56:56pm EDT

Replace: ' Choose File INo file choson

Authors

List the authors one per line, Including email ag
reviewers will not be able to see author informad
adit the submission.

Name
1. jCheng Tan

et ()
Pop(J
FPush(C sMethodD
FCall O
String (Navigat

String (Navigatio

AGet(
CGetS

' FPush(C sMethodD

FCall
Strary

3.".Ng

Ret(

Pop(()
FPushClsMethodD
FCall O {

String (Navigatio

String (Navigat

AGetC
CGetS

J
L

JmpZ O {
FPush(ClsMethodD

FCall O {

String (Navigation::
String (Navigat

/home/cher

e/ cheng/orocht

wl '(‘lr'u(_‘!'w[

opcode operands
e.g., ADD 1,2

Q/orocm

home /¢l

> have the same control flow

ng/orocnm

T. Kim, R. Chandra, and N. Zeldovich.
Efficient patch-based auditing for web applications. OSDI, 2012

An observation: repeated computation

web app:
HotCRP

page 1

page 2

Title

Submission (PDF, max 100MB)
)T 400kB © 9 0Oct 2017 1:59:08pm EDT

Replace: ChooseFile INo fle chosen

Authors

List the authors one per line, including email 8§
not be able to see author information. Any aut

lllll

Submission (PDF, max 100MB)
/T: 400kB O 9 Oct 2017 12:56:56pm EDT

Replace: ' Choose File |~omo choson

Authors

List the authors one per line, including email aq
reviewers will not be able to see author informa
edit the submission.

Name

]

2.

opcode operands
e.g., ADD (|97

requires trusting the

trol flow
recorder (server)

Accelerate re-execution without trusting the server

server (online) verifier (offline)

advice
for each tag;

Map: ta set of
e g rags) — execute Mapl[tag;] with
=SS | SIMD-on-demand
— conduct unanimity checks

Accelerate re-execution without trusting the server

server (online) verifier (offline)

advice f o
Map: tag—{set of reqs} |'OF €ach 1ag;
p: e+ ash|"_ execute |Map[tagi] with
SEE= 4 SIMD-on-demand
— conduct unanimity checks

 SIMD-on-demand re-executes identical instructions once.

server verifier

D

req, req; reg+req;
; % identical _ g
Instruction

SIMD-on-demand eliminates redundant computation

main(a, b): req;, a=1; b=2
cC«<—a’ b |

CeC+1 ek

SIMD-on-demand eliminates redundant computation

main(a, b): req;, a=1; b=2
Ca’b re | =2: D=1
C—cC+1 Ba eeyim

regqq+redq, —@———@——)

SIMD-on-demand eliminates redundant computation

main(a, b): req;, a=1; b=2
C«—a™b |
c o+ red,. a=2;b=1

a=[12]

b=[2,1]
reqy+red, —@———@——>

 Multi-value represents different values of the same variable.

SIMD-on-demand eliminates redundant computation

main(a, bt)): req;,, a=1; b=2
C—a’
o4 reg,. a=2;b=]
a=[1'2] e=1"2
b=[2,1] C : >| c=[2.2] .
regq+red, ‘ 0
C=£"|

 Multi-value represents different values of the same variable.

SIMD-on-demand eliminates redundant computation

main(a,*b): req;,, a=1; b=2
g:ij regq,. a=2;b=1
a=[1'2] c=1"2

b=[2,1]
req+req,

c=2"|
 Multi-value represents different values of the same variable.
e Verifier collapses multi-value to scalar if possible.

accelerated verifier

S
server Solution: deduplicated re-execution

Problem: naive re-execution doesn’'t save work

delivered
responses) 7

e —

trace

produced
responses

accelerated verifier

SEE=
>
server ~
R AN y‘
concurrenc
y H—I

advice

delivered
responses | ,
trace > L |e—
oroduced Problem: many schedules to explore
responses

Proposal: (somehow) use but don't trust advice

The Efficient Server Audit Problem

online phase

trace server
collector
requests program
clients ?%—y l
TIn————— S| V.. shared
S N S . objects
responses

audit phase

1. server is untrusted...

2. server is concurrent

3. verifier is weaker than server
4. server overhead is low...

verifier

requests +

= responses ™ ACCEPT
responses = REJECT

program

i)

trace

accelerated verifier

SEE=S
>
Server
| 4
concurrenc
y —

advice
delivered
responses | ,
trace > L |e—
produced Problem: many schedules to explore
responses

Proposal: (somehow) use but don't trust advice

Concurrency and untrusted server are in tension

honest concurrent server

requests

_|3%

<
<

many valid sets
of responses

YVvV

Concurrency and untrusted server are in tension

untrusted concurrent server verifier
requests

?
% § responses; € {all sets of valid responses }

YVvVvV

<
<
<

responses,;

Concurrency and untrusted server are in tension

untrusted concurrent server verifier
requests >
> ‘ .
4 responses;, € {all sets of valid responses }
or
< . ?
< . > advice + program + requests = responses,

responses,;

Concurrency model

server
requests o r
S ... 2
P A .
e 1 S

reSponses

Concurrency model

server
requests
9 W ———] write(X, 1)
. S [2 :
shared
object X
D ..
- .S T«—read(X)

reSponses

Concurrency model

server
requests . .
> write(X, 1) ' advice: X's op log
: shared r1 2
object X write 1 | read
<€
R Jeemmnomsnana e l«—read(X)

reSponses

Concurrency model

server
requests . .
> write(X, 1) ' advice: X's op log
i shared r 2
) object X write 1 | read
e rmansesnmnanmna) l«—read(X)
responses

* What about simple re-execution according to op logs?

X=0,Y=0

§ ;\;rite(x, 1)

read(Y) -y

output(y)

r2

write(Y, 1)
read(X) — x

output(x)

trace

19AI3S

X=0,Y=0

§ ;\;rite(x. 1)

read(Y) —» vy

output(y)

r2

write(Y, 1)
read(X) — x

output(x)

19AIBS

r2

X=0,Y=0

write(X, 1)
read(Y) -y

output(y)

4 =

write(Y, 1)
read(X) — x

output(x)

19AIBS

X=0Y=0

r2

read(Y) -y

output(y)

write(Y, 1)
read(X) — x

output(x)

19AIBS

X=1,Y=0

r2

read(Y) -y

output(y)

write(Y, 1) <

read(X) — x

output(x)

19AIBS

X=1,Y=1

X=0,Y=0 trace

r
= »
write(X, 1) r\2>
read(Y) — v eﬂ_j,,g X=1.¥=1
2.
output(y) « output1 !
r2
write(Y, 1)
r.c.ead(X) — X

output(x) « output 1

r2

X=0,Y=0

write(X, 1)

read(Y) - vy

output(y) « output 1

write(Y, 1)

read(X) — x

output(x) - output 1

19AIBS

X=0,Y=0

§ ;\;rite(x, 1)

read(Y) - vy

output(y)

r2

write(Y, 1)
read(X) — x

output(x)

19AIBS

19AIBS

(b)

X=0,Y=0

§ ;/.\;rite(x, 1)

read(Y) - vy

output(y)

r2

write(Y, 1)
read(X) — x

output(x)

19AIBS

19AIBS

(b)

r2

read(Y) - vy

output(y)

write(Y,1) <

read(X) — x

output(x)

19AIBS

JIEISEE

P - e - -

v X=1orY=1

(a)

(b)

r2

X=0,Y=0

write(X, 1)
read(Y) —» vy

output(y)

write(Y, 1)
read(X) — x

output(x)

19AI3S

19AI3S

X's log

Y's log

X's log

Y's log

op logs

r r2
write 1 read

r2 r
write 1 read

r2 1
read | write1

r r2
read | write1

(a)

(b)

r2

X=0, Y=0

;/.\;rite(X, 1) «

read(Y) — vy

output(y)

write(Y, 1)
read(X) — x

output(x)

Re-execution according to op logs
wrongly accepts (b)

13AIBS

X's log

Y's log

r2

read o
r r2

read | write1

(b)

r2

X=0, Y=0

write(X, 1)

write(Y, 1)
read(X) — x

output(x)

Re-execution according to op logs
wrongly accepts (b)

13AIBS

X's log

1
write 1

r2
write 1

(b)

r2

X=0, Y=0

write(X, 1)

read(Y) — vy

output(y) « output 0

write(Y, 1)
read(X) — x

output(x)

13AIBS

X's log

Y's log

r2 1
read | write1
r r2
read | write1

Re-execution according to op logs
wrongly accepts (b)

(b)

r2

X=0, Y=0

write(X, 1)

read(Y) — vy

output(y) « output 0

;\./rite(Y, 1) «
;éad(X) — X

output(x)

13AIBS

X's log

Y's log

r2 1
read | write1
r
read o

Re-execution according to op logs
wrongly accepts (b)

(b)

r2

X=0, Y=0

write(X, 1)

read(Y) — vy

output(y) « output 0

write(Y, 1)

.r.e.aad(X) —> X«

output(x)

13AIBS

N

I
write 1

r
read

Y's log

r2
write 1

Re-execution according to op logs
wrongly accepts (b)

(b)

r2

X=0, Y=0

write(X, 1)

read(Y) —» vy

output(y) « output 0

write(Y, 1)

read(X) — x

output(x) < output 0

%

13AIBS

X's log

Y's log

1

read | write1
r r2
read | write1

Re-execution according to op logs
wrongly accepts (b)

(b)

r2

X=0,Y=0 Re-execution according to op logs

wrongly accepts (b)

write(X, 1)

read(Y) —» vy

output(y) « output 0

write(Y, 1)

read(X) — x

output(x) < output 0

r2

X=0,Y=0

write(X, 1) ~—=<k

read(Y) -y €-1~

output(y)

write(Y, 1) ==<L
read(X) » x €=+~

output(x)

~

\
i
7/

rZ/\fl

read ™ yvrite 1

W

19AI8S

\.\
r1EI r2

read | write 1

X Sloos

read

r
read

Y's log

Re-execution according to op logs
wrongly accepts (b)

Solution must consider trace and program

e Validating the alleged op logs requires
 request order (from trace)
e program order (from program)
 operation order (from op logs)

* Consistent ordering verification builds a graph...
..that includes all info above and check acyclicity

Concurrency model

server
requests : :
> write(X, 1) ' advice: X's op log
: shared r1 2
. object X write 1 | read
R s l«—read(X)
responses

* What about simple re-execution according to op logs?

However, the actual problem is harder

'

r1 :
R - X's log rergd wr::e 1
D
M0 _|< (b)
<—~——6“” = Y's lo r1 r2
J:l—"/ g read | writel

However, the actual problem is harder

r1

% |f read(Y) = 1:
write(X, 1)

r r2 r
. 0 9| read | write
M0 |< (b)
| Y's lo) r2
JeE 91 read | write1

However, the actual problem is harder

r1

% |f read(Y) = 1:
write(X, 1)

r1 : r2 r
read(Y) — x @ o X's log read | write
D
38 (b)
output(x) LRy : 1 r2
(,[?,'-,0/’ Y's log read | write 1

r2

g

However, the actual problem is harder

7 validating|op logs|requires|program order
% if read(Y) = 1: /\
write(X, 1)
- X'slog| 4
read(Y) — X . L 0 I| read | write (b)
output(x) (,'l%-/ % _ r1 »
éﬂ,‘/ S0P read | writel

getting|program orderirequires|op logs

However, the actual problem is harder

. validating|op logs|requires|program order

rl : r2 rl
read(Y) — x m " X's log read | write1
accelerated w0 2 2 (b)
: 2 : r r
out-of-order J20 Yslog| roag | write

I re-execution

getting|program order|requires|op logs

Orochi has a co-designed verification protocol

5.

re-execution

WA

consistent ordering

Orochi has a co-designed verification protocol

|
i

V
VA

/

various checks <

re-execution + consistent ordering

Orochi has a co-designed verification protocol

f >SS

\
Vil

w /‘I—

|

L/

 Verification protocol is proved to be correct ...

Completeness: honest server = verifier accepts

... meaning { N
Soundness: verifier accepts = honest server

Evaluation setup

* Applications:
* MediaWiki, phpBB and HotCRP

 Workloads:
 MediaWiki: Wikipedia 2007 trace

 phpBB: 7-day’s posts from CentOS forum
e HotCRP: Simulation of SIGCOMM'09

|s the verifier efficient?

Orochi's verifier achieves speedups compared to naive replay

800
700

o~
o O
o o

CPU time (s)
wWw B~ M
o O
o O

N
o
o

better

—_—
o
o O

10.9x
A

mPHP mDB m=:Others

5.6x
A

6.2x
A

MediaWiki's workload

| I

Naive
replay

Orochi

phpBB's workload

|

Nalve Orochi
replay
HotCRP's workload

What are the (server's) CPU/network/storage costs?

CPU

MediaWiki's workload

4.7%

What are the (server's) CPU/network/storage costs?

CPU Network

trace advice Orochi's
MediaWiki's workload (perreq) (perregq) overhead

4.7% MediaWiki's workload
/.1KB 1.7KB 11.4%

What are the (server’'s) CPU/network/storage costs?

CPU Network Storage

trace advice Orochi's
MediaWiki's workload (perreq) (perreq) overhead || MediaWiki's workload

4.7% MediaWiki's workload 1.0x
/.1KB 1.7KB 11.4%

What are the (server's) CPU/network/storage costs?

CPU Network Storage
trace advice Orochi's
MediaWiki's workload (perreq) (perreq) overhead | [MediaWiki's workload
4.7% MediaWiki's workload 1.0x
phpBB's workload 1.1KB 1.7KB 11.4% phpBB's workload
phpBB’s workload
8.6% 1.7x
| /KB 03KB 2.7% |
HotCRP's workload HotCRP's workload HotCRP's workload
2.9% 3.2KB 04KB 10.9% 1.5x

Orochi's verifier

>
7™

advice

delivered

T %ﬁm

Hf

responses)

?

—o

produced
responses

Problem: naive re-execution doesn't save work

Solution: deduplicated re-execution

Problem: concurrent and untrusted server

Solution: co-design verification protocol

Orochi's verifier

'ﬁ. —
advice
delivered
responses [,
> - €<
produced

responses

op logs may be unavailable (e.g., black-box databases)

(D Verify white-box services (Orochi [SOSP'17])
(@ Verify black-box services (Cobra: verify Serializability)

(3 Build composable verifiable framework (future work)

(&) Other past work
- Troubleshooting data center networks [NSDI'19]

users

| E———

database

KV-store cache

search service

7
T
N
I

- Protecting secret via security-oriented offloading [EuroSys'15]

Why Serializability (SER)?

o @

CockroachDB Amazon Aurora

gold standard 20 e fundamental

isolation level 6 ’ chalfggging

Google Spanner YugaByteDB
(2017) (2017)

database
concurrent transactions

o ER

database

database

database
concurrent transactions

verifier |
Are concurrent transactions SER?

sequential execution

concurrent transactions — :
of these transactions

?

. T sequential execution
concurrent transactions —

of these transactions

e Checking view-SER is an NP-complete problem [Papadimitriou 791

?

. 5 sequential execution
concurrent transactions —

of these transactions

* Checking view-SER is an NP-complete problem [Papadimitriou 791

* Challenge: SER doesn’t respect real-time order

» time

W, (x=1)

T1
Rz(X): 0

T2 —@—i

?

. i sequential execution
concurrent transactions —

of these transactions

* Checking view-SER is an NP-complete problem [Papadimitriou 791

 Challenge: SER doesn’t respect real-time order

» time

W,(x=1) R,(X): 0 W, (x=1)
R,(X): 0 72— T F—&—
72 —@—i

T1

Cobra aims at real-world workloads

e Intuition: advances of SAT/SMT solvers

Cobra aims at real-world workloads

 Intuition: advances of SAT/SMT solvers
e Starting point (Papadimitriou’s construction):

Cobra aims at real-world workloads

e |Intuition: advances of SAT/SMT solvers
e Starting point (Papadimitriou’s construction):

concurrent transactions

2 a family of

O graphs

sequential execution
of these transactions

acyclic?

Cobra aims at real-world workloads

 |Intuition: advances of SAT/SMT solvers
e Starting point (Papadimitriou’s construction):

concurrent transactions
?

sequential execution equivalent
of these transactions

a family of
graphs

acyclic?

Cobra aims at real-world workloads

 |Intuition: advances of SAT/SMT solvers
e Starting point (Papadimitriou’s construction):

concurrent transactions
?

sequential execution equivalent
of these transactions .
encoding

SMT solver [— accept/reject

a family of
graphs

acyclic?

Cobra: narrowing the search space

transactions accept/reject

l I

coalescing SMT solver

construct combining | pruning
(MonoSAT)

polygraph writes constraints

a family a family

of graphs

a family
of graphs

of graphs

Cobra: narrowing the search space

transactions accept/reject
construct | | combining | | coalescing o SMT solver
polygraph writes constraints pruning (MonoSAT)

a family a family

of graphs

a family
of graphs

of graphs

Pruning via graph paths (reachability)

 idea: reduce #graphs by adding constraints to the family

Pruning via graph paths (reachability)

 idea: reduce #graphs by adding constraints to the family
1) what constraints can be inferred from reachability?
2) how to get reachability efficiently?

Pruning via graph paths (reachability)

 idea: reduce #graphs by adding constraints to the family

1) what constraints can be inferred from reachability?
2) how to get reachability efficiently?

W, (x=1) (X)->1
T1 l—(

T2

W,(x=2)

Pruning via graph paths (reachability)

 idea: reduce #graphs by adding constraints to the family

1) what constraints can be inferred from reachability?
2) how to get reachability efficiently?

W, (x=1) (X)->1
T '—.(

/ \
{ or
\\ ,l

T2
Wz(X:Z)

Pruning via graph paths (reachability)

 idea: reduce #graphs by adding constraints to the family

1) what constraints can be inferred from reachability?
2) how to get reachability efficiently?

W, (x=1) (X)->1

T1

T2
Wz(X:Z)

Pruning via graph paths (reachability)

e idea: reduce #graphs by adding constraints to the family
1) what constraints can be inferred from reachability?
2) how to get reachability efficiently?

=l o i]:

i o

calculating reachability
using Matrix Multiplication

Cobra can handle 10x larger workloads

RW benchmark: read-only and write-only transactions (50:50)

10x

12
=10
E g * 10k-key DB
- ?
g . * 8 operations/txn
® * 24 concurrent users

better 2 ,

= =+=Mon0SAT
. Z -e-Cobra

0

0 2,000 4,000 6,000 8,000 10,000

number of transactions

users

(D Verify white-box services (Orochi [SOSP'17])

) Verify black-box services (Cobra: verify Serializability) | (GaEase

KV-store cache

search service

@ Build composable verifiable framework (future work) __I~_

73N

(@) Other past work
- Troubleshooting data center networks [NSDI'19]

- Protecting secret via security-oriented offloading [EuroSys'15]

databasej

KV-store cache ‘

search service

e

KV-store cache ‘

search service

Question #1:
How to compose verifications of multiple services?

- users

Question #1:
How to compose verifications of multiple services?

* Challenge: some services do
not respect real-time order

verifier eventual
- Users [(in Orochi)] E consistency
L write(X,1) X=0
=3
O—read(X)
N |«

Question #2:
How to verify various black-box services?

for example, a search service

__keyword search
service

[USETS

- users

[result list]

Verifiable search engine

4 T | ” \ " trust a centralized node for search
Musers ¥) STteemil
" search? <
EOK serers ‘ OpenBazaar J _ download all data and search locally

decentralized services

Verifiable search engine

4 | \ " trust a centralized node for search
1M users) STEE
search? <
5OK seters * OpenBazaar) _ download all data and search locally

decentralized services

* Requirement (challenge): whole search pipeline needs to be verifiable

erawling)—*[indexing }\
Ccrawling)-’[indexing }/

querying

Question #3:
How to verify properties other than execution integrity?

- users

Question #3:
How to verify properties other than execution integrity?

e confidentiality? privacy?

 meta-data privacy?

users verifiable |

infrastructure

Question #3:
How to verify properties other than execution integrity?

e confidentiality? privacy?

 meta-data privacy?

veriti;abt_31;
Y » rules (or laws)? GDPR? CCPA?

- users

General
% Data
Protection

CALIFORNIA
CONSUMER

PRIVACY
ACT OF 2018

X Regulation

A provable GDPR framework for web apps

* Motivation
F—N GDPR compliance? = expensive
4ﬁ| >[service } * fime consuming

. = error-prone
auditor

A provable GDPR framework for web apps

 Motivation
D] GDPR compliance? = |ow-cost
(T >[service } = efficient
)

. ® gccurate
auditor

A provable GDPR framework for web apps

 Motivation
LR GDPR compliance? = |ow-cost
0 bk >{ service J = efficient
O e

_ = accurate
auditor

* Requirements (challenges):
- a machine-checkable GDPR definition
- audit puts zero trust on the service
- audit must be efficient

A provable GDPR framework for web apps

 Motivation
e GDPR compliance? = |ow-cost
0 i) >{ service J = efficient
O e

. ® gccurate
auditor

* Requirements (challenges):
- a machine-checkable GDPR definition
- audit puts zero trust on the service °

- audit must be efficient > Orochi and Cobra can help.

(D Verify white-box services (Orochi [SOSP'17])
@ Verify black-box services (Cobra: verify Serializability)
(3) Build composable verifiable framework (future work)

(&) Other past work
- Troubleshooting data center networks [NSDI'19]

users

| R ——

database

KV-store cache

search service

_rr
Ts
N
I

- Protecting secret via security-oriented offloading [EuroSys'15]

NetBouncer [mezwpsx, NsDI9]
localizing failures in data center networks

without trusting any
failure information from network

* deployed in Microsoft Azure

 detected overlooked failures

infer failures with end-to-end
observation of network packet loss

Verifiable infrastructure
... enables users to verify outsourced services.

databasej |

KV-store cache |

search service

Orochi: Cobra:
verifying white-box services verifying black-box databases

company Amazon Web Services

databasa
web app <‘
request KV store

libraries

| Dana

| employee [

response

‘ iichosdi bugs, attacks,
| employee | — - 0S misconfigs,
trace hypervisor unexpected failures, ...

collector S

What are the (server’'s) CPU/network/storage costs?

CPU Network Storage

trace advice Orochi's
MediaWiki's workload (perreq) (perreq) overhead | | MediaWiki's workload

4.7% MediaWiki's workload 1.0x
7.1KB 1.7KB 11.4%

What are the (server's) CPU/network/storage costs?

CPU Network Storage
trace advice Orochi's
MediaWiki's workload (perreq) (perreq) overhead | | MediaWiki's workload
4.7% MediaWiki's workload 1.0x
phpBB's workload 1.1KB 1.7KB 11.4% phpBB's workload
phpBB’s workload
8.6% | W5
| h./KB 0.3KB 2.7% |
HotCRP's workload HotCRP's workload HotCRP's workload
2.9% 3.2KB 0.4KB 10.9% 1.5x

Orochi imposes small overheads on throughput and latency

—e— baseline
1000 -=— Orochi

2 800 |
5 600
3
= 400 |
200 |
0 50 100 150 200 250 300
throughput (req/sec)

phpBB’s workload

Why Serializability (SER)?

o @

CockroachDB Amazon Aurora

gold standard 20) fundamental

isolation level Q ’ chalfggging

Google Spanner YugaByteDB
(2017) (2017)

