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Abstract
Massive video camera networks are now driving innovation
in smart retail stores, road traffic monitoring, and security
applications, and realizing live video analytics over these
networks is an important challenge that Wi-Fi and cellular
networks alone cannot solve. Spider is the first live video an-
alytics network system to use a multi-hop, millimeter-wave
(mmWave) wireless relay network to realize such a design.
To mitigate mmWave link blockage, Spider integrates a sepa-
rate low-latencyWi-Fi control plane with the mmWave relay
data plane, allowing agile re-routing without suffering the
penalty of mmWave beam searching for the new route. With
the objective of maximizing video analytics accuracy (rather
than simply maximizing data throughput), Spider proposes
a novel, scalable flow planning algorithm that operates over
hundreds of cameras to simultaneously calculate network
routes, load-balance traffic, and allocate video bit rates to
each camera. We implement Spider in a mmWave camera
network testbed, comparing its object, text, and face detec-
tion recall performance against the state-of-the-art wireless
video analytics system. Under different video analytic tasks,
Spider improves recall by 41.5%—52.9% on average. Further
experiments demonstrate Spider’s high scalability and grad-
ual degradation under node and link failures, with a 57%
reduction in average failure recovery time.

1 Introduction
Live video analytics on camera streams are central to impor-
tant applications like smart retail stores, road efficiency and
safety, and security monitoring [13–15, 32]. Video analytics
deployments stream videos to on-premise edge servers [1, 2],
which are equipped with GPUs for executing the vision mod-
els involved in their processing. The need for high video ana-
lytics accuracy drives a push for higher resolution and video
frame rates: prior work shows up to 2.2× improvements in
accuracy for object detection with 4K video resolution and
frame rates of 60 frames/s [36].

On the one hand, higher resolutions and frame rates dras-
tically increase bit-rate requirements of video streams. On
the other hand, Wi-Fi links do not have enough capacity
to stream multiple high bit-rate videos (to the edge server
for analytics). Indeed transmitting bulky video streams over
Wi-Fi links would crowd the over-utilized Wi-Fi band and
cause severe interference and delay to other Wi-Fi users.

Connecting the cameras with wired networks is cumber-
some at scale—a typical enterprise building has 100 to 200
cameras [14, 19]—while also would reduce deployment flexi-
bility. Millimeter-wave (mmWave) networks, with capacities
of multi-Gbits/second (e.g., 802.11ad WiGig at 60 GHz), are a
promising option for streaming high bit-rate videos for video
analytics. However, they have well-documented limitations:
(i) their high throughputs depend on clear line-of-sight, thus
making them susceptible to moving objects in the building,
and (ii) their throughputs drop drastically beyond ca. 10 m,
considerably shorter than typical distances between cameras
and edge servers in deployments.

Spider: AmmWave video analytics networkdesign.We
propose Spider, a live video analytic network design featur-
ing cameras fitted with WiGig radios and constructing a
multi-hop relay network of the cameras, as shown in Fig-
ure 1. Spider fits WiGig radios to edge servers while cameras
relay their video streams to one of the edge servers for ana-
lytic processing. Cameras that are close to the edge servers
communicate directly with the edge servers. Farther-away
cameras pass their streams to other relay cameras that in
turn forward them to the edge server. As a result, network
links of the relay cameras closer to the edge servers will
experience higher utilization and congestion.
While there have been extensive studies on building sin-

gle-hop mmWave networks [22, 23, 30, 43, 50], less effort
has been focused on bulky video streaming over multi-hop
mmWave networks. Constructing a mmWave relay network
is difficult because if one link in such a network becomes
disconnected as a result of physical blockage [16, 52], the
narrow beam width of that link’s endpoint radios means that
the endpoints would then have to search for a possible al-
ternate reflection path or alternate route altogether in order
to reconnect the network, This is problematic because the
node being connected to may be busy itself with ongoing
data transmission, and thus may not know that it is needed
to participate in the search. Such a search, during which
the network remains disconnected, also inevitably involves
throughput, latency, and jitter penalties [23, 40, 52]. Further-
more, the required step of broadcasting routing information
to each node’s neighbors in the mmWave relay network is
challenging, since each node’s radio has to beam towards
each of its neighbors in order to exchange routing informa-
tion, which is costly in time, as mentioned. The conclusion is
that we require a separate control plane that addresses these
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Figure 1: Spider’s data flow and control flow. High volume video
streams are transmitted over mmWave links (solid line). Short con-
trol packets are forwarded over 802.11ac Wi-Fi links (dash line).

issues more effectively than mmWave links.
For the purpose of building the proposed Spider relay net-

work, in which multiple cameras offer video stream load
into the network, multiple streams need to share a single
mmWave link. This in turn means that there must be some
mechanism to allocate the capacity of shared link among
individual video streams. In other works, we require a scal-
able flow planning algorithm that operates over hundreds of
cameras and thousands of multi-hop links among them. For
the same reasons mentioned above, Spider needs to lever-
age the separate control plane to disseminate instructions to
all the cameras in the network, so that they can implement
the routing topology and video bit-rate allocations that our
flow planing algorithm generates. A further challenge is the
dynamic nature of the mmWave wireless channel, which
pushes us to develop robust bandwidth estimation mecha-
nism to avoid disrupting live video flows. We also need to
dynamically calculate the relationship between the bit-rate
of the videos and the accuracy of the video analytics outputs.
To address these challenges, Spider introduces the following
three design techniques:

1) Network flow planner: Flow planning on multi-hop re-
lay networks is a well-studied problem [18, 20, 21, 29, 37].
However, our objective and design choices differ in two cru-
cial aspects. First, unlike prior work, we do not optimize for
the network throughput of the flows. Instead, our objective
is to maximize the video analytics accuracy. As a result, our
solution often selects routes and link allocations that are
sub-optimal for network throughput but lead to better video
analytics accuracy (§4.1). Second, we design a centralized
heuristic that uses all the link bandwidths between cameras
and globally optimizes for our objective. This is in contrast
to the decentralized designs of prior solutions where nodes
make their own neighbor discovery and routing choices.

Our heuristic optimizes both network-layer video stream
routing and application-layer video bit-rate allocation. Specif-
ically, it first builds an application-independent routing tree
based on the intuition that load balancing among relay nodes

yields a higher overall video analytics accuracy. It then lever-
ages the unique bandwidth-accuracy tradeoff in video ana-
lytics (that varies across cameras and with time), and builds
a mixed integer linear programming (MILP) model to decide
the application-dependent bit-rate configuration to maxi-
mize the overall video analytics accuracy.

2) Separate control and data planes: For the aforemen-
tioned reasons, Spider cameras report link bandwidths to
the controller, while the controller pushes down the routes
for the cameras to use along with the video bit-rates to of-
fer. To communicate these control messages, Spider uses
802.11ac Wi-Fi to achieve more reliable dissemination of con-
trol information. We design the control protocols such that
their capacity overheads are limited, and thus they do not
significantly disrupt existing Wi-Fi traffic.

3) System Design: We have designed a multi-hop relay
system of WiGig cameras, Spider. Spider’s design does not
involve continuous and expensive probing traffic for band-
width estimation. Given the directional nature of WiGig
links and expensive beam searching to initiate new links,
any continuous probing would severely disrupt the flows
of live videos. Instead, Spider adopts a reactive approach to
bandwidth estimation by detecting when existing links have
reduced throughputs or blockage, and only then probing for
new links. Spider also periodically profiles to obtain the rela-
tionship between the bit-rate of the video and its impact on
the accuracy of the outputs. In doing so, it trades off the time-
liness of the video profile for the bandwidth cost for sending
video segments of the highest frame-rate and resolution.

We implement Spider in a university building testbed, with
11 distributed camera nodes and stream 55 4K video streams
concurrently to the edge server. In further investigate the
performance of Spider in a larger environment, we conduct
trace-driven simulations in an enterprise environment with
330 camera nodes. Spider achieves improvement on video
analytic accuracy by 41.5%—52.9% on testbed and by 26.5%–
39.3% with trace driven simulation with enhanced robustness
and minimal interference to the existing wireless users.

Contributions: We make the following contributions:
1) We identify the tension between large camera networks
and wireless link throughput, and propose a relay architec-
ture of WiGig cameras for next-generation video analytics.
2) We devise flow planning algorithms that maximize video
analytics accuracy at runtime with joint consideration of
network fluctuations and video content variations.
3) We build an 11 node, real-world camera network and
evaluatemultiple live video analytics applications end-to-end
using both testbed and large-scale trace-driven experiments.
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(b) Impact of video content vari-
ation across time and cameras.

Figure 2:Motivating experiments for video benchmarking.

2 Background and Motivation
A network featuring live video streaming over wireless net-
works would substantially lower system cost and increase
deployment flexibility, but at the same time, such a design
poses challenges in network routing, due to the unique char-
acteristics of video content and wireless links. In this section,
we explore the design space of mmWave relay networks in
the context of video analytics.

2.1 Video analytics background
While state-of-the-art machine learning models have shown
great success in video analysis applications, their perfor-
mance is highly sensitive to variations in video content and
quality [47]. We conduct benchmarks to understand the im-
pact of video content variation across time and cameras.

Bandwidth-accuracy relationship. In this experiment, we
collect six videos from the Internet (each lasting for 12 min-
utes) and down sample them into different resolutions. We
then run a state-of-the-art object detection algorithm (YOLO-
v3 [35]) on these videos to detect objects of interest. These
video clips are all from potential Spider application scenarios
(e.g., a cashierless store, traffic monitoring, and video surveil-
lance), covering both indoor (cafe, office, and retail store)
and outdoor (four different street scenes) settings.

Figure 2(a) shows the object detection recall of the YOLOv3
model under different video bit-rates, translated from vari-
ous video resolutions. Overall detection recall grows with
increasing video bit-rate, indicating that allocating more
bandwidth (Spider’s network resource) would yield a higher
video analytic recall. The marginal gain of detection recall,
however, decreases gradually with increasing video bit-rate.
On the other hand, detection recall varies significantly across
different video clips (scenes) in the same video bit rate set-
tings. For instance, although recall in both office and cafe
reaches 98% at 25 Mbps, low bit-rate is more amenable to ob-
ject detection in cafe—at 6 Mbps, the recall gap grows to 38%
(80% vs. 42%). Similar results (on both recall and precision)
are also reported in other work on video analytics [26, 49].
These results motivate us to prudently tune knobs (e.g., reso-
lution, sampling rate) in video analytics and allocate network
bandwidth in order to maximize the overall video analytics
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Figure 3: Impact of distance and blockage on 802.11ac Wi-Fi and
802.11ad mmWave links.

performance across different cameras.

Video content variation across time and cameras. In
this experiment, we run YOLOv3 on two 12-min video clips
and report real-time object detection recall every ten sec-
onds. The result is shown in Figure 2(b). As can be seen,
object detection recall fluctuates with time and differs be-
tween cameras. This is not surprising as the video content
(e.g., the number of people waiting in line to get a coffee)
could change drastically in minutes. Nonetheless, detection
recall on videos from the same camera but with different
resolutions (1080p vs. 720p) shows a strong correlation over
time. Temporal variations of video analytics performance
necessitates a dynamic resource allocation and scheduling
design that keeps up with the change of video content.

2.2 Wireless video analytics needs mmWave links
Video streams demand more link throughput than normal
audio or text traffic, and so we experiment to understand
the characteristics of two candidate wireless technologies
for Spider’s video analytics, 802.11ac Wi-Fi and 802.11ad Wi-
Gig (mmWave).1 We first measure the throughput of these
two technologies in both line-of-sight (LOS) and non-line-of-
sight (NLOS) environments (Figure 3(a)). Herewe place a Dell
E7440 laptop (as the transmitter) and a Netgear Nighthawk
X10 router (as the receiver) in an office building, and mea-
sure TCP throughput at different link distances. We con-
duct the experiment at midnight to minimize interference
from nearby Wi-Fi. In agreement with previous studies [16]
our mmWave links achieve an order of magnitude higher
throughput than Wi-Fi links in line-of-sight conditions, but
drop much faster over distance: the throughput drops below
Wi-Fi throughput when the link distance is over 28 m. In non-
line-of-sight condition (dry wall blockage), as we expected,
mmWave link experiences severe throughput decline due to
strong signal reflections—link throughput drops drastically
to zero at around 10 m. In contrast, the blockage has only
mild impact on 802.11ac Wi-Fi due to its longer wavelength.
Enterprise deployments of wireless video networks are

1We exclude 802.11ax from the comparison, since it has similar throughput
and takes up same frequency band as 802.11ac.
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vulnerable to blockage. For instance, cameras in cashierless
stores are mounted on the shelves; hence wireless links there
are prone to be blocked by customers that move inside the
store. To understand the impact of human blockage on wire-
less links, we invite a volunteer to block the LOS path of a
three-meter wireless link occasionally and measure the im-
pact on link throughput. We observe that the link throughput
of mmWave drops aggressively to almost zero as the volun-
teer passes through and blocks the wireless link (grey area
in Figure 3(b)). In contrast, there is less throughput variation
(tens of Mbps drop only) on 802.11ac link when the volunteer
blocks the LOS link.
Considering the application scenarios where hundreds

or even thousands of cameras are densely deployed (e.g.,
cashierless store), connecting these camera nodes with low-
throughput 802.11ac Wi-Fi links would inherently limit the
bit-rate of each video stream, yielding a low video analytics
accuracy (§2.1). The high volume video streams produced by
these cameras would also saturate the narrow Wi-Fi band,
which inevitably introduces significant interference to legacy
Wi-Fi users as well as other camera nodes (as experimentally
demonstrated in Figure 14 in §6).

Towards a multi-hop relay ofWiGig cameras. The fore-
going measurements in this section suggest that we ought to
adopt mmWave links for wireless video transmission. How-
ever, these links fall short of requirements both with regards
to transmission distance and with regards to reliability. To
cope with these challenges, we further require a multi-hop
mmWave relay network where each camera node serves as
not only a video producer, but also as a relay to forward
other cameras’ video streams.

3 Spider Architecture
This section provides an overview of Spider. We first present
the system workflow (§3.1), followed by the design of the
data and control planes, as well as the network’s control
functionality (§3.2). We then describe video bit rate accuracy
profiling and link throughput estimation functionality (§3.3).

3.1 Workflow of cameras and edge servers
Spider consists of a number of WiGig camera nodes and one
or more edge nodes on-premises. Edge nodes are equipped
with GPUs which execute DNN inference for video process-
ing. Cameras connect to edges via wireless links, while edge
nodes are connected through the wired network. When mul-
tiple edge servers are present in the network, Spider uses
Raft [33] to elect a master server, which runs the scheduler
and dispatches video processing workload among all edge
servers dynamically (§4.5).
Camera node. Each camera node is equipped with two
WiGig radios, one for sending and another for receiving.

Camera nodes produce live videos and work hand-in-hand
to forward other cameras’ video streams to an edge server
through the data plane. In addition, each camera also pro-
duces high-resolution video samples periodically to send to
the master edge node for resource-accuracy profiling. To
facilitate network management, camera nodes estimate link
throughput of all connected links, and periodically report it
to the edge server through the control plane (Figure 1).
Edge server. Each edge server forwards live video streams
directly to its analytics engine for video content analysis. To
deal with video content variations (§2.1) and link through-
put dynamics (§2.2), the master edge server periodically
profiles high bit-rate video samples from each camera and
updates its resource-accuracy profile. Resources that Spi-
der trades off include both compute budget (across all edge
servers) and network bandwidth budget. Based on the lat-
est resource-accuracy profile, the master edge server runs
a reactive scheduler to reschedule network flows (§4.3) and
reallocate bandwidth to each camera (§4.4), based on the
camera configurations (e.g., resolution, frame rate) chosen.
Packet flow. There are two types of packets in Spider: data
packets and control packets. Data packets transport live
video streams from cameras to an edge server. Control pack-
ets convey information for system bootstrapping, flow plan-
ning, and network status updating, and comprise:
(1) Peer-discovery packets discover camera nodes in boot-

strapping stage.
(2) Bitrate-control packets re-configure video bit-rate on

each camera through control plane.
(3) Route-control packets reschedule forwarding path for

video streams.
(4) Network-status packets report link throughput and

live video segments to edge servers.

3.2 Decoupling the control and data planes
SincemmWave links are susceptible to attenuation and block-
age [16, 52], transmitting control messages over mmWave
relay links could lead to a high latency and packet loss ratio.
In Spider we therefore design a hybrid network to decouple
the control plane from the data plane. This network com-
prises an 802.11ac Wi-Fi control plane (solid blue lines) and
an 802.11ad mmWave data plane (dashed red lines) working
on two different frequency bands, as shown in Figure 1.

Spider adopts a centralized control mechanism to manage
the video network, allowing it to better plan its data flow,
control the network topology, and optimize video analytics
performance over the entire network. Centralized control
enables the edge server to guide each camera node to switch
its relay without exhaustive beam searching, which could
take up to 1.5 seconds in 802.11ad [23, 40, 52]. Spider pro-
duces on average only five Kbit/s control traffic over the
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Figure 4: Two camera nodesC1 andC2 take turns to transmit video
streams to the edge server (ES).

entire relay network. Such a small amount of Wi-Fi traffic
has negligible effect on legacy users in the same Wi-Fi band,
as we experimentally demonstrate in §6.5.

3.3 Video profiling and link throughput estimation
To cope with variation of video analytics accuracy across
cameras and time, the master edge node periodically runs
video processing algorithms on high bit-rate video samples
from each camera and updates a resource-accuracy profile.
The edge server makes a careful trade-off between the band-
width cost of sample video segments and the freshness of
profile. We quantify the impact of profiling interval in §6.5.

Camera nodesmeasure real-time link throughput using on-
going video streams and report it to edge server(s) through
control plane. Since they take turns to transmit video streams
to a relay node (Figure 4) due to medium sharing, throughput
measurement window needs to be smaller than the trans-
mission period of each camera node. In Spider, we conduct
micro-benchmarks to measure the transmission time of each
camera node and empirically set the observation window
to 1 ms. The relay node then filters out outlier throughput
estimations (below or above 1/4 quartile) and reports the
average of remaining measurements to the edge server.

4 Flow planning
This section details Spider’s flow planning algorithm. We
first describe the flow planning problem (§4.1) and give a
formal mathematical formulation (§4.2). We then decouple
this problem into application-independent flow routing (§4.3)
and application-specific video bit-rate allocation (§4.4), and
present our solutions to each of them. We finally describe
how our algorithms scale to the multi-edge setting (§4.5).

4.1 Illustrative example: max throuдhput , maxaccuracy

While efforts on flow planning [18, 20] dramatically improve
the throughput of multi-hop network, they are unsuitable
for Spider as maximizing network throughput would not
necessarily lead to the maximal video analytics accuracy.
Table 1 shows an example video profiling result. Maximizing
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put routing tree.
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Figure 5:Max throughput routing versus max video analytics ac-
curacy routing. The solid line indicates the link is in using.

Cfg. index 1 2 3 4 5 6 7

Bit-rate (Mbps) 12 24 60 120 210 540 900
Accuracy 10% 35% 60% 77% 88% 95% 99%

Table 1: A sample profile from real traffic videos.

the network throughput yields a routing tree (Figure 5(a))
with the following configuration: C1 transmits at Cfg. #2, C2
transmits at Cfg. #1,C3 transmits at Cfg. #7, andC4 transmits
at Cfg. #1. This routing tree and configurations achieve the
maximal 948 Mbps overall network throughput and 38.5%
overall video analytics accuracy. Maximizing video analytic
accuracy, on the other hand, leads to another routing tree
(Figure 5(b)) with a different configuration: C1 transmits at
Cfg. #4, C2 transmits at Cfg. #4, C3 transmit at Cfg. #5, and
C4 transmits at Cfg. #4, respectively. This routing tree and
configuration achieve lower network throughput (570 Mbps)
yet a higher (79.75%) average accuracy.

4.2 Problem formulation
We represent mmWave video relay network as a graphG =<
C, L >, where C and L are the node set and wireless link set,
respectively. Each camera node chooses a configuration K to
produce a video and forwards it together with video streams
from its descendent nodes to the edge server:

Di = Ti (Ki )︸︷︷︸
traffic produced by Ci

+
∑
j ,Rj=i

D j︸   ︷︷   ︸
traffic produced by the descendent

(1)

whereDi is the video stream to be forwarded by camera node
Ci ; R j is the relay node ofCj ;Ti (Ki ) is the video produced by
nodeCi at knob Ki . Our goal is to find a proper relay node Ri
and configuration Ki for each camera node Ci to maximize
the overall video analytics accuracy defined below:

maximize
R,K

∑
Ci,CES

Ai (Ki )/(|C |)

subject to UCi ≤ 1, Ci ∈ C .

(2)
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where R = {R1,R2, ...,R |C |} and K = {K1,K2, ..,K |C |} are
the set of relay variables and configuration variables, respec-
tively. Ai (Ki ) is the accuracy of video from camera nodes
Ci at configuration Ki .UCi is the radio utilization of camera
node Ci , which should be less than 1. The radio utilization
UCi is defined as the proportion of radio busy time (due to
transmitting, receiving, or deference2 in Figure 6):

UCi = ETTl(Ci ,f (Ci )) · DCi︸                ︷︷                ︸
transmitting

+
∑

Cj ∈{C(i)}

ETTl(Cj ,Ci ) · DCj︸                         ︷︷                         ︸
receiving

+
∑

Ck ∈{S(i) |Cknot in C(i)}

ETTl(Ck ,f (Ck )
· DCk︸                                            ︷︷                                            ︸

deference

(3)

where f (Ci ) is the parent node of Ci ; ETTl(Ci ,f (Ci )) is the Es-
timated Transmission Time (ETT) [12, 20] of the link be-
tween Ci and its parent node f (Ci ), which is defined as
ETTl = 1/Throughputl . C(i) is the set of children of nodeCi .
S(i) is the set of camera nodes in the carrier sensing range
of Ci .

Problem relaxation. Enumerating all relay-configuration
combinations for each camera node in hopes of finding the
optimal solution, however, is computationally intractable.
For example, suppose each camera node has 10 video con-
figurations. A relay network with 10 camera nodes leads
to a searching space of 1010 × K10, where K is number of
neighbors of each camera node. We decouple the application-
independent relay selection (flow routing) from application-
dependent configuration selection (video bandwidth alloca-
tion) to relax this optimization problem. Specifically, Spider
first constructs an optimal routing tree. It then generates
a bandwidth allocation plan on this routing tree to max-
imize the overall video analytics accuracy. The challenge
here, however, is to define a proper, application independent
objective to guide the routing tree construction.
Spider solves the foregoing challenge based on the key

observation that load balance routing improves the overall
2Deference is the period that the wireless radio can neither receive nor
transmit due to carrier sensing.

video analytic accuracy. For instance, a video transmitting at
14 Mbps (210 Mbps for 15 streams) bit-rate yields 88% detec-
tion accuracy, as shown in Table 1. Due to the diminishing of
video analytics gain with increasing video bit-rate, allocating
22 Mbps extra bit-rate to this video only yields 7% accuracy
gain (grows from 88% to 95%). Suppose two camera nodes
sharing x Mbps link throughput, a fair bandwidth allocation
strategy ( x2 Mbps for each camera node) thus tends to yield
the maximal average accuracy. Based on this insight, we
assign each camera node the same link throughput T and
build the routing tree to maximize T .

4.3 Application-independent flow routing
Application-independent flow routing takes the link through-
put and medium sharing among nodes as the input and con-
structs a routing tree rooted at the edge server. Following the
insight in previous section, we formulate the flow routing
problem below:

maximize
R

T

subject to UC(i) ≤ 1, Ci ∈ C .
(4)

This optimization problem, unfortunately, is an NP-hard
problem. We give the proof in Section A.1. To design an
efficient heuristic algorithm, we consider the dual problem
of Equation 4. Suppose every camera transmits an unit of
data traffic, the dual problem is to minimize the maximum
radio utilization in the network.

minimize
R

max
Ci ∈C

UCi (5)

In essence, the bottleneck node should be in the vicinity of
the edge server since the upper layer nodes always forward
more video streams than the lower layer nodes. This obser-
vation gives us two insights. First, the flow routing algorithm
should favor those high throughput links since they take less
amount of radio time to forward data. Second, we should
re-route video streams from the bottleneck node to other
low utilization node to alleviate the congestion.

Algorithm. Based on above insights, we design a “generate-
and-reroute” two phase flow routing algorithm to minimize
the maximal node utilization in the network. To facilitate our
presentation, we define the maximal path utilization as the
routing path passing through the maximal utilization node.
Our flow routing algorithm (Algorithm 1) first builds a

shortest path tree from camera nodes to the edge server using
the standard Dijkstra’s algorithm ((Line 1, generate phase)).
It then alleviates radio utilization of the bottleneck node by
relocating cameras along the current maximal utilization
path to other routing paths (Line 2-11, reroute phase). In
each iteration, the algorithm first re-computes path utiliza-
tion (Line 3) and then selects a reroute option that leads to
the minimal increase of the node ETT (Line 4-9). After that

6



Algorithm 1: Spider’s flow routing
input :1) Relay network topology G =< C, L >

2) Interference map I
output :A flow routing tree R

1 R,Cost ← ShortestPathRouting(G);
// Generate the initial flow routing forest with

shortest path algorithm

2 for i ← 1 to Threshold do
3 PU ← ComputeUtilization (R, G, I ) ;

// Compute Path Utilization for every node in

the network

4 for Cp ∈ C do
5 for Cq ∈ Cp .neighbour do
6 if PU [q] < PU [p] then
7 ∆co ← Cost[q] −Cost[p] + ETT(Lp,q);
8 UpdateList.append((∆co, p, q));

// Find possible reroutes to reduce the path

utilization of congestion link

9 ∆co, p, q ← argmin
∆co

(UpdateList);

10 Rp ← q;
// Updates the route with least increase in

routing metric

11 Cost ←UpdateCost(R,G);

it updates the routing tree topology and cost (Line 10-11).
The algorithm terminates as long as it reaches a pre-defined
iteration threshold or there is no path change that leads to a
better utilization. The variable Threshold in Line 2 is set to
the sum of the number of feasible wireless connections from
each node, which ensures exploring every possible wireless
connection. This algorithm takes O(L2) iterations to con-
struct the routing tree. We experimentally demonstrate that
this heuristic is near-optimal in §6.5.

4.4 Application-specific video bit-rate allocation
This algorithm (re)allocates bandwidth to each camera so as
to maximize the overall video analytics accuracy. We replace
the variable R in Equation 2 with the routing tree constructed
by Algorithm 1, and rewrite Equation 2 as follows:

maximize
K

∑
Ci,CES

Ai (Ki )/(|C |)

subject to UCi ≤ 1, Ci ∈ C .

(6)

Reduction to MILP problem. Finding the optimal alloca-
tion plan for all camera nodes, unfortunately, is still a NP-
hard combinatorial optimization problem. We give the proof
in Section A.2. We thus transform it into a mixed integer

linear programming (MILP) problem as follows:

maximize
K

∑
Ci,CES

∑
j

ai j · ki/(|C |). (7)

where ki j is a binary variable that indicates whether camera
node Ci chooses configuration j, and ai j is the analytics ac-
curacy whenCi chooses j . This optimization problem should
meet the following three conditions.
• Configuration selection constraint. Each camera node
Ci can only choose one configuration at a time:

∑
j ki j = 1.

The amount of video traffic produced by a camera node
Ci is ti =

∑
j ti j × ki j , where ti j is the bit-rate of camera

node i from configuration j. The video analytic accuracy
of the video from this camera is ai =

∑
j ai j × ki j , where

ai j is the accuracy from configuration j.
• Flow balancing on relay node. For a given camera node
Ci , the total amount of video traffic need to be transmit-
ted by this camera node should equals to the sum of its
own video traffic and the video traffic received from its
descendant nodes.

di = ti +
∑
j ,Rj=i

dj (8)

• Node utilization condition. Similarly to the utilization
constraint in Equation 6, node utilization should less than
100%.

ETTl(Ci ,f (Ci )) · di +
∑

Cj ∈{C(i)}

ETTl(Cj ,Ci ) · dj

+
∑

Ck ∈{S(i) |Cknot in C(i)}

ETTl(Ck ,f (Ck )
· dk ≤ 1

(9)
We then adopt the standard mixed integer linear program-
ming solver [8] to solve the problem. For a network with
200 camera nodes, this solver can find a solution with good
approximation in less than one second (§6.5).

4.5 Scaling to multiple edge servers
When multiple edge servers are present in the network, Spi-
der balances both network traffic and compute load among
edge servers in both application-independent flow routing
and application-specific video bandwidth allocation.

Load balance in flow routing. When there are multiple
edge servers distributed over the network, Spider builds a
set of routing trees rooted at each edge server with balanced
network traffic. To do so, We make the following modifica-
tions to Algorithm 1. The first modification is in the generate
phase (Line 1 in Algorithm 1), where the algorithm generates
M routing trees forM edge servers using the same shortest
path algorithm. To balance the size (number of nodes in each
trees) of M routing trees, the M edge servers take turns to
select the camera nodes into its routing tree based on the
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Figure 7: Relay node hardware.

(a) The view of camera node #1. (b) The view of camera node #7.

Figure 8: Example for camera views.
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(a) Deployment of a 11-camera
mmWave relay network.

(b) Deployment of a 330-node
simulation testbed.

Figure 9: Real-world testbed and trace driven simulation floorplan.

shortest path metric. The node selected by one edge server
will not be selected by others. The second modification is in
the reroute phase (Line 6), where path utilization is updated
within each individual routing tree. These two modifications
ensure both intra- and inter-network load balance.
Load balance in video bandwidth allocation.When there
are multiple edge servers distributed over the network, the
video bandwidth allocation algorithm should also consider
the computation capacity on each edge node. To this end, we
add a new constraint to the mixed integer linear program-
ming (MILP) problem:∑

Ci ∈CESm

pi , jki , j ≤ Pm (10)

where pi , j is the compute resource required for processing
video stream from camera Ci with configuration Kj . Pm is
the compute capacity of the edge node ESm .

5 System Implementation
We deploy a Spider testbed in a 6m× 8m campus office using
11 camera nodes and one edge server, as shown in Figure 9(a).
We include both indoor and outdoor views in camera nodes’
deployment as shown in Figure 8(a) and Figure 8(b).

5.1 Testbed description

Camera node. Each camera node is a Dell E7440 laptop [4]
equippedwith a Logitech BRIO 4K camera [6] and twoWiGig

radios: a QCA6320 mmWave network interface card [10] for
transmitting, and a NETGEAR Nighthawk X10 router [9]
(802.11ac&ad dual band) for receiving. To reduce the delay on
multi-hop video forwarding, each camera node tunnels the
incoming video packets (from its child node) by adding its
IP address, and forwards it directly to the next-hop receiver.
Such a design allows camera node to process incoming video
traffic at 2 Gbps using a single CPU core. Video forwarding
logic is implemented in C++ to ensure execution efficiency.
Edge server. The edge server is customized from Lambda-
labs [5] equipped with a 10-core Intel core i9 CPU, and two
NVIDIA RTX 2080 Ti GPUs. It runs efficient cascaded oper-
ators for analytics pipelines [7]. Specifically, a background
subtraction (BGS) [3] module is first invoked on downsam-
pled frames as an early filter to detect changes in each frame.
If this module detects motion in the “region of interest”, it
calls a DNN model (e.g., YOLOv3 [35] for object detection)
executing on the GPU to verify if there is indeed an object
of interest. With this cascaded pipelines, Spider is able to
process HD videos on one edge server at 370 fps, 45x faster
than the baseline of running DNNs on all frames using the
same edge server.

5.2 Fault tolerance
Protocols are also implemented in the testbed to deal with
link and node failures.
Link failure and throughput degradation. Link failure
and throughput degradation are common in mmWave net-
works and have significant impact on video analytics per-
formance. Spider runs the following protocol to deal with
link failure and throughput degradation. The link through-
put estimation algorithm (§3.3) detects the abrupt change of
throughput locally and reports it to the edge server through
control plane straightaway. The edge server then re-run the
flow planning heuristics and pushes new receiver ID and
video bit-rate configurations (based on bandwidth allocation
results) to each camera node through control plane. Once the
camera node switches to another link, it periodically checks
the availability of the previous (blocked) link using the same
back-off idea in CSMA/CD and switches back as soon as the

8
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(a) Object Detection.
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(b) Scene Text Detection.
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(c) Face Detection.

Figure 10: Average recall achieved by three algorithms in different video analytics scenarios. In each figure, the green line is CDF of AR
across 11 camera. For each dot in CDF, the corresponding blue and yellow dot is AR achieved by Spider-nofp and Spider for the same camera.

the blocked link is recovered.

Node failure. Once a camera node is unreachable in control
plane, the edge server cuts down the wireless links to/from
this camera immediately by issuing a request packet to its
parent and child nodes. At the same time, the edge server
reruns flow planning heuristics and updates routing and
camera configurations. After that, the edge server issues a
thread to wait for the re-connection (in control plane) request
from the failure node.

Edge server failure. Edge server failure has the most severe
impact on the system. If there is only one edge server, the
failure leads to the stop of the system. When there are multi-
ple edge servers, edge controller follows the same procedure
of handling camera node failure and streams videos to other
edge nodes. When master edge server fails, it trigger master
election in Raft (§3.1). A new master node will be elected
and Spider rebuilds flow routing table and configuration
information in the new master node.

6 Evaluation
We evaluate Spider using both testbed experiments and trace-
driven simulation.

6.1 Experiment setup

Evaluation methods. We evaluate Spider with three dif-
ferent video analytic tasks: object detection [35], face detec-
tion [48], and scene text detection [51]. To emulate large
video traffic on our 11 camera node testbed, each camera
node transmits five video streams simultaneously. To fur-
ther understand Spider’s performance on enterprise-scale
deployment (e.g., cashierless store), we simulate a network
topology with 330 camera nodes in a 90 m × 87 m office build-
ing, as shown in Figure 9. We estimate peak link throughput
at different distances based on the floor plan and signal prop-
agation models of WiGig [45, 52] and Wi-Fi [38, 44], and use
video streams collected from our 11-camera testbed.

Baselines. We compare Spider with the following three

baseline algorithms. Vigil [49]: the state-of-the-art wireless
video surveillance system that transmits video streams over
802.11ac Wi-Fi network. Spider-NoFP: a naïve version of
Spider that adopts shortest path routing without flow plan-
ning. Spider-NC: a naïve version of Spider that transmits
both control packets and video streams over mmWave links.

Ground-truth and video analytics metric. As there is
no human-labeled ground-truth on our video streams, we
run YOLOv3 on these videos at the highest resolution and
take its detection result as the ground-truth. We then de-
fine overall video analytics accuracy as the average object
detection recall on all network video streams. Recall mea-
sures the proportion of the relevant objects being detected,
which is critical to many video analytics applications such
as cashierless store where higher recall is expected in order
to avoid/minimize miss detections. Note that Spider is also
compatible with other accuracy metrics (e.g., precision and
F1-score).

6.2 End-to-end performance

Single edge server. We compute the average recall (AR) of
2-hours video streams sent from each camera node in the
testbed. Figure 10 shows the cumulative distribution function
(CDF) of AR for three different video analytic tasks. Each
point in the figure corresponds to the AR of one camera node.
We observe that AR varies significantly across 11 camera
nodes when the network is scheduled by Vigil. The average
AR for object detection, scene text detection and face detec-
tion is 38.3%, 33.4%, and 28.3%, respectively. In contrast, both
Spider-NoFP and Spider outperform Vigil. Spider-NoFP (blue
circle) achieves an average AR of 79.8%, 79.9%, and 64.7%,
respectively. The uncorrelation between AR of Spider-NoFP
and Spider in different nodes demonstrates that the two al-
gorithms have different node preference in flow scheduling.
The huge performance gap between Vigil and Spider-NoFP
demonstrates the necessity of adopting mmWave links for
video transmission. The improvement on average recall is
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(a) One Edge Servers.
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(b) Two Edge Servers.
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(c) Three Edge Servers.
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(d) Four Edge Servers.

Figure 11: Average recall achieved by three algorithms in different edge server settings. In each figure, the green line is CDF of AR across 30
edger server locations. For each dot in CDF, the corresponding blue and yellow dot is AR achieved by Spider-nofp and Spider for the same
edge server deployment.
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Figure 12: Network resource required for the baseline to achieve
the same accuracy as Spider.

more significant on fine-grained tasks like face and text de-
tection. With flow planning heuristic, Spider’s average AR
further grows to 84.2%, 84.7% and 81.2% on these three ap-
plications, which is 41.5%–52.9% higher than Vigil. These
improvements demonstrate that Spider’s flow planning algo-
rithm can effectively improve the video analytics accuracy.

Multiple edge servers. We then test Spider’s performance
in multiple edge node settings through large-scale simula-
tion. In this experiment, we randomly deploy K=(1,2,3,4)
edge servers in the office building and compute AR across
all 330 camera nodes. Each experiment is repeated 30 times.
Figure 11 shows the CDF of AR in each edge server set-
tings. We observe that Spider achieves consistently better
performance than Vigil: 26.5%–39.3%, and 27%–40.8% higher
average and median AR, respectively. We also observe that
the video analytics accuracy increases with growing num-
ber of edge servers. For instance, the mean AR achieved by
Spider grows from 67.8% to 79.8% and further to 89.6% as
we put one, two, and four edge servers in the network. Such
a high performance improvement comes from the load bal-
ance mechanism in Spider, which fully exploits the flexibility
of relay network and geo-distributed edge nodes to reduce
bandwidth and compute contention.

To quantify the benefit of WiGig over Wi-Fi from the net-
work perspective, we consider the scenario where data plane
uses 802.11ac links and calculate additional throughput that
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(a) Spider.
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(b) Spider-NC.

Figure 13: Impact of node&link failures on average recall.

Vigil demands to achieve the same average AR as Spider.
As can be seen in Figure 12, Vigil demands 4.1x , 5.3x , 5.8x ,
and 6.5x more throughput on average relative to our esti-
mated peak throughput in the simulation environment in
one, two, three, and four edge server settings, respectively
in our simulated testbed.

6.3 Roubustness of Spider

Impact of failures. We further run simulations on the 330-
node relay network to examine the impact of failures on
video analytics performance. We randomly shut down dif-
ferent number of camera nodes and links and compute the
average recall of video streams sent from the remaining live
camera nodes. For comparison, we also run Spider-NC in the
same network topology settings. We show the impact of link
and node failures in Figure 13. As expected, the average recall
decreases with the growing number of both link and node
failures. Specifically, Spider (Figure 13(a)) achieves around
68.0% average recall when there are 10% of dead links and
dead nodes in the network. The average recall then drops to
around 43.2% when the portion of link&node failures reaches
to 30%. In contrast, Spider-NC (Figure 13(b)) achieves 16.6%
overall average recall in the same settings. This result demon-
strates that Spider’s decoupled data plane and control plane
improves the reliability of the wireless video analytic system
under severe network failure.

Latency of failure recovery. We define link recovery time
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Algo. neighbor disc. msg. prop. re-asso. Total

Spider-NC 5.1s 1.4s 5.0s 11.5s
Spider n/a 6ms 5.0s 5.0s

Table 2: Time cost for link failure recovery.
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Figure 14: Impact of Spider’s control plane on legacy Wi-Fi users.

as the time for the camera node to replace the paralyzed link
with the new link that the edge server assigned. We then
measure the link recovery time of Spider and Spider-NC.
The results are shown in Table 2. Spider-NC takes around
11.5s on average to recovery from a link failure. In contrast,
Spider takes around 5s on average, which is 57% reduction
in time. This is because Spider-NC conducts beam searching
twice for re-association, one for finding a neighbor node that
is available to forward its link failure message to the edge
server, and another for discovering the new neighbor node
allocated by the edge server. In contrast, Spider reports the
link failure to the edge server directly through 802.11acWi-Fi
link. It only searches the beam once to re-associate with the
new node that the edge server assigned. Besides, propagating
the control packets in the multi-hop mmWave networks also
introduce delays due to buffering at relay nodes.

We also compare the delay for updating the routing table
at each camera node. For Spider, the camera node takes
negligible time to update its routing table since there are
reliable, always-on Wi-Fi links between camera nodes and
the edge server. Therefore, the camera node can propagate
link failure messages to the edge server as soon as the link
failure occurs. In contrast, Spider-NC needs to re-associate
with an available neighbor node first and then propagate the
link failure message to the edge server, which introduces
around 6.5s delay on average. These two experiment results
demonstrate the overlay network architecture can effectively
improve the network response time to link failures.

6.4 Interference to legacy Wi-Fi users
We quantify the impact of Spider control packets on legacy
Wi-Fi users in these experiments. We put a legacy Wi-Fi
device (a laptop) in our 11-camera node testbed and configure
it to work in the same channel as Spider’s control plane. This
laptop ping a Google server 1,000 times. We then measure
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Figure 15: Accuracy for Spi-
der throughput estimation.
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the round trip time (RTT) with and without launching Spider.
Figure 14(a) shows the CDF of the RTT measurement. The
95% percentile of RTT is 6.6 ms when there is no control or
video streams transmitted over the 802.11ac Wi-Fi band (i.e.,
neither Vigil nor Spider is working). The 95% percentile of
RTT grows slightly to 6.8 ms when Spider transmits control
packets over the same Wi-Fi band. This result demonstrates
that Spider introduces negligible network delay (0.2 ms) to
the legacyWi-Fi users. In contrast, the 95% percentile of RTT
jumps to 23.4 ms when Vigil transmits video streams over
the same Wi-Fi band. Running Vigil thus introduces 16.2 ms
extra delay, 81x higher than that introduced by Spider.
We further quantify the impact of Spider’s control plane

on the peak network throughput that legacy Wi-Fi users can
achieve. In this experiment, we run iperf3 on the same Wi-Fi
device and record the uplink throughput every one second.
Figure 14(b) shows the CDF of network throughput. We
observe that this legacy Wi-Fi device can achieve almost the
same network throughput no matter Spider is running or not.
In contrast, the network throughput drops significantlywhen
video streams are transmitted all through 802.11ac Wi-Fi
links (Vigil). Specifically, the 95% percentile of the maximum
network throughput achieved by the legacy Wi-Fi device is
305.0 Mbps. However, the maximum network throughput
drops to around 133.5 Mbps when Vigil is running.

6.5 Micro-benchmark
Lastly, we conduct micro-benchmarks to understand the
performance of each functional module in Spider.

Accuracy of throughput estimation. In this experiment,
we evaluate the link throughput estimation algorithm in
different link throughput settings. We use the throughput
reported by iPerf3 as the groundtruth. Figure 15 shows the
result. Each dot in the figure represents a link throughput
estimation. We observe Spider achieves consistently high
throughput estimation accuracy in both low (≤ 1 Gbps) and

11



high (> 1 Gbps) link throughput settings. All these through-
put estimation results are within the error range of through-
put estimation reported by iperf3.

Impact of video profiling. Each camera node in Spider pe-
riodically transmits video segments to the edge server over
the data plane. We vary the video profiling interval to in-
vestigate its impact on the overall video analytics accuracy.
To facilitate our presentation, we define effective through-
put ratio as the ratio between the non-profiling video traffic
and the overall video traffic transmitted over the data plane.
Short video profiling interval would yield a more accurate
resource-accuracy profile, at the cost of a larger amount of
profiling traffic (i.e., lower effective throughput ratio). For
comparison, we assume there is an oracle transmitting video
profiling samples on a different channel (i.e., does not share
the mmWave links with normal video streams). The result is
shown in Figure16. Spider’s average recall grows rapidly as
we increase the video profiling interval from 2 s to 20 s. This
is because the bandwidth allocated to non-profiling video
streams grows with increasing of video profiling interval.
Nonetheless, Spider fails to capture temporal variations of
video content as the profiling interval grows further. Accord-
ingly, we observe the average recall begins to drop at 20 s
interval settings. Spider achieves 82.7% average recall in 20 s
interval settings, 0.5% lower than the oracle. At the same
time, the effective throughput ratio maintains in a high level
(>99%). Suggested by this result, we choose 20 s as the default
video profiling interval in our design.

Optimality and efficiency of the flow planning algo-
rithm. We first compare the average recall achieved by
Spider with the maximal average recall achieved by brute-
force search algorithm. As the brute-force search algorithm
(OPT) is computationally intractable, we only obtain the
maximal average recall in small network settings (≤12 cam-
era nodes). The result is shown in Figure 17(a). We observe
Spider achieves almost the same average recall as the brute-
force search algorithm, demonstrating the effectiveness of
our flow planning heuristics.
We next compare the computation efficiency of Spider’s

flow planning heuristic with brute-force search algorithm
(OPT). The result is shown in Figure 17(b). We observe Spi-
der’s heuristic takes consistently short time (i.e., less than
2 s). In contrast, computation cost of brute-force search algo-
rithm grows exponentially from 5 ms to 1 min, and 12 hours
as we increase the number of camera node from 3 to 9, and
further to 12.

7 Related Work
Spider builds on a long tradition of network optimization and
upon recent advances in computer vision, machine learning,
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Figure 17: The optimality and efficiency of Spider flow planning
algorithm.

and wireless communication.

Video analytics systems. Live video analytics is becoming
more pervasive due to the increasing number of cameras and
the deployment of edge computing nodes [24–27, 46, 47, 49].
However, the network resource is one of the key constraints
in the design of those system. Vigil [49] limits the frame
resolution and transmitting objects due to the limited net-
work bandwidth. Zero-stream [46] sacrifices the timeliness
of video to reduce bandwidth usage. Different from those
works, Spider demonstrates high bandwidth network with
application-oriented flow scheduling can fully unleash the
potential of video analytics system.

mmWave network.Mm-wave communication is emerging
as one of the key technologies in the 5G era. Efforts have
been spent in the research community to model mmWave
networks [52], improve mmWave link coverage [41–43], re-
duce beam alignment and AP switching delay [23, 34, 50],
and build multi-radio hybrid network withWi-Fi or LTE [39].
mmWave has also been used to stream videos and support
applications like VR/AR that demand high bandwidth and
low latency [16]. Spider builds on top of these techniques,
and we view it is orthogonal to the mmWave advancements
below the transport layer.

Multi-hop networks. Multi-hop relay technologies have
been extensively studied in wireless mesh networks [17, 18,
20, 29]. There is also relay network design based on 60 GHz
radios: Terragraph [11]. Unlike the focus of Terragraph to-
wards optimization network throughput, Spider focuses on
maximizing video analytics accuracy through a joint opti-
mization of network flow and application configuration. In
addition, different from Terragraph, Spider takes a different
approach in network architecture design, which separates
dedicate control plane for network control.

8 Conclusion
We have built Spider, a live video analytics system based on
multi-hop, mmWave relay network. With the objective of
maximizing the overall video analytics accuracy, Spider pro-
poses to integrate a separate low-latencyWi-Fi control plane
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with the high-throughput mmWave data plane, which al-
lows the edge server to timely schedule the network routing
and video bit-rate allocation. We have implemented a proto-
type of Spider and conduct both real-world experiments and
large-scale simulations. Results show that Spider dramati-
cally improves video analytics accuracy, improves system
robustness, and reduces interference to existing users.
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A Appendix
A.1 NP-hard reduction of flow routing problem
We reduce multiprocessor scheduling problem [31], a well-
known NP-hard problem to our flow routing problem.
Given m processors and J jobs where each job ji takes

li time for execution, the multiprocessor scheduling prob-
lem aims to find the minimum possible time required to
schedule all jobs in J on m processors such that none of
two jobs overlap with each other. We reduce multiprocessor
scheduling problem to our flow routing problem as follows:
we first construct a network with m edge servers and |J |
camera nodes. We then define the cost of a wireless link
between an edge server and a camera node i as li/H , where
H is a large constant number to ensure li/H < 1. This is
the simplified version of our flow routing problem where no
wireless interference among parallel transmissions. Solving
this flow routing problem in polynomial time contradicts
to the NP-hardness of multiprocessor scheduling problem.
Hence Spider’s flow routing problem is NP-hard.

A.2 NP-hard reduction of Video Bit-rate Allocation
We prove the NP-hardness by reducing the Knapsack prob-
lem, another well-known NP-hard problem [28] to our video

bit-rate allocation problem.
Consider a 0-1 knapsack problem that has n objects. Each

object i is associatedwith aweightwi and a valuevi . The goal

is of 0-1 knapsack problem is to maximize
n∑
i=1

vixi with the

constraints that
n∑
i=1

wixi ≤W . We reduce the above problem

to our video bit-rate allocation problem as follows: we first
build a network with one edge server and n camera nodes
with each camera node directly connects to the edge server.
We then define the accuracy and bandwidth requirement
of this node as: vi/vmax andwi/W , where vmax andW are
constant values to ensurevi/vmax < 1 andwi/W < 1. This is
the simplified version of our video bit-rate allocation problem
where each node either transmits or not. Solving this problem
in polynomial time would contradict with the NP-hardness
of the 0-1 knapsack problem. Hence Spider’s video bit-rate
allocation problem is NP-hard.
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