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Search-ads is an important product in computational advertising. In order to achieve high performance 
in search-ads, it is critical to improve ad-copy relevance and click through rates. Traditionally, the onus 
has been on advertisers to come up with an ad-copy and set up appropriate bids that can achieve 
these challenging objectives. Thanks to the emergence of AI and machine-learning technologies, we 
can simplify both the bidding and ad-copy generation processes. Responsive search ads (RSA) is an 
emerging product in this direction that tackles the ad-copy generation piece. RSA provides advertisers 
with sufficient control over the ad-copies that can be shown for their products by giving them the 
option of providing components (title and description assets) of the ad-copy, as opposed to the  
ad-copy itself, and tackling the assembly of these components dynamically at runtime. This allows us 
to take into consideration query and user contextual information and produce better ads. Even with 
a small number of assets, there are many potential asset combinations. In this work, we propose a 
large-scale logistic-regression model, combined with a sequential contextual-bandits framework that 
allows us to assemble high-performing ad-copies at runtime. We have productized our algorithms as 
part of Bing Ads. The shipped models have achieved 6% adoption based on servable customer count 
and have already shown increasing daily revenue as well as promising marketplace KPI trends of all up 
Revenue-per-Mille (RPM), Click-Yield (CY) and Impression-Yield (IY) in just a few months’ time. In this 
paper, we will discuss the modeling details, evaluation techniques as well as online flight metrics with 
real search traffic from bing.com.

Keywords. Reinforcement learning, sequential contextual bandits, exploitation and exploration, 
Thompson sampling, uncertainty estimation, logistic regression, deep neural networks.



1.	 Introduction
In digital advertising, a text ad (TA) that shows up along 
with search results, also known as a search ad, is composed 
of titles, descriptions, typically referred to as assets, and other 
pieces of information. An anatomy of a search ad from bing.
com is shown in Figure 1. It is interesting to observe that 
not only the ad-copy is intelligible but also the individual 
assets – titles and descriptions – make sense when viewed in 
isolation (Hillard et al., 2010; Shaparenko et al., 2009).

Responsive Search Ads (RSA) is an emerging ad product 
that takes advantage of the above observation to simplify 
the ad-creation and testing process. It requires advertisers 
to provide individual title and description assets, as opposed 
to providing the entire ad-copy. At runtime, RSA exploits 
machine learning to optimize each ad by mixing and 
matching the headlines and descriptions to produce different 
ad-copies for the same search ad.

Figure 2 shows an overview of the RSA product. Advertisers 
provide 3 - 15 titles and 2 - 4 descriptions as part of the ad-
creation process. Given that each RSA ad contains 3 title 
positions and 2 description positions, these pieces can be 
combined in approximately 32,000 ways for the maximum 
case. Each combination of an RSA ad has specific relevance 
to a query and likelihood of being clicked by a user. RSA 
utilizes a machine-learning model to select a combination 
that can maximize both metrics at runtime.

In this paper, we present details of this machine-learning 
model along with offline and online results. Specifically, we 

utilize Logistic Regression (LR) for predictive modeling and 
augment it with an exploration mechanism based on the 
sequential contextual-bandits framework (Beygelzimer et al., 
2011; Dudík et al., 2011; Bietti et al., 2010; Zhang et al., 2019). 
We have shipped this model to general availability (GA) in 
January 2020, and it currently serves live traffic from bing.
com in USA and several international markets.

Figure 3 shows the increase in adoption of the RSA product 
in terms of customer volume, revenue, impressions, clicks and 
conversions. This is an important product for bing.com and 
we continue to see increased adoption across all geographies 
and advertiser groups.

2.	RSA Modeling
As mentioned before, the problem that we tackle is to 
simultaneously estimate the relevance of an ad-combination 
to a query and its likelihood of being clicked by a user at 
runtime. In this section, we present details of the objective 
function that we utilize followed by the prediction and 
exploration models. 

Figure 1: A search ad a.k.a. text ad comprises titles and descriptions 
(shown as boxes), sitelinks and other decorations.

Figure 2: RSA simplifies ad-creation process. It requires advertisers to provide headline (up to 15) and description (up to 4) assets. It 
utilizes machine-learning to select assets and stitch together an ad-copy depending on the user and query context at runtime.
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2.1. Objective Function
In online ads serving, the generated combinations of RSA 
will be passed to the downstream stage of auction. Only ads 
with relatively better quality and click through rate could win 
the process and thus not be filtered. To model the RSA asset 
stitching as a supervised learning problem, we approximate 
the two RSA goals (relevance of ad-combination to query 
and its likelihood of being clicked by a user) through winrate, 
which is defined per asset combination as follows:

We denote the specific asset combination we are evaluating 
as  Winrate measures how often an ad-combination wins 
an auction. It implicitly captures the required relevance and 
click metrics for RSA ads. This is because to win an auction, 
we select asset combinations that have a high Ad Rank (also 
known as Rank Score), which is computed as follows:

Cost-per-click (CPC) bid depends on extraneous factors 
such as advertiser budgets. However, quality score is based 

on the expected click through rate (likelihood that the 
asset combination will be clicked) and ad relevance (how 
closely the asset combination matches the intent behind a 
user’s search query). Thus, a high ad rank, and in turn a high 
win rate, is a reasonable proxy for the RSA goals. Another 
reason we select winrate as the objective is because it is easily 
measurable in our online system.

2.2. Prediction Model
The key challenge we have in the prediction problem is that 
at training time we have labels per asset combination i.e., 
whether an asset combination won or lost the auction. We 
can indeed train a supervised learning model with these 
labels per asset combination. However, at the time of online 
inference, we are not able to score all possible combinations 
that can be derived from a set of assets. This is because, we have 
many combinations, specifically 15×14×13×5×4 = 32,760 in 
the maximum case. Therefore, we rely on domain knowledge 
that the initial asset positions have a greater influence over 
the win or loss outcome than the later positions in the 
asset combination. Therefore, at scoring time, we utilize a 
subsection of the supervised model to sequentially select 
assets per position starting from the first position. In the rest 
of this section, we present more details about this model.

Figure 3: RSA has achieved 6% adoption based on servable customer count and increasing trends in revenue, impression volume, clicks, 
conversions and share with respect to other existing ad products such as STA (search text ads), EXTA (extended text ads) and DSA (dynamic 
search ads).

Tabke 1: On the left is an illustration of certain feature vector component for title 2. On the right is the full feature vector dimensionality, 
broken down by components for title 2.
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Feature design. We utilize several features available in our 
system that capture structural details and textual content of 
the asset combinations. Specifically, we use string length, 
unigrams and bigrams from the asset text. We also cross 
these with the query text to produce a total sparse feature 
dimensionality per position of approximately 4B. Consider 
the search results shown below for a query “used bmw 
sale”: take title 2 (i.e., “Your Perfect Used BMW”) as an 
example. The following is an example list of feature vectors 
that we extract. The full dimensionality of the feature vector 
components is also shown in Table 1 below on the right. 
At training time, we further cross the full feature vector 
set with position, add a global bias value and train an LR 
model as shown at the left in Figure 4. Due to business 
logic constraints, we are restricted to stitching an asset-
combination that comprises five positions, namely three titles 
and two descriptions. Suppose X represents the combined 
feature vector from all five positions, i.e., X = [X1, X2, X3, X4, 
X5], and Y (equal to 0 or 1) represents the logged win or loss 
outcome for that specific asset combination. The LR model 
predicts the following probability:

where W is the 5×4 billion dimensional weight vector that is 
learnt to minimize the binary cross-entropy loss  over 
M training examples as follows:

At inference time, we have up to 32,760 combinations of 
assets that need to be scored with the LR model. However, 
as mentioned before, this is not feasible to be evaluated in 
real time. To fit our system-level constraints, we make some 
simplifying assumptions. It is a known fact that the first few 
positions in the title have more influence over the relevance 

and click-through rate metrics of an asset combination. 
Therefore, we perform a sequential per-position asset 
selection as shown at the right in Figure 4.

We utilize part of the trained LR model to score all available 
assets for position 1 (using weights W1). Based on the 
predicted scores, we select the asset that achieves the highest 
winrate, after the exploration process described in the next 
section, for this position – shown as Asset 2 in Figure 4. We 
exclude this asset from the asset list and continue the scoring 
process for subsequent positions. Thus, we perform a greedy 
selection according to the following:

Thus, by breaking down the LR model, we can select assets 
by scoring only 49 assets per-user-query online – 15 assets in 
position 1, 14 in 2, 13 in 3, 4 in 4 and 3 in 5. The first three 
are titles and last two are descriptions.

2.3. Exploration model
We train the logistic regression model each day with new 
data that is collected as a result of RSA asset combinations 
being shown to users based on the previous days model. 
To provide low-performing assets a chance to be shown to 
users (these cases may also have a high winrate), and thereby 
debias our future training data by generating combinations 
that are likely to lose in the auction, we include a mechanism 
for exploration. This mechanism also helps us overcome 
some of the approximations that we have made at inference 
time to predict the online win or loss outcome by sequential 
per-position asset scoring as opposed to scoring at the level 
of asset combinations. 

If we were to score all asset combinations there are 32,760 
possible combinations, which are not only computational 
expensive to score by LR but also lead to a large action space 

Figure 4: At training time, we cross the feature vectors with position, add a global bias and train a LR model with winrate as the objective. 
At inference time, we perform a sequential greedy asset selection starting from the first position.

Research Paper  —  Volume 13     217

v-shla
Highlight
computationally

v-shla
Highlight
an



for the exploration model. Unless we have a very large amount 
of data, it is well-known that common contextual bandit-
based exploration algorithms do not perform well when they 
have a huge action space (Abernethy et al., 2013). There are 
related approaches that solve similar problems through set-
level estimation (Zaheer et al., 2017). However, since we break 
down our prediction problem into per-position scoring, we 
can formulate exploration as a sequential contextual-bandits 
(CB) problem. The sequential CB exploration framework 
of RSA is shown in Figure 5. Specifically, we maintain five 
sets of CB policies or models, one per each asset position. 
The CB policies consume the LR scores and the features 
for each asset position to select an asset for each position. 
As mentioned before, since we do a sequential selection of 
assets, the action space for the policies, also denoted by arms 
in Figure 5, gradually reduces from 15 in position 1 to 14 in 
position 2 and so forth.

There are many options to choose for the CB policy. Typically, 
such problems are best solved through -greedy methods, 
where we randomly select an action in each step with some 
small probability, upper confidence bounds (UCB) (Li et al., 
2010; Chu et al., 2011) where we employ some heuristics to 
estimate a confidence bound for the reward function so that 
the true value of the estimated reward using past experiences 

is within that bound with high probability, or Thompson 
Sampling where we select an action according to the 
probability that the action is optimal according to a specific 
underlying model (Agrawal and Goyal, 2017; Chapelle and Li, 
2011). Thompson Sampling is a randomized policy and has 
been shown to have near-optimal regret (Agrawal and Goyal, 
2017). Thus, we utilize it as the exploration model for RSA.

In our case, the action per-query per-position is the selection 
or rejection of a particular asset. The reward function is the 
outcome of the auction, which is a binary random variable. 
Thus, it follows a Bernoulli distribution. Suppose the 
probabilities of winning and losing the auction are denoted 
by  and  respectively. Further assume the winning 
outcome  follows a beta-distribution, which is a conjugate 
prior of the Bernoulli distribution. Thus, we have:

 and  are parameters of the Beta distribution that allow us 
to control the level of exploration and exploitation during the 
decision-making process. These are dynamic parameters that 
are updated when we see the true outcome (auction win or 
loss) after performing the auction online. N is the number of 
observations which is the sum of all auction wins plus losses 
that have been made for the reward function at the time of 

Figure 5: We select asset combinations after exploration with sequential contextual bandits. The CB model consumes the LR scores and 
features from each asset to select the one that has the most likelihood of success.
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the sequential decision-making process. Smaller values of  , 
 and N lead to more exploration and larger values lead to 

more exploitation of the current logistic regression model as 
illustrated in Figure 6.

In our case, as we're doing a sequential per-position scoring, 
recall that the maximum asset numbers we need to score for 
each of the five positions are: 15, 14, 13, 5 and 4 respectively, 
in total 49. Thus we maintain in total 49 Beta distributions 
across all five positions as proxies for the posterior distribution 
of win-loss probabilities for each asset. For the first position, 
we sample 15 Beta distributions to estimate the probability 
of auction win for 15 assets, and then pick the asset that 
has the highest posterior probability value. We remove 
this particular asset from further evaluation. We move on 
to the second position and sample 14 beta distributions for 
the 14 assets, pick the asset that has the highest posterior 
probability value and then move on to the third, fourth 
and fifth positions for a similar evaluation. The sequential 
exploration process is illustrated in Figure 7. 

In order to have the posterior probability depend on the 
asset text, we would like the Beta parameters to be computed 
from LR score and features that are available per asset.  
and  already depend on the LR score (predicted win or 
loss probability). However, we need to come up with a good 
heuristic for the trial count N. For this, we utilize the gradient 

sum of the triggered features from the LR model and scale it 
with an adjustment factor (ratio). 

In other words, as the LR model sees more and more data, 
its gradient sum becomes larger.  is inverse proportional 
to the gradient sum. Therefore, the value of N gets larger. 
Thus, the model becomes more confident and reduces its 
exploration. The adjustment factor is a hyperparameter that 
helps keep the value of N within reasonable bounds. 

3.	Offline Experimental Evaluation
In this section, we present experimental results that validate 
our methodology on offline logs. In the next section, we 
present results from online flighting of the model; flighting 
refers to shipping the model and assigning live search traffic 
to it. An overview of the experimental framework is shown 
in Figure 9. 

We utilize historical logs to train the LR model. We create 
a new log called IndexP log, which records all the asset 
combinations that participate in the auction; earlier, the 
existing IndexP log stored only those asset combinations 
that won the auction which ran in Listing Server and the 

Figure 6: Smaller values of  and N lead to more exploration – wider range of the sampling probability on  -axis.

Figure 7: Samples are drawn from 15 Beta distributions in the first position and then the asset corresponding to the highest Beta score is 
selected for that position. Evaluation continues in a sequential manner across other positions.
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hightest score lose one. The outcome of Listing Server is 
from a compute engine called the Delivery Engine (DE), 
which includes other components besides the ads auction. 
Furthermore, we create a new service in Creative Store called 
Caique. This service is where the RSA LR and exploration 
models run online.

For offline evaluation, the metrics we use are the loss of 
the LR model and Area under the curve (AUC) of the 
receiver operating characteristics (ROC) which are common 
performance measurements for classification problems (Yi et 
al., 2013). However, since in the RSA ad-stitching task, the 
ranking process is among assets within an asset combination, 
as an approximation, we compute additional metrics such 
as per-advertiser winrate. Furthermore, in order to get an 
estimation of winrate offline for any new models, we employ 
an offline simulation based IPS scoring method.

Offline winrate simulation. When evaluating model's 
winrate through its own online traffic, different models 
have selection bias because of different distributions when 
selecting the samples. In offline evaluation, our target is to 
evaluate a new policy (model) using another existing policy's 
samples and labels of win or loss. A common strategy to 
remove this bias is propensity score weighting (Dudík et al., 
2011; Chan et al., 2010). Basically, we re-weight ad samples 
with weights inversely proportional to the probability 

of selection. The resulting score is also known as inverse 
propensity score (IPS). Suppose we have logged data of some 
base policy  for each ad  which consists of up to 15 
title assets and 4 description assets, in our system in the form 
of  where  is the 
asset combination from various asset combination options 
in this ad for which an action is logged in the system;  is 
the features corresponding to asset combination ;  is the 
probability that the asset combination  is selected by the 
base policy  and  is the reward obtained when this asset 
combination was produced, which is auction win or loss in 
our case. In order to estimate the winrate of ad  under 
the assumption that it is processed by some new policy  
instead of the logged base policy , we can compute the IPS 
score as follows:

where  is the action with maximum predicted winrate 
among all asset combinations of the  under new policy  
and  is the probability that asset combination 

 had that maximum value.  is the 
IPS re-weighting factor.

To evaluate the efficacy of the CB framework, we utilize 
a randomized exploration scheme (referred to as Phase  1) 

Figure 9: Our experimental framework relies on historical logs to train the LR model. We utilize the LR model to estimate the parameters 
of the Beta Distributions used in Thompson Sampling.
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as well as a lookup-based approach, where we utilize 
historical logs directly to estimate the parameters of the Beta 
distribution i.e., no LR model (referred to as Phase 1.5). 
We compare these approaches to the proposed approach 
(referred to as Phase 2). There are several asset combinations 
that are possible for each of these approaches. And, as shown 
in Figure 8, we pick combinations that intersect and evaluate 
the ad-level winrate using the IPS estimates above for each 
of these policies. As observed from the results in Table 2, 
we see that the proposed LR+SCB (logistic regression + 
sequential contextual bandits) Phase 2 approach achieves the 
highest per-ad win rate across all policies.

Figure 8: We use intersecting combinations across all.

Model ListingAD WinRate Delta StdDEV
PHASE 1 103,071 8.30%
PHASE 1.5 103,071 8.48% 2.13% 0.072%
PHASE 2 103,071 8.60% 3.59% 0.074%

Table 2: LR+SCB model achieves the highest per ad winrate across 
combinations of 100k ads that we evaluated. The delta compared 
to a random exploration policy is 3.59%.

3.1. Prediction model results
In this section, we discuss impact of different hyperparameters 
on the modeling objective. Figure 10 shows that contextual 
features, which are currently captured by query-level 

information and by user-level information (future work), 
have high prediction power for winrate. More specifically, the 
LR+SCB model itself (v1) brings 26% AUC lift compared 
to the case where we do lookups based on historical logs 
(Phase 1.5). Furthermore, adding query features (v2) brings 
an additional AUC improvement of 11%. We observed 
that tuning L1 parameters in FTRL (McMahan et al., 2013) 
leads to a smaller model size with little impact on the AUC. 
For instance, adding L1=2 and 3 for title and description, 
respectively, leads to a validation AUC drop of about 0.36% 
but leads to almost 80% of the weights to be zero. This sparse 
model can be stored and served efficiently. We also tweaked 
the learning rate to 0.03 for FTRL. We note that one epoch 
of training on our daily data takes about 7 hrs. Training a 
second epoch takes the same amount of time but provides 
only 0.08% AUC lift. Therefore, we stick with a single pass 
over the data (single epoch) for training.

However, we continue to train the model each day by adding 
new demand – new RSA data from that day – to the training 
data. Figure 10 (b) shows the AUC drop when we use the 
same model over multiple days. And Figure 10 (c) shows the 
change in demand over multiple days.

4.	Online Flight Results
We utilized data from the newly created IndexP log to train 
the model and deploy it as a new service in Caique (see Figure 
9). The offline model had roughly 4B×5 = 20 B features for 
the LR model, which was cut to 330M×5 = 1.65 B features 
for online serving. The daily training job utilizes 20 machines 
and has a training time of 7 hours per day. The input sample 
size is 16 B per day and data size is 13 TB per day (we store 
90 days of data for the experiment). In the next subsection, 
we present cross validation and winrate measurement results 
from the online flight. In the following subsection, we 
present market level key performance indicators (KPIs) that 
are important for the RSA product.

Figure 10: (a) Our model (v1) improves over a model that is completely based on lookups (Phase 1.5). Adding contextual features (v2) 
lifts this score by an additional 11%. More specific query features (v2, v3 and v3 plus) provide further gain. (b) AUC drops when the same 
model is used over multiple days because of (c) increase in RSA demand over time.
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4.1. AUC and WinRate Measurements

Date/AUC Phase1.5 Phase2 DiffRatio
01/27/2020 62.33% 84.56% +35.66%
01/28/2020 62.04% 84.10% +35.55%
01/29/2020 61.91% 84.95% +37.22%
01/30/2020 61.92% 84.57% +36.56%
01/31/2020 62.26% 84.38% +35.54%
02/01/2020 63.54% 84.85% +33.54%
02/02/2020 63.80% 84.95% +33.16%

Table3: Phase 2 provides over 30\% lift in winrate AUC compared 
to Phase 1.5.

Table 3 shows cross validation results between the control 
model, which is the log-based asset selection model (Phase 
1.5), and the treatment model, which is the proposed 
approach (Phase 2) on treatment traffic. The treatment model 
has over 30% overall AUC gain compared to the control 
model over all 7 days of testing. The AUC sliced by number 
of ad combinations is shown in Table 4. The impression ratio 
(ImpRatio) columns shows the percentage of ad samples 
that appear for specific slices of possible combination count 
(depending on the number of assets provided by advertisers). 
The ListingAdRatio gives the percentage of ad-groups and 
AdvertiserRatio column shows the number of advertisers 
who fall into each bucket. From the table, we see that the 
winrate AUC generally reduced as the number of possible 
combinations increase. This is consistent because as the 
action space gets larger, both the exploration mechanism and 
the sequential LR approximation become weaker. 

Table 5 shows the sample level winrate that is achieved for 
the asset combinations produced by different models. The 
Phase 2 model achieves the highest winrate across all model 
options that we evaluated. Figure 11 shows the per-advertiser 
winrate percentage as a CDF computed over ratio of total 
advertiser count. Advertisers with smaller per-advertiser 
winrate are at the bottom of the y-axis and advertisers with 

high per-advertiser winrate are at the top. We observe from 
the figure that the RSA Phase 2 model has more proportion 
of advertisers with higher per-advertiser winrate when 
compared to Phase 1.5 and Phase 1.

Date/Winrate Phase1 Phase1.5 Phase2
10/21/2019 4.80% 7.59% 7.96% (+4.92%)
10/22/2019 4.90% 7.61% 8.06% (+5.87%)
10/23/2019 4.89% 7.50% 7.92% (+5.53%)
10/24/2019 4.83% 7.39% 7.77% (+5.18%)
10/25/2019 4.77% 7.34% 7.67% (+4.61%)

Table 5: Per sample winrate computed as an average over all 
RSA samples.

Figure 11: Phase 2 RSA model has the highest value of per-
advertiser winrate.

4.2. Market level KPIs
There are several market-place metrics that matter in 
computational advertising (Yi et al., 2013). Top part of Table 
6 shows the flights metrics for RSA Phase 2 model that 
was shipped into production compared with the Phase 1.5 
model. Just looking at the key metrics, we observe that there 

Combination ImpRatio AdRatio AdvertiserRatio Phase1.5 Auc Phase2 Auc DiffRatio
ALL 100.00% 100% 100% 61.9% 84.6% +36.56%
ComCnt  73 10.85% 4% 17% 62.1% 84.9% +36.78%
ComCnt  [73, 361) 10.79% 6% 21% 58.6% 83.2% +41.95%

ComCnt  [361; 4032) 15.14% 7% 30% 57.6% 81.7% +41.84%

ComCnt  4032 10.56% 15% 6% 79.3% 89.1% +12.31%
ComCnt  [4033; 32760) 10.12% 7% 18% 56.2% 81.7% +45.50%
ComCnt   32760 42.24% 60% 8% 61.1% 84.8% +38.77%

Table 4: Fewer number of asset combinations per RSA ad show higher AUC lift, which is consistent with the modeling approximations that 
we make that are directly proportional to the complexity of the action space.
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is an increase in MLIY (main-line impression yield), MLCY 
(main-line click yield) and PxMLIY (main-line impression 
yield in terms of pixels). Higher value of these metrics 
demonstrate that more RSA ads are being impressed and 
clicked more compared to the control model.

The middle part of Table 6 shows that the metrics when we 
replace the LR model with a DNN and the bottom part shows 
them when multiple asset combinations are selected and sent 
to the auction, as opposed to a single combination. In all cases 
there is a cumulative increase in both click yield and impression 
yield. In terms of revenue, these translate to increased revenue-
per-mille (RPM), as again seen from the tables.

International status. The results shown in Table 6 are for 
the EN-US market. We have also deployed these models in 
international markets (EMEA, APAC and others). Table 
7 shows the KPIs for these markets and like the EN-US 
market, these metrics are in line with expectation and are on 
the positive side.

5.	Conclusions
In this white paper, we proposed to solve the problem 
of asset stitching for a new type of ad product called 
Responsive Search Ads. We approximate the complex search 
space through a sequential scoring model, utilize contextual 
features based on user-issued queries and explore different 
combination choices via a per-position Thompson Sampling 
methodology. We demonstrate that the AUC over auction 
wins and losses for the stitched ads increased by up to 30% 

compared to a model that is totally count based. Our model 
enables us to utilize semantic information within the asset 
text and exploits query-based features to more accurately 
capture the user intent. By measuring marketplace metrics 
over the shipped model in production across different 
geographies, we observe an increase in click yield (CY) and 
impression yield (IY), which lead to an increase in revenue-
per-mille (RPM) for the Bing Ads product.

Next steps. We plan to include user-based features and 
counting features, and also improve the LR model with a 
more complex architectures such as a DNN or RNN for 
predicting the winrate of the stitched asset combinations. 
Through this model, we have learnt that it is critical to 
capture query and user intent in the ad-creation process. It 
is also important to build models that can work well across 
all geographies.

Flight Name RPM CPC CY IY CTR MLCY MLIY PxMLIY Latency

Phase2 LR VS. Phase1.5 0.22% 0.28% -0.06% 0.03% -0.10% -0.04% 0.03% 0.08% 3.23%
RSA segment 31.26% 22.58% 7.08% 5.76% 1.25% 9.39% 5.52% 32.71%
Phase2 DNN VS. LR 0.04% -0.04% 0.07% 0.11% -0.03% 0.06% 0.11% -0.04% 0.12%
RSA segment 1.74% -4.99% 7.08% 7.29% -0.20% 6.79% 7.01% 1.09%
PHASE2 LR 2 combination -0.15% -0.17% 0.02% 0.03% 0.00% 0.00% -0.01% 0.09% 0.49%
RSA segment 7.05% -0.02% 7.07% 7.11% -0.04% 6.89% 6.52% 8.81%

Table 6: Phase 2 RSA model shows increase in marketplace KPIs and revenue for Bing Ads. Fields in bold are core metrics we focus on.

Flight Name RPM CPC CY MLCY PxMLIY Latency

[AU,NZ] Phase2 LR VS. Phase1.5 -0.39% -0.14% -0.25% -0.25% -0.07% 5.82%
RSA segment 11.03% 4.22% 6.54% 7.08% 3.27%
[SEA] Phase2 LR VS. Phase1.5 1.01% 1.21% -0.20% -0.20% 0.07% 2.77%
RSA segment 18.45% 7.48% 10.21% 9.25% 6.55%
[CN-TW-HK] Phase2 LR VS. Phase1.5 0.97% 0.68% 0.28% 0.34% 0.30% 2.41%
RSA segment 9.05% 1.72% 7.21% 7.19% 7.73%

Table 7: International models also show increase in KPIs like the EN-US market. Fields in bold are the core metrics we focus on.
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