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1 INTRODUCTION
Many functional languages provide finite maps either as a built-in data type, or as a mature, well-
optimised library. Generally the keys of such a map will be small: an integer, a string, or perhaps a
pair of integers. But in some applications the key is large: an entire tree structure. For example,
consider the Haskell expression

let x = a + b in ... (let y = a + b in x + y) ....

We might hope that the compiler will recognise the repeated (a + b) and transform to

let x = a + b in ... (x + x) ....

An easy way to do so is to build a finite map that maps the expression (a + b) to x . Then, when
encountering the inner let, we can look up the right hand side in the map, get a hit, and replace y
by x . All we need is a finite map in keyed by syntax trees.
Traditional finite-map implementations tend to do badly in such applications, because they

are often based on balanced trees, and make the assumption that comparing two keys is a fast,
constant-time operation. That assumption is false for tree-structured keys.
Another time that a compiler may want to look up a tree-structured key is when rewriting

expressions: it wants to see if any rewrite rule matches the sub-expression in hand and subse-
quently rewrite with the instantiated right-hand side (RHS) of the rule. For a compiler developer to
accommodate such a feature, we need an extended version of a finite map in which we can insert a
collection of rewrite rules, expressed as (pattern, rhs) pairs, and then look up an expression in the
map, getting a hit if one or more of the patterns match the expression. If there is a large number of
such (pattern, rhs) entries to check, we would like to do so faster than checking them one by one.
Several parts of GHC, a Haskell compiler, need matching lookup, and currently use an inefficient
linear algorithm to do so.
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In principle it is well known how to build a finite map for a deeply-structured key: use a trie.
For the matching task, use discrimination trees, a variant of tries that are heavily used by the
automated reasoning community (Section 7.1). In this paper we apply these ideas in the context of
a statically-typed functional programming language, Haskell. This shift of context is surprisingly
fruitful, and we make the following contributions:
• Following Hinze [2000a], we develop a standard pattern for a statically typed triemap for an
arbitrary new algebraic data type (Section 3.1). In contrast, most of the literature describes
untyped tries for a fixed, generic tree type. In particular:
– Supported by type class, we can make good use of polymorphism to build triemaps for
polymorphic data types, such as lists (Section 3.5).

– We cover the full range of operations expected for finite maps: not only insertion and
lookup, but alter , union, and fold (Section 3.1). Other operations like map and filter are
easily implemented, too.

– We develop a generic optimisation for singleton maps that compresses leaf paths. In-
triguingly, the resulting triemap transformer can be easily mixed into arbitrary triemap
definitions (Section 3.6).

• We show how to make our triemaps insensitive to 𝛼-renamings in keys that include binding
forms (Section 4). Accounting for𝛼-equivalence is not hard, but it is crucial for the applications
in compilers.
• We extend our triemaps to support matching lookups (Section 5). This is an important
step, because the only readily-available alternative is linear lookup. The code is short, but
surprisingly tricky.
• We present measurements that compare the performance of our triemaps (ignoring their
matching capability) with traditional finite-map implementations in Haskell (Section 6).

Our contribution is not so much a clever new idea as an exposition of some old ideas in a new
context, perhaps providing some new perspective on those old ideas. We discuss related work in
Section 7.

2 THE PROBLEMWE ADDRESS
Our general task is as follows: implement an efficient finite mapping from keys to values, in which
the key is a tree. For example, an Expr data type might be defined like this:

data Expr = App Expr Expr | Lam Var Expr | Var Var

Here Var is the type of variables; these can be compared for equality and used as the key of a finite
map. Its definition is not important for this paper, but for the sake of concreteness, you may wish
to imagine it is simply a string:

type Var = String

The data type Expr is capable of representing expressions like (𝑎𝑑𝑑 𝑥 𝑦) and (𝜆𝑥 . 𝑎𝑑𝑑 𝑥 𝑦). We will
use this data type throughout the paper, because it has all the features that occur in real expression
data types: free variables like 𝑎𝑑𝑑 , represented by a Var node; lambdas which can bind variables
(Lam), and occurrences of those bound variables (Var); and nodes with multiple children (App). A
real-world expression type would have many more constructors, including literals, let-expressions
and suchlike.

A finite map keyed by such expressions is extremely useful. The Introduction gave the example
of a simple common sub-expression elimination pass. GHC also does many lookups based on types
rather than expressions. For example, when implementing type-class instance lookup, or doing
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Triemaps that match 3

type XT v = Maybe v → Maybe v

data Map k v = . . . -- a finite map from keys of type k to values of type v
Map.empty ::Map k v
Map.insert :: Ord k ⇒ k → v → Map k v → Map k v
Map.lookup :: Ord k ⇒ k → Map k v → Maybe v
Map.alter :: Ord k ⇒ XT v → k → Map k v → Map k v
Map.unionWith :: Ord k ⇒ (v → v → v) → Map k v → Map k v → Map k v
Map.size ::Map k v → Int
Map.foldr :: (v → r → r) → r → Map k v → r

data Bag v -- An unordered collection of values v
Bag.empty :: Bag v
Bag.single :: v → Bag v
Bag.union :: Bag v → Bag v → Bag v
Bag.map :: (v1→ v2) → Bag v1→ Bag v2

infixr 1 >=> -- Kleisli composition
(>=>) ::Monad m⇒ (a→ m b) → (b→ m c) → a→ m c

infixr 1 >◦> -- Forward composition
(>◦>) :: (a→ b) → (b→ c) → a→ c

infixr 0 ⊲ -- Reverse function application
(⊲) :: a→ (a→ b) → b

Fig. 1. API for library functions

type-family reduction, GHC needs a map whose key is a type. Both types and expressions are
simply trees, and so are particular instances of the general task.
In the context of a compiler, where the keys are expressions or types, the keys may contain

internal binders, such as the binder x in (𝜆𝑥.𝑥). If so, we would expect insertion and lookup to be
insensitive to 𝛼-renaming, so we could, for example, insert with key (𝜆𝑥 .𝑥) and look up with key
(𝜆𝑦.𝑦), to find the inserted value.

2.1 Lookup modulo matching
Beyond just the basic finite maps we have described, our practical setting in GHC demands more:
we want to do a lookup that does matching. GHC supports so-called rewrite rules [Peyton Jones
et al. 2001], which the user can specify in their source program, like this:

{−# RULES "map/map" ∀f g xs.map f (map g xs) = map (f ◦ g) xs #−}

This rule asks the compiler to rewrite any target expression that matches the shape of the left-hand
side (LHS) of the rule into the right-hand side (RHS). We use the term pattern to describe the
LHS, and target to describe the expression we are looking up in the map. The pattern is explicitly
quantified over the pattern variables (here f , g, and xs) that can be bound during the matching
process. In other words, we seek a substitution for the pattern variables that makes the pattern equal
to the target expression. For example, if the program we are compiling contains the expression
map double (map square nums), we would like to produce a substitution f ↦→ double, g ↦→
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4 Simon Peyton Jones, Richard A. Eisenberg, and Sebastian Graf

square, xs ↦→ nums so that the substituted RHS becomes map (double ◦ square) nums; we would
replace the former expression with the latter in the code under consideration.

Of course, the pattern might itself have bound variables, and we would like to be insensitive to
𝛼-conversion for those. For example:
{−# RULES "map/id" map (𝜆x → x) = 𝜆y → y #−}

We want to find a successful match if we see a call map (𝜆y → y), even though the bound variable
has a different name.

Now imagine that we have thousands of such rules. Given a target expression, we want to consult
the rule database to see if any rule matches. One approach would be to look at the rules one at a
time, checking for a match, but that would be slow if there are many rules. Similarly, GHC’s lookup
for type-class instances and for type-family instances can have thousands of candidates. We would
like to find a matching candidate more efficiently than by linear search.

2.2 The interface of of a finite map
What API might such a map have? Building on the design of widely used functions in Haskell (see
Fig. 1), we seek these basic operations:

emptyEM :: ExprMap v
lookupEM :: Expr → ExprMap v → Maybe v
alterEM :: Expr → XT v → ExprMap v → ExprMap v

The functions emptyEM and lookupEM should be self-explanatory. The function alterTM is a stan-
dard generalisation of insertEM: instead of providing just a new element to be inserted, the caller
provides a transformation XT v , an abbreviation forMaybe v → Maybe v (see Fig. 1). This function
transforms the existing value associated with the key, if any (hence the input Maybe), to a new
value, if any (hence the outputMaybe). These fundamental operations on a finite map must obey
the following properties:
∀e, lookup e empty ≡ Nothing
∀e m xt, lookup e (alter e xt m) ≡ xt (lookup e m)
∀e1 e2 m xt, e1 ≠ e2 ⇒ lookup e1 (alter e2 xt m) ≡ lookup e1 m

We can easily define insertEM and deleteEM from alterEM:
insertEM :: Expr → v → ExprMap v → ExprMap v
insertEM e v = alterEM e (\_→ Just v)
deleteEM :: Expr → ExprMap v → ExprMap v
deleteEM e = alterEM e (\_→ Nothing)

You might wonder whether, for the purposes of this paper, we could just define insert , leaving alter
for the Supplemental1, but as we will see in Section 3.2, our approach using tries fundamentally
requires the generality of alter .
We would also like to support other standard operations on finite maps, including
• An efficient union operation to combine two finite maps into one:

unionEM :: ExprMap v → ExprMap v → ExprMap v

• A map operation to apply a function to the range of the finite map:
mapEM :: (a→ b) → ExprMap a→ ExprMap b

1In the supplemental file TrieMap.hs
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• A fold operation to combine together the elements of the range:
foldEM :: (a→ b→ b) → ExprMap a→ b→ b

2.3 Non-solutions
At first sight, our task can be done easily: define a total order on Expr and use a standard finite map
library. Indeed that works, but it is terribly slow. A finite map is implemented as a binary search
tree; at every node of this tree, we compare the key (an Expr , remember) with the key stored at
the node; if it is smaller, go left; if larger, go right. Each lookup thus must perform a (logarithmic)
number of potentially-full-depth comparisons of two expressions.
Another possibility might be to hash the Expr and use the hash-code as the lookup key. That

would make lookup much faster, but it requires at least two full traversals of the key for every
lookup: one to compute its hash code for every lookup, and a full equality comparison on a “hit”
because hash-codes can collide. While this double-check is not so terrible, we will see that the
naive approach described here does not extend well to support the extra features we require in our
finite maps.
But the killer is this: neither binary search trees nor hashing is compatible with matching lookup.

For our purposes they are non-starters.
What other standard solutions are there, apart from linear search? The theorem proving and

automated reasoning community has been working with huge sets of rewrite rules, just as we
describe, for many years. They have developed term indexing techniques for the job [Sekar et al.
2001, Chapter 26], which attack the same problem from a rather different angle, as we discuss in
Section 7.1.

3 TRIES
A standard approach to a finite map in which the key has internal structure is to use a trie2. Let us
consider a simplified form of expression:

data Expr = Var Var | App Expr Expr

We leave lambdas out for now, so that all Var nodes represent free variables, which are treated as
constants. We will return to lambdas in Section 4.

3.1 The basic idea
Here is a trie-based implementation for Expr :

data ExprMap v = EM {em_var ::Map Var v, em_app :: ExprMap (ExprMap v) }
HereMap Var v is any standard, existing finite map, such as the containers3 library keyed by Var ,
with values v . One way to understand this slightly odd data type is to study its lookup function:

lookupExpr :: Expr → ExprMap v → Maybe v
lookupExpr e (EM {em_var = m_var, em_app = m_app})

= case e of
Var x → Map.lookup x m_var
App e1 e2 → case lookupExpr e1 m_app of

Nothing → Nothing
Just m1 → lookupExpr e2 m1

2https://en.wikipedia.org/wiki/Trie
3https://hackage.haskell.org/package/containers
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6 Simon Peyton Jones, Richard A. Eisenberg, and Sebastian Graf

This function pattern-matches on the target e. The Var alternative says that to look up a variable
occurrence, just look that variable up in the em_var field. But if the expression is an App e1 e2 node,
we first look up e1 in the em_app field, which returns an ExprMap. We then look up e2 in that map.
Each distinct e1 yields a different ExprMap in which to look up e2.

We can substantially abbreviate this code, at the expense of making it more cryptic, thus:

lookupExpr (Var x) = em_var >◦> Map.lookup x
lookupExpr (App e1 e2) = em_app >◦> lookupExpr e1 >=> lookupExpr e2

The function em_var :: ExprMap v → Map Var v is the auto-generated selector that picks the
em_var field from an EM record, and similarly em_app. The functions (>◦>) and (>=>) are right-
associative forward composition operators, respectively monadic and non-monadic, that chain the
individual operations together (see Fig. 1). Finally, we have 𝜂-reduced the definition, by omitting
the m parameter. These abbreviations become quite worthwhile when we add more constructors,
each with more fields, to the key data type.
Notice that in contrast to the approach of Section 2.3, we never compare two expressions for

equality or ordering. We simply walk down the ExprMap structure, guided at each step by the next
node in the target. (We typically use the term “target” for the key we are looking up in the finite
map.)
This definition is extremely short and natural. But it conceals a hidden complexity: it requires

polymorphic recursion. The recursive call to lookupExpr e1 instantiates v to a different type than
the parent function definition. Haskell supports polymorphic recursion readily, provided you give
type signature to lookupExpr , but not all languages do.

3.2 Modifying tries
It is not enough to look up in a trie – we need to build them too! First, we need an empty trie. Here
is one way to define it:

emptyExpr :: ExprMap v
emptyExpr = EM {em_var = Map.empty, em_app = emptyExpr }

It is interesting to note that emptyExpr is an infinite, recursive structure: the em_app field refers
back to emptyExpr . We will change this definition in Section 3.4, but it works perfectly well for
now.

Next, we need to alter a triemap:

alterExpr :: Expr → XT v → ExprMap v → ExprMap v
alterExpr e xt m@(EM {em_var = m_var, em_app = m_app})

= case e of
Var x → m {em_var = Map.alter xt x m_var }
App e1 e2 → m {em_app = alterExpr e1 (liftXT (alterExpr e2 xt)) m_app}

liftXT :: (ExprMap v → ExprMap v) → XT (ExprMap v)
liftXT f Nothing = Just (f emptyExpr)
liftXT f (Just m) = Just (f m)

In the Var case, we must just update the map stored in the em_var field, using theMap.alter function
from Fig. 1; in Haskell the notation “m { fld = e }” means the result of updating the fld field of
record m with new value e. In the App case we look up e1 in m_app; we should find a ExprMap
there, which we want to alter with xt . We can do that with a recursive call to alterExpr , using liftXT
for impedance-matching.
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The App case shows why we need the generality of alter . Suppose we attempted to define an
apparently-simpler insert operations. Its equation for (App e1 e2) would look up e1 — and would
then need to alter that entry (an ExprMap, remember) with the result of inserting (e2, v). So we are
forced to define alter anyway.
We can abbreviate the code for alterExpr using combinators, as we did in the case of lookup,

and doing so pays dividends when the key is a data type with many constructors, each with many
fields. However, the details are fiddly and not illuminating, so we omit them here. Indeed, for the
same reason, in the rest of this paper we will typically omit the code for alter , though the full code
is available in the Supplemental.

3.3 Unions of maps
A common operation on finite maps is to take their union:

unionExpr :: ExprMap v → ExprMap v → ExprMap v

In tree-based implementations of finite maps, such union operations can be tricky. The two trees,
which have been built independently, might not have the same left-subtree/right-subtree structure,
so some careful rebalancing may be required. But for tries there are no such worries – their structure
is identical, and we can simply zip them together. There is one wrinkle: just as we had to generalise
insert to alter , to accommodate the nested map in em_app, so we need to generalise union to
unionWith:

unionWithExpr :: (v → v → v) → ExprMap v → ExprMap v → ExprMap v

When a key appears on bothmaps, the combining function is used to combine the two corresponding
values. With that generalisation, the code is as follows:

unionWithExpr f (EM {em_var = m1_var, em_app = m1_app})
(EM {em_var = m2_var, em_app = m2_app})

= EM {em_var = Map.unionWith f m1_var m2_var
, em_app = unionWithExpr (unionWithExpr f ) m1_app m2_app}

It could hardly be simpler.

3.4 Folds and the empty map
This strange, infinite definition of emptyExpr given in Section 3.2 works fine (in a lazy language at
least) for lookup, alteration, and union, but it fails fundamentally when we want to iterate over the
elements of the trie. For example, suppose we wanted to count the number of elements in the finite
map; in containers this is the function Map.size (Fig. 1). We might attempt:

sizeExpr :: ExprMap v → Int
sizeExpr (EM {em_var = m_var, em_app = m_app}) = Map.size m_var+???

We seem stuck because the size of the m_app map is not what we want: rather, we want to add
up the sizes of its elements, and we don’t have a way to do that yet. The right thing to do is to
generalise to a fold:

foldrExpr :: (v → r → r) → r → ExprMap v → r
foldrExpr k z (EM {em_var = m_var, em_app = m_app})

= Map.foldr k z1 m_var
where
z1 = foldrExpr kapp z m_app
kapp m1 r = foldrExpr k r m1

, Vol. 1, No. 1, Article . Publication date: July 2021.
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In the binding for z1 we fold over m_app :: ExprMap (ExprMap v). The function kapp is combines
the map we find with the accumulator, by again folding over the map with foldrExpr .
But alas, foldrExpr will never terminate! It always invokes itself immediately (in z1) on m_app;

but that invocation will again recursively invoke foldrExpr ; and so on forever. The solution is
simple: we just need an explicit representation of the empty map. Here is one way to do it (we will
see another in Section 3.5):

data ExprMap v = EmptyEM
| EM {em_var ::Map Var v, em_app :: ExprMap (ExprMap v) }

emptyExpr :: ExprMap v
emptyExpr = EmptyEM

foldrExpr :: (v → r → r) → r → ExprMap v → r
foldrExpr k z EmptyEM = z
foldrExpr k z (EM {em_var = m_var, em_app = m_app}) = Map.foldr k z1 m_var
where
z1 = foldrExpr kapp z m_app
kapp m1 r = foldrExpr k r m1

Equipped with a fold, we can easily define the size function, and another that returns the range of
the map:

sizeExpr :: ExprMap v → Int
sizeExpr = foldrExpr (𝜆 n→ n + 1) 0
elemsExpr :: ExprMap v → [v ]
elemsExpr = foldrExpr (:) [ ]

3.5 A type class for triemaps
Since all our triemaps share a common interface, it is useful to define a type class for them:

class Eq (TrieKey tm) ⇒ TrieMap tm where
type TrieKey tm :: Type
emptyTM :: tm a
lookupTM :: TrieKey tm→ tm a→ Maybe a
alterTM :: TrieKey tm→ XT a→ tm a→ tm a
foldTM :: (a→ b→ b) → tm a→ b→ b
unionWithTM :: (a→ a→ a) → tm a→ tm a→ tm a
. . .

The class constraint TrieMap tm says that the type tm is a triemap, with operations emptyTM,
lookupTM etc. The class has an associated type [Chakravarty et al. 2005], TrieKey tm, a type-level
function that transforms the type of the triemap into the type of keys of that triemap.
Now we can witness the fact that ExprMap is a TrieMap, like this:

instance TrieMap ExprMap where
type TrieKey ExprMap = Expr
emptyTM = emptyExpr
lookupTM = lookupExpr
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alterTM = alterExpr
. . .

Having a class allow us to write helper functions that work for any triemap, such as

insertTM :: TrieMap tm⇒ TrieKey tm→ v → tm v → tm v
insertTM k v = alterTM k (\_→ Just v)
deleteEM :: TrieMap tm⇒ TrieKey tm→ tm v → tm v
deleteEM k = alterEM k (\_→ Nothing)

But that is not all. Suppose our expressions had multi-argument apply nodes, AppV , thus

data Expr = . . . | AppV Expr [Expr ]
Then we would need to built a trie keyed by a list of Expr . A list is just another algebraic data type,
built with nil and cons, so we could use exactly the same approach, thus

lookupListExpr :: [Expr ] → ListExprMap v → Maybe v

But rather than define a ListExprMap for keys of type [Expr ], and a ListDeclMap for keys of type
[Decl ], etc, we would obviously prefer to build a trie for lists of any type, like this [Hinze 2000a]:

lookupList :: TrieMap tm⇒ [TrieKey tm] → ListMap tm v → Maybe v
lookupList [ ] = lm_nil
lookupList (k : ks) = lm_cons >◦> lookupTM k >=> lookupList ks

emptyList :: TrieMap tm⇒ ListMap tm
emptyList = LM { lm_nil = Nothing, lm_cons = emptyTM}
data ListMap tm v = LM { lm_nil ::Maybe v, lm_cons :: tm (ListMap tm v) }

The code for alterList and foldList is routine. Notice that all of these functions are polymorphic in
tm, the triemap for the list elements. So ListMap is a triemap-transformer; and if tm is a TrieMap
then so is ListMap tm:

instance TrieMap tm⇒ TrieMap (ListMap tm) where
type TrieKey (ListMap tm) = [TrieKey tm]
emptyTM = emptyList
lookupTM = lookupList
...

3.6 Singleton maps, and empty maps revisited
Suppose we start with an empty map, and insert a value with a key (an Expr) that is large, say

App (App (Var "f") (Var "x")) (Var "y")
Looking at the code for alterExpr in Section 3.2, you can see that because there is an App at the
root, we will build an EM record with an empty em_var , and an em_app field that is... another EM
record. Again the em_var field will contain an empty map, while the em_app field is a further EM
record.
In effect, the key is linearised into a chain of EM records. This is great when there are a lot of

keys with shared structure, but once we are in a sub-tree that represents a single key-value pair it
is a rather inefficient way to represent the key. So a simple idea is this: when a ExprMap represents
a single key-value pair, represent it as directly a key-value pair, like this:
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10 Simon Peyton Jones, Richard A. Eisenberg, and Sebastian Graf

data ExprMap v = EmptyEM
| SingleEM Expr v -- A single key/value pair
| EM {em_var ::Map Var v, em_app :: ExprMap (ExprMap v) }

But we will have to tiresomely repeat these extra data constructors, EmptyX and SingleX for each
new data type X for which we want a triemap. For example we would have to add EmptyList and
SingleList to the ListMap data type of Section 3.5. It is better instead to abstract over the enclosed
triemap, like this:

data SEMap tm v = EmptySEM
| SingleSEM (TrieKey tm) v
| MultiSEM (tm v)

The code for lookup practically writes itself:

lookupSEMap :: TrieMap tm⇒ TrieKey tm→ SEMap tm v → Maybe v
lookupSEMap EmptySEM = Nothing
lookupSEMap tk (SingleSEM pk v) | tk == pk = Just v

| otherwise = Nothing
lookupSEMap tk (MultiSEM tm) = lookupTM tk tm

Notice that in the SingleSEM case we need equality on the key type TrieKey tm, to tell if the key
being looked up, tk is the same as the key in the SingleEM, namely pk. That is why we made
Eq (TrieKey tm) a superclass of TrieMap tm in the class declaration in Section 3.5.

The code for alter is more interesting, becuase it governs the shift from EmptySEM to SingleSEM
and thence to MultiSEM:

alterSEM :: TrieMap tm⇒ TrieKey tm→ XT v → SEMap tm v → SEMap tm v
alterSEM k xt EmptySEM = case xt Nothing of Nothing → EmptySEM

Just v → SingleSEM k v
alterSEM k1 xt (SingleSEM k2 v2)
| k1 == k2 = case xt (Just v2) of

Nothing → EmptySEM
Just v’ → SingleSEM k2 v’

| otherwise = case xt Nothing of
Nothing → SingleSEM k2 v2
Just v1 → MultiSEM (insertTM k1 v1 (insertTM k2 v2 emptyTM))

alterSEM k xt (MultiSEM tm) = MultiSEM (alterTM k xt tm)

Now, of course, we can make SEMap itself an instance of TrieMap:

instance TrieMap tm⇒ TrieMap (SEMap tm) where
type TrieKey (SEMap tm) = TrieKey tm
emptyTM = EmptySEM
lookupTM = lookupSEM
alterTM = alterSEM
...

Adding a new item to a triemap can turn EmptySEM into SingleSEM and SingleSEM intoMultiSEM;
and deleting an item from a SingleSEM turns it back into EmptySEM. But you might wonder whether
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we can shrink a MultiSEM back to a SingleSEM when it has only one remaining element? Yes, of
course we can, but it takes quite a bit of code, and it is far from clear that it is worth doing so.

Finally, we need to re-define ExprMap and ListMap using SEMap:
type ExprMap = SEMap ExprMap’
data ExprMap’ v = EM {em_var ::Map Var v, em_app :: ExprMap (ExprMap v) }
type ListMap = SEMap ListMap’
data ListMap’ tm v = LM { lm_nil ::Maybe v, lm_cons :: tm (ListMap tm v) }

The auxiliary data types ExprMap’ and ListMap’ have only a single constructor, because the empty
and singleton cases are dealt with by SEMap. We reserve the original, un-primed, names for the
user-visible ExprMap and ListMap constructors.

The singleton-map optimisation makes a big difference in practice.

3.7 Generic programming
We have not described a triemap library; rather we have described a design pattern. More precisely,
given a new algebraic data type X , we have described a systematic way of defining a triemap, XMap,
keyed by values of type X . Such a triemap is represented by a record:
• Each constructor K of X becomes a field x_k in XMap.
• Each field of a constructor K becomes a nested triemap in the type of the field x_k.
• If X is polymorphic then XMap becomes a triemap transformer, like ListMap above.

Actually writing out all this boilerplate code is tiresome, and it can of course be automated. One
way to do so would be to use generic or polytypic programming, and Hinze describes precisely this
[Hinze 2000a]. Another approach would be to use Template Haskell.
We do not develop either of these approaches here, because our focus is only the functionality

and expressiveness of the triemaps. However, everything we do is compatible with an automated
approach to generating boilerplate code.

4 KEYS WITH BINDERS
If our keys are expressions (in a compiler, say) they may contain binders, and we want insert and
lookup to be insensitive to 𝛼-renaming (Section 2). That is the challenge we address next. Here is
our data type, ExprL, where the “L” connotes the new Lam constructor:

data ExprL = AppL ExprL ExprL | Lam Var ExprL | VarL Var

The key idea is simple: we perform de-Bruijn numbering on the fly, renaming each binder to a
natural number, from outside in. So, when inserting or looking up a key (𝜆𝑥 . 𝑓 𝑜𝑜 (𝜆𝑦. 𝑥 + 𝑦)) we
behave as if the key was (𝜆. 𝑓 𝑜𝑜 (𝜆.#1 + #2)), where each #𝑖 stands for an occurrence of the variable
bound by the 𝑖’th lambda, counting from the root of the expression. In effect, then, we behave as if
the data type was like this:

data Expr’ = AppL ExprL ExprL | Lam ExprL | FreeVar Var | BoundVar Int
Notice (a) the Lam node no longer has a binder and (b) there are two sorts of VarL nodes, one for
free variables and one for bound variables. We will not actually build a value of type Expr’ and look
that up in a trie keyed by Expr’; rather, we are going to behave as if we did. Here is the code

data ExprLMap v = ELM {elm_app :: ExprLMap (ExprLMap v)
, elm_lam :: ExprLMap v
, elm_fv ::Map Var v -- Free variables
, elm_bv ::Map BoundVarKey v } -- Lambda-bound variables
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12 Simon Peyton Jones, Richard A. Eisenberg, and Sebastian Graf

lookupExprL :: ExprL→ ExprLMap v → Maybe v
lookupExprL e = lkExprL (DB emptyBVM e)
data DBExprL = DB {edb_bvm :: BoundVarMap, edb_expr :: ExprL}
lkExprL :: DBExprL→ ExprLMap v → Maybe v
lkExprL (DB bvm (AppL e1 e2)) = elm_app >◦> lkExprL (DB bvm e1) >=> lkExprL (DB bvm e2)
lkExprL (DB bvm (Lam v e)) = elm_lam >◦> lkExprL (DB (extendBVM v bvm) e)
lkExprL (DB bvm (VarL v)) = case lookupBVM v bvm of

Nothing → elm_fv >◦> Map.lookup v -- Free
Just bv → elm_bv >◦> Map.lookup bv -- Lambda-bound

data BoundVarMap = BVM {bvm_next :: BoundVarKey, bvm_map ::Map Var BoundVarKey }
type BoundVarKey = Int

emptyBVM :: BoundVarMap
emptyBVM = BVM {bvm_next = 1, bvm_map = Map.empty }
extendBVM :: Var → BoundVarMap→ BoundVarMap
extendBVM v (BVM {bvm_next = n, bvm_map = bvm})

= BVM {bvm_next = n + 1, bvm_map = Map.insert v n bvm}
lookupBVM :: Var → BoundVarMap→ Maybe BoundVarKey
lookupBVM v (BVM {bvm_map = bvm}) = Map.lookup v bvm

We maintain a BoundVarMap that maps each lambda-bound variable to its de-Bruijn level4 [de
Bruijn 1972], of type BoundVarKey . The key we look up — the first argument of lkExprL — be-
comes a DBExprL, which is a pair of a BoundVarMap and an ExprL. At a Lam node we extend the
BoundVarMap. At a Var node we look up the variable in the BoundVarMap to decide whether it is
lambda-bound (within the key) or free, and behave appropriately. The code for alter and fold holds
no new surprises. The construction of Section 3.5, to handle empty and singleton maps, applies
without difficulty to this generalised map.

And that is really all there is to it: it is remarkably easy to extend the basic trie idea to be
insensitive to 𝛼-conversion.

5 TRIES THAT MATCH
A key advantage of tries over hash-maps and balanced trees is that they can naturally extend to
support matching (Section 2.1). In this section we explain how.

5.1 What “matching” means
First, we have to ask what the API should be. Our overall goal is to build a matching trie into which
we can:
• Insert (pattern, value) pairs
• Look up a target expression, and return all the values whose pattern matches that expression.

Semantically, then, a matching trie can be thought of as a set of entries, each of which is a (pattern,
value) pair. What is a pattern? It is a pair (𝑣𝑠, 𝑝) where
• 𝑣𝑠 is a set of pattern variables, such as [𝑎, 𝑏, 𝑐].
• 𝑝 is a pattern expression, such as 𝑓 𝑎 (𝑔𝑏 𝑐).

4The de-Bruijn index of the occurrence of a variable 𝑣 counts the number of lambdas between the occurrence of 𝑣 and its
binding site. The de-Bruijn level of 𝑣 counts the number of lambdas between the root of the expression and 𝑣’s binding site.
It is convenient for us to use levels.
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A pattern may of course contain free variables (not bound by the pattern), such as 𝑓 and 𝑔 in the
above example, which are regarded as constants by the algorithm. A pattern (𝑣𝑠, 𝑝) matches a target
expression 𝑒 iff there is a unique substitution 𝑆 whose domain is 𝑣𝑠 , such that 𝑆 (𝑝) = 𝑒 .
We allow the same variable to occur more than once in the pattern. For example, suppose we

wanted to encode the rewrite rule

{−# RULES "foo" ∀x . f x x = f_2 x #−}

Here the pattern ( [𝑥], 𝑓 𝑥 𝑥) has a repeated variable 𝑥 , and should match targets like (𝑓 1 1) or
(𝑓 (𝑔 𝑣) (𝑔 𝑣)), but not (𝑓 1 (𝑔 𝑣)). This ability is important if we are to use matching tries to
implement class or type-family look in GHC.

5.2 The API of a matching trie
Here are the signatures of the lookup and insertion5 functions for our new matching triemap,
MExprMap:

type ExprPat = ( [PatVar ], Expr)
type PatVar = Var
type Match v = ( [ (PatVar, Expr) ], v)
type MExprMap v = ... -- in Section 5.5
insertMExpr :: ExprPat → v → MExprMap v → MExprMap v
lookupMExpr :: Expr → MExprMap v → Bag (Match v)

AMExprMap is a trie, keyed by ExprPat patterns. A pattern variable, of type PatVar is just a Var ;
we use the type synonym just for documentation purposes. When inserting into aMExprMap we
supply a pattern expression paired with the [PatVar ] over which the pattern is quantified. When
looking up in the map we return a bag of results (because more than one pattern might match).
Each item in this bag is a Match that includes the (PatVar, Expr) pairs obtained by matching the
pattern, plus the value in the map (which presumably mentions those pattern variables).

A Bag is a standard un-ordered collection of values, with a union operation; see Fig. 1. We need
to be able to return a bag because there may be multiple matches. Even if we are returning the
most-specific matches, there may be multiple incomparable ones.

5.3 Canonical patterns and pattern keys
In Section 4 we saw how we could use de-Bruijn levels to make two lambda expressions that differ
only superficially (in the name of their bound variable) look the same. Clearly, we want to do the
same for pattern variables. After all, consider these two patterns:

( [𝑎, 𝑏], 𝑓 𝑎 𝑏 𝑇𝑟𝑢𝑒) and ( [𝑝, 𝑞], 𝑓 𝑞 𝑝 𝐹𝑎𝑙𝑠𝑒)

The two pattern expressions share a common prefix, but differ both in the names of the pattern
variable and in their order. We might hope to suppress the accidental difference of names by using
numbers instead – we will use the term pattern keys for these numbers. But from the set of pattern
variables alone, we cannot know a priori which key to assign to which variable.

Our solution is to number the pattern variables in order of their first occurrence in a left-to-right
scan of the expression6. As in Section 4 we will imagine that we canonicalise the pattern, although
in reality we will do so on-the-fly, without ever constructing the canonicalised pattern. Be that as it

5We begin with insert because it is simpler than alter
6As we shall see, this is very convenient in implementation terms.
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14 Simon Peyton Jones, Richard A. Eisenberg, and Sebastian Graf

may, the canonicalised patterns become:
𝑓 $1 $2 𝑇𝑟𝑢𝑒 and 𝑓 $1 $2 𝐹𝑎𝑙𝑠𝑒

By numbering the variables left-to-right, we ensure that they “line up”. In fact, since the pattern
variables are numbered left-to-right we don’t even need the subscripts (just as we don’t need a
subscript on the lambda in de-Bruijn notation), so the canonicalised patterns become

𝑓 $ $ 𝑇𝑟𝑢𝑒 and 𝑓 $ $ 𝐹𝑎𝑙𝑠𝑒

What if the variable occurs more than once? For example, suppose we are matching the pattern
( [𝑥], 𝑓 𝑥 𝑥 𝑥) against the target expression (𝑓 𝑒1 𝑒2 𝑒3). At the first occurrence of the pattern variable
𝑥 we succeed in matching, binding 𝑥 to 𝑒1; but at the second occurrence we must note that 𝑥 has
already been bound, and instead check that 𝑒1 is equal to 𝑒2; and similarly at the third occurrence.
These are very different actions, so it is helpful to distinguish the first occurrence from subsequent
ones when canonicalising. So our pattern ( [𝑥], 𝑓 𝑥 𝑥 𝑥) might be canonicalised to (𝑓 $ %1 %1),
where the first (or binding) occurrence is denoted $ and subsequent (bound) occurrences of pattern
variable 𝑖 are denoted %𝑖 .

For pattern-variable occurrences we really do need the subscript! Consider the patterns
( [𝑥,𝑦], 𝑓 𝑥 𝑦 𝑦 𝑥) and ( [𝑝, 𝑞], 𝑓 𝑞 𝑝 𝑞 𝑝)

which differ not only in the names of their pattern variables, but also in the order in which they
occur in the pattern. They canonicalise to

(𝑓 $ $ %2 %1) 𝑎𝑛𝑑 (𝑓 $ $ %1 %2)
respectively. The subscripts are essential to keep these two patterns distinct.

5.4 Undoing the pattern keys
The trouble with canonicalising our patterns (to share the structure of the patterns) is that matching
will produce a substitution mapping pattern keys to expressions, rather that mapping pattern
variables to expressions. For example, suppose we start with the pattern ( [𝑥,𝑦], 𝑓 𝑥 𝑦 𝑦 𝑥) from
the end of the last section. Its canonical form is (𝑓 $ $ %2 %1). If we match that against a target
(𝑓 𝑒1 𝑒2 𝑒2 𝑒1) we will produce a substitution [%1 ↦→ 𝑒1,%2 ↦→ 𝑒2]. But what we want is a Match
(Section 5.2), that gives a list of (pattern-variable, expression) pairs [(𝑥, 𝑒1), (𝑦, 𝑒2)].

Somehow we must accumulate a pattern-key map that, for each individual entry in triemap,
maps its pattern keys back to the corresponding pattern variables for that entry. The pattern-key
map is just a list of (pattern-variable, pattern-key) pairs. For our example the pattern key map
would be [(𝑥, $1), (𝑦, $2)]. We can store the pattern key map paired with the value, in the triemap
itself, so that once we find a successful match we can use the pattern key map and the pattern-key
substitution to recover the pattern-variable substitution that we want.

To summarise, suppose we want to build a matching trie for the following (pattern, value) pairs:
(( [𝑥,𝑦], 𝑓 𝑦 (𝑔 𝑦 𝑥)), 𝑣1) and (( [𝑎], 𝑓 𝑎 𝑇𝑟𝑢𝑒), 𝑣2)

Then we will build a trie with the following entries (key-value pairs):
((𝑓 $ (𝑔 %1 $)), ( [(𝑥, $2), (𝑦, $1)], 𝑣1)) and ((𝑓 $ 𝑇𝑟𝑢𝑒), ( [(𝑎, $1)], 𝑣2))

5.5 Implementation: lookup
We are finally ready to give an implementation of matching tries. We begin with Expr (defined in
Section 3) as our key type; that is we will not deal with lambdas and lambda-bound variables for
now. Section 4 will apply with no difficulty, but we can add that back in after we have dealt with
matching. With these thoughts in mind, our matching trie has this definition:
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type PatKeys = [ (PatVar, PatKey) ]
type MExprLMap v = MExprLMapX (PatKeys, v)
data MExprLMapX v

= MM {mm_app ::MExprLMap (MExprLMap v)
, mm_fvar ::Map Var v
, mm_pvar ::Maybe v -- First occurrence of a pattern var
, mm_xvar :: PatOccs v -- Subsequent occurrence of a pattern var
}

| EmptyMM
type PatOccs v = Map PatKey v

The client-visible MExprLMap with values of type v is a matching trie MExprLMapX with values
of type (PatKeys, v), as described in Section 5.4. The trieMExprLMapX has four fields, one for each
case in the pattern. The first two fields deal with free variables and applications, just as before.
The third deals with the binding occurrence of a pattern variable $, and the fourth with a bound
occurrence of a pattern variable %𝑖 .

The core lookup function looks like this:
lkMExpr :: ∀v . Expr → (PatSubst,MExprLMapX v) → Bag (PatSubst, v)

As well as the target expression Expr and the trie, the lookup function also takes a PatSubst that
gives the bindings for pattern variable bound so far. It returns a bag of results, since more than
one entry in the trie may match, each paired with the PatSubst that binds the pattern variables.
A PatSubst carries not only the current substitution, but also (like a BoundVarMap, Section 4) the
next free pattern key:

data PatSubst = PS {ps_next :: PatKey, ps_subst ::Map PatKey Expr }
type PatKey = Int

emptyPatSubst :: PatSubst
emptyPatSubst = PS {ps_next = 0, ps_subst = Map.empty }
extendPatSubst :: Expr → PatSubst → PatSubst
extendPatSubst e (PS {ps_next = next, ps_subst = subst })

= PS {ps_next = next + 1, ps_subst = Map.insert next e subst }
lookupPatSubst :: PatKey → PatSubst → Expr
lookupPatSubst pat_key (PS {ps_subst = subst })

= case Map.lookup pat_key subst of
Just expr → expr
Nothing → error "Unbound key"

Given lkMExpr we can write lookupMExpr , the externally-callable lookup function:
lookupMExpr :: Expr → MExprLMap v → Bag (Match v)
lookupMExpr e m = fmap rejig (lkMExpr e (emptyPatSubst,m))
where
rejig :: (PatSubst, (PatKeys, v)) → Match v
rejig (ps, (pkmk, v)) = (map (lookupPatKey ps) pkmk, v)

lookupPatKey :: PatSubst → (PatVar, PatKey) → (PatVar, Expr)
lookupPatKey subst (pat_var, pat_key) = (pat_var, lookupPatSubst pat_key subst)
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Here lookupMExpr is just an impedance-matching shim around a call to lkMExpr that does all the
work. Notice that the input changed. The latter returns a bag of (PatSubst, (PatKeys, v)) values,
which the function rejig converts into the the Match v results that we want. The “unbound key”
failure case in lookupPatSubst means that PatKeys in a looked-up value asks for a key that is not
bound in the pattern. The insertion function will ensure that this never occurs.

Now we can return to the recursive function that does all the work: lkMExpr :

lkMExpr :: ∀v . Expr → (PatSubst,MExprLMapX v) → Bag (PatSubst, v)
lkMExpr e (psubst,mt)

= pat_var_bndr ‘Bag.union‘ pat_var_occs ‘Bag.union‘ look_at_e
where
pat_var_bndr :: Bag (PatSubst, v)
pat_var_bndr = case mm_pvar mt of
Just v → Bag.single (extendPatSubst e psubst, v)
Nothing → Bag.empty

pat_var_occs :: Bag (PatSubst, v)
pat_var_occs = Bag.fromList [ (psubst, v)

| (pat_var, v) ← Map.toList (mm_xvar mt)
, e == lookupPatSubst pat_var psubst ]

look_at_e :: Bag (PatSubst, v)
look_at_e = case e of
Var x → case Map.lookup x (mm_fvar mt) of

Just v → Bag.single (psubst, v)
Nothing → Bag.empty

App e1 e2 → Bag.concatMap (lkT (D dbe t2)) $
lkT (D dbe t1) (tsubst,mem_fun mt)

The bag of results is the union of three possibilities, as follows. (Keep in mind that a MExprLMap
represents many patterns simultaneously.)
• pat_var_bndr : we consult the mm_pvar , if it contains Just v then at least one of the patterns
in this trie has a pattern binder $ at this spot. In that case we can simply bind the next free
pattern variable (ps_next) to e, and return a singleton bag.
• pat_var_occs: any of the bound pattern variables might have an occurrence %𝑖 at this spot, and
a list of such bindings is held in pat_var_occs. For each, we must do an equality check between
the target e and the expression bound to that pattern variable (found via lookupPatSubst).
We return a bag of all values for which the equality check succeeds.
• look_at_e corresponds exactly to the cases we saw before in Section 3. The only subtlety is
that we are are returning a bag of results, but happily the Kleisli composition operator (>=>)
(Fig. 1) works for any monad, including bags.

5.6 Altering a matching trie
How did the entries in our map get their PatKeys? That is, of course, the business of insert , or more
generally alter . The key, recursive function must carry inwards a mapping from pattern variables
to pattern keys; we can simply re-use BoundVarMap from Section 4 for this purpose. The exact
signature for the function takes a bit of puzzling out, and is worth comparing with its predecessor
in Section 3.2:
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type PatKeyMap = BoundVarMap -- We re-use BoundVarMap
xtMExpr :: Set PatVar → Expr → (PatKeyMap→ XT a)
→ PatKeyMap→ MExprLMapX v → MExprLMapX v

It is unsurprising that the function is given the set of pattern variables, so that it can distinguish
pattern variables from free variables. It also takes a PatKeyMap, the current binding of already-
encountered pattern variables to their pattern keys; when it completes the lookup it passes that
completed binding map to the “alter” function.

Given this workhorse, we can build the client-visible insert function7:

insertMExpr :: ∀v . [Var ] -- Pattern variables
→ Expr -- Pattern
→ v → MExprLMap v → MExprLMap v

insertMExpr pat_vs e v mm
= xtMExpr (Set.fromList pat_vs) e xt emptyBVM mm
where
xt :: PatKeyMap→ XT (PatKeys, v)
xt pkm = Just (map inst_key pat_vs, v)

-- The "_" means just overwrite previous value
where
inst_key :: PatVar → (PatVar, PatKey)
inst_key x = case lookupBVM x pkm of
Nothing → error ("Unbound pattern variable "++ x)
Just pk → (x, pk)

This is the code that builds the PatKeys in the range of the map. It does so using the PatKeyMap
accumulated by xtMExpr and finally passed to the local function xt .

Now we can define the workhorse, xtMExpr :

xtMExpr pvs e xt pkm mm
= case e of
App e1 e2 → mm {mm_app = xtMExpr pvs e1 (liftXTS (xtMExpr pvs e2 xt))

pkm (mm_app mm) }
Var x | Just xv ← lookupBVM x pkm
→ -- Second or subsequent occurrence of a pattern variable
mm {mm_xvar = Map.alter (xt pkm) xv (mm_xvar mm) }
| x ‘Set.member‘ pvs
→ -- First occurrence of a pattern variable
mm {mm_pvar = xt (extendBVM x pkm) (mm_pvar mm) }
| otherwise
→ -- A free variable
mm {mm_fvar = Map.alter (xt pkm) x (mm_fvar mm) }

7alter is not much harder.
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Table 1. Benchmarks of different operations over our trie map ExprLMap (TM), ordered mapsMap Expr (OM)
and hash maps HashMap Expr (HM), varying the size parameter 𝑁 . Each map is of size 𝑁 (so𝑀 = 𝑁 ) and
the expressions it contains are also each of size 𝑁 (so 𝐸 = 𝑁 ). We give the measurements of OM and HM
relative to absolute runtime measurements for TM. Lower is better. Digits whose order of magnitude is no
larger than that of twice the standard deviation are marked by squiggly lines.

𝑁 10 100 1000

Data structure TM OM HM TM OM HM TM OM HM

lookup_all 1.90̃µs 1.00̃ 1.43̃ 130µs 1.09 1.72 19.3̃ms 1.06̃ 1.64̃
lookup_all_app1 3.63̃µs 1.55̃ 1.40̃ 293µs 2.70̃ 1.51̃ 42.9ms 4.96 1.53̃
lookup_all_app2 3.56̃µs 1.16̃ 1.41̃ 387̃µs 1.42̃ 1.26̃ 84.8̃ms 3.30̃ 0.94̃
lookup_all_lam 3.61µs 2.72̃ 1.96̃ 322µs 5.57 2.17̃ 49.9ms 7.82̃ 1.95̃
lookup_one 177ns 0.74 1.38̃ 811̃ns 1.0̃7̃ 1.64 13.5µs 0.98 1.64
fold 357̃ns 0.37 0.30 4.03̃µs 0.34 0.33 68.4̃µs 0.30 0.36
insert_lookup_one 42.0̃ns 1.98̃ 1.86̃ 1.39µs 1.24 2.07 15.6µs 1.03̃ 2.26
fromList 2.69̃µs 0.65 0.84 104µs 0.94̃ 1.65 11.8ms 1.00 2.26̃
fromList_app1 6.44̃µs 0.86̃ 0.65 457̃µs 1.71̃ 0.77̃ 63̃.9̃ms 3.86 1.40̃
union 3.40µs 0.70 0.72 211µs 0.92 0.89 32.0̃ms 1.09 1.06̃
union_app1 3.13̃µs 1.77̃ 1.25̃ 153µs 2.21 1.96 22.0ms 3.46̃ 3.43̃

5.7 Further developments: most specific match, and unification
It is sometimes desirable to be able to look up the most specific match in the matching triemap. For
example, suppose the matching trie contains the following two (pattern,value) pairs:

{([𝑎], 𝑓 𝑎), ( [𝑝, 𝑞], 𝑓 (𝑝 + 𝑞))}

and suppose we look up (𝑓 (2 + 𝑥)) in the trie. The first entry matches, but the second also matches
(with 𝑆 = [𝑝 ↦→ 2, 𝑞 ↦→ 𝑥]), and the second pattern is a substitution instance of the first. In some
applications we may want to return just the second match. We call this most-specific matching.
The implementation we have shown returns all matches, leaving it to a post-pass to pick only

the most-specific ones. It seems plausible that some modification to the lookup algorithm might
suffice to identify the most-specific matches, but it turns out to be hard to achieve this, because
each case only has a local view of the overall match.

Sometimes onewants to find all patterns that unifywith the target, assumingwe have some notion
of “unifiable variable” in the target. Embodying full-blown unification into the lookup algorithm
seems hard, but it is relatively easy to return a set of candidates that then be post-processed with a
full unifier to see if the candidate does indeed unify with the target.

6 EVALUATION
So far, we have seen that trie maps offer a significant advantage over other kinds of maps like
ordered maps or hash maps: the ability to do a matching lookup (in Section 5). In this section,
we will see that query performance is another advantage. Our implementation of trie maps in
Haskell can generally compete in performance with other map data structures, while significantly
outperforming traditional map implementations on some operations. Not bad for a data structure
that we can also extend to support matching lookup!
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6.1 Runtime
We measured the runtime performance of the (non-matching) ExprLMap data structure8 on a
selection of workloads, conducted using the criterion9 benchmarking library10. Table 1 presents an
overview of the results, while Table 2 goes into more detail on some configurations.

Setup. All benchmarks except the fromList* variants are handed a pre-built map containing 𝑁

expressions, each consisting of roughly 𝑁 Expr data constructors, and drawn from a pseudo-random
source with a fixed (and thus deterministic) seed. 𝑁 is varied between 10 and 1000.
We compare three different non-matching map implementations, simply because we were not

aware of other map data structures with matching lookup modulo 𝛼-equivalence and we wanted to
compare apples to apples. The ExprLMap forms the baseline. Asymptotics are given with respect to
map size 𝑛 and key expression size 𝑘 :
• ExprLMap (designated “TM” in Table 1) is the trie map implementation from this paper.
Insertion and lookup and have to perform a full traversal of the key, so performance should
scale with O(𝑘), where 𝑘 is the key Expr that is accessed.
• Map Expr (designated “OM”) is the ordered map implementation from the mature, well-
optimised containers11 library. It uses size balanced trees under the hood [Adams 1993]. Thus,
lookup and insert operations incur an additional log factor in the map size 𝑛, for a total of
O(𝑘 log𝑛) factor compared to both other maps.
• HashMap Expr (designated “HM”) is an implementation of hash array mapped tries [Bagwell
2001] from the unordered-containers12 library. Like ExprLMap, map access incurs a full tra-
versal of the key to compute a hash and then a O(log32 𝑛) lookup in the array mapped trie.
The log factor can be treated like a constant for all intents an purposes, so lookup and insert
is effectively in O(𝑘).

Benchmarks ending in _lam, _app1, _app2 add a shared prefix to each of the expressions before
building the initial map:
• _lam wraps 𝑁 layers of (Lam "$") around each expression
• _app1 wraps 𝑁 layers of (Lit "$" ‘App‘) around each expression13
• _app2 wraps 𝑁 layers of (‘App‘ Lit "$") around each expression

where "$" is a name that doesn’t otherwise occur in the generated expressions.
• The lookup_all* family of benchmarks looks up every expression that is part of the map. So
for amap of size 100, we perform 100 lookups of expressions each of which have approximately
size 100. lookup_one looks up just one expression that is part of the map.
• insert_lookup_one inserts a random expression into the initial map and immediately looks
it up afterwards. The lookup is to ensure that any work delayed by laziness is indeed forced.
• The fromList* family benchmarks a naïve fromList implementation on ExprLMap against
the tuned fromList implementations of the other maps, measuring map creation performance
from batches.
• fold simply sums up all values that are stored in the map (which stores Ints).

8Called just ExprMap in the supplemental, also supporting an additional Lit Var constructor in Expr .
9https://hackage.haskell.org/package/criterion
10The benchmark machine runs Ubuntu 18.04 on an Intel Core i5-8500 with 16GB RAM. All programs were compiled with
-O2 -fproc-alignment=64 to eliminate code layout flukes and run with +RTS -A128M -RTS for 128MB space in generation
0 in order to prevent major GCs from skewing the results.
11https://hackage.haskell.org/package/containers
12https://hackage.haskell.org/package/unordered-containers
13Recall that Lit is only present in the Supplemental and works like a constant occurrence of a free variable.
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Table 2. Varying expression size 𝐸 and map size 𝑀 independently on benchmarks lookup_all and
insert_lookup_one.

𝐸

𝑀 10 100 1000 10000

TM OM HM TM OM HM TM OM HM TM OM HM

lo
ok
up
_a
ll 10 1.90̃µs 1.00̃ 1.43̃ 17.0µs 1.43 1.43 224µs 1.77̃ 1.26 2.94̃ms 2.17̃ 1.05̃

100 10.9µs 1.00 1.66̃ 130µs 1.09 1.72 1.38ms 1.25 1.63 18.3̃ms 1.48̃ 1.38̃
1000 151µs 0.98 1.76̃ 1.60ms 1.00 1.76 19.3̃ms 1.06̃ 1.64̃ 214ms 1.07 1.51

10000 1.66̃ms 0.98 1.76̃ 19.7̃ms 1.00̃ 1.69̃ 211ms 1.01 1.58 2.16s 1.00 1.54

lo
_a
_a
pp
1 10 3.63̃µs 1.55̃ 1.40̃ 34.1̃µs 2.8̃2̃ 1.41̃ 389̃µs 3.84̃ 1.32̃ 4.66̃ms 4.60̃ 1.18̃

100 26.7µs 1.61̃ 1.47̃ 293µs 2.70̃ 1.51̃ 2.98̃ms 4.17 1.53̃ 42.6̃ms 6.55̃ 1.26̃
1000 322̃µs 1.46̃ 1.63̃ 3.18ms 2.91̃ 1.88̃ 42.9ms 4.96 1.53̃ 714ms 4.98 1.06

10000 3.50ms 1.39̃ 1.67̃ 57.4̃ms 2.79̃ 1.35̃ 487ms 7.19 2.09 5.69s 9.04 1.73

in
se
rt
_o
_l 10 42.0̃ns 1.98̃ 1.86̃ 102ns 1.78̃ 0.80̃ 109ns 2.58 0.98 69.7̃ns 4.74 1.99

100 1.39µs 1.05 2.11 1.39µs 1.24 2.07 1.47µs 1.65 2.02 1.52µs 2.35̃ 1.98̃
1000 15.5µs 0.97 2.27 15.6µs 0.99 2.27̃ 15.6µs 1.03̃ 2.26 15.7µs 1.07 2.26

10000 152µs 0.99 2.52̃ 152µs 0.99 2.52̃ 153µs 0.99 2.50̃ 153µs 1.00 2.50̃

fr
om
Li
st

10 2.69̃µs 0.65 0.84 28.5µs 0.97 0.73 443̃µs 1.18̃ 0.62 6.72̃ms 1.25̃ 0.47̃
100 6.64̃µs 0.85̃ 1.95 104µs 0.94̃ 1.65 1.24ms 1.11 1.44 22.7̃ms 1.24 1.21̃

1000 70.1̃µs 0.98̃ 2.66 789̃µs 0.99̃ 2.51 11.8ms 1.00 2.26̃ 132ms 1.11 2.15
10000 648̃µs 1.00̃ 2.91 8.51̃ms 0.9̃9̃ 2.89̃ 98.6̃ms 1.00̃ 2.66̃ 1.00s 1.02 2.61

un
io
n

10 3.40µs 0.70 0.72 25.8̃µs 0.89 0.80 279µs 1.03 0.95 2.88̃ms 1.06̃ 0.98
100 16.5µs 0.97 0.96 211µs 0.92 0.89 2.03ms 1.00 0.92 30.8ms 1.19̃ 1.06̃

1000 238µs 0.96 0.93 2.38ms 0.98 0.96 32.0̃ms 1.09 1.06̃ 327ms 1.13 1.08
10000 2.24ms 1.05 1.06 32.4̃ms 1.02̃ 1.00̃ 323ms 1.04 1.04 3.16s 1.07 1.05

Querying. The results show that lookup in ExprLMap oftenwins againstMap Expr andHashMap Expr .
The margin is small on the completely random Exprs of lookup_all, but realistic applications of
ExprLMap often store Exprs with some kind of shared structure. The _lam and _app1 variants show
that ExprLMap can win substantially against an ordered map representation: ExprLMap looks at the
shared prefix exactly once one lookup, while Map has to traverse the shared prefix of length O(𝑁 )
on each of its O(log𝑁 ) comparisons. As a result, the gap between ExprLMap and Map widens
as 𝑁 increases, confirming an asymptotic difference. The advantage is less pronounced in the
_app2 variant, presumably because ExprLMap can’t share the common prefix here: it turns into an
unsharable suffix in the pre-order serialisation, blowing up the trie map representation compared
to its sibling _app1.

Although HashMap loses on most benchmarks compared to ExprLMap and Map, most measure-
ments were consistently at most a factor of two slower than ExprLMap. We believe that is due to
the fact that it is enough to traverse the Expr once to compute the hash, thus it is expected to scale
similarly as ExprLMap.
Comparing the lookup_all* measurements of the same map data structure on different size

parameters 𝑁 reveals a roughly cubic correlation throughout all implementations, give or take a
logarithmic factor. That seems plausible given that 𝑁 linearly affects map size, expression size and
number of lookups. But realistic workloads tend to have much larger map sizes than expression
sizes!
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Let us look at what happens if we vary map size 𝑀 and expression size 𝐸 independently for
lookup_all. The results in Table 2 show that ExprLMap scales better thanMapwhenwe increase𝑀
and leave 𝐸 constant. The difference is even more pronounced than in Table 1, in which 𝑁 = 𝑀 = 𝐸.
The time measurements for ExprLMap appear to grow almost linearly with 𝑀 . Considering

that the number of lookups also increases 𝑀-fold, it seems the cost of a single lookup remained
almost constant, despite the fact that we store varying numbers of expressions in the trie map.
That is exactly the strength of a trie implementation: Time for the lookup is in O(𝐸), i.e., linear in
𝐸 but constant in𝑀 . The same does not hold for search trees, where lookup time is in O(𝑃 log𝑀).
𝑃 ∈ O(𝐸) here and captures the common short circuiting semantics of the lexicographic order on
Expr . It denotes the size of the longest shared prefix of all expressions.
By contrast, fixing 𝑀 but increasing 𝐸 makes Map easily catch up on lookup performance

with ExprLMap, ultimately outpacing it. The shared prefix factor 𝑃 for Map remains essentially
constant relative to 𝐸: larger expressions still are likely to differ very early because they are
random. Increasing 𝑀 will introduce more clashes and is actually more likely to increase 𝑃 on
completely random expressions. As written above, realistic work loads often have shared prefixes
like lookup_all_app1, where we already saw that ExprLMap outperformsMap. The fact thatMap
performance depends on 𝑃 makes it an extremely workload dependent pick, leading to compiler
performance that is difficult to predict. HashMap shows performance consistent with ExprLMap
but is a bit slower, as before. There is no subtle scaling factor like 𝑃 ; just plain predictable O(𝐸)
like ExprLMap.

Returning to Table 1, we see that folding over ExprLMaps is considerably slower than over Map
or HashMap. The complex tree structure is difficult to traverse and involves quite a few indirections.
This is in stark contrast to the situation withMap, where it’s just a textbook in-order traversal over
the search tree. Folding over HashMap performs similarly to Map.
We think that ExprLMap folding performance dies by a thousand paper cuts: The lazy fold

implementation means that we allocate a lot of thunks for intermediate results that we end up
forcing anyway in the case of our folding operator (+). That is a price that Map and HashMap
pay, too, but not nearly as much as the implementation of foldExpr does. Furthermore, there’s the
polymorphic recursion in the head case of em_app with a different folding function (foldTM f ),
which allocates on each call and makes it impossible to specialise foldExpr for a fixed folding
function like (+) with the static argument transformation [Santos 1995]. Hence we tried to single
out the issue by ensuring that Map and ExprLMap in fact don’t specialise for (+) when running
the benchmarks, by means of a NOINLINE pragma. Another possible reason might be that the code
generated for foldExpr is quite a lot larger than the code for Map, say, so we are likely measuring
caching effects. We are positive there are numerous ways in which the performance of foldExpr
can be improved, but believe it is unlikely to exceed or just reach the performance of Map.

Building. The insert_lookup_one benchmark demonstrates that ExprLMap also wins on insert
performance, although the defeat against Map for size parameters beyond 1000 is looming. Again,
Table 2 decouples map size𝑀 and expression size 𝐸. The data suggests that in comparison to Map,
𝐸 indeed affects insert performance of ExprLMap linearly. By contrast,𝑀 does not seem to affect
insert performance at all.
The small edge that ExprLMap seems to have overMap and HashMap doesn’t carry over to its

naïve fromList implementation, though.Map wins the fromList benchmark, albeit with ExprLMap
as a close second. That is a bit surprising, given that Map’s fromList quickly falls back to a list fold
like ExprLMap on unsorted inputs, while HashMap has a less naïve implementation: it makes use
of transient mutability and performs destructive inserts on the map data structure during the call to
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Table 3. Varying expression size 𝐸 and map size𝑀 while measuring the memory footprint of the different map
implementions on 4 different expression populations. Measurements ofMap (OM) and HashMap (HM) are
displayed as relative multiples of the absolute measurements on ExprLMap (TM). Lower is better. †indicates
heap overflow.

𝐸

𝑀 10 100 1000 10000

TM OM HM TM OM HM TM OM HM TM OM HM

sp
ac

e

10 12.5KB 0.79 0.78 87.8KB 0.80 0.80 766KB 0.89 0.88 6.88MB 0.96 0.95
100 55.5KB 0.93 0.93 531KB 0.91 0.91 4.94MB 0.91 0.90 48.6MB 0.92 0.92

1000 477KB 0.99 0.99 4.77MB 0.98 0.98 46.6MB 0.98 0.98 468MB 0.98 0.98
10000 4.10MB 1.00 1.00 42.1MB 1.00 1.00 421MB 1.00 1.00 4.12GB 1.00 1.00

sp
ac

e_
ap

p1 10 15.3KB 1.26 1.25 90.6KB 1.78 1.78 769KB 1.99 1.99 6.88MB 2.12 2.11
100 83.6KB 1.74 1.74 560KB 2.54 2.54 4.97MB 2.74 2.74 48.6MB 2.79 2.79

1000 758KB 1.86 1.86 5.04MB 2.74 2.74 46.9MB 2.92 2.92 468MB 2.93 2.93
10000 6.85MB 1.93 1.93 44.7MB 2.98 2.98 423MB 3.15 3.15 4.13GB 3.16 3.16

sp
ac

e_
ap

p2 10 29.4KB 0.66 0.65 240KB 0.67 0.67 2.14MB 0.70 0.70 20.2MB 0.72 0.72
100 225KB 0.65 0.65 2.06MB 0.68 0.67 20.2MB 0.68 0.67 200MB 0.68 0.68

1000 2.12MB 0.65 0.65 20.1MB 0.69 0.69 199MB 0.69 0.69 1.95GB 0.69 0.69
10000 20.6MB 0.64 0.64 196MB 0.68 0.68 1.90GB 0.68 0.68 † † †

sp
ac

e_
la

m 10 18.3KB 0.97 0.96 118KB 1.24 1.23 1.00MB 1.36 1.35 9.12MB 1.45 1.45
100 73.3KB 1.77 1.77 607KB 2.08 2.08 5.56MB 2.18 2.17 54.6MB 2.20 2.20

1000 610KB 2.05 2.05 4.99MB 2.47 2.47 47.8MB 2.55 2.55 478MB 2.55 2.55
10000 5.33MB 2.20 2.20 43.4MB 2.73 2.73 423MB 2.79 2.79 4.14GB 2.79 2.79

fromList , knowing that such mutability can’t be observed by the caller. Yet, it still performs worse
than ExprLMap or Map for larger 𝐸, as can be seen in Table 2.
We expected ExprLMap to take the lead in fromList_app1. And indeed it does, outperforming

Map for larger 𝑁 which pays for having to compare the shared prefix repeatedly. But HashMap is
good for another surprise and keeps on outperforming ExprLMap for small 𝑁 .

What would a non-naïve version of fromList for ExprLMap look like? Perhaps the process could
be sped up considerably by partitioning the input list according to the different fields of ExprLMap
like em_lam and then calling the fromList implementations of the individual fields in turn. The
process would be very similar to discrimination sort [Henglein 2008], which is a generalisation of
radix sort to tree-like data and very close to tries. Indeed, the discrimination14 library provides such
an optimised O(𝑁 ) toMap implementation for ordered maps.
The union* benchmarks don’t reveal anything new; Map and HashMap win for small 𝑁 , but

ExprLMap wins in the long run, especially when there’s a sharable prefix involved.

6.2 Space
We also measured the memory footprint of ExprLMap compared toMap and HashMap. The results
are shown in Table 3. All four benchmarks simply measure the size on the heap in bytes of a map
consisting of𝑀 expressions of size 𝐸. They only differ in whether or not the expressions have a
shared prefix. As before, space is built over completely random expressions, while the other three
benchmarks build maps with common prefixes, as discussed in Section 6.1.

In space, prefix sharing is highly unlikely for reasons discussed in the last section: Randomness
dictates that most expressions diverge quite early in their prefix. As a result, ExprLMap consumes
14https://hackage.haskell.org/package/discrimination
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slightly more space than bothMap and ExprLMap, the latter of which wins every single instance.
The difference here is ultimately due to the fact that inner nodes in the trie allocate more space
than inner nodes in Map or ExprLMap.

However, in space_app1 and space_lam, we can see that ExprLMap is able to exploit the shared
prefixes to great effect: For big𝑀 , the memory footprint of space_app1 approaches that of space
because the shared prefix is only stored once. In the other dimension along 𝐸, memory footprint still
increases by similar factors as in space. The space_lam family does need a bit more bookkeeping
for the de Bruijn numbering, so the results aren’t quite as close to space_app1, but it’s still an easy
win over Map and HashMap.

For space_app2, ExprLMap can’t share any prefixes because the shared structure turns into a
suffix in the pre-order serialisation. As a result,Map and HashMap allocate less space, all consistent
constant factors apart from each other. HashMap wins here again.

7 RELATEDWORK
7.1 Matching triemaps in automated reasoning
Matching triemaps, also called term indexing, have been used in the automated reasoning community
for decades. An automated reasoning system has hundreds or thousands of axioms, each of which is
quantified over some variables (just like the RULEs described in Section 2.1). Each of these axioms
might apply at any sub-tree of the term under consideration, so efficient matching of many axioms
is absolutely central to the performance of these systems.

This led to a great deal of work on so-called discrimination trees, starting in the late 1980’s, which
is beautifully surveyed in the Handbook of Automated Reasoning [Sekar et al. 2001, Chapter 26].
All of this work typically assumes a single, fixed, data type of “first order terms” like this15

data Term = Node Fun [Term]
where Fun is a function symbol, and each such function symbol has a fixed arity. Discrimination
trees are described by imagining a pre-order traversal that (uniquely, since function symbols have
fixed arity) converts the Term to a list of type [Fun], and treating that as the key. The map is
implemented like this:

data DTree v = DVal v | DNode (Map Fun DTree)
lookupDT :: [Fun] → DTree v → Maybe v
lookupDT [ ] (DVal v) = Just v
lookupDT (f : fs) (DNode m) = case Map.lookup f m of

Just dt → lookupDT fs dt
Nothing → Nothing

lookupDT = Nothing

Each layer of the tree branches on the first Fun, and looks up the rest of the [Fun] in the appropriate
child. Extending this basic setup with matching is done by some kind of backtracking.
Discrimination trees are heavily used by theorem provers, such as Coq, Isabelle, and Lean.

Moreover, discrimination trees have been further developed in a number of ways. Vampire uses
code trees which are a compiled form of discrimination tree that stores abstract machine instructions,
rather than a data structure at each node of the tree [Voronkov 1995]. Spass [Weidenbach et al.
2009] uses substitution trees [Graf and Meyer 1996], a refinement of discrimination trees that can
share common sub-trees not just common prefixes. (It is not clear whether the extra complexity of
15Binders in terms do not seem to be important in these works, although they could be handled fairly easily by a de-Bruijn
pre-pass.
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substitution trees pays its way.) Z3 uses E-matching code trees, which solve for matching modulo an
ever-growing equality relation, useful in saturation-based theorem provers. All of these techniques
except E-matching are surveyed in Sekar et al. [2001].
If we applied our ideas to Term we would get a single-field triemap which (just like lookupDT )

would initially branch on Fun, and then go though a chain of ListMap constructors (which corre-
spond to the DNode above). You have to squint pretty hard — for example, we do the pre-order
traversal on the fly — but the net result is very similar, although it is arrived at by entirely different
thought process.
Many of the insights of the term indexing world re-appear, in different guise, in our triemaps.

For example, when a variable is repeated in a pattern we can eagerly check for equality during the
match, or instead gather an equality constraint and check those constraints at the end [Sekar et al.
2001, Section 26.14].

7.2 Haskell triemaps
Trie data structures have found their way into numerous Haskell packages over time. There are
trie data structures that are specific to String, like the StringMap16 package, or polymorphically,
requiring just a type class for trie key extraction, like the TrieMap17 package. None of these libraries
describe how to index on expression data structures modulo 𝛼-equivalence or how to perform
matching lookup.

Memoisation has been a prominent application of tries in Haskell [Elliott 2008a,b; Hinze 2000b].
Given a function f , the idea is to build an infinite, lazily-evaluated trie, that maps every possible
argument x to (a thunk for) (f x). Now, a function call becomes a lookup in the trie. The ideas are
implemented in the MemoTrie18 library. For memo tries, operations like alter, insert, union, and
fold are all irrelevant: the infinite trie is built once, and then used only for lookup.

A second strand of work concerns data type generic, or polytypic, approaches to generating tries,
which nicely complements the design-pattern approach of this paper (Section 3.7). Hinze [2000a]
describes the polytypic approach, for possibly parameterised and nested data types in some detail,
including the realisation that we need alter and unionWith in order to define insert and union. A
generalisation of those ideas then led to functor-combo19. The representable-tries20 library observes
that trie maps are representable functors and then vice versa tries to characterise the sub-class of
representable functors for which there exists a trie map implementation.
The twee-lib21 library defines a simple term index data structure based on discrimination trees

for the twee equation theorem prover. We would arrive at a similar data structure in this paper had
we started from an expression data type

data Expr = App Con [Expr ] | Var Var

In contrast to our ExprLMap, twee’s Index does path compression not only for paths ending in
leaves (as we do) but also for internal paths, as is common for radix trees. That is an interesting
optimisation that could decrease space usage in benchmarks such as space_app1.
It is however unclear how to extend twee’s Index to support 𝛼-equivalence, hence we did not

consider it for our benchmarks in Section 6.

16https://hackage.haskell.org/package/StringMap
17https://hackage.haskell.org/package/TrieMap
18https://hackage.haskell.org/package/MemoTrie
19https://hackage.haskell.org/package/functor-combo
20https://hackage.haskell.org/package/representable-tries
21https://hackage.haskell.org/package/twee-lib
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8 CONCLUSION
We presented trie maps as an efficient data structure for representing a set of expressions modulo
𝛼-equivalence, re-discovering polytypic deriving mechanisms described by Hinze [2000a]. Sub-
sequently, we showed how to extend this data structure to make it aware of pattern variables in
order to interpret stored expressions as patterns. The key innovation is that the resulting trie map
allows efficient matching lookup of a target expression against stored patterns. This pattern store is
quite close to discrimination trees [Sekar et al. 2001], drawing a nice connection to term indexing
problems in the automated theorem proving community.
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