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Verify outsourced services with systems
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 Honest servers can convince users that app is faithfully executed.
 Buggy or malicious servers cannot pass users’' checks.



Execution integrity...

...Is about executing code faithfully.

...IS separate from program verification.
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Accelerating re-execution: a 30,000-foot view
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read(Y) — vy

output(y) « output 0

write(Y, 1)

.r.e.aad(X) —> X«

output(x)

13AIBS
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write 1

r
read

Y's log

r2
write 1

Re-execution according to op logs
wrongly accepts (b)

(b)



r2

X=0, Y=0

write(X, 1)

read(Y) —» vy

output(y) « output 0

write(Y, 1)

read(X) — x

output(x) < output 0

%

13AIBS

X's log

Y's log

1

read | write1
r r2
read | write1

Re-execution according to op logs
wrongly accepts (b)

(b)



r2

X=0,Y=0 Re-execution according to op logs

wrongly accepts (b)

write(X, 1)

read(Y) —» vy

output(y) « output 0

write(Y, 1)

read(X) — x

output(x) < output 0




r2

X=0,Y=0

write(X, 1) ~—=<k

read(Y) -y €-1~

output(y)

write(Y, 1) ==<L
read(X) » x €=+~

output(x)

~

\
i
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rZ/\fl

read ™ yvrite 1

W

19AI8S

\.\
r1EI r2

read | write 1

X Sloos

read

r
read

Y's log

Re-execution according to op logs
wrongly accepts (b)



Solution must consider trace and program

e Validating the alleged op logs requires
 request order (from trace)
e program order (from program)
 operation order (from op logs)

* Consistent ordering verification builds a graph...
..that includes all info above and check acyclicity



Concurrency model

server
requests : :
> write(X, 1) ' advice: X's op log
: shared r1 2
. object X write 1 | read
R s l«—read(X)
responses

* What about simple re-execution according to op logs?



However, the actual problem is harder
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However, the actual problem is harder

r1

% |f read(Y) = 1:
write(X, 1)

r r2 r
. 0 9| read | write
M0 |< (b)
| Y's lo ) r2
JeE 91 read | write1




However, the actual problem is harder

r1

% |f read(Y) = 1:
write(X, 1)

r1 : r2 r
read(Y) — x @ o X's log read | write
D
38 (b)
output(x) LRy : 1 r2
(,[?,'-,0/’ Y's log read | write 1

r2

g




However, the actual problem is harder

7 validating|op logs|requires|program order
% if read(Y) = 1: /\
write(X, 1)
- X'slog| 4
read(Y) — X . L 0 I| read | write (b)
output(x) (,'l%-/ % _ r1 »
éﬂ,‘/ S0P read | writel

getting|program orderirequires|op logs




However, the actual problem is harder

. validating|op logs|requires|program order

rl : r2 rl
read(Y) — x m " X's log read | write1
accelerated w0 2 2 (b)
: 2 : r r
out-of-order J20 Yslog| roag | write

I re-execution

getting|program order|requires|op logs




Orochi has a co-designed verification protocol

5.

re-execution

WA

consistent ordering



Orochi has a co-designed verification protocol
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various checks <

re-execution + consistent ordering



Orochi has a co-designed verification protocol

f >SS

\
Vil

w /‘I—

|

L/

 Verification protocol is proved to be correct ...

Completeness: honest server = verifier accepts

... meaning { N
Soundness: verifier accepts = honest server



Evaluation setup

* Applications:
* MediaWiki, phpBB and HotCRP

 Workloads:
 MediaWiki: Wikipedia 2007 trace

 phpBB: 7-day’s posts from CentOS forum
e HotCRP: Simulation of SIGCOMM'09



|s the verifier efficient?

Orochi's verifier achieves speedups compared to naive replay

800
700

o~
o O
o o

CPU time (s)
wWw B~ M
o O
o O

N
o
o

better

—_—
o
o O

10.9x
A

mPHP mDB m=:Others

5.6x
A

6.2x
A

MediaWiki's workload

| I

Naive
replay

Orochi

phpBB's workload

|

Nalve Orochi
replay
HotCRP's workload



What are the (server's) CPU/network/storage costs?
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What are the (server’'s) CPU/network/storage costs?

CPU Network Storage

trace advice Orochi's
MediaWiki's workload (perreq)  (perreq) overhead || MediaWiki's workload

4.7% MediaWiki's workload 1.0x
/.1KB 1.7KB 11.4%




What are the (server's) CPU/network/storage costs?

CPU Network Storage
trace advice Orochi's
MediaWiki's workload (perreq)  (perreq) overhead | [ MediaWiki's workload
4.7% MediaWiki's workload 1.0x
phpBB's workload 1.1KB 1.7KB 11.4% phpBB's workload
phpBB’s workload
8.6% 1.7x
| /KB 03KB 2.7% |
HotCRP's workload HotCRP's workload HotCRP's workload
2.9% 3.2KB  04KB  10.9% 1.5x




Orochi's verifier

>
7™

advice

delivered

T %ﬁm

Hf

responses)

?

—o

produced
responses

Problem: naive re-execution doesn't save work

Solution: deduplicated re-execution

Problem: concurrent and untrusted server

Solution: co-design verification protocol




Orochi's verifier

'ﬁ. —
advice
delivered
responses [,
> - €<
produced

responses

op logs may be unavailable (e.g., black-box databases)



(D Verify white-box services (Orochi [SOSP'17])
(@ Verify black-box services (Cobra: verify Serializability)

(3 Build composable verifiable framework (future work)

(&) Other past work
- Troubleshooting data center networks [NSDI'19]

users

| E———

database

KV-store cache

search service

7
T
N
I

- Protecting secret via security-oriented offloading [EuroSys'15]



Why Serializability (SER)?

o @

CockroachDB Amazon Aurora

gold standard 20 e fundamental

isolation level 6 ’ chalfggging

Google Spanner YugaByteDB
(2017) (2017)
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database
concurrent transactions

verifier |
Are concurrent transactions SER?

sequential execution

concurrent transactions — :
of these transactions
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. 5 sequential execution
concurrent transactions —

of these transactions

* Checking view-SER is an NP-complete problem [Papadimitriou 791

* Challenge: SER doesn’t respect real-time order

» time

W, (x=1)

T1
Rz(X): 0
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?

. i sequential execution
concurrent transactions —

of these transactions

* Checking view-SER is an NP-complete problem [Papadimitriou 791

 Challenge: SER doesn’t respect real-time order

» time

W,(x=1) R,(X): 0 W, (x=1)
R,(X): 0 72— T F—&—
72 —@—i

T1
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Cobra aims at real-world workloads

 |Intuition: advances of SAT/SMT solvers
e Starting point (Papadimitriou’s construction):

concurrent transactions
?

sequential execution equivalent
of these transactions .
encoding

SMT solver [— accept/reject

a family of
graphs

acyclic?




Cobra: narrowing the search space

transactions accept/reject

l I

coalescing SMT solver

construct combining | pruning
(MonoSAT)

polygraph writes constraints

a family a family

of graphs

a family
of graphs

of graphs




Cobra: narrowing the search space

transactions accept/reject
construct | | combining | | coalescing o SMT solver
polygraph writes constraints pruning (MonoSAT)

a family a family

of graphs

a family
of graphs

of graphs
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Pruning via graph paths (reachability)

 idea: reduce #graphs by adding constraints to the family

1) what constraints can be inferred from reachability?
2) how to get reachability efficiently?

W, (x=1) (X)->1
T1 l—(
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Pruning via graph paths (reachability)

 idea: reduce #graphs by adding constraints to the family

1) what constraints can be inferred from reachability?
2) how to get reachability efficiently?

W, (x=1) (X)->1
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Pruning via graph paths (reachability)

 idea: reduce #graphs by adding constraints to the family

1) what constraints can be inferred from reachability?
2) how to get reachability efficiently?

W, (x=1) (X)->1

T1

T2
Wz(X:Z)



Pruning via graph paths (reachability)

e idea: reduce #graphs by adding constraints to the family
1) what constraints can be inferred from reachability?
2) how to get reachability efficiently?

=l o i]:

i o

calculating reachability
using Matrix Multiplication



Cobra can handle 10x larger workloads

RW benchmark: read-only and write-only transactions (50:50)

10x

12
=10
E g * 10k-key DB
- ?
g . * 8 operations/txn
® * 24 concurrent users

better 2 ,

= =+=Mon0SAT
. Z -e-Cobra

0

0 2,000 4,000 6,000 8,000 10,000

number of transactions



users

(D Verify white-box services (Orochi [SOSP'17])

) Verify black-box services (Cobra: verify Serializability) | (GaEase

KV-store cache

search service

@ Build composable verifiable framework (future work) __I~_

73N

(@) Other past work
- Troubleshooting data center networks [NSDI'19]

- Protecting secret via security-oriented offloading [EuroSys'15]
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Question #1:
How to compose verifications of multiple services?

- users




Question #1:
How to compose verifications of multiple services?

* Challenge: some services do
not respect real-time order

verifier eventual
- Users [ (in Orochi) ] E consistency
L write(X,1) X=0
=3
O—read(X)
N |«




Question #2:
How to verify various black-box services?

for example, a search service

__keyword search
service

[ USETS

- users

[result list]




Verifiable search engine

4 T | ” \ " trust a centralized node for search
Musers ¥ ) STteemil
" search? <
EOK serers ‘ OpenBazaar J _ download all data and search locally

decentralized services



Verifiable search engine

4 | \ " trust a centralized node for search
1M users ) STEE
search? <
5OK seters * OpenBazaar ) _ download all data and search locally

decentralized services

* Requirement (challenge): whole search pipeline needs to be verifiable

erawling)—*[ indexing }\
Ccrawling)-’[ indexing }/

querying




Question #3:
How to verify properties other than execution integrity?

- users




Question #3:
How to verify properties other than execution integrity?

e confidentiality? privacy?

 meta-data privacy?

users verifiable |

infrastructure




Question #3:
How to verify properties other than execution integrity?

e confidentiality? privacy?

 meta-data privacy?

veriti;abt_31;
Y » rules (or laws)? GDPR? CCPA?

- users

General
% Data
Protection

CALIFORNIA
CONSUMER

PRIVACY
ACT OF 2018

X Regulation




A provable GDPR framework for web apps

* Motivation
F—N GDPR compliance? = expensive
4ﬁ| >[ service } * fime consuming

. = error-prone
auditor
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- a machine-checkable GDPR definition
- audit puts zero trust on the service
- audit must be efficient



A provable GDPR framework for web apps

 Motivation
e GDPR compliance? = |ow-cost
0 i) >{ service J = efficient
O e

. ® gccurate
auditor

* Requirements (challenges):
- a machine-checkable GDPR definition
- audit puts zero trust on the service  °

- audit must be efficient > Orochi and Cobra can help.




(D Verify white-box services (Orochi [SOSP'17])
@ Verify black-box services (Cobra: verify Serializability)
(3) Build composable verifiable framework (future work)

(&) Other past work
- Troubleshooting data center networks [NSDI'19]

users

| R ——

database

KV-store cache

search service

_rr
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N
I

- Protecting secret via security-oriented offloading [EuroSys'15]



NetBouncer [mezwpsx, NsDI9]
localizing failures in data center networks

without trusting any
failure information from network

* deployed in Microsoft Azure

 detected overlooked failures

infer failures with end-to-end
observation of network packet loss




Verifiable infrastructure
... enables users to verify outsourced services.

databasej |

KV-store cache |

search service

Orochi: Cobra:
verifying white-box services verifying black-box databases



company Amazon Web Services

databasa
web app <‘
request KV store

libraries

| Dana

| employee [

response

‘ iichosdi bugs, attacks,
| employee | — - 0S misconfigs,
trace hypervisor unexpected failures, ...

collector S
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What are the (server's) CPU/network/storage costs?

CPU Network Storage
trace advice Orochi's
MediaWiki's workload (perreq)  (perreq) overhead | | MediaWiki's workload
4.7% MediaWiki's workload 1.0x
phpBB's workload 1.1KB 1.7KB 11.4% phpBB's workload
phpBB’s workload
8.6% | W5
| h./KB  0.3KB 2.7% |
HotCRP's workload HotCRP's workload HotCRP's workload
2.9% 3.2KB  0.4KB  10.9% 1.5x




Orochi imposes small overheads on throughput and latency

—e— baseline
1000  -=— Orochi

2 800 |
5 600
3
= 400 |
200 |
0 50 100 150 200 250 300
throughput (req/sec)

phpBB’s workload



Why Serializability (SER)?

o @

CockroachDB Amazon Aurora

gold standard 20 ) fundamental

isolation level Q ’ chalfggging

Google Spanner YugaByteDB
(2017) (2017)




