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ABSTRACT
Today’s data centers rely more heavily on machine learning (ML) in their deployed systems. However, these
systems are vulnerable to the data drift problem, that is, a mismatch between training and test data, which can
lead to significant performance degradation and system inefficiencies. In this paper, we demonstrate the impact of
data drift in production by studying two real-world deployments in a leading cloud provider. Our study shows
that, despite frequent model retraining, these deployed models experience major accuracy drops (up to 40%)
and high accuracy variation, which lead to drastic increase in operational costs. None of the current solutions
to the data drift problem are designed for large-scale deployments, which need to address real-world issues
such as scale, ground truth latency, and mixed types of data drift. We propose Matchmaker, the first scalable,
adaptive, and flexible solution to the data drift problem in large-scale production systems. Matchmaker finds
the most similar training data batch and uses the corresponding ML model for inference on each test point. As
part of Matchmaker we introduce a novel similarity metric to address multiple types of data drifts while only
incurring limited overhead. Experiments on our two real-world ML deployments show Matchmaker significantly
improve model accuracy (upto 14% and 2%), which saves 18% and 1% in the operational costs. At the same time,
Matchmaker provides 8× and 4× faster predictions than a state-of-the-art ML data drift solution, AUE.

1 INTRODUCTION

Machine learning (ML) is ubiquitous in making intelli-
gent decisions for data centers, which need to meet ever-
increasing demands while achieving various systems ob-
jectives such as performance, cost efficiency, and reliabil-
ity. Operators have deployed ML models for various tasks
such as resource management (e.g., (Cortez et al., 2017;
Balaji et al., 2020; Rzadca et al., 2020)), power manage-
ment (e.g., (Gao, 2014; Hossain et al., 2017)), data indexing
(e.g., (Abu-Libdeh et al., 2020)), temperature management
(e.g, (Lazic et al., 2018)), and failure/compromise detection
(e.g., (Zhang et al., 2017; Arzani et al., 2020)).

The accuracy of these ML models often has significant im-
pact on the performance, security, and efficiency of data
center operations (Song et al., 2020; Flynn et al., 2019;
Cortez et al., 2017; Gao et al., 2020; Arzani et al., 2020).
Drops in accuracy can lead to consequences such as system
performance degradation and cost increase. Our experience
in a large cloud provider shows that, despite frequent retrain-
ing, many of the deployed ML models suffer from frequent
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and significant (up to 40%) accuracy drops which, in turn,
can result in drastic increase in operational costs. These
drops are typically due to data drift.

Unlike ML applications such as image classification (LeCun
et al., 1989; Russakovsky et al., 2015) and natural language
processing (Chowdhury, 2003) where the data typically
comes from a stable underlying sample space, most systems
applications involve data that is inherently temporal and
can change over time. These changes occur because real-
world systems constantly face internal and external changes
such as system upgrades, configuration changes, new work-
loads, and surging user demands (Sculley et al., 2014). This
results in the data drift problem: a mismatch between the
training and test data. Data drift leads to significant accuracy
drops because the assumption on which most ML models
are trained, that the training data in the past is sufficiently
similar to the test data in the future, is violated.

The ML community classifies the data drift problem into
two broad categories (Moreno-Torres et al., 2012; Gama
et al., 2014): (1) covariate shift (Shimodaira, 2000) or vir-
tual drift, where training data distribution changes over time
but the underlying concept (the mapping from features to la-
bels) stays the same; and (2) concept drift (Widmer & Kubat,
1996) or real drift, where the underlying concept changes
over time. ML practitioners today manage this problem by
(a) periodic model retraining to incorporate recent data into
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their ML models; and (b) re-weighing the training data to in-
crease the importance of more recent data during retraining.
However, these retraining strategies are static, and they are
not designed to handle different types of data drifts. Indeed,
we find deployed strategies continue to experience major
accuracy drops and variations (see Section 2).

In the ML literature, there are many advanced solutions to
tackle covariate shift or concept drift separately (Widmer
& Kubat, 1996; Kolter & Maloof, 2007; Bifet & Gavalda,
2007; Elwell & Polikar, 2011; Brzezinski & Stefanowski,
2013; Pesaranghader et al., 2018; Tahmasbi et al., 2020).
However, existing data drift solutions have not considered
the following practical challenges that arise in deployment:

• Scalability. Large-scale systems require running infer-
ence on millions of test samples per-day. Most existing
data drift solutions do not prioritize scalability and there-
fore incur a steep inference cost and latency due to this
high load of test samples.

• Delay in obtaining ground truths. There is usually sig-
nificant delay in obtaining ground truth in large-scale
systems (e.g., several hours to a week): e.g., an operator
needs to identify the root cause of an incident before we
know which component is at fault. Almost all existing
data drift solutions rely on periodic retraining and make
many mistakes until they are retrained. The delay in ob-
taining new labels exacerbates this problem as it limits
our ability to retrain these solutions frequently.

• Mixed data drifts. Existing solutions are designed for
either covariate shift or concept drift, but not both. Real-
world data drifts, on the other hand, are unpredictable and
can be caused by either of these two problems. Different
test points in a single data batch can experience different
types of data drifts as well.

We present Matchmaker, the first solution to the data drift
problem that is designed for ML deployment in large-scale
systems. Matchmaker is a general approach for mitigat-
ing data drift that (1) only incurs limited overhead during
inference; (2) adapts to data drift without having to wait for
a new batch of ground truth labels; and (3) addresses both
covariate shift and concept drift simultaneously.

Key Techniques. Matchmaker is adaptive, flexible, and
runs at scale. Its key underlying idea is to dynamically iden-
tify the batch of training data that is most similar to each
test sample, and use the ML model trained on that data for
inference. This idea provides three major advantages. First,
as Matchmaker selects the matching ML model for each
sample at test time, it can adapt to data drifts without having
to wait for new ground truth labels to retrain. Second, it
has the flexibility to make independent decisions on each
test sample which is more effective than existing data drift
solutions that always use the same ML model (or the same

set of ML models) for all incoming test samples until they
do another round of adaptation. Third, Matchmaker pro-
vides operators with the means to select their own similarity
metric: ML practitioners can choose which similarity metric
achieves the right trade-off for them in terms of computation
overhead and model accuracy. As part of our solution, we
present our new similarity metric that measures a combina-
tion of covariate shift (i.e., similarity in feature values) and
concept drift (i.e., similarity in the mapping from features
to labels). This metric allows us to mitigate both covariate
shift and concept drift while achieving significantly less
computation overheads than existing metrics.

System optimizations. We design Matchmaker for large-
scale systems that make millions of predictions every day.
Matchmaker uses three key techniques to minimize its over-
heads during inference: (1) it splits the work of computing
similarity scores between the offline and online pipelines so
that the offline pipeline handles most of the heavy lifting.
(2) it trains a random forest to create a data partitioning
kernel (Davies & Ghahramani, 2014), and derives data simi-
larity based on the data traversal paths. This idea results in a
system that is much more scalable than prior art (e.g., those
that use Euclidean distance as a similarity metric). Our use
of the random forest kernel allows us to only compute the
path of each test sample once (O(1)) as opposed to having
to compute a pairwise metric across all data points (O(N)).
(3) Matchmaker further reduces inference time by using the
training samples to create a cache of pre-computed scores.
During inference Matchmaker can look up the score for an
incoming test sample instead of computing from scratch.

Evaluation Highlights. We evaluate Matchmaker on two
real-world applications deployed in a production cloud
provider: network incident routing (NETIR) and VM CPU
utilization (VMCPU). We evaluate these two applications
over a twelve- and three-month period, respectively. Our
results show, when compared to the currently deployed
retraining mechanisms, Matchmaker (1) improves accu-
racy, in some instances, by up to 14% for NETIR and up
to 2% for VMCPU; and (2) reduces average operational
costs by 18% for NETIR and 1% for VMCPU. Compared
to a state-of-the-art concept drift solution, AUE (Brzezinski
& Stefanowski, 2013), Matchmaker provides 8× and 4×
faster ML predictions while achieving comparable accuracy.
Compared to a recent concept drift solution DriftSurf (Tah-
masbi et al., 2020), Matchmaker provides upto 20% and
6% improvement in accuracy with similar prediction speed.
Matchmaker is currently being deployed in NETIR.

Summary of Contributions.

• To our knowledge, this is the first data drift solution de-
signed for ML in large-scale systems that addresses practi-
cal issues in real-world deployments such as scale, ground
truth latency, and mixed data drifts.
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• We introduce a new similarity metric that address both co-
variate shift and concept drift at the same time. We present
an efficient design to compute this metric by splitting the
work between an online and offline pipeline.

• We demonstrate the effectiveness of our solution using
two real-world, large-scale applications: our solution sig-
nificantly reduces accuracy variation over deployed re-
training strategies, and is significantly faster than state-of-
the-art ML data drift solutions.

2 BACKGROUND AND MOTIVATION

We first introduce the background for the data drift problem
and then describe two deployed ML applications in real-
world systems that motivate our solution. We next discuss
our observations from these deployments and the design re-
quirements for a data drift solutions for large-scale systems.

2.1 The Data Drift Problem and Its Solutions

The ML community has investigated the data drift problem:
the problem of accuracy variation (over time) in ML models.
This problem typically occurs because the model runs infer-
ence on data (test data) which is significantly different from
the data that was used for training it. Several past works
have investigated the data drift problem in the context of
continuously arriving/stream data and have proposed vari-
ous solutions (Moreno-Torres et al., 2012; Tahmasbi et al.,
2020; Suprem et al.; Bifet & Gavalda, 2007).

In supervised problems (where features x are used to predict
labels y), the major causes of data drift are (Moreno-Torres
et al., 2012) - (1) A change in the distribution of features
x (covariate shift) e.g., if new kinds of incidents with pre-
viously unseen feature values occur, or (2) a change in the
underlying relationship between features x, and labels y
(concept drift) e.g., if a system and its dependencies change
such that incidents with certain symptoms are no longer
caused by a particular component.

Existing solutions to the data drift problem can be broadly
classified as: (a) window based methods (e.g., (Widmer &
Kubat, 1996)), which use a sliding window over old data
to train new models, (b) shift detection methods (e.g., (Pe-
saranghader et al., 2018)), which use statistical tests to de-
tect data drift and retrain models only when they detect that
data drift has happened, or (c) ensemble based methods
(e.g., (Brzezinski & Stefanowski, 2013)), which train an en-
semble of models on “old” training data and take a weighted
average of their predictions.

2.2 A Case Study of Deployed Applications

Many operators today use ML in deployment for a number
of management and security related tasks (Song et al., 2020;

Flynn et al., 2019; Cortez et al., 2017; Gao et al., 2020;
Arzani et al., 2020). Deployed ML solutions represent a
continuous ML paradigm (Baylor et al., 2019) where the
ML pipeline must run inference continuously on new and
incoming test samples that arrive one at a time. The sam-
ples are assigned ground truth labels over time, which could
range from hours, to days, or even weeks. Once a batch of
samples has been labeled, it can be used as part of the train-
ing data to retrain the model. We use Xt and yt to denote
the samples and labels in a batch t respectively. Deployed
ML pipelines are trained on all or a subset of past batches
(X1,y1), . . . , (Xt,yt). They will then run inference for
new test samples, which after being labeled will form batch
t+ 1 and are added to the training data. Here, we study two
such deployments from a leading cloud provider1.

Network Incident Routing (NETIR): Incidents in a data
center network include any unintended behavior, reported
by customers, operators, or automated monitoring programs
(Google), that can adversely impact service availability and
performance. Different incidents are handled by different
teams, and the ability to route an incident to the right team
in the shortest amount of time can significantly reduce the
time required to resolve the incident. The operator we study
has an ML pipeline to route incidents to the responsible
teams. Each point in Xt is a feature vector containing
characteristics of the incident and the labels in yt represent
whether a particular team is responsible for that incident.
The operator trains the model on past (resolved) incidents
and retrains the model every week (each batch t contains
one week of incidents), while giving more weight to recent
incidents. In Fig. 1a we show the normalized accuracy and
operational cost of this system over a one year time-frame2.

VM CPU Utilization (VMCPU): Virtual Machines (VMs)
differ in their CPU utilization based on the nature of their
workload. Accurately predicting the CPU utilization of
incoming VM requests can enable cloud providers to effi-
ciently allocate resources (i.e. allocate more resources to
requests with higher CPU utilization). The operator we stud-
ied has an ML pipeline categorizing the expected utilization
of an incoming VM request using a feature vector in Xt

describing its attributes. The pipeline predicts whether the
VM is expected to have high or low CPU utilization and
is trained on past requests. The model is retrained every
day (each batch t is one day) after it obtains ground truth
labels. Fig. 1b shows the normalized accuracy and cost for
this system over a three-month period.

We obtain the following insights from our study in these
two ML deployments:

1We omit citations to these systems to preserve anonymity.
2To protect sensitive information all accuracy values are nor-

malized by the maximum accuracy of the currently deployed model
over the entire period throughout the paper.
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Figure 1. (Top) The deployed models for continuous ML (over a stream of data batches) for Network Incident Routing (50 weeks,
one batch/week) and VM CPU Utilization (68 days, one batch/day) suffer from frequent accuracy drops due to to data drifts despite
continuously retraining at the end of each data batch. (Bottom) Normalized operational cost, where the systems sometimes need to revert
to Non-ML solutions (blue bars) when the ML solution cannot provide stable accuracy. Even small accuracy drops can incur high costs.

(1) Real-world ML deployments experience significant
accuracy drops despite frequent retraining. The top of
Fig. 1 shows sharp drops in accuracy in multiple instances.
These drops happen because deployed systems always face
changes such as system upgrades and user behavior changes,
which lead to mismatch between training and test data. It
is particularly problematic for deployed applications where
errors can result in system inefficiencies (e.g., VMCPU) or
wasted operator time (e.g., NETIR).

(2) Drops in accuracy can lead to drastic increase in op-
erational costs. The bottom of Fig. 1 shows the operational
cost on a per-sample basis for these two systems. The cost
of ML deployments come from three sources. First, some
mistakes directly waste more resources (e.g., a mis-routed
incident wastes time for innocent teams). Second, the sys-
tem becomes less efficient when its ML model is not very
accurate (e.g., the VM resource allocator needs to use a
more conservative policy to account for inaccurate ML pre-
dictions). Third, the system may need to disable the ML
solution entirely when its ML accuracy is not stable (blue
bars in Fig. 1a), and its non-ML, human-based solution is in-
herently inefficient and expensive: even though the non-ML
solution is more accurate than unstable ML models, human
decision-making results in delay in routing the incidents and
increased customer impact. Hence, drops in accuracy can
lead to superlinear increase in cost.

A natural idea to solve this problem is to use more sophisti-
cated data drift solutions in the ML literature (§2.1). How-
ever, these solutions have fundamental limitations for large-
scale systems, such as scalability, delay in obtaining ground
truths, and mixed data drifts (§1). §5 evaluates these ML
solutions, and the results show that they are still inadequate
for our deployed systems.

Based on our study of our deployed applications, a solution
to the data drift problem in practice needs to satisfy the
following properties:

• Scalability: The system needs to be able to handle mil-
lions of incoming test samples per second, run infer-
ence for those samples in real-time, and have reasonable
memory and CPU overheads.
• Adaptability: The system needs to adapt to data drift

even if the latest ground truth labels (for the most recent
test samples) are not yet available.
• Flexibility: The system needs to be able to work with

any type of predictive model, data types, and mixed
types of data drifts.

Summary of findings: We find that data drifts significantly
impact deployed applications in practice and that the nature
of the problem precludes many sophisticated approaches
in the ML literature. We observe that any solution to the
data drift problem has to satisfy three key properties: scal-
ability, availablility, and flexibility. These form our design
requirements when developing Matchmaker.

3 OVERVIEW OF MATCHMAKER

We present an overview of our system - Matchmaker (Fig-
ure 2), an adaptive and flexible solution to the data drift
problem that can run at scale. A summary of frequently
used notation is provided in Table 1.

Symbol Meaning
t Batch index
T Number of training batches

(Xt,yt) (Points,labels) in batch t
(x, y) One (point,label) pair
Bt Number of points in batch t
Mt Model trained on batch t
R Random Forest for data partitioning

argsort S Sort elements of set S
in descending order

Table 1. Frequently used notation and associated meanings.
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Figure 2. Overview of Matchmaker with 3 training batches. Predictive models (M1,M2,M3) are trained offline along with Match-
maker, W (Fig. 2a). At test time (Fig. 2b) W assigns each test point to the model from the most similar batch (same color) for prediction.

Matchmaker addresses the two main causes of data drift -
covariate shift and concept drift (§2.1). The key idea behind
Matchmaker is to identify the batch of training data that is
most similar to a new test sample and use the model trained
on that batch for inference. We rely on the following two
conjectures for this:

P1 If the accuracy drop occurs because training and test
data lie in different parts of the data space (covariate
shift), then it makes sense to give more importance to
the batch t of training data whose features (Xt) are
nearest to the features (x∗) of the test data.

P2 If the accuracy drop occurs because of a change in
x → y relationship over time (concept drift), then it
makes sense to give more importance to the batch of
training data that would best reflect the current x→ y
relationship (Brzezinski & Stefanowski, 2013).

Ideally in P2, we would like to give more importance to the
batch t of training data whose Xt → y mapping is nearest to
that of the test data. However, it is not possible to compare
mappings at test time since test labels are not available then.
So, we follow prior work in assuming that the most recent
batch best reflects the current x→ y relationship.

Matchmaker operates as follows:

1. Train models: We train a model for each batch of
training data (i.e., T models for T batches).

2. Compute covariate shift ranking: We train a
random forest, R, on all labeled training batches
{(X1,y1), . . . , (XT ,yT )} which can partition the
space of training samples (Davies & Ghahramani,
2014). At test time, we rank training batches based on
spatial nearness to the test sample by identifying the
leaf nodes that a test sample is mapped to in R and
then rank the training batches in terms of the number
of points from each batch in those leaf nodes (§4.1).

3. Compute concept drift ranking: Batches are ranked

in decreasing order of accuracy of their models on the
most recent batch (§4.2).

4. Combine rankings: The covariate shift and concept
drift rankings for each test sample are combined using
the Borda Count method (Shah & Wainwright, 2017).

5. Predict label: The model corresponding to the highest
ranked batch is deployed on the test sample.

Performance properties. The computed concept drift
ranking of the training batches {(X1,y1), . . . , (XT ,yT )}
is stored as a single vector while the covariate shift ranking
of batches at each leaf node is computed and stored in a
lookup table (see Algorithm 1). Hence, given traversal paths
of a test sample, we can use a single lookup to the table to
retrieve the covariate shift ranking at test time (see Algo-
rithm 2) and combine this with the concept drift ranking to
output the final ranking of training batches for the test sam-
ple. The ranking adds minimal overhead while inference
itself is done using a single (highest ranked) model. Hence
Matchmaker is significantly faster (scalable) compared to
state-of-the art drift mitigation methods like AUE (Brzezin-
ski & Stefanowski, 2013) which use an ensemble of models
and have inference latency proportional to the size of the
ensemble. The covariate shift ranking allows Matchmaker
to mitigate data drifts when test samples come in without
waiting for ground truth labels for model retraining (adap-
tive). Lastly Matchmaker does not depend on the class of
modelsM1,M2, . . . ,MT and can work with any model
class, for eg. DNNs, SVMs, random forests, etc. (flexible).

4 BUILDING MATCHMAKER

The main building block of Matchmaker is the algorithm
for choosing from a set of pre-trained models during in-
ference (Fig. 2). Each of these models M1, . . . ,MT is
trained using a different training set. In this work, we
take these training sets to correspond to one batch in
(X1,y1), . . . , (XT ,yT ). Thus we have T trained ML mod-
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Figure 3. Partitioning of training sample space using Decision Trees. All points at a leaf node belong to the same class (red/blue).

els corresponding to T batches.

The goal of the model selection algorithm is to maximize
prediction accuracy by using the model trained on the train-
ing set most similar to a test instance for inference. The
algorithm consists of the following three components.

4.1 Covariate Shift Ranking

Our aim in ranking training sets in terms of covariate shift
is based on P1. As per P1 we should rank training batches
in terms of nearness to the test point in the data space. A
natural approach is to rank training batches in terms of
average Euclidean distance from the test point. However, the
Euclidean distance is expensive to compute (cost increases
with batch size), sensitive to outliers (Fischler & Bolles,
1981) and susceptible to the curse of dimensionality (Xia
et al., 2015) and thus may not be suitable for real-world
settings with complex, high-dimensional data. Instead, in
this section, we will present an alternate approach using
decision trees, and its generalization to random forests, for
ranking training batches in terms of nearness to test data.
This approach is scalable, robust to outliers, and potentially
less susceptible to the curse of dimensionality.

Ranking using decision trees. Decision trees organize data
by splitting along features at thresholds chosen to maximize
prediction accuracy (Breiman et al., 1984). Intuitively, deci-
sion trees partition the training data such that similar train-
ing samples are assigned to the same tree leaf and at test
time the predicted label for a test point is typically the ma-
jority label of the leaf to which it is assigned. We leverage
this property of decision trees in ranking training batches in
terms of covariate shift (nearness to test point) as per P1.

Specifically, given a decision tree constructed using all train-
ing batches (X1,y1), . . . , (XT ,yT ), let N[k][t] denote the
number of samples from batch t in leaf node k of the tree.
For a test point assigned to leaf node k∗, the covariate shift

ranking of training batches, rcs, is in decreasing order of
N[k∗][t] (lowest to highest covariate shift) as,

rcs = argsort {N[k∗][1], . . . ,N[k∗][T ]} (1)

Fig. 3 illustrates this for a toy example. The key idea here
is that, since data points at the same leaf node of a decision
tree follow the same path through the tree and lie in nearby
regions of the data space, a training batch with more samples
in the leaf node that the test point is assigned to, can be
considered to be nearer to it. (Davies & Ghahramani, 2014)
use a similar idea to construct kernel functions.

We expect this approach to be less sensitive to outliers than
the Euclidean distance since we are selecting batches based
only on the points in a batch that are near (share a leaf node
with) the test sample and are not considering points that are
far away. An added benefit of decision trees is that they work
well with a wide range of data types (categorical, integer,
etc.) for which Euclidean distance may not be well-defined.

Generalized ranking using random forests. Random
Forests (Breiman, 2001) are ensembles of decision trees
that have demonstrated consistently higher prediction accu-
racy than individual trees (Fernández-Delgado et al., 2014)
and work well in high-dimensional settings (Qi, 2012). We
generalize our ranking approach to random forests to obtain
improved performance especially on high dimensional data
(Appendix C.2 has an ablation study to support this claim).

As discussed above, a decision tree can rank training
batches in terms of the number of points in the batch that
lie in the same leaf node. We train a random forest R
on all training batches (X1,y1), . . . , (XT ,yT ). Each tree
in R outputs a distinct ranking of training batches. We
combine these rankings using the well known Borda Count
method (Borda, 1784; Shah & Wainwright, 2017) to obtain
a single ranking. For every ranking, the Borda count method
assigns a score to each batch equal to the number of batches
ranked below it. The combined ranking of the batches is
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Algorithm 1 Matchmaker Training (Offline)
Input :Training batches: (X1,y1), . . . , (XT ,yT )

Hyperparameters for random forestR
Output :Trained models:M1, . . . ,MT

Matchmaker random forestR
1 TrainR on entire data {(X1,y1), . . . , (XT ,yT )}

for Tree Ti ∈ R do
2 Store Si[ki][t] =

∑
t′ 6=t 1

{
N[ki][t] > N[ki][t′]

}
3 end
4 for Batch t ∈ T do
5 Train modelMt on data batch (Xt,yt)

µt = 1− 1
Bt

(∑
(x,y)∈(XT ,yT )(1−Mt(x)[y])

2
)

6 end
7 Set µT = 1

Concept Drift Ranking (rcd) = argsort {µ1, . . . , µT }
ReturnM1, . . . ,MT ,R

in decreasing order of the total score for each batch (see
Appendix A for a detailed description). This gives the final
covariate shift ranking, rcs, of training batches. Combin-
ing rankings in this fashion is potentially less sensitive to
outliers than alternatives like averaging scores from each
decision tree (Demšar, 2006). It also enables efficient com-
putation of covariate shift ranking for test samples as Borda
Count scores at each leaf node of every decision tree inR
is stored in a lookup table (Algorithm 1) and the ranking is
computed in decreasing order of the sum of scores from leaf
nodes that a test point is assigned to (Algorithm 2).

4.2 Concept Drift Ranking

We now need to rank batches in terms of lowest to highest
concept drift based on P2. Following prior work (Brzezinski
& Stefanowski, 2013; Tahmasbi et al., 2020), we assume
that the most recently received training batch (XT ,yT ) has
the least concept drift (most similar x → y relationship)
with respect to the test data. The remaining batches are
ranked based on how close their x → y relationship is to
that of the most recent training batch. For this we compute
a score for batches 1, . . . , T − 1, analogous to the score in
(Brzezinski & Stefanowski, 2013), given by

µt = 1− 1

Bt

 ∑
(x,y)∈(XT ,yT )

(1−Mt(x)[y])
2

 (2)

where Bt is the batch size andMt(x)[y] denotes the prob-
ability that modelMt predicts the correct class (y) on any
point x. Thus ifMt assigns a low probability to the correct
class of points in the most recent batch then the score µt

will be low. We set µT = 1 to ensure that the most recent
batch is ranked first. The concept drift ranking of training

Algorithm 2 Matchmaker Inference (Online)
Input :Trained models:M1, . . . ,MT

Matchmaker random forestR
Test data point: x∗

Output :Predicted label: ŷ
8 for Tree Ti ∈ R do
9 ki∗ = Leaf node in Ti that x∗ is mapped to

s∗it = Si[ki∗][t]
10 end
11 for Batch t ∈ T do
12 st =

∑n
i=1 s

∗
it

13 end
14 Covariate Shift Ranking (rcs) = argsort {s1, . . . , sT }

Final Ranking (r∗) = Borda count (rcs, rcd)
Set t̂ = r∗[0]
Return ŷ =Mt̂(x∗)

batches, rcd (lowest to highest concept drift), is given by,

rcd = argsort {µ1, . . . , µT } (3)

4.3 Final Ranking

Since Matchmaker outputs two rankings based on covariate
shift and concept drift respectively, we combine them by
again using the Borda Count method (see Appendix A) to
obtain a single ranking of the batches that considers both
kinds of data drift. This ranking is computed efficiently for
each test point as described in Algorithm 2.

5 EVALUATION

We evaluate Matchmaker on our production datasets - NE-
TIR and VMCPU, two synthetic datasets - Covcon (a syn-
thetic dataset of our construction with both covariate shift
and concept drift) and Circle (Pesaranghader et al., 2016)
(a synthetic dataset from prior work that only has concept
drift) - as well as two publicly available datasets - Elec-
tricity (Zliobaite, 2013), and Covertype (Blackard & Dean,
1999) - with unknown drift that are commonly used to eval-
uate drift mitigation approaches. We use Python 3.6 for
all experiments and use the random forest classifier from
Python’s Scikit Learn library (SKL) for the predictive mod-
els (M1, . . . ,MT ). We train and run Matchmaker as per
Algorithms 1 and 2 with the number of retained batches (T )
set to 7. The random forest, R used in Matchmaker, is
constructed with squared error as the splitting criterion. We
compare Matchmaker to the following baselines:

1. Win: Uses a predictive model trained on the past 7
batches for prediction on incoming data.

2. One: Uses a predictive model trained on only the most
recent batch for prediction on incoming data.
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Method NetIR VMCPU

AUE 1.63 + 0.24 77.02 + 3.64

Dep 1.91 + 0.26 N/A

DriftSurf 1.66 + 0.24 86.65 + 3.23

Matchmaker 1.57 + 0.23 79.57 + 3.24

One 1.69 + 0.24 88.22 + 4.49

Win 1.66 + 0.24 80.45 + 3.30

(c) Cost

Figure 4. Plots (a) and (b) are for Average Accuracy v/s Inference Latency for internal datasets (error bars correspond to one standard
error). Higher (high accuracy) and to the left (low latency) is better for both plots. Table (c) contains average cost values for each approach
on the internal datasets (lower is better).

3. AUE(Brzezinski & Stefanowski, 2013): Uses an en-
semble of 7 models which are retrained after each batch
of data is received. The voting weights for each model
is determined by its accuracy on most recent batch.

4. DriftSurf(Tahmasbi et al., 2020): Uses an adaptive
approach based on drift detection. The algorithm main-
tains a model trained on all the past data. Whenever
a drift is detected a new model is trained on the data
received after drift detection. The algorithm greedily
switches between old and new models as long as data
drift is being detected and retains the best performing
model after the drift has passed.

For NETIR, we also compare with the baseline Dep, the
currently deployed approach in production. It uses a model
trained on all past batches where the batches are assigned
linearly decaying weights (as per the weighted training pro-
cedure of (SKL)) for training, and where misclassified exam-
ples are assigned higher weight (1.8× higher). For VMCPU,
Win is the approach currently deployed in production.

We use the following metrics for evaluation:

1. Average Accuracy: Average fraction of correct pre-
dictions for the approach (averaged over all batches)

2. Inference Latency: Average test time for the ap-
proach (averaged over first 100 points for 5 batches for
VMCPU, and 10 batches for other datasets).

3. Average Cost: (Only for NETIR and VMCPU)
Weighted sum of cost-per-sample of incorrect predic-
tion (increases with errors), and cost-per-sample of
running inference (increases with inference overhead)
using the approach. It also includes the cost of run-
ning a default (non-ML) solution which is deployed
if the accuracy in any batch drops below 75% of the
maximum possible accuracy and is deployed until the
accuracy of the ML solution rises to an acceptable level
(see Appendix B for details).

5.1 Performance on Internal Datasets

The performance of Matchmaker on the internal datasets
is summarised in Fig. 4 while more fine-grained plots in
Fig. 5 show the cost-per-batch for Matchmaker and the
deployed model for each dataset (Dep for NETIR and Win
for VMCPU).

Fig. 4a shows that Matchmaker has the highest average
accuracy for the NETIR dataset and is significantly (almost
8×) faster than AUE, the only other approach with compa-
rable accuracy. Additionally the table in Fig. 4c shows that
Matchmaker has the least cost for NETIR and clearly out-
performs AUE and DriftSurf, the two state-of-the-art meth-
ods for drift mitigation. Finally, the plots in Fig. 5a shows
that Matchmaker has a significantly lower cost than Dep
on several batches since it avoids deploying the expensive
non-ML solution (involving prediction by human experts)
on many batches. Due to its clear overall superiority, we
are currently in the process of deploying Matchmaker in
production for NETIR.

For VMCPU, we see from the table in Fig. 4c that Match-
maker has a lower cost than the currently deployed model
Win and the state-of-the-art drift mitigation method Drift-
Surf. Only AUE has a lower cost than Matchmaker on
this dataset but Matchmaker is almost 4× faster than AUE
on this dataset (Fig. 4b). Interestingly Win has a slightly
higher average accuracy than Matchmaker on this dataset
but Matchmaker has a lower cost since the cost function
(see Appendix B) assigns different weights to false positives
and false negatives and Matchmaker performs better on the
balance. However due to the somewhat conflicting results
we conclude that there is no clear winner between Match-
maker, AUE, and Win for VMCPU and so are continuing to
deploy Win while exploring further options for improving
the performance of Matchmaker on this dataset.
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Figure 5. Normalized operational cost per batch on internal datasets - NETIR and VMCPU. Observe how matchmaker clearly saves on
cost in NETIR by avoiding the expensive Non-ML solution in many batches.

5.2 Performance on External Datasets

We evaluate Matchmaker and the baseline methods on
two synthetic datasets, and two publicly available (real-
world) dataset that are commonly used for evaluating drift
mitigation approaches (Tahmasbi et al., 2020). Appendix
C.1 describes the details of these datasets.

We construct the synthetic dataset Covcon to have both
covariate shift (batches are drawn from different parts of
the data space) and concept drift (the x → y relationship
changes over time). The other synthetic dataset Circle (Pe-
saranghader et al., 2016) has only concept drift. Not surpris-
ingly, Matchmaker outperforms all baselines for Covcon
(Fig. 7c) since it can handle both covariate shift and concept
drift while the baselines are more suited for handling only
concept drift. This also offers a potential explanation for
the slightly better performance of AUE and DriftSurf for
Circle (Fig. 7d), which has only concept drift. However note
that even in this case Matchmaker has only slightly lower
accuracy than these two baselines and continues to have
much lower latency than AUE. These results strengthen our
claim that Matchmaker is preferable in settings where there
are both covariate shift and concept drift.

For public datasets Electricity (Fig. 7e) and CoverType
(Fig. 7f), most methods show comparable performance. In-
deed, (Pesaranghader et al., 2018) notes that there seems to
be consensus among researchers (Frias-Blanco et al., 2014;
Pesaranghader & Viktor, 2016; Huang et al., 2015; Bifet
et al., 2009; Losing et al., 2018) that it is unclear if there
is any actual data drift in these datasets and thus there may
not be any need for deploying drift mitigation approaches.
However, our results do show that deploying Matchmaker
will not incur much additional cost while maintaining com-
petitive accuracy. Interestingly we observe that One, which
only uses the most recent batch of data, outperforms all
baselines for CoverType. While the reason is not entirely
clear, we believe that One’s high variability across datasets
and its poor performance on internal datasets NETIR and
VMCPU makes it unsuitable for real-world deployment.

Additional results. We also include an ablation study in
Appendix C.2 where we show that 1) The design choices
(covariate shift ranking using random forests and concept
drift ranking based on accuracy) lead to tangible accuracy
gains, and 2) Matchmaker’s perforamnce does not vary
significantly across different hyperaparameter settings. Ap-
pendix C.3 shows results with additional baselines.

6 DISCUSSION

We discuses several alternative designs, limitations, and
future directions for Matchmaker.

(1) Intelligent training batch construction. We currently
construct training data batch according to the arrival time of
ground truth labels. An alternative is to construct batches
by cluster points according to some similarity metric which
may better capture local concepts. The potential downside
is that there will be reduced diversity in each training batch,
and the corresponding ML model may have an overfitting
problem. We leave this exploration as a future direction.

(2) Fine-tune base models using AutoML. One of the po-
tential approaches to boost accuracy is to leverage AutoML
systems (e.g., (Feurer et al., 2019; Google Cloud AutoML;
Azure Automated Machine Learning; SageMaker Autopi-
lot)) to select the best ML model and hyperparameters for
each training data batch. Our evaluation using this approach
alone (i.e., without Matchmaker) yields only small im-
provements on accuracy (≤ 2%) while increasing the train-
ing overheads by two orders of magnitude. This approach
might work better if we construct training data batch based
on similarity, and we plan to explore this direction further.

(3) Unstructured data. Our current design uses a random
forest to determine data similarity. This works well for
structured data (e.g., tables), which are widely used in ML
optimizations for systems. However, it may not work well
for high-dimensional, unstructured data such as images or
text. A potential approach for such data is to leverage out-of-
distribution detection methods using deep neural networks



Matchmaker: Data Drift Mitigation in Machine Learning for Large-Scale Systems

0.01 0.02 0.03 0.04

Inference Latency

0.86

0.88

0.90

0.92

0.94

A
ve

ra
ge

A
cc

u
ra

cy

Win

One

Matchmaker

AUE

DriftSurf

(a) Covcon

0.01 0.02 0.03 0.04

Inference Latency

0.95

0.96

0.97

0.98

0.99

A
ve

ra
ge

A
cc

u
ra

cy

Win

One

Matchmaker

AUE

DriftSurf

(b) Circle

0.01 0.02 0.03 0.04 0.05

Inference Latency

0.77

0.78

0.79

A
ve

ra
ge

A
cc

u
ra

cy

Win

One

Matchmaker

AUE

DriftSurf

(c) Electricity

0.01 0.02 0.03 0.04

Inference Latency

0.85

0.86

0.87

0.88

A
ve

ra
ge

A
cc

u
ra

cy

Win

One

Matchmaker

AUE

DriftSurf

(d) Covertype

Figure 6. Average Accuracy v/s Inference Latency for external datasets. Error bars correspond to one standard error.

(DNNs) (Hendrycks & Gimpel, 2017; Liang et al., 2018).

7 RELATED WORK

To the best of our knowledge, Matchmaker is the first
scalable data drift solution that is capable of handling both
covaraite shift and concept drift in the same test batch with-
out waiting for next round of model retraining. We expand
our discussion on related work here.

Covariate shift. In the ML literature, covariate shift (Shi-
modaira, 2000), virtual drift (Tsymbal, 2004), and popula-
tion shift (Kelly et al., 1999) all refer to the same type of data
drift, where the training data distribution does not match the
test data distribution while sharing similar underlying map-
ping from features to labels. The vast majority of work in
this field only concerns two datasets (training and test) and
there is no notion of continuing time (Ditzler et al., 2015).
Hence, popular solutions treat this as a learning problem by
adjusting training objectives or training data importance to
achieve better test data accuracy (e.g., (Shimodaira, 2000;
Sugiyama et al., 2007; Yamazaki et al., 2007; Mansour et al.,
2008; Gretton et al., 2009; Pan & Yang, 2010)). The closet
to our work is a recent drift adaptation solution for video
analytics, ODIN (Suprem et al., 2020), which picks the best-
fit specialized models to process input video frames using
generative adversarial networks (GANs) (Goodfellow et al.,
2014). In contrast, our solution is a better fit to ML for
large-scale systems because it (1) is not specific to video
analytics; (2) does not involve expensive DNNs; and (3) can
handle both covariate shift and concept drift.

Concept drift. When the test data changes its feature-to-
label mapping from the training data, the data drift problem
becomes concept drift or real drift (Tsymbal, 2004). This
problem is fundamentally different from covariate shift be-
cause training data under obsolete concepts is harmful to
model performance, and a concept drift solution needs to
determine which training data to forget. Concept drift solu-
tions mostly fall into three categories (Ditzler et al., 2015):
(1) window-based solutions that train models using a sliding
window or assigning higher importance to recent data points

(e.g., (Widmer & Kubat, 1996; Koychev, 2000; Hentschel
et al., 2019; Klinkenberg, 2004)), which are also the ones
used in our deployed systems; (2) detection methods that
detects concept drifts and generates new ML models ac-
cordingly (e.g., (Kifer et al., 2004; Gama et al., 2004; Bifet
& Gavaldà, 2007; Pesaranghader et al., 2018; Tahmasbi
et al., 2020)); and (3) ensemble methods that maintains a
collection of ML models and continuously update the ML
models and their voting weights (e.g. (Elwell & Polikar,
2011; Brzezinski & Stefanowski, 2013; Sun et al., 2018;
Zhao et al., 2020)). The major drawback of these concept
drift solutions is that their adaptation only happens after
new batch of ground truth is available, which is not agile
enough for ML deployments at large scale. As we show in
our evaluation (§5), Matchmaker addresses the data drift
problems much better than window-based and detection
methods. While ensemble methods such as AUE are more
competitive in model accuracy, their high overheads make
them unappealing for large-scale systems.

8 CONCLUSION

As ML techniques are widely deployed in various aspects of
modern data centers, accuracy drops caused by data drift can
lead to significant system inefficiencies. Our study on two
real-world ML deployments demonstrates that ML models
are vulnerable to data drifts despite frequent model retrain-
ing. We present Matchmaker, the first scalable, adapatable,
and flexible solution to the data drift problem for ML de-
ployments in large-scale systems. Matchmaker addresses
real-world problems that existing ML solutions do not ad-
dress, such as scalability, ground truth latency, and mixed
types of data drifts. Matchmaker operates by finding the
most similar training data batch for each test point and using
the corresponding ML model for inference. As part of our
solution, we introduce a novel similarity metric to address
multiple types of data drifts with low computation over-
heads. Our evaluation using real-world ML deployments
demonstrate that Matchmaker yields significant reductions
in accuracy variation, while providing much faster ML in-
ference than state-of-the-art ML data drift solutions.
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A OVERVIEW OF BORDA COUNT

We use the Borda count algorithm (Borda, 1784; Shah & Wainwright, 2017) at two places in Matchmaker - first to combine
the training batch rankings from the different trees in the random forestR to obtain the final covariate shift ranking, rcs,
and second to combine the covariate shift ranking, rcs, and the concept drift ranking, rcd, to obtain the final ranking. Here
we explain the Borda count algorithm for combining a given set of rankings.

The Borda count ranking algorithm is a ranked voting system that is designed to combine rankings from multiple sources.
Given a set of T items (training data batches, in our case) and n different rankings (or orderings) of the items, it operates as
follows:

1. For item t in ranking i, calculate Borda Score sit: the number of items that t beats in ranking i

2. Compute st =
∑n

i=1 s
∗
it, total Borda Score for item t

3. Obtain the final ranking by sorting st from highest to lowest.

The following example illustrates the Borda count approach. Consider items {A,B,C,D} and two associated rankings, r1:
{A,B,C,D}, and r2: {C,A,B,D}. The item-wise scores would be sA = 3 + 2 = 5, sB = 2 + 1 = 3, sC = 1 + 3 = 4, and
sD = 0 + 0 = 0. Thus the final ranking is r∗:{A,C,B,D} and the highest ranked item is A.

The Borda count approach makes no assumptions about how the underlying scores/rankings are obtained and easily scales:
both properties that Matchmaker requires. (Shah & Wainwright, 2017) provides theoretical guarantees for this approach.

B COST FUNCTION

The operational cost consists of four components:

1. Mis-prediction cost. The additional costs that are incurred by mis-predictions from ML models. For NetIR, this is
the time for an incident spent in the teams that are not responsible for the incident. For VMCPU, this is the cost of
additional host VMs for all the false positive predictions (a low-CPU VM that is incorrectly classified as a high-CPU
VM, which lost its opportunity to save hardware resources).

2. System adjustment cost. The additional costs for the system to adjust its policy to meet system objectives. This only
applies to VMCPU, where the VM resource allocator needs to adjust its policy based on the expected number of false
negatives and false positives so that the probability of co-locating high-CPU VMs is below an acceptable threshold.

3. Non-ML solution cost. The costs of using the default, non-ML solution when the ML model accuracy drops below
75% of the maximum possible accuracy. Once the non-ML solution is deployed, the system will only enable the ML
solution after three consecutive batches with acceptable accuracy.

4. Inference cost. The costs of running inference for the data drift solution based on the CPU time and the number of test
instances in a data batch.

C ADDITIONAL EVALUATION DETAILS

C.1 Details of External Datasets

We reported results on the following external datasets (in addition to our internal datasets - NETIR and VMCPU) in Section
5 (Figure 6). We simulate the arrival of batches over time by splitting each dataset into a sequence of equal-sized batches.

1. Covcon: We construct this 2-dimensional dataset to have covariate shift and concept drift. The decision boundary at
each point is given by α ∗ sin(πx1) > x2. We use 10000 points (100 batches, 1000 points per batch). Covariate shift is
introduced by changing the location of x1 and x2 (for batch t x1 and x2 are drawn from the Gaussian distribution with
mean ((t+ 1)%7)/10 and standard deviation 0.015). Concept drift is introduced by alternating the value of α between
0.8 and 1, every 25 batches and also changing the inequality from > to < after 50 batches.
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2. Circle (Pesaranghader et al., 2016): This dataset contains two features x1, x2 drawn uniformly from the interval [0, 1].
We use 100000 points (100 batches, 1000 points per batch) from this dataset. Each data point is labeled as per the
condition (x1 − c1)2 + (x2 − c2)2 <= r where the center (c1, c2)) and radius r of the circular decision boundary
changes gradually over a period of time introducing (gradual) concept drift. Specifically we change the center and
radius at batch 25, 50, and 75. Each time the change happens gradually over the next 5 batches with the center and
radius changing for 20% of the points each time.

3. Electricity (Zliobaite, 2013): This is a publicly available 13− dimensional dataset of the records of the New South
Wales Electricity Market in Australia. The class labels represent change in price (Up/Down). There may be data drift
due to change in consumption behaviour. We use 45312 points (34 batches, 1333 points per batch) from this dataset.

4. Covertype (Blackard & Dean, 1999): This is a multi-class dataset with 54 attributes and 581000 points (100 batches,
5810 points per batch) describing 7 forest cover types (7 classes) for 4 regions in the Roosevelt National Forest of
Northern Colorado, obtained from US Forest Service (USFS) information system.

C.2 Ablation Study

Approach Accuracy
Tree 0.872± 0.012

Forest 0.890± 0.011
Matchmaker 0.892± 0.012

Table 2. Accuracy of Matchmaker and its reduced versions - Tree and Forest on NETIR

Window Length Number of Trees Tree Depth
0.89± 0.01 (3) 0.90± 0.01 (25) 0.89± 0.01 (10)
0.90± 0.01 (7) 0.90± 0.011 (50) 0.90± 0.01 (20)
0.90± 0.01 (11) 0.90± 0.01 (75) 0.89± 0.01 (30)
0.89± 0.01 (15) 0.90± 0.01 (100) 0.90± 0.01 (40)

Table 3. Accuracy of Matchmaker on NETIR for different hyperparemeters. Bold values are the ones used in evaluation in Section 5

We run two ablation studies on the NETIR dataset to validate the design choices in Matchmaker:

1. To validate the ranking approach described in Section 4, we show in Table 2 that ranking batches using a single
decision tree (Tree), or using a random forest but without the concept drift ranking (Forest), gives lower accuracy
than Matchmaker which combines the covariate shift ranking obtained from the random forest with the concept drift
ranking from the prediction performance of past models. This shows that the generalization of the ranking to random
forests, and the incorporation of the concept drift ranking are both needed to obtain the desired accuracy gains.

2. Since ML models are often sensitive to the choice of hyperparameters (Li et al., 2017), we checked if the same holds
for Matchmaker by sweeping over the 3 main hyperparameters of our model: (a) Number (T ) of training batches
retained, (b) number of trees in the Random ForestR, and (c) maximum depth of the Random ForestR. We present
the results in Table 3 for the NETIR application. Our random forest for data partitioning consists of 50 trees and has a
max depth of 20. We mark these choices with an asterisk (∗). We find that the accuracy is not significantly affected by
the choice of hyperparameters and all choices demonstrate superior accuracy than the baselines in Fig. 5a .

C.3 Additional Results

We present additional results in this section using two additional baselines:

1. MDDM(Pesaranghader et al., 2018): uses McDarmid’s Inequality (McDiarmid, 1989) on batch accuracies to detect
data drift and retrains the predictive model on the current batch if drift is detected.
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2. Ensemble: uses an ensemble of 7 models trained the past 7 batches (one model per batch). The output is the average
of individual model predictions

The results of accuracy v/s inference latency with these two new baselines for all datasets are presented in Fig. 7. MDDM
generally performs poorly because we apply it on batch accuracies, unlike the per-sample accuracies used in (Pesaranghader
et al., 2018) since true sample labels cannot be obtained in real-time in our setting. Ensemble generally has lower accuracy
than AUE, which also uses an ensemble of models for prediction, and has similar inference latency as AUE, which is much
larger than Matchmaker or the other baselines thus rendering it unsuitable for our latency critical applications.

For the sake of completeness, we also include plots of accuracy and cost for each batch for NETIR (Figures 8 and 9) and
VMCPU (Figures 10 and 11)
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Figure 7. Average Accuracy v/s Inference Latency for all datasets with additional baselines. Error bars correspond to one standard error.



Matchmaker: Data Drift Mitigation in Machine Learning for Large-Scale Systems

0 10 20 30 40 50

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Win

One

MDDM

AUE

Ensemble

Matchmaker

DriftSurf

Dep

Figure 8. NETIR Accuracy over time
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Figure 9. NETIR Cost over time
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Figure 10. VMCPU Accuracy over time
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