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Search-ads is an important product in computational advertising. In order to achieve high performance
in search-ads, it is critical to improve ad-copy relevance and click through rates. Traditionally, the onus
has been on advertisers to come up with an ad-copy and set up appropriate bids that can achieve
these challenging objectives. Thanks to the emergence of Al and machine-learning technologies, we
can simplify both the bidding and ad-copy generation processes. Responsive search ads (RSA) is an
emerging product in this direction that tackles the ad-copy generation piece. RSA provides advertisers
with sufficient control over the ad-copies that can be shown for their products by giving them the
option of providing components (title and description assets) of the ad-copy, as opposed to the
ad-copy itself, and tackling the assembly of these components dynamically at runtime. This allows us
to take into consideration query and user contextual information and produce better ads. Even with

a small number of assets, there are many potential asset combinations. In this work, we propose a
large-scale logistic-regression model, combined with a sequential contextual-bandits framework that
allows us to assemble high-performing ad-copies at runtime. We have productized our algorithms as
part of Bing Ads. The shipped models have achieved 6% adoption based on servable customer count
and have already shown increasing daily revenue as well as promising marketplace KPI trends of all up
Revenue-per-Mille (RPM), Click-Yield (CY) and Impression-Yield (IY) in just a few months’ time. In this
paper, we will discuss the modeling details, evaluation techniques as well as online flight metrics with
real search traffic from bing.com.




1. Introduction
In digital advertising, a text ad (TA) that shows up along

with search results, also known as a search ad, is composed
of titles, descriptions, typically referred to as assets, and other
pieces of information. An anatomy of a search ad from bing.
com is shown in Figure 1. It is interesting to observe that
not only the ad-copy is intelligible but also the individual
assets — titles and descriptions — make sense when viewed in
isolation (Hillard et al., 2010; Shaparenko et al., 2009).

Responsive Search Ads (RSA) is an emerging ad product
that takes advantage of the above observation to simplify
the ad-creation and testing process. It requires advertisers
to provide individual title and description assets, as opposed
to providing the entire ad-copy. At runtime, RSA exploits
machine learning to optimize each ad by mixing and
matching the headlines and descriptions to produce different
ad-copies for the same search ad.

Figure 2 shows an overview of the RSA product. Advertisers
provide 3 - 15 titles and 2 - 4 descriptions as part of the ad-
creation process. Given that each RSA ad contains 3 title
positions and 2 description positions, these pieces can be
combined in approximately 32,000 ways for the maximum
case. Each combination of an RSA ad has specific relevance
to a query and likelihood of being clicked by a user. RSA
utilizes a machine-learning model to select a combination
that can maximize both metrics at runtime.

In this paper, we present details of this machine-learning
model along with offline and online results. Specifically, we
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utilize Logistic Regression (LR) for predictive modeling and
augment it with an exploration mechanism based on the
sequential contextual-bandits framework (Beygelzimer et al.,
2011; Dudik et al., 2011; Bietti et al., 2010; Zhang et al., 2019).
We have shipped this model to general availability (GA) in
January 2020, and it currently serves live traffic from bing.
com in USA and several international markets.

Figure 3 shows the increase in adoption of the RSA product
in terms of customer volume, revenue, impressions, clicks and
conversions. This is an important product for bing.com and
we continue to see increased adoption across all geographies
and advertiser groups.

2. RSA Modeling

As mentioned before, the problem that we tackle is to
simultaneously estimate the relevance of an ad-combination
to a query and its likelihood of being clicked by a user at
runtime. In this section, we present details of the objective
function that we utilize followed by the prediction and
exploration models.

‘ Prescription Glasses From 824‘— Up To 70% Off + Free Shipping.
https://www.glassesusa.com/online ~ GlassesUSA
Ad |T0|3 Brands. Free Quality Lenses.”free Shipping & Returns. Money Back Guara mee.|

Prescription Eyeglasses - From $19.00 - Premium Brands - From $50.00 - Ray Bans - From $68.00

Women's Glasses

Shop the Latest Fashion Trends
Great Selection and Big Savings.

Men's Glasses

Huge Collection of Frames for Men.

Shop Our Latest Styles And Save.
Figure 1: A search ad a.k.a. text ad comprises titles and descriptions
(shown as boxes), sitelinks and other decorations.

Possible ad combinations: approx. 32k total

Advertiser input for ad

[each contains 3 headlines and 2 descriptions]

Headlines or Titles {(minimum 3, maximum 15}
+  New York Budget Hotel
+  Best NY Hotel Rates in Seconds

Example.com Official Site | New York Budget Hotel | Starting at $50/night
—»| Book Cheap Hotels in New York NY, Fast, Secure & No Cancellation Fee!
Collect 7 Nights and Get 20% Off. Amenities: Free Wi-Fi, Breakfast, Pool, Gym

+  Students save 20%

E] Low price guarantee
+  Example.com Official Site
+  Upto 30% Off Your Stay

Best NY Hoetel Rates in Seconds | Low price guarantee Book comfortable
—®| hotels in New York City. NYC Hotel Options For All Occasions: Family,
Vacation, Business Travel & More,

+  Book Directly on Official Site
«  Starting at $5C/night

*  Best Prices, Great Prices

» m » Combination x

Select optimal

combination

!
Descriptions {(minimum 2, maximum 4)
+  Book comfortable hotels in New York City
+  Collect 7 Nights and Get 20% Off. —
Amenities: Free Wi-Fi, Breakfast, Pool, Gym
+  NYC Hotel Options For All Occasions:
Family, Vacation, Business Travel & More.
. Book Cheap Hotels in New York NY. Fast,
Secure & No Cancellation Fee! L »l

Figure 2: RSA simplifies ad-creation process. It requires advertisers to provide headline (up to 15) and description (up to 4) assets. It
utilizes machine-learning to select assets and stitch together an ad-copy depending on the user and query context at runtime.



216 MSJAR — Research paper

2.1. Objective Function

In online ads serving, the generated combinations of RSA
will be passed to the downstream stage of auction. Only ads
with relatively better quality and click through rate could win
the process and thus not be filtered. To model the RSA asset
stitching as a supervised learning problem, we approximate
the two RSA goals (relevance of ad-combination to query
and its likelihood of being clicked by a user) through winrate,

which is defined per asset combination as follows:

. number of times ¢; wins in auction
winrate(c;) =

number of times ¢; participates in auction

We denote the specific asset combination we are evaluating
as ¢;. Winrate measures how often an ad-combination wins
an auction. It implicitly captures the required relevance and
click metrics for RSA ads. This is because to win an auction,
we select asset combinations that have a high Ad Rank (also
known as Rank Score), which is computed as follows:

Ad Rank = CPC Bid x Quality Score

Cost-per-click (CPC) bid depends on extraneous factors
such as advertiser budgets. However, quality score is based

All Up Revenue

Number of Serving Customers

Impressions

Clicks

on the expected click through rate (likelihood that the
asset combination will be clicked) and ad relevance (how
closely the asset combination matches the intent behind a
user’s search query). Thus, a high ad rank, and in turn a high
win rate, is a reasonable proxy for the RSA goals. Another
reason we select winrate as the objective is because it is easily
measurable in our online system.

2.2. Prediction Model

'The key challenge we have in the prediction problem is that
at training time we have labels per asset combination i.e.,
whether an asset combination won or lost the auction. We
can indeed train a supervised learning model with these
labels per asset combination. However, at the time of online
inference, we are not able to score all possible combinations
that can be derived from a set of assets. This is because, we have
many combinations, specifically 15x14x13x5x4 = 32,760 in
the maximum case. Therefore, we rely on domain knowledge
that the initial asset positions have a greater influence over
the win or loss outcome than the later positions in the
asset combination. Therefore, at scoring time, we utilize a
subsection of the supervised model to sequentially select
assets per position starting from the first position. In the

of this section, we present more details about this model.

Revenue WoW Growth

|
|

r{. : \r’\f"/\j\'\ AdType ClickShare = RevenueShare

STA 7.57%
RSA 5.21%
EXTA+ 37.57%
EXTA 47.55%
DSA 2.10%

5.02%
7.09%
42.50%
43.43%
1.96%

Conversions

Figure 3: RSA has achieved 6% adoption based on servable customer count and increasing trends in revenue, impression volume, clicks,
conversions and share with respect to other existing ad products such as STA (search text ads), EXTA (extended text ads) and DSA (dynamic

search ads).

e TERM PAIRS(QUERY,TITLE2)

e ASSET LENGTH=4
e ASSET UNIBIGRAM:

1.H(USED)_X_H(YOUR)
2.H(USED)_X_H(PERFECT)

1.H(YOUR) 3.H(USED)_X_H(USED)
2.H(PERFECT) 4 H(USED)_X_H(BMW)

3.H(USED) 5.H(BMW)_X_H(YOUR)

4 H(BMW) 6.H(BMW)_X_H(PERFECT)

5.H(YOUR PERFECT)
6.H(PERFECT USED)
7.H(USED BMW)
e ASSETHASH:
H(YOUR PERFECT USED BMW)

7.H(BMW)_X_H(USED)
8. H(BMW)_X_H(BMW)
9.H(SALE)_X_H(YOUR)
10.H(SALE)_X_H(PERFECT)
11.H(SALE)_X_H(USED)
12.H(SALE) _X_H(BMW)

FEATURETYPE FEATURECOUNT
ASSETLENGTH 12
ASSETUNIBIGRAM 2,293,786
ASSETHASH 2,270,935
QHASHXMHASH 744,835,090
QTERMHASHXMHASH 239,728,387
QHASHXMTERMHASH 2,808,982,178
QTERMHASHXMTERMHASH 333,747,210
QLENXMLEN 124
QMATCHEDTERMXMHASH 3,212,554
QLENXMATCHEDLEN 116
MLENXMATCHEDLEN 106
QUNMATCHEDTERM 18,246,665
MUNMATCHEDTERM 193,890
QMATCHEDXQUNMATCHEDTERM 29,209,946
MMATCHEDXMUNMATCHEDTERM 2,299,811
QMATCHEDTERMXQMATCHEDTERM 1,058,988
QUNMATCHEDXMUNMATCHTERM 320,807,043

Tabke 1: On the left is an illustration of certain feature vector component for title 2. On the right is the full feature vector dimensionality,

broken down by components for title 2.
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Feature design. We utilize several features available in our
system that capture structural details and textual content of
the asset combinations. Specifically, we use string length,
unigrams and bigrams from the asset text. We also cross
these with the query text to produce a total sparse feature
dimensionality per position of approximately 4B. Consider
the search results shown below for a query “used bmw
sale”: take title 2 (i.e., “Your Perfect Used BMW?”) as an
example. The following is an example list of feature vectors
that we extract. The full dimensionality of the feature vector
components is also shown in Table 1 below on the right.
At training time, we further cross the full feature vector
set with position, add a global bias value and train an LR
model as shown at the left in Figure 4. Due to business
logic constraints, we are restricted to stitching an asset-
combination that comprises five positions, namely three titles
and two descriptions. Suppose X represents the combined
teature vector from all five positions, i.e., X = [ X}, X;, X3, X},
X;],and Y (equal to O or 1) represents the logged win or loss
outcome for that specific asset combination. The LR model
predicts the following probability:

PY =1|X;W) = f(X,W) =c(WTX +)

where W is the 5x4 billion dimensional weight vector that is
learnt to minimize the binary cross-entropy loss J(w) over
M training examples as follows:

M
JW) = —% ;Y(’)logP(Y = 1)+(1-YD)logP(Y = 0)
At inference time, we have up to 32,760 combinations of
assets that need to be scored with the LR model. However,
as mentioned before, this is not feasible to be evaluated in
real time. To fit our system-level constraints, we make some
simplifying assumptions. It is a known fact that the first few
positions in the title have more influence over the relevance

Training

e

Tid}el Title2 Title3 Descl Desc2 Global bias
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and click-through rate metrics of an asset combination.
Therefore, we perform a sequential per-position asset
selection as shown at the right in Figure 4.

We utilize part of the trained LR model to score all available
assets for position 1 (using weights /7). Based on the
predicted scores, we select the asset that achieves the highest
winrate, after the exploration process described in the next
section, for this position — shown as Asset 2 in Figure 4. We
exclude this asset from the asset list and continue the scoring
process for subsequent positions. Thus, we perform a greedy
selection according to the following:

P(Y = 1X; W) = f(X;, Wi, b) = (WX, +b),i € [1,5]

Thus, by breaking down the LR model, we can select assets
by scoring only 49 assets per-user-query online — 15 assets in
position 1,14 in 2,13 in 3,4 in 4 and 3 in 5. The first three
are titles and last two are descriptions.

2.3. Exploration model

We train the logistic regression model each day with new
data that is collected as a result of RSA asset combinations
being shown to users based on the previous days model.
To provide low-performing assets a chance to be shown to
users (these cases may also have a high winrate), and thereby
debias our future training data by generating combinations
that are likely to lose in the auction, we include a mechanism
for exploration. This mechanism also helps us overcome
some of the approximations that we have made at inference
time to predict the online win or loss outcome by sequential
per-position asset scoring as opposed to scoring at the level
of asset combinations.

If we were to score all asset combinations there are 32,760
possible combinations, which are not only computational
expensive to score by LR but also lead to a large action space

Inference

Asset2  Asset3 Assetl

Assetl Assetl Assetl
Asset? Asset2z Assei2
Asset3 Asset3  Asset3
Assetd Asset4  Assetd

Figure 4: At training time, we cross the feature vectors with position, add a global bias and train a LR model with winrate as the objective.
At inference time, we perform a sequential greedy asset selection starting from the first position.
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tor the exploration model. Unless we have a very large amount
of data, it is well-known that common contextual bandit-
based exploration algorithms do not perform well when they
have a huge action space (Abernethy et al., 2013). There are
related approaches that solve similar problems through set-
level estimation (Zaheer et al., 2017). However, since we break
down our prediction problem into per-position scoring, we
can formulate exploration as a sequential contextual-bandits
(CB) problem. The sequential CB exploration framework
of RSA is shown in Figure 5. Specifically, we maintain five
sets of CB policies or models, one per each asset position.
The CB policies consume the LR scores and the features
for each asset position to select an asset for each position.
As mentioned before, since we do a sequential selection of
assets, the action space for the policies, also denoted by arms
in Figure 5, gradually reduces from 15 in position 1 to 14 in
position 2 and so forth.

There are many options to choose for the CB policy. Typically,
such problems are best solved through e-greedy methods,
where we randomly select an action in each step with some
small probability, upper confidence bounds (UCB) (Li et al.,
2010; Chu et al., 2011) where we employ some heuristics to
estimate a confidence bound for the reward function so that
the true value of the estimated reward using past experiences

Asset3

Asset2

is within that bound with high probability, or Thompson
Sampling where we select an action according to the
probability that the action is optimal according to a specific
underlying model (Agrawal and Goyal, 2017; Chapelle and Li,
2011). Thompson Sampling is a randomized policy and has
been shown to have near-optimal regret (Agrawal and Goyal,
2017). Thus, we utilize it as the exploration model for RSA.

In our case, the action per-query per-position is the selection
or rejection of a particular asset. The reward function is the
outcome of the auction, which is a binary random variable.
Thus, it follows a Bernoulli distribution. Suppose the
probabilities of winning and losing the auction are denoted
by p and (1 — p), respectively. Further assume the winning
outcome p follows a beta-distribution, which is a conjugate
prior of the Bernoulli distribution. Thus, we have:

P(p) = Beta(a, 8),a = Npand = N(1 — p)

acand 3 are parameters of the Beta distribution that allow us
to control the level of exploration and exploitation during the
decision-making process. These are dynamic parameters that
are updated when we see the true outcome (auction win or
loss) after performing the auction online. NVis the number of
observations which is the sum of all auction wins plus losses
that have been made for the reward function at the time of

- Assetl Assetl Assetl
Asset2 Asset2  Asset2
Asset3 Asset3 Asset3d
| Assetd  Asset4  Assetd
b A v ﬁ
Arms | $50/night Example.com Official Site ~ Low price Budget Hotel Update
Features XAssetl XAsset2 xAssets X Assets Poli cy
LR Scores PAssetl PASSetZ ‘ PAsset3 PASSetq_
2wz I — i
w - N = Observe

Picked asset for Titlel

T

Stitched asset combination

Example.com Official Site | New York Budget Hotel | Starting at $50/night
Book Cheap Hotels in New York NY, Fast, Secure & No Cancellation Fee!
Collect 7 Nights and Get 20% Off. Amenities: Free Wi-Fi, Breakfast, Pool, Gym

Picked asset for Title2

Win/Loss

L)

Push the combination to
‘ participate in ad auction

Picked asset for Desc2

Figure 5: We select asset combinations after exploration with sequential contextual bandits. The CB model consumes the LR scores and
features from each asset to select the one that has the most likelihood of success.
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the sequential decision-making process. Smaller values of
B and N lead to more exploration and larger values lead to
more exploitation of the current logistic regression model as
illustrated in Figure 6.

In our case, as we're doing a sequential per-position scoring,
recall that the maximum asset numbers we need to score for
each of the five positions are: 15,14, 13, 5 and 4 respectively,
in total 49. Thus we maintain in total 49 Beta distributions
across all five positions as proxies for the posterior distribution
of win-loss probabilities for each asset. For the first position,
we sample 15 Beta distributions to estimate the probability
of auction win for 15 assets, and then pick the asset that
has the highest posterior probability value. We remove
this particular asset from further evaluation. We move on
to the second position and sample 14 beta distributions for
the 14 assets, pick the asset that has the highest posterior
probability value and then move on to the third, fourth
and fifth positions for a similar evaluation. The sequential
exploration process is illustrated in Figure 7.

In order to have the posterior probability depend on the
asset text, we would like the Beta parameters to be computed
from LR score and features that are available per asset. o
and 3 already depend on the LR score (predicted win or
loss probability). However, we need to come up with a good
heuristic for the trial count V. For this, we utilize the gradient

Bernoulli likelihood with Beta(1,1) prior

With Beta(10,10) prior
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sum of the triggered features from the LR model and scale it
with an adjustment factor (ratio).

AdjustmentRatio

f(gradient sum from model)

In other words, as the LR model sees more and more data,
its gradient sum becomes larger. f(-) is inverse proportional
to the gradient sum. Therefore, the value of NV gets larger.
Thus, the model becomes more confident and reduces its
exploration. The adjustment factor is a hyperparameter that
helps keep the value of N within reasonable bounds.

3. Offline Experimental Evaluation

In this section, we present experimental results that validate
our methodology on offline logs. In the next section, we
present results from online flighting of the model; flighting
refers to shipping the model and assigning live search traffic
to it. An overview of the experimental framework is shown

in Figure 9.

We utilize historical logs to train the LR model. We create
a new log called IndexP log, which records all the asset
combinations that participate in the auction; earlier, the
existing IndexP log stored only those asset combinations
that won the auction which ran in Listing Server and the

With Beta(10,10) prior (increased N)

= Likelihood
= Prior
== Posterior w -

T T T T T T

15
I

= Likelihood
= = Prior
= Posterior

— Likelihood
= = Prior
- - Posterior

10
I

0.0 0.2 0.4 08

p
Figure 6: Smaller values of cv, 8 and N lead to more exploration — wider range of the sampling probability on z-axis.

Asset Position: Title 1

Provided assets [ A, A, o A ]
- v !
Probability distribution of WinRate

Voo :

Sampled probabilities[ p,, P2 e P |
1 !
i
Pick asset that has maximum
probability value

Figure 7: Samples are drawn from 15 Beta distributions in the first position and then the asset correspon

Title 2 Title 3 Description 1 | Description 2

|

I

|

|

|

|

| Repeat process for each asset position
|

| I

1 [
I |
I |
|

Q= = = = — -

ing to the highelst Beta score is

selected for that position. Evaluation continues in a sequential manner across other positions.
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hightest score lose one. The outcome of Listing Server is
from a compute engine called the Delivery Engine (DE),
which includes other components besides the ads auction.
Furthermore, we create a new service in Creative Store called
Caique. This service is where the RSA LR and exploration

models run online.

For offline evaluation, the metrics we use are the loss of
the LR model and Area under the curve (AUC) of the
receiver operating characteristics (ROC) which are common
performance measurements for classification problems (Yi et
al.,, 2013). However, since in the RSA ad-stitching task, the
ranking process is among assets within an asset combination,
as an approximation, we compute additional metrics such
as per-advertiser winrate. Furthermore, in order to get an
estimation of winrate offline for any new models, we employ
an offline simulation based IPS scoring method.

Offline winrate simulation. When evaluating model's
winrate through its own online traffic, different models
have selection bias because of different distributions when
selecting the samples. In offline evaluation, our target is to
evaluate a new policy (model) using another existing policy's
samples and labels of win or loss. A common strategy to
remove this bias is propensity score weighting (Dudik et al.,
2011; Chan et al., 2010). Basically, we re-weight ad samples
with weights inversely proportional to the probability

Asset Position: Title 1

Provided assets [ A,,

!

Feature Extraction
(ad, asset, position, query)

A, .

Term features (unigrams,
bigrams etc.), counts, more

|

LR model to compute
(a, B) values

Title 2

l«— Historical logs
(ads, assets, queries)

of selection. The resulting score is also known as inverse
propensity score (IPS). Suppose we have logged data of some
base policy 7 for each ad Ad;, which consists of up to 15
title assets and 4 description assets, in our system in the form
of D; =(x1,a1,p1,71)s - (Tn, ny DnyTn), where a; is the
asset combination from various asset combination options
in this ad for which an action is logged in the system; x; is
the features corresponding to asset combination a;; p; is the
probability that the asset combination a; is selected by the
base policy 7y and r; is the reward obtained when this asset
combination was produced, which is auction win or loss in
our case. In order to estimate the winrate of ad Ad; under
the assumption that it is processed by some new policy m,
instead of the logged base policy 7, we can compute the IPS
score as follows:

1PSa, =3 {P(M(%’) = aj)rj

i=1 Pi

where 7, (z) is the action with maximum predicted winrate
among all asset combinations of the Ad; under new policy 7,
and P(m,,(z;) = a;)is the probability that asset combination
a; had that maximum value. P (7., (x;)=a;)/p; is the
IPS re-weighting factor.

To evaluate the efficacy of the CB framework, we utilize
a randomized exploration scheme (referred to as Phase 1)

; Title3 | Description1l | Description 2

Repeat process for each asset position
1 1 1
1 1 1
1 1 1

Selected listing

Creative

IndexP
Log

IndexP

- Listing
Server

Auction

Log

Uncertainty Success probability Ads —win DE auction
(from LR gradients) (from LR output)
-- Exploration
Posterior distribution of auction v
outcome (conjugate prior) [ Beta,(Np, N(1 —p), Beta,(-,-), ., Beta;s(-,)]
v # .
Sampled probability values | P1 P, ey Pis ]

Pick asset that has maximum probability value
Figure 9: Our experimental framework relies on historical logs to train the LR model. We utilize the LR model to estimate the parameters

of the Beta Distributions used in Thompson Sampling.



as well as a lookup-based approach, where we utilize
historical logs directly to estimate the parameters of the Beta
distribution i.e., no LR model (referred to as Phase 1.5).
We compare these approaches to the proposed approach
(referred to as Phase 2). There are several asset combinations
that are possible for each of these approaches. And, as shown
in Figure 8, we pick combinations that intersect and evaluate
the ad-level winrate using the IPS estimates above for each
of these policies. As observed from the results in Table 2,
we see that the proposed LR+SCB (logistic regression +
sequential contextual bandits) Phase 2 approach achieves the
highest per-ad win rate across all policies.

P2

P1.5
P1 traffic

All possible
combinations

Figure 8: We use intersecting combinations across all.

MobEeL ListingAD WINRATE DELTA StoDEV
PHASE 1 103,071 8.30%

PHASE 1.5 103,071 8.48% 213% 0.072%
PHASE 2 103,071 8.60% 3.59% 0.074%

Table 2: LR+SCB model achieves the highest per ad winrate across
combinations of 100k ads that we evaluated. The delta compared
to a random exploration policy is 3.59%.

3.1. Prediction model results

In this section, we discuss impact of different hyperparameters
on the modeling objective. Figure 10 shows that contextual
teatures, which are currently captured by query-level

AUC vs. Feature Set
98% 93.00%

91.13%  91.3%%

90.88%

93% 92.00%

0.21%
5% 91.00%

83% u
3 90.00%

78%
85.00%

m—TrainAlUC
73%
e VA lidAUC

88.00%
68% 65%,
87.00%

v3Plus 1 2

63%

Phasel.5 vl v2 v3

3
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information and by user-level information (future work),
have high prediction power for winrate. More specifically, the
LR+SCB model itself (v1) brings 26% AUC lift compared
to the case where we do lookups based on historical logs
(Phase 1.5). Furthermore, adding query features (v2) brings
an additional AUC improvement of 11%. We observed
that tuning L, parameters in FTRL (McMahan et al., 2013)
leads to a smaller model size with little impact on the AUC.
For instance, adding L,=2 and 3 for title and description,
respectively, leads to a validation AUC drop of about 0.36%
but leads to almost 80% of the weights to be zero. This sparse
model can be stored and served efficiently. We also tweaked
the learning rate to 0.03 for FTRL. We note that one epoch
of training on our daily data takes about 7 hrs. Training a
second epoch takes the same amount of time but provides
only 0.08% AUC lift. Therefore, we stick with a single pass

over the data (single epoch) for training.

However, we continue to train the model each day by adding
new demand — new RSA data from that day — to the training
data. Figure 10 (b) shows the AUC drop when we use the
same model over multiple days. And Figure 10 (c) shows the
change in demand over multiple days.

4. Online Flight Results

We utilized data from the newly created IndexP log to train
the model and deploy it as a new service in Caique (see Figure
9). The offline model had roughly 4Bx5 = 20 B features for
the LR model, which was cut to 330Mx5 = 1.65 B features
for online serving. The daily training job utilizes 20 machines
and has a training time of 7 hours per day. The input sample
size is 16 B per day and data size is 13 TB per day (we store
90 days of data for the experiment). In the next subsection,
we present cross validation and winrate measurement results
from the online flight. In the following subsection, we
present market level key performance indicators (KPIs) that
are important for the RSA product.

Number of RSA Ad Listings
800,000,000 <

00,000,000

Count

400,000,000+

200,000,000

Tz 05-18 0524

uTc

03-30 10-06

4 5 6 7

DelayDays

Figure 10: (a) Our model (v1) improves over a model that is completely based on lookups (Phase 1.5). Adding contextual features (v2)
lifts this score by an additional 11%. More specific query features (v2, v3 and v3 plus) provide further gain. (b) AUC drops when the same
model is used over multiple days because of (c) increase in RSA demand over time.


v-shla
Comment on Text
add a little more spacing

v-shla
Highlight
hours.


222 MSJAR — Research paper

4.1. AUC and WinRate Measurements

high per-advertiser winrate are at the top. We observe from
the figure that the RSA Phase 2 model has more proportion

Date/AUC Phasel.5 Phase2 DiffRatio . i 3 3 )

01/27/2020  62.33% 84 569% 35 66% of advertisers with higher per-advertiser winrate when

01/28/2020  62.04% 31 10% 135559 compared to Phase 1.5 and Phase 1.

01/29/2020 61.91% 84.95% +37.22%

01/30/2020 61.92% 84.57% +36.56% Date/Winrate Phasel Phasel.5 Phase2

01/31/2020 62.26% 84.38% +35.54% 10/21/2019 4.80% 7.59% 7.96% (+4.92%)

02/01/2020 63.54% 84.85% +33.54% 10/22/2019 4.90% 7.61% 8.06% (+5.87%)

02/02/2020  63.80% 84.95% +33.16% 10/23/2019  4.89%  7.50%  7.92% (+5.53%)

;I':I;I::S:ePlhg?e 2 provides over 30\% lift in winrate AUC compared 10/24/2019 4.83% 7.39% 7.77% (+5.18%)
10/25/2019 4.77% 7.34% 7.67% (+4.61%)

Table 3 shows cross validation results between the control
model, which is the log-based asset selection model (Phase
1.5), and the treatment model, which is the proposed
approach (Phase 2) on treatment traffic. The treatment model
has over 30% overall AUC gain compared to the control
model over all 7 days of testing. The AUC sliced by number
of ad combinations is shown in Table 4. The impression ratio
(ImpRatio) columns shows the percentage of ad samples
that appear for specific slices of possible combination count
(depending on the number of assets provided by advertisers).
The ListingAdRatio gives the percentage of ad-groups and
AdvertiserRatio column shows the number of advertisers
who fall into each bucket. From the table, we see that the
winrate AUC generally reduced as the number of possible
combinations increase. This is consistent because as the
action space gets larger, both the exploration mechanism and
the sequential LR approximation become weaker.

Table 5 shows the sample level winrate that is achieved for
the asset combinations produced by different models. The
Phase 2 model achieves the highest winrate across all model
options that we evaluated. Figure 11 shows the per-advertiser
winrate percentage as a CDF computed over ratio of total
advertiser count. Advertisers with smaller per-advertiser
winrate are at the bottom of the y-axis and advertisers with

Table 5: Per sample winrate computed as an average over all
RSA samples.

Advertiser WinRate distribution CDF [20191021]

1
09
08
0.7
06
05
0.4
03
0.2
0:1

0

Phasel

= Phasel.5

e Phase?

Cumulative Advertiser Ratio

15 91317212529333741454953576165697377818589
Advertiser WinRate Percent

Figure 11: Phase 2 RSA model has the highest value of per-
advertiser winrate.

4.2. Market level KPIs

There are several market-place metrics that matter in
computational advertising (Yi et al., 2013). Top part of Table
6 shows the flights metrics for RSA Phase 2 model that
was shipped into production compared with the Phase 1.5
model. Just looking at the key metrics, we observe that there

Combination ImpRatio AdRatio AdvertiserRatio Phasel.5 Auc Phase2 Auc DiffRatio
ALL 100.00% 100% 100% 61.9% 84.6% +36.56%
CoMmCNT < 73 10.85% 4% 17% 62.1% 84.9% +36.78%
ComCNT € [73, 361) 10.79% 6% 21% 58.6% 83.2% +41.95%
CoMCNT € [361; 4032) 15.14% 7% 30% 57.6% 81.7% +41.84%
CoMCnNT = 4032 10.56% 15% 6% 79.3% 89.1% +12.31%
CoMmCNT € [4033; 32760) 10.12% 7% 18% 56.2% 81.7% +45.50%
CoMCnNT = 32760 42.24% 60% 8% 61.1% 84.8% +38.77%

Table 4: Fewer number of asset combinations per RSA ad show higher AUC lift, which is consistent with the modeling approximations that
we make that are directly proportional to the complexity of the action space.
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is an increase in MLIY (main-line impression yield), MLCY
(main-line click yield) and PxMLIY (main-line impression
yield in terms of pixels). Higher value of these metrics
demonstrate that more RSA ads are being impressed and
clicked more compared to the control model.

'The middle part of Table 6 shows that the metrics when we
replace the LR model with a DNN and the bottom part shows
them when multiple asset combinations are selected and sent
to the auction, as opposed to a single combination. In all cases
there is a cumulative increase in both click yield and impression
yield. In terms of revenue, these translate to increased revenue-

per-mille (RPM), as again seen from the tables.

International status. The results shown in Table 6 are for
the EN-US market. We have also deployed these models in
international markets (EMEA, APAC and others). Table
7 shows the KPIs for these markets and like the EN-US
market, these metrics are in line with expectation and are on
the positive side.

5. Conclusions

In this white paper, we proposed to solve the problem
of asset stitching for a new type of ad product called
Responsive Search Ads. We approximate the complex search
space through a sequential scoring model, utilize contextual
teatures based on user-issued queries and explore different
combination choices via a per-position Thompson Sampling
methodology. We demonstrate that the AUC over auction
wins and losses for the stitched ads increased by up to 30%
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compared to a model that is totally count based. Our model
enables us to utilize semantic information within the asset
text and exploits query-based features to more accurately
capture the user intent. By measuring marketplace metrics
over the shipped model in production across different
geographies, we observe an increase in click yield (CY) and
impression yield (IY'), which lead to an increase in revenue-
per-mille (RPM) for the Bing Ads product.

Next steps. We plan to include user-based features and
counting features, and also improve the LR model with a
more complex architectures such as a DNN or RNN for
predicting the winrate of the stitched asset combinations.
Through this model, we have learnt that it is critical to
capture query and user intent in the ad-creation process. It
is also important to build models that can work well across

all geographies.

FueHT NAME RPM CPC CcY 1Y CTR MLCY MLIY PxMLIY Latency
PHase2 LR VS. PHasel.5 0.22% 0.28% -0.06% 0.03% -0.10% -0.04% 0.03% 0.08% 3.23%
RSA SEGMENT 31.26% 22.58% 7.08% 5.76% 1.25% 9.39% 552% 32.71%
PHase2 DNN VS. LR 0.04% -0.04% 0.07% 0.11% -0.03% 0.06% 0.11% -0.04% 0.12%
RSA SEGMENT 1.74% -4.99% 7.08% 7.29% -0.20% 6.79% 7.01% 1.09%
PHASE2 LR 2 COMBINATION -0.15% -0.17% 0.02% 0.03% 0.00% 0.00% -0.01% 0.09% 0.49%
RSA SEGMENT 7.05% -0.02% 7.07% 7.11% -0.04% 6.89% 6.52% 8.81%

Table 6: Phase 2 RSA model shows increase in marketplace KPIs and revenue for Bing Ads. Fields in bold are core metrics we focus on.

FueHT NAME RPM CPC CcY MLCY PxMLIY LATENCY
[AU,NZ] Phase2 LR VS. Phasel.5 -0.39% -0.14% -0.25% -0.25% -0.07% 5.82%
RSA segment 11.03% 422% 6.54% 7.08% 3.27%
[SEA] Phase2 LR VS. Phasel.5 1.01% 1.21% -0.20% -0.20% 0.07% 2.77%
RSA segment 1845% 7.48% 10.21% 9.25% 6.55%
[CN-TW-HK] Phase2 LR VS. Phasel.5 097% 068% 028% 0.34% 0.30% 241%
RSA segment 9.05% 172% 7.21% 7.19% 7.73%

Table 7: International models also show increase in KPIs like the EN-US market. Fields in bold are the core metrics we focus on.
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