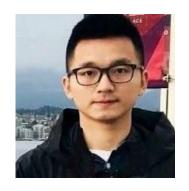


Recent Advances in Neural Speech Synthesis



Xu Tan and Tao Qin Microsoft Research Asia

Tutorial slides: https://github.com/tts-tutorial/icassp2022

Survey paper: https://arxiv.org/pdf/2106.15561

Outline

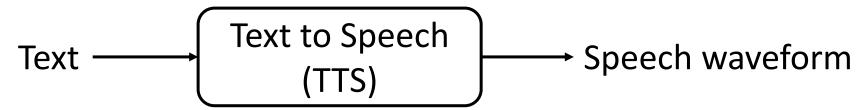
- 1. Evolution and taxonomy of TTS, Tao Qin
- 2. Key components in TTS, Xu Tan
- 3. Advanced topics in TTS, Xu Tan
- 4. Summary and future directions, Xu Tan
- 5. QA

Part 1: Evolution and Taxonomy

-- Evolution, basic modules, taxonomies

Text to speech synthesis

The artificial production of human speech from text



- Disciplines: acoustics, linguistics, digital signal processing, statistics and deep learning
- The quality of the synthesized speech is measured by
 - Intelligibility and naturalness

Formant TTS

How does it work?

- produce speech segments by generating artificial signals based on a set of specified rules mimicking the formant structure and other spectral properties of natural speech
- using additive synthesis and an acoustic model (with parameters like voicing, fundamental frequency, noise levels)

Advantages:

- highly intelligible, even at high speeds
- well-suited for embedded systems, with limited memory and computation power

Limitations:

- not natural, produces artificial, robotic-sounding speech, far from human speech
- difficult to design rules that specify model parameters

Concatenative TTS

How does it work?

- a very large database of short and high-quality speech fragments are recorded from a single speaker
- speech fragments are recombined to form complete utterances

Advantages: intelligible

Limitations:

- require huge databases and hard-coding the combination
- emotionless, not natural
- difficult to modify the voice (e.g., switching to a different speaker, or altering the emphasis or emotion) without recording a whole new database

Parametric TTS

How does it work?

- using learning based parametric models, e.g., HMM
- all the information required to generate speech is stored in the parameters of the model
- also called statistical parametric synthesis (SPSS)

Advantages: lower data cost and more flexible

Limitations: less intelligible than concatenative TTS

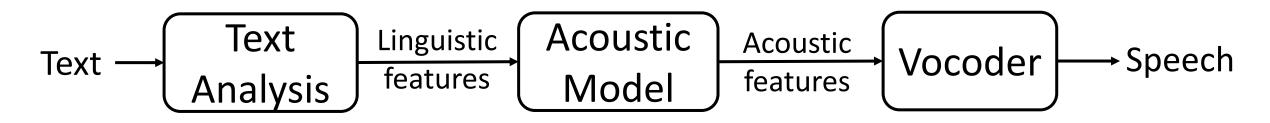
Neural TTS

How does it work?

- a special kind of parametric models
- text to waveform mapping is modeled by (deep) neural networks
- Advantages:
 - huge quality improvement, in terms of both intelligibility and naturalness
 - less human preprocessing and feature engineering
- Disadvantages:
 - Data hungry
 - Training/inference costly

Basic components of parametric/neural TTS systems

• Text analysis, acoustic model, and vocoder



- Text analysis: text → linguistic features
- Acoustic model: linguistic features → acoustic features
- Vocoder: acoustic features → speech

Text analysis

- Transforms input text into linguistic features:
 - Text normalization
 - 1989 \rightarrow nineteen eighty-nine, Jan. 24th \rightarrow January twenty-fourth
 - Homograph disambiguation
 - Do you live (/l ih v/) near a zoo with live (/l ay v/) animals?
 - Phrase/word/syllable segmentation
 - synthesis → syn-the-sis
 - Part of speech (POS) tagging
 - Mary went to the store → noun, verb, prep, noun,
 - ToBI (Tones and Break Indices)
 - Mary went to the store? → Mary' store' H%
 - Grapheme-to-phoneme conversion
 - Speech \rightarrow s p iy ch

Text analysis: linguistic features

• phoneme:

- current phoneme
- preceding and succeeding two phonemes
- position of current phoneme within current syllable

• syllable:

- numbers of phonemes within preceding, current, and succeeding syllables
- stress³ and accent⁴ of preceding, current, and succeeding syllables
- positions of current syllable within current word and phrase
- numbers of preceding and succeeding stressed syllables within current phrase
- numbers of preceding and succeeding accented syllables within current phrase
- number of syllables from previous stressed syllable
- number of syllables to next stressed syllable
- number of syllables from previous accented syllable
- number of syllables to next accented syllable
- vowel identity within current syllable

• word:

- guess at part of speech of preceding, current, and succeeding words
- numbers of syllables within preceding, current, and succeeding words
- position of current word within current phrase
- numbers of preceding and succeeding content words within current phrase
- number of words from previous content word
- number of words to next content word

• phrase:

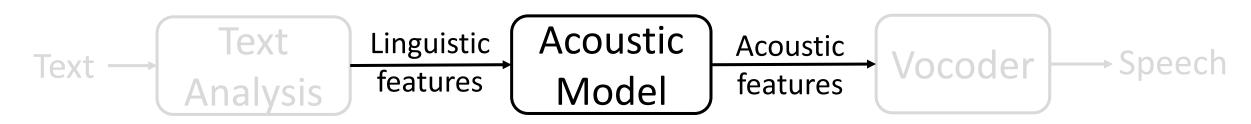
- numbers of syllables within preceding, current, and succeeding phrases
- position of current phrase in major phrases
- ToBI endtone of current phrase

• utterance:

- numbers of syllables, words, and phrases in utterance

Acoustic model

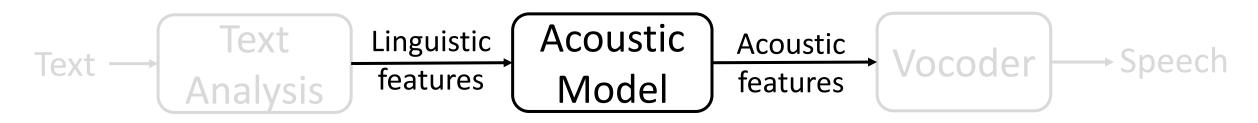
Generate acoustic features from linguistic features

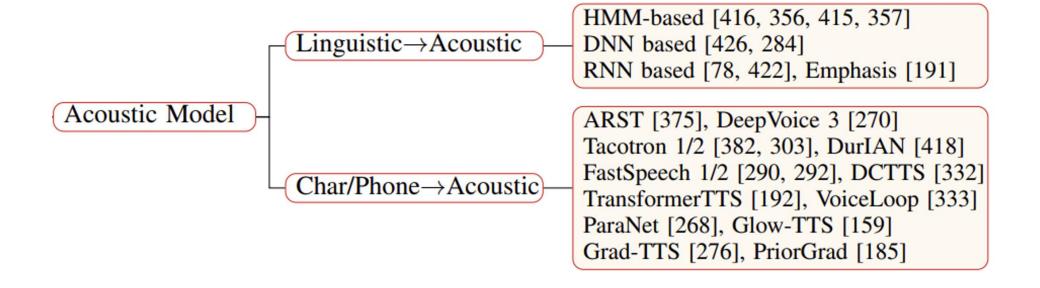


- F0, V/UV, energy
- Mel-scale Frequency Cepstral Coefficients (MFCC), Bark-Frequency Cepstral Coefficients (BFCC)
- Mel-generalized coefficients (MGC), band aperiodicity (BAP),
- Linear prediction coefficients (LPC),
- Mel-spectrograms
 - Pre-emphasis, Framing, Windowing, Short-Time Fourier Transform (STFT), Mel filter

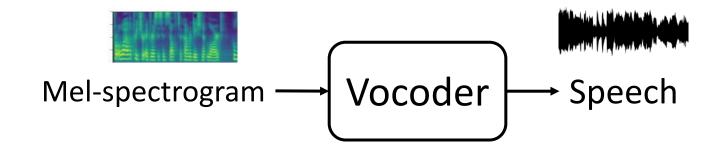
Acoustic model

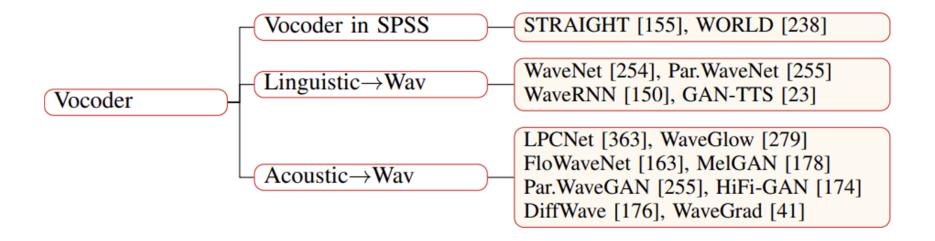
Predict acoustic features from linguistic features



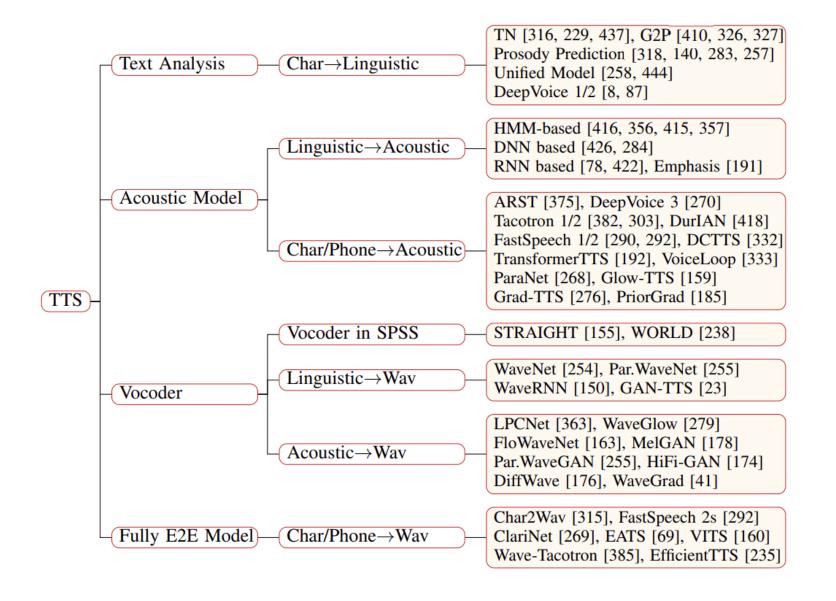


Vocoder

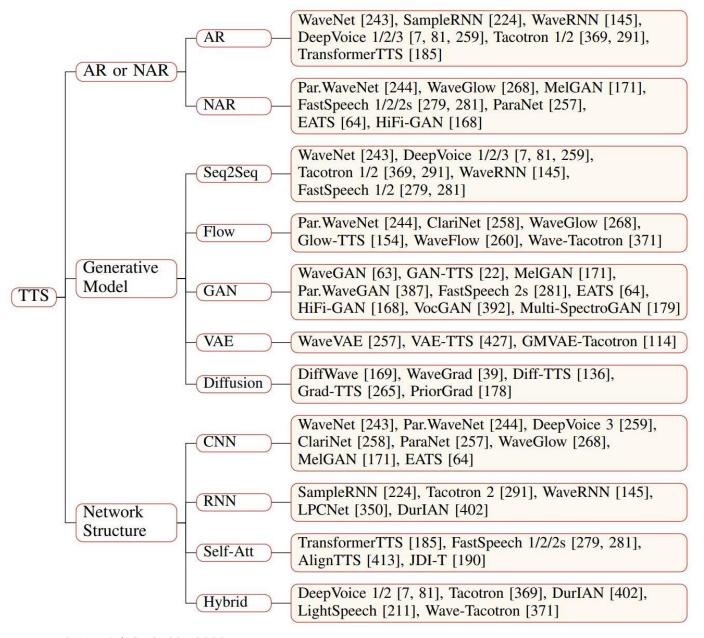




Taxonomy from the perspective of components



Taxonomy from other perspectives

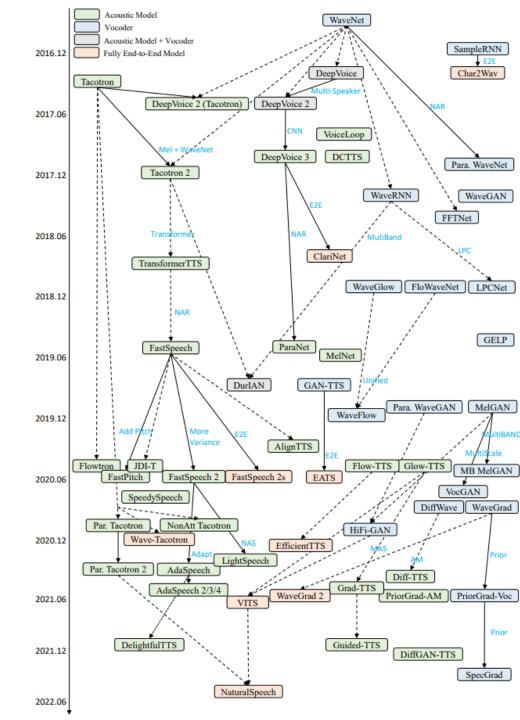


How "recent" this tutorial covers?

1950s	1970s	1990s		2010s	Recent 2016
Articulatory	Formant	Concatenative	Statistical Parametric	Neural Speech	(Deep) Neural Speech
Synthesis	Synthesis	Synthesis	Synthesis	Synthesis	Synthesis

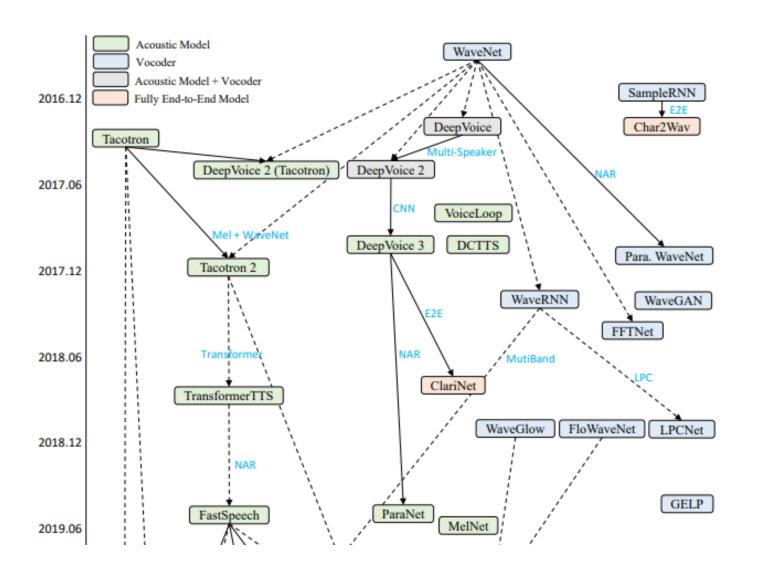
2022/5/23 TTS Tutorial @ ICASSP 2022 18

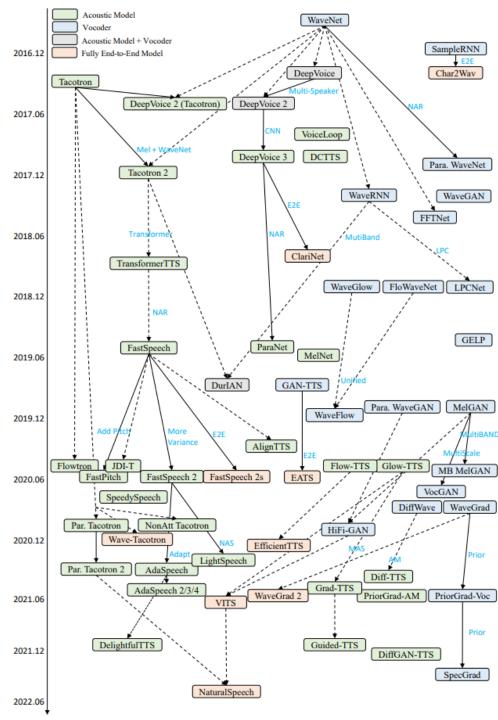
Recent advances



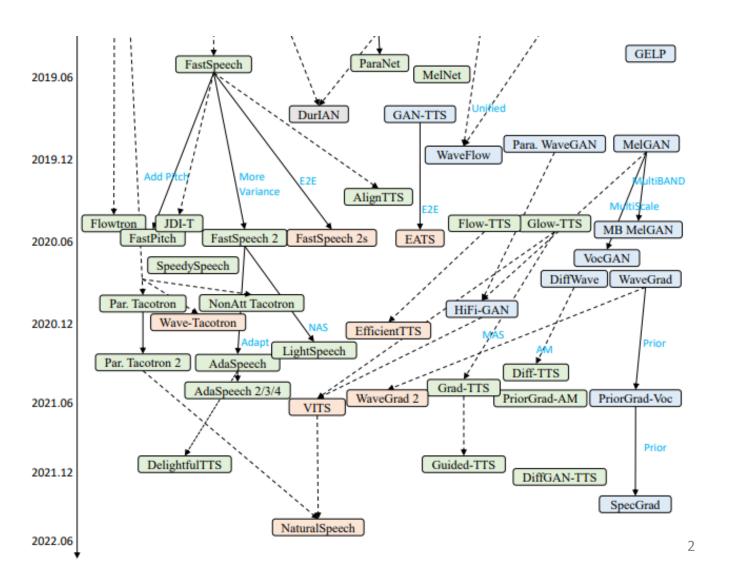
2022/5/23 TTS Tutorial @ ICASSP 2022

Recent advances



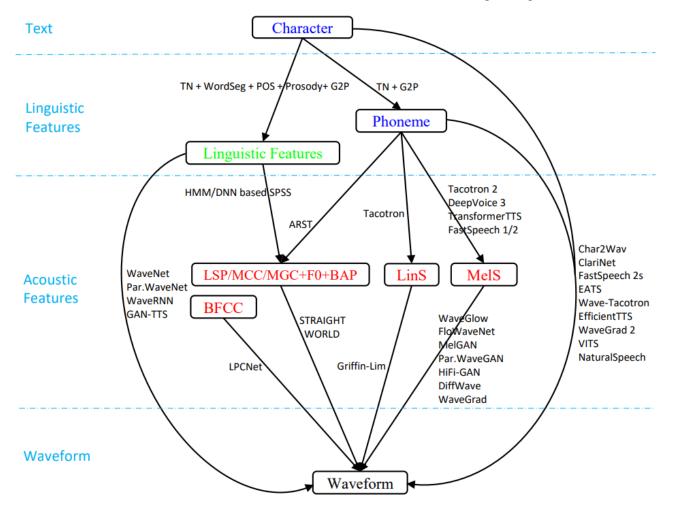


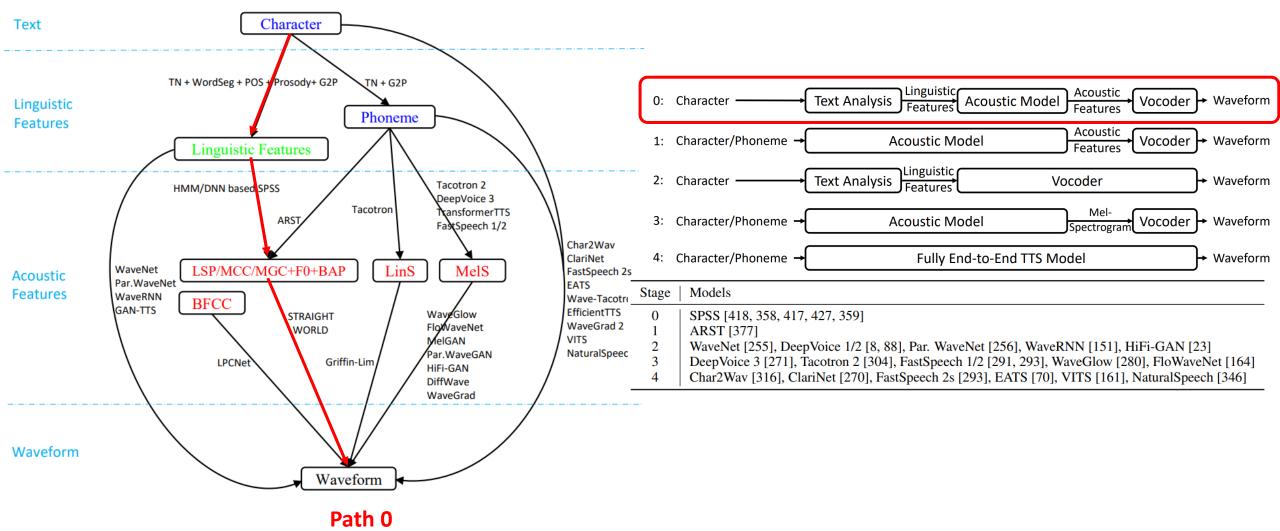
Recent advances

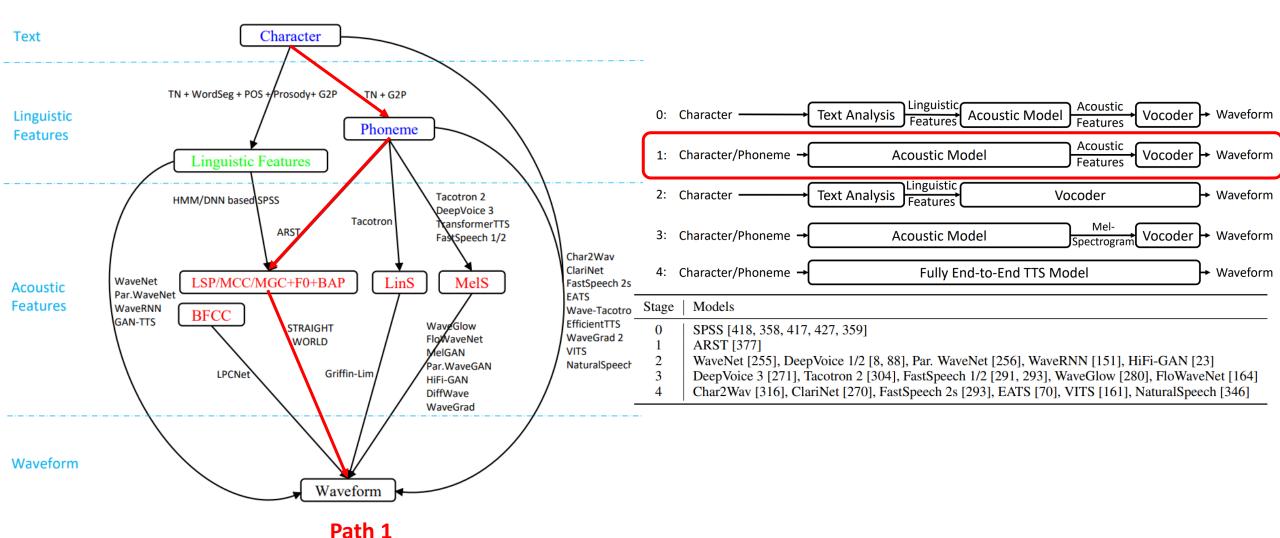


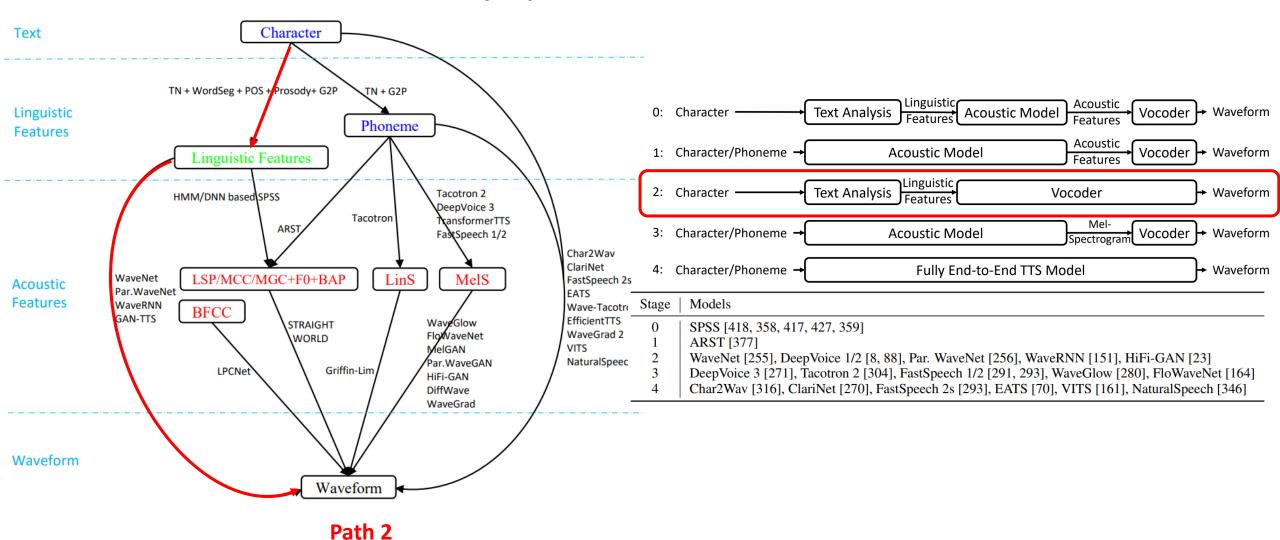


Part 2: Key Components in TTS

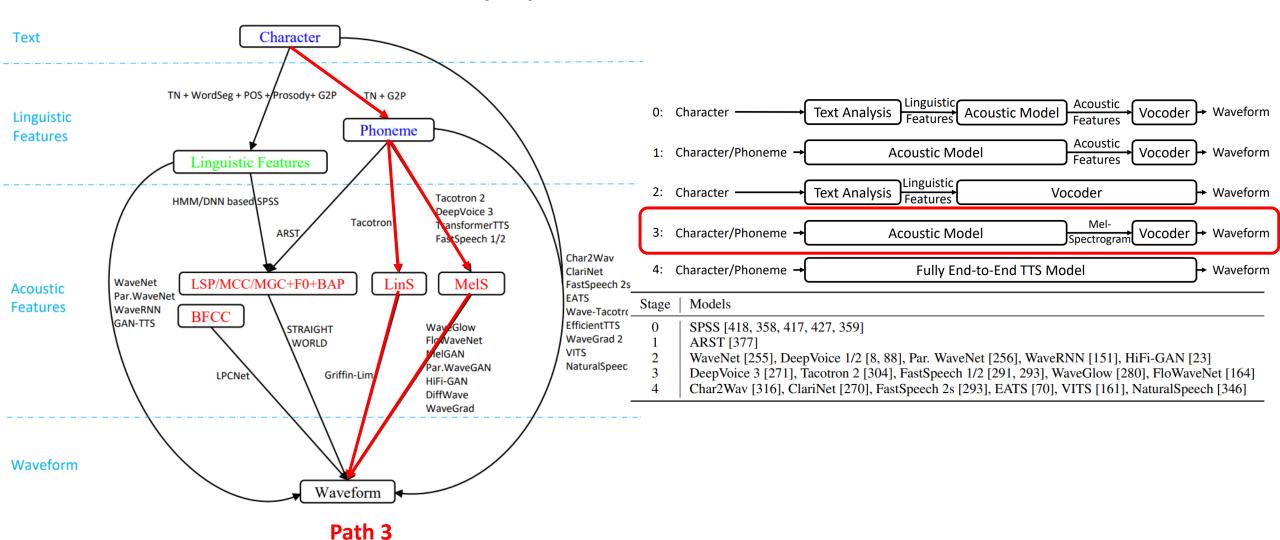


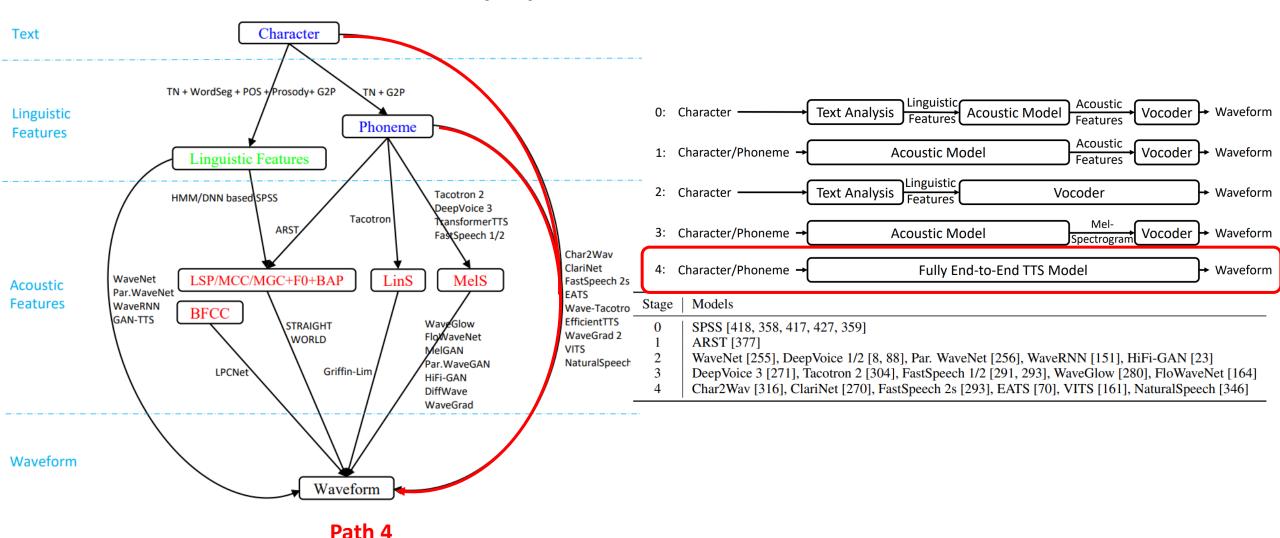




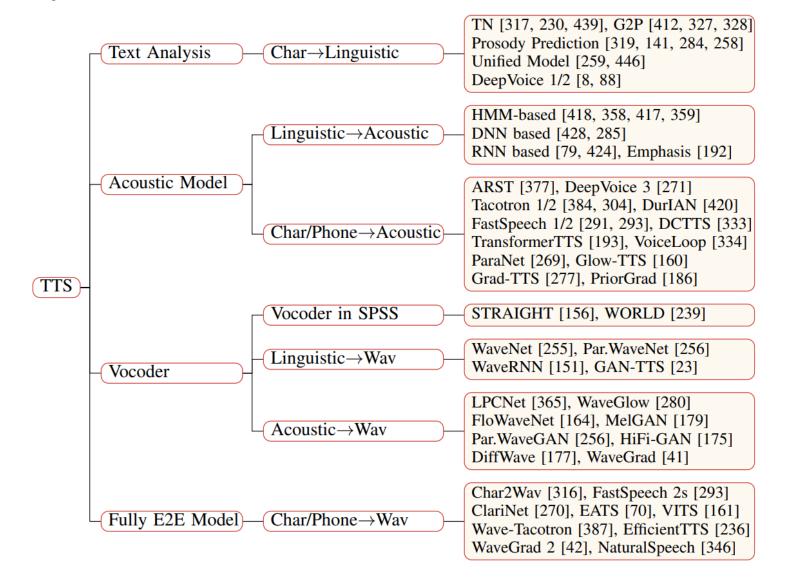


2022/5/23 TTS Tutorial @ ICASSP 2022 26



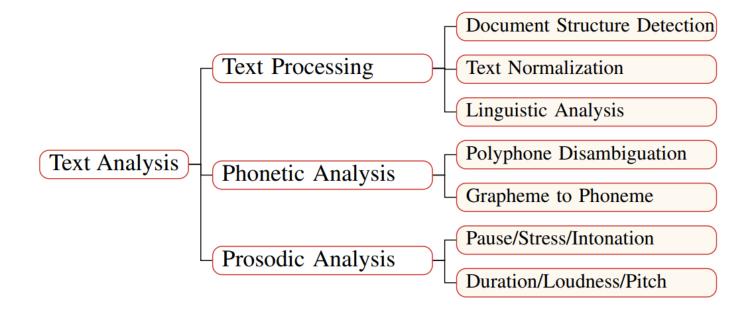


Key components in TTS



Text analysis

 Transform input text into linguistic features that contain rich information about pronunciation and prosody to ease the speech synthesis.



Text analysis——Text processing

- Document Structure Detection
 - Sentence breaking: a knowledge of the sentence unit is important for correct pronunciation and prosodic breaking
- Text Normalization
 - Convert text from nonorthographic form (written form) into orthographic form (speakable form)
 - 2:18 pm, 05/23/2022, \$32
- Linguistic Analysis
 - Sentence Type Detection: .!?
 - Word/Phrase Segmentation: Chinese word segmentation
 - Part-of-Speech Tagging: noun, verb, preposition

Text analysis——Phonetic analysis

- Polyphone Disambiguation
 - Polyphone refers to word that can be pronounced in two or more different ways, where each way represents a different word sense
 - Polyphone disambiguation is to decide the appropriate pronunciation based on the context of this word/character
 - E.g., resume: /ri' zju:m' / or /' rezjumei/, "奇" in /ji-/ or /qi'/
- Grapheme-to-Phoneme Conversion
 - Transform character (grapheme) into pronunciation (phoneme)
 - Alphabetic languages (e.g., Spanish): handcrafted rules
 - Alphabetic languages (e.g., English): use G2P model and lexicon
 - Non-alphabetic languages (e.g., Chinese): use lexicon

Text analysis—Prosody analysis

- Prosody explicitly perceived by human
 - Intonation, stress pattern, loudness variations, pausing, and rhythm

Latent factors: Pitch, Duration, and Energy

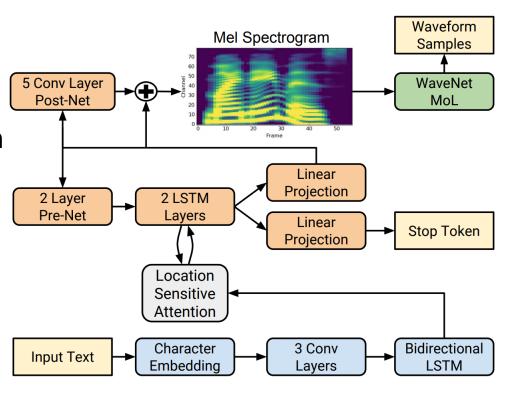
Acoustic model

- Acoustic model in SPSS
- Acoustic models in end-to-end TTS
 - RNN-based (e.g., Tacotron series)
 - CNN-based (e.g., DeepVoice series) **Transformer**
 - Transformer-based (e.g., FastSpeech series)
 - Other (e.g., Flow, GAN, VAE, Diffusion)

		Acoustic Model	Input→Output	AR/NAR	Modeling	Structure
	SPSS	HMM-based [424, 363] DNN-based [434] LSTM-based [79] EMPHASIS [195] ARST [382] VoiceLoop [339]	Ling→MCC+F0 Ling→MCC+BAP+F0 Ling→LSP+F0 Ling→LinS+CAP+F0 Ph→LSP+BAP+F0 Ph→MGC+BAP+F0	/ NAR AR AR AR AR	/ / / / Seq2Seq /	HMM DNN RNN Hybrid RNN hybrid
	RNN	Tacotron [389] Tacotron 2 [309] DurIAN [426] Non-Att Tacotron [310] Para. Tacotron 1/2 [75, 76] MelNet [374]	$Ch \rightarrow LinS$ $Ch \rightarrow MelS$ $Ph \rightarrow MelS$ $Ph \rightarrow MelS$ $Ph \rightarrow MelS$ $Ch \rightarrow MelS$	AR AR AR AR NAR AR	Seq2Seq Seq2Seq Seq2Seq / /	Hybrid/RNN RNN RNN Hybrid/CNN/RNN Hybrid/Self-Att/CNN RNN
TTS	CNN	DeepVoice [8] DeepVoice 2 [88] DeepVoice 3 [276] ParaNet [274] DCTTS [338] SpeedySpeech [368] TalkNet 1/2 [19, 18]	$\begin{array}{l} Ch/Ph{\longrightarrow}MelS \\ Ch/Ph{\longrightarrow}MelS \\ Ch/Ph{\longrightarrow}MelS \\ Ph{\longrightarrow}MelS \\ Ch{\longrightarrow}MelS \\ Ph{\longrightarrow}MelS \\ Ch{\longrightarrow}MelS \\ Ch{\longrightarrow}MelS \\ \end{array}$	AR AR AR NAR AR NAR NAR	/ // Seq2Seq Seq2Seq Seq2Seq / /	CNN CNN CNN CNN CNN CNN CNN CNN
Trans ries)	former	TransformerTTS [196] MultiSpeech [39] FastSpeech 1/2 [296, 298] AlignTTS [437] JDI-T [201] FastPitch [185] AdaSpeech 1/2/3 [40, 411, 412] AdaSpeech 4 [399] DenoiSpeech [442] DeviceTTS [127] LightSpeech [226] DelightfulTTS [216]	Ph→MelS Ph→MelS Ph→MelS Ch/Ph→MelS Ph→MelS	AR AR NAR NAR NAR NAR NAR NAR NAR NAR NA	Seq2Seq Seq2Seq Seq2Seq Seq2Seq Seq2Seq Seq2Seq Seq2Seq / / Seq2Seq	Self-Att Hybrid/DNN/RNN Hybrid/Self-Att/CNN Self-Att
	Flow	Flow-TTS [240] Glow-TTS [162] Flowtron [373] EfficientTTS [241]	Ch/Ph→MelS Ph→MelS Ph→MelS Ch→MelS	NAR* NAR AR NAR	Flow Flow Flow Flow	Hybrid/CNN/RNN Hybrid/Self-Att/CNN Hybrid/RNN Hybrid/CNN
	VAE	GMVAE-Tacotron [120] VAE-TTS [451] BVAE-TTS [191] VARA-TTS [208]	$\begin{array}{c} Ph{\longrightarrow}MelS \\ Ph{\longrightarrow}MelS \\ Ph{\longrightarrow}MelS \\ Ph{\longrightarrow}MelS \end{array}$	AR AR NAR NAR	VAE VAE VAE VAE	Hybrid/RNN Hybrid/RNN CNN CNN
	GAN	GAN exposure [100] TTS-Stylization [230] Multi-SpectroGAN [190]	Ph→MelS Ch→MelS Ph→MelS	AR AR NAR	GAN GAN GAN	Hybrid/RNN Hybrid/RNN Hybrid/Self-Att/CNN
TTS Di	f fusjon ass	Diff-TTS [142] Grad-TTS [282] PriorGrad [189] Guided-TTS [161] DiffGAN-TTS [215]	$Ph \rightarrow MelS$ $Ph \rightarrow MelS$ $Ph \rightarrow MelS$ $Ph \rightarrow MelS$ $Ph \rightarrow MelS$	NAR* NAR NAR NAR NAR	Diffusion Diffusion Diffusion Diffusion Diffusion	Hybrid/CNN Hybrid/Self-Att/CNN Hybrid/Self-Att/CNN Hybrid/Self-Att/CNN Hybrid/Self-Att/CNN

Acoustic model——RNN based

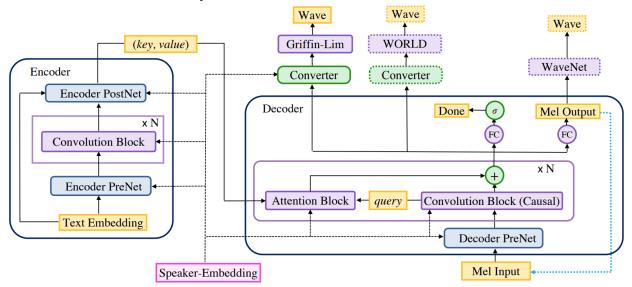
- Tacotron 2 [303]
 - Evolved from Tacotron [382]
 - Text to mel-spectrogram generation
 - LSTM based encoder and decoder
 - Location sensitive attention
 - WaveNet as the vocoder
 - Other works
 - GST-Tacotron [383], Ref-Tacotron [309]
 - DurlAN [418]
 - Non-Attentative Tacotron [304]
 - Patallel Tacotron 1/2 [74, 75]
 - WaveTacotron [385]



Acoustic model——CNN based

- DeepVoice 3 [270]
 - Evolved from DeepVoice 1/2 [8, 87]
 - Enhanced with purely CNN based structure
 - Support different acoustic features as output
 - Support multi-speakers

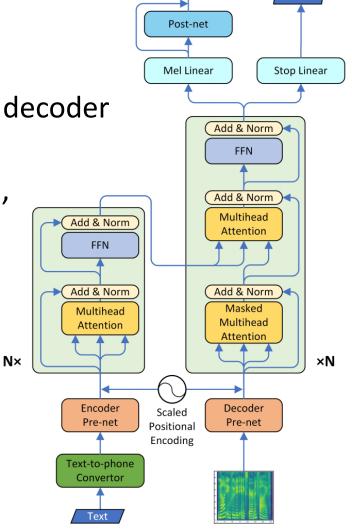
- Other works
 - DCTTS [332] (Contemporary)
 - ClariNet [269]
 - ParaNet [268]



Acoustic model——Transformer based

- TransformerTTS [192]
 - Framework is like Tacotron 2
 - Replace LSTM with Transformer in encoder and decoder
 - Parallel training, quality on par with Tacotron 2
 - Attention with more challenges than Tacotron 2, due to parallel computing

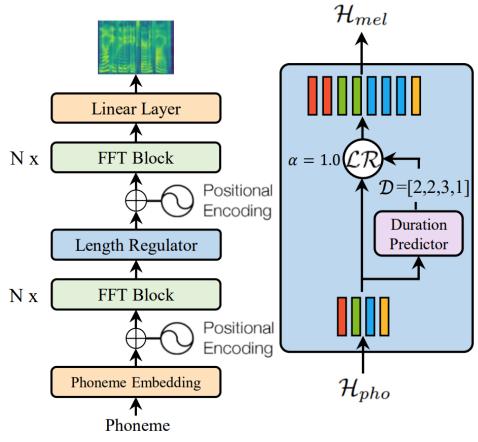
- Other works
 - MultiSpeech [39]
 - Robutrans [194]



Stop Token

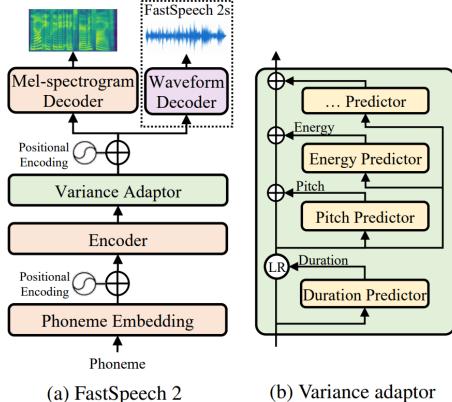
Acoustic model——Transformer based

- FastSpeech [290]
 - Generate mel-spectrogram in parallel (for speedup)
 - Remove the text-speech attention mechanism (for robustness)
 - Feed-forward transformer with length regulator (for controllability)



Acoustic model——Transformer based

- FastSpeech 2 [292]
 - Improve FastSpeech
 - Use variance adaptor to predict duration, pitch, energy, etc
 - Simplify training pipeline of FastSpeech (KD)
 - FastSpeech 2s: a fully end-to-end parallel text to wave model
 - Other works
 - FastPitch [181]
 - JDI-T [197], AlignTTS [429]



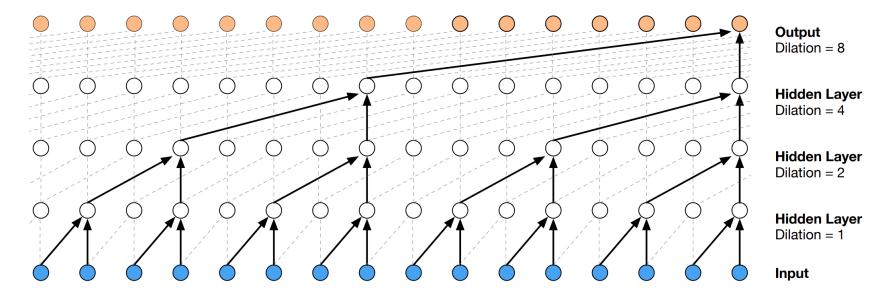
Vocoder

- Autoregressive vocoder
- Flow-based vocoder
- GAN-based vocoder
- VAE-based vocoder
- Diffusion-based vocoder

	Vocoder	Input	AR/NAR	Modeling	Architecture
	WaveNet [260]	Linguistic Feature	AR	/	CNN
	SampleRNN [239]	1	AR	/	RNN
	WaveRNN [151]	Linguistic Feature	AR	/	RNN
	LPCNet [370]	BFCC	AR	/	RNN
AR	Univ. WaveRNN [221]	Mel-Spectrogram	AR	/	RNN
	SC-WaveRNN [271]	Mel-Spectrogram	AR	/	RNN
	MB WaveRNN [426]	Mel-Spectrogram	AR	/	RNN
	FFTNet [146]	Cepstrum	AR	/	CNN
	iSTFTNet [153]	Mel-Spectrogram	NAR	/	CNN
	Par. WaveNet [261]	Linguistic Feature	NAR	Flow	CNN
	WaveGlow [285]	Mel-Spectrogram	NAR	Flow	Hybrid/CNN
Flow	FloWaveNet [166]	Mel-Spectrogram	NAR	Flow	Hybrid/CNN
	WaveFlow [277]	Mel-Spectrogram	AR	Flow	Hybrid/CNN
	SqueezeWave [441]	Mel-Spectrogram	NAR	Flow	CNN
	WaveGAN [69]	/	NAR	GAN	CNN
	GELP [150]	Mel-Spectrogram	NAR	GAN	CNN
	GAN-TTS [23]	Linguistic Feature	NAR	GAN	CNN
	MelGAN [182]	Mel-Spectrogram	NAR	GAN	CNN
GAN	Par. WaveGAN [410]	Mel-Spectrogram	NAR	GAN	CNN
GAN	HiFi-GAN [178]	Mel-Spectrogram	NAR	GAN	Hybrid/CNN
	VocGAN [416]	Mel-Spectrogram	NAR	GAN	CNN
	GED [97]	Linguistic Feature	NAR	GAN	CNN
	Fre-GAN [164]	Mel-Spectrogram	NAR	GAN	CNN
VAE	Wave-VAE [274]	Mel-Spectrogram	NAR	VAE	CNN
	WaveGrad [41]	Mel-Spectrogram	NAR	Diffusion	Hybrid/CNN
	DiffWave [180]	Mel-Spectrogram	NAR	Diffusion	Hybrid/CNN
Diffusion	PriorGrad [189]	Mel-Spectrogram	NAR	Diffusion	Hybrid/CNN
	SpecGrad [176]	Mel-Spectrogram	NAR	Diffusion	Hybrid/CNN

Vocoder——AR

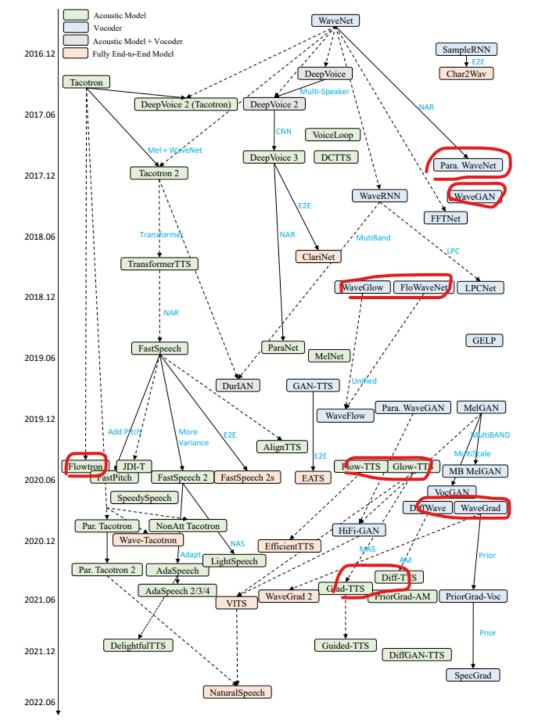
• WaveNet: autoregressive model with dilated causal convolution [254]



- Other works
 - WaveRNN [150]
 - LPCNet [363]

Generative models for acoustic model/vocoder

- Text to speech mapping p(x|y) is multimodal, since one text can correspond to multiple speech variations
 - Acoustic model, phoneme-spectrogram mapping: duration/pitch/energy/formant
 - Vocoder, spectrogram-waveform mapping: phase
- How to model a multimodal conditional distribution p(x|y)?
 - Autoregressive, GAN, VAE, Flow, Diffusion Model, etc
 - Since L1/L2 can be applied to mel-spectrogram, while cannot be directly applied to waveform
 - Advanced generative models are developed faster in vocoder than in acoustic model, but finally acoustic models catch up ©



- Map between data distribution p(x) and standard (normalizing) prior distribution p(z) Evaluation $z = f^{-1}(x)$ Synthesis x = f(z)
- Category of normalizing flow
 - AR (autoregressive): AF (autoregressive flow) and IAF (inverse autoregressive flow)

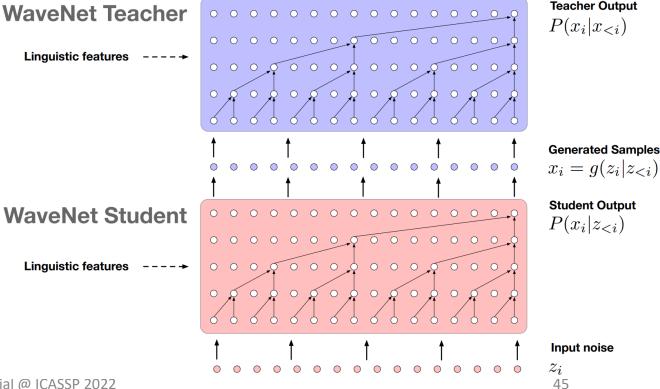
44

Bipartite: RealNVP and Glow

Flow		Evaluation $z = f^{-1}(x)$	Synthesis $x = f(z)$
A D	AF [261]	$z_t = x_t \cdot \sigma_t(x_{< t}; \theta) + \mu_t(x_{< t}; \theta)$	$x_t = \frac{z_t - u_t(x_{< t}; \theta)}{\sigma_t(x_{< t}; \theta)}$
AR	IAF [169]	$z_t = \frac{x_t - \mu_t(z_{< t}; \theta)}{\sigma_t(z_{< t}; \theta)}$	$x_t = z_t \cdot \sigma_t(z_{< t}; \theta) + \mu_t(z_{< t}; \theta)$
D :	RealNVP [66]	$z_a = x_a,$	$x_a = z_a,$
Bipartite	Glow [167]	$z_b = x_b \cdot \sigma_b(x_a; \theta) + \mu_b(x_a; \theta)$	$x_b = \frac{z_b - \mu_b(x_a; \theta)}{\sigma_b(x_a; \theta)}$

- Parallel WaveNet [255] (AR)
 - Knowledge distillation: Student (IAF). Teacher (AF)
 - Combine the best of both worlds WaveNet Teacher
 - Parallel inference of IAF student
 - Parallel training of AF teacher

- Other works
 - ClariNet [269]



- WaveGlow [279] (Bipartite)
 - Flow based transformation

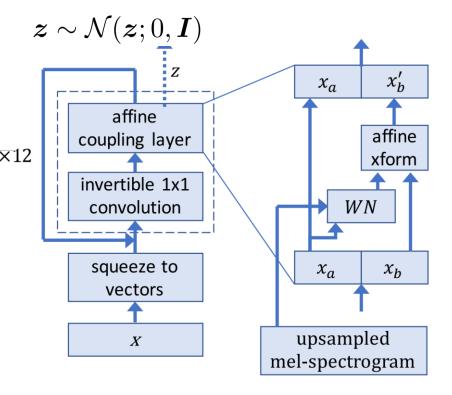
$$m{z} = m{f}_k^{-1} \circ m{f}_{k-1}^{-1} \circ \dots m{f}_0^{-1}(m{x}) \quad \ m{x} = m{f}_0 \circ m{f}_1 \circ \dots m{f}_k(m{z}) \quad \ m{z} \sim \mathcal{N}(m{z}; 0, m{I})$$

Affine Coupling Layer

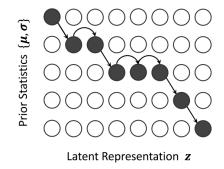
$$egin{aligned} oldsymbol{x}_a, oldsymbol{x}_b = split(oldsymbol{x}) & oldsymbol{x}_b\prime = oldsymbol{s}\odot oldsymbol{x}_b + oldsymbol{t} \ (\log oldsymbol{s}, oldsymbol{t}) = WN(oldsymbol{x}_a, mel ext{-spectrogram}) & oldsymbol{f}_{coupling}^{-1}(oldsymbol{x}) = concat(oldsymbol{x}_a, oldsymbol{x}_b\prime) \end{aligned}$$

Other works

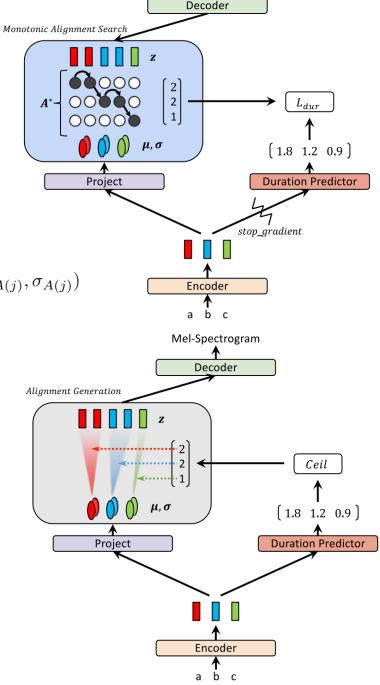
- FloWaveNet [163]
- WaveFlow [271]



- Glow-TTS [159]
 - Log likelihood $\log P_X(x|c) = \log P_Z(z|c) + \log \left| \det \frac{\partial f_{dec}^{-1}(x)}{\partial x} \right|$
 - Prior is learnt from phoneme text $\log P_Z(z|c;\theta,A) = \sum_{j=1}^{T_{mel}} \log \mathcal{N}(z_j;\mu_{A(j)},\sigma_{A(j)})$
 - Alignment A is obtained by monotonic alignment search



- Other works
 - FlowTTS, Flowtron, EfficientTTS



Mel-Spectrogram

Generative models——GAN

Adversarial loss

$$\mathcal{L}_{Adv}(D;G) = \mathbb{E}_{(x,s)} \left[(D(x) - 1)^2 + (D(G(s)))^2 \right]$$

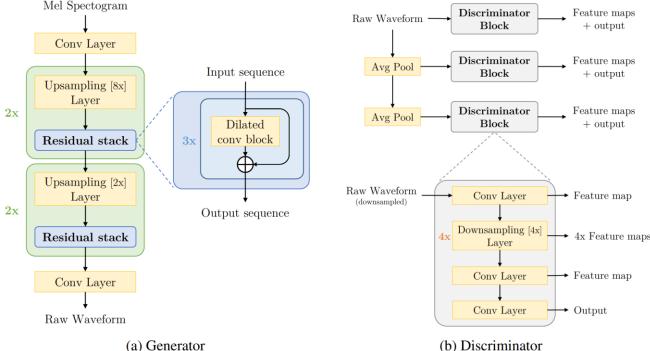
$$\mathcal{L}_{Adv}(G;D) = \mathbb{E}_s \left[(D(G(s)) - 1)^2 \right]$$

Category of GAN based vocoders

GAN	Generator	Discriminator	Loss
WaveGAN [68]	DCGAN [287]	/	WGAN-GP [97]
GAN-TTS [23]	/	Random Window D	Hinge-Loss GAN [198]
MelGAN [178]	/	Multi-Scale D	LS-GAN [231] Feature Matching Loss [182]
Par.WaveGAN [402]	WaveNet [254]	/	LS-GAN, Multi-STFT Loss
HiFi-GAN [174]	Multi-Receptive Field Fusion	Multi-Period D, Multi-Scale D	LS-GAN, STFT Loss, Feature Matching Loss
VocGAN [408]	Multi-Scale G	Hierarchical D	LS-GAN, Multi-STFT Loss, Feature Matching Loss
GED [96]	/	Random Window D	Hinge-Loss GAN, Repulsive loss

Generative models——GAN

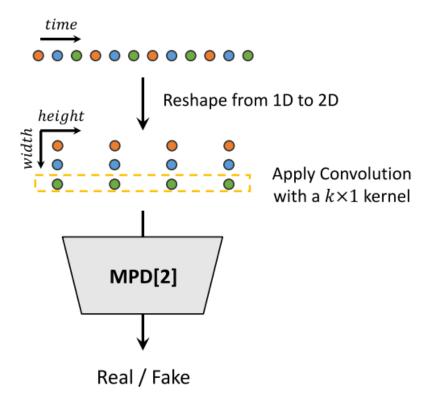
- MelGAN [68]
 - Generator: Transposed conv for upsampling, dilated conv to increase receptive field
 - Discriminator: Multi-scale discrimination



2022/5/23

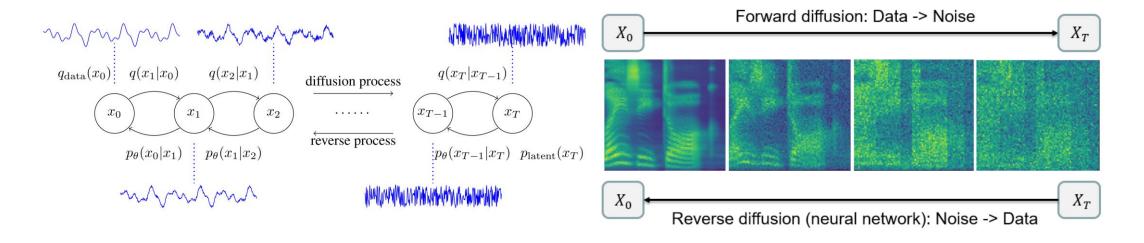
Generative models——GAN

- HiFiGAN [68]
 - Multi-Scale Discriminator (MSD)
 - Multi-Period Discriminator (MPD)



Generative models——Diffusion

- Diffusion probabilistic model
 - Forward (diffusion) process: $q(\mathbf{x}_{1:T}|\mathbf{x}_0) = \prod_{T} q(\mathbf{x}_t|\mathbf{x}_{t-1}), \ q(\mathbf{x}_t|\mathbf{x}_{t-1}) := \mathcal{N}(\mathbf{x}_t; \sqrt{1-\beta_t}\mathbf{x}_{t-1}, \beta_t \mathbf{I})$
 - Reverse (denoising) process $p_{\theta}(\mathbf{x}_{0:T}) = p(\mathbf{x}_T) \prod_{t=1}^{t} p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t), \ p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t, t))$



Generative models——Diffusion

- Loss derived from ELBO: $L_{\text{simple}}(\theta) := \mathbb{E}_{t,\mathbf{x}_0,\epsilon} \left[\| \boldsymbol{\epsilon} \boldsymbol{\epsilon}_{\theta} \left(\mathbf{x}_t, t \right) \|^2 \right]$
- Training and inference process

Algorithm 1 Training **Algorithm 2** Sampling Sample $x_T \sim p_{\text{latent}} = \mathcal{N}(0, I)$ for $i=1,2,\cdots,N_{\rm iter}$ do Sample $x_0 \sim q_{\rm data}$, $\epsilon \sim \mathcal{N}(0, I)$, and for $t = T, T - 1, \dots, 1$ do $t \sim \text{Uniform}(\{1, \cdots, T\})$ Compute $\mu_{\theta}(x_t, t)$ and $\sigma_{\theta}(x_t, t)$ using Eq. (5) Sample $x_{t-1} \sim p_{\theta}(x_{t-1}|x_t) =$ Take gradient step on $\nabla_{\theta} \|\epsilon - \epsilon_{\theta} (\sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, t)\|_2^2$ $\mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \sigma_{\theta}(x_t, t)^2 I)$ end for according to Eq. (7) end for return x_0

Generative models——Diffusion

- Diffusion model for vocoder: DiffWave [176], WaveGrad [41]
- Diffusion model for acoustic model: Diff-TTS, Grad-TTS
- Improving diffusion model for TTS
 - PriorGrad, SpecGrad, DiffGAN-TTS, WaveGrad 2, etc

- With sufficient diffusion steps, the quality is good enough, but latency is high
- How to reduce inference cost while maintaining the quality is challenging, and has a long way to go

Generative models——Comparison

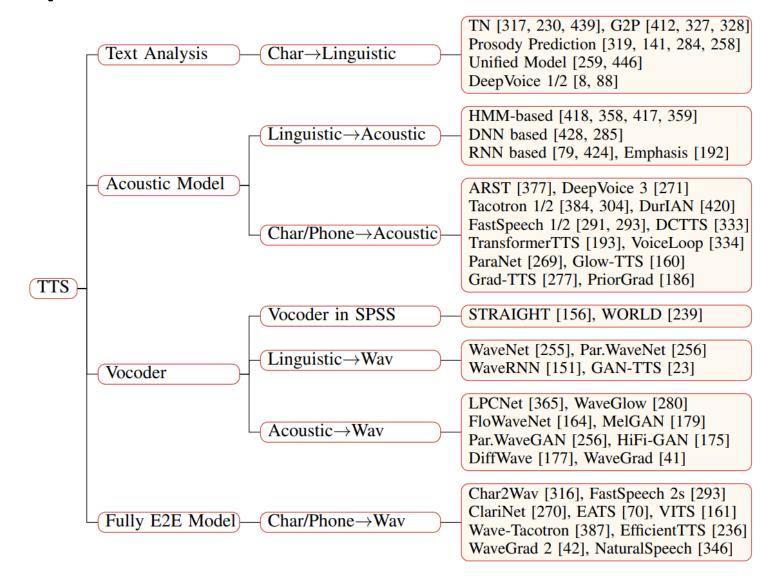
- A comparison among different generative models
 - Simplicity in math formulation and optimization
 - Support parallel generation
 - Support latent manipulation
 - Support likelihood estimation

Generative Model	AR	VAE	Flow/AR	Flow/Bipartite	Diffusion	GAN
Simple	Y	N	N	N	N	N
Parallel	N	Y	Y	Y	Y	Y
Latent Manipulate	N	Y	Y	Y	Y	Y*
Likelihood Estimate	Y	Y	Y	Y	Y	N

GAN is weak in latent manipulation, since the condition in TTS is so strong, P(y|x) is not that much multi-modal compared to image synthesis

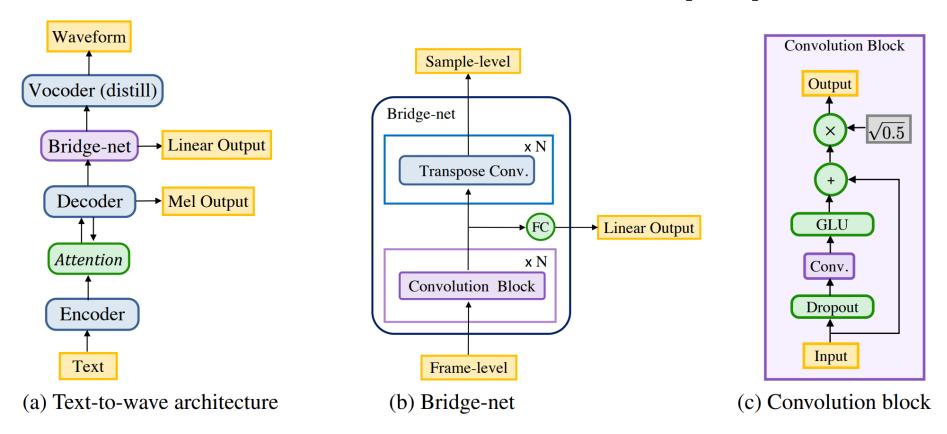
54

Key components in TTS

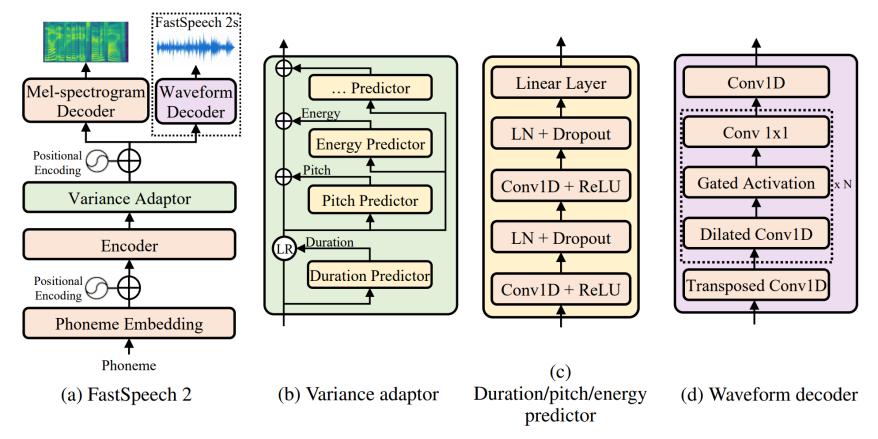


- Direct text/phoneme to waveform generation
- Advantages:
 - Fully differentiable optimization (towards the end goal)
 - Reduce cascaded errors (training/inference mismatch)
 - No mel-spectrogram bias (mel-spectrogram is not an optimal representation)

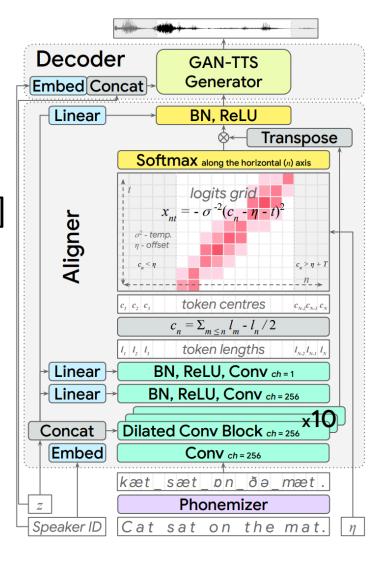
ClariNet: AR acoustic model and NAR vocoder [269]



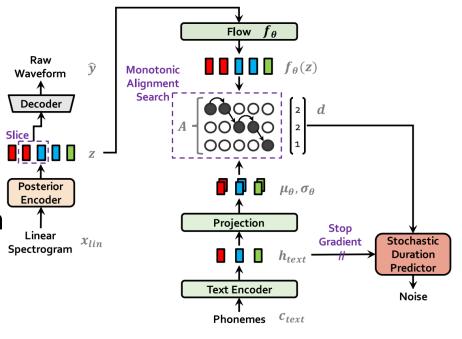
• FastSpeech 2s: fully parallel text to wave model [292]



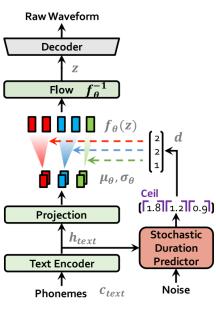
- EATS: fully parallel text to wave model [69]
 - Duration prediction
 - Monotonic interpolation for upsampling
 - Soft dynamic time warping loss
 - Adversarial training



- VITS [160]
 - VAE, Flow, GAN
 - VAE: mel→waveform
 - Flow for VAE prior
 - GAN for waveform generation
 - Monotonic alignment search



(a) Training procedure



(b) Inference procedure

- NaturalSpeech: achieving human-level quality on LJSpeech dataset (CMOS)
- Questions
 - 1) how to define human-level quality in TTS?
 - 2) how to judge whether a TTS system has achieved human-level quality or not?
 - 3) how to build a TTS system to achieve human-level quality?
- Define human-level quality
 - If there is no statistically significant difference between the quality scores of the speech generated by a TTS system and the quality scores of the corresponding human recordings on a test set, then this TTS system achieves human-level quality on this test set.

- NaturalSpeech: achieving human-level quality on LJSpeech dataset (CMOS)
- Questions
 - 1) how to define human-level quality in TTS?
 - 2) how to judge whether a TTS system has achieved human-level quality or not?
 - 3) how to build a TTS system to achieve human-level quality?
- Judge human-level quality
 - At least 50 utterances, and each judged by 20 judges (native speakers)
 - CMOS \rightarrow 0, and Wilcoxon signed rank test p > 0.05

- NaturalSpeech: achieving human-level quality on LJSpeech dataset (CMOS)
- Questions
 - 1) how to define human-level quality in TTS?
 - 2) how to judge whether a TTS system has achieved human-level quality or not?
 - 3) how to build a TTS system to achieve human-level quality?
- Judge human-level quality

System	MOS	Wilcoxon p-value	CMOS	Wilcoxon p-value
Human Recordings	4.52 ± 0.11	-	0	-
FastSpeech 2 [18] + HiFiGAN [17] Glow-TTS [13] + HiFiGAN [17] Grad-TTS [14] + HiFiGAN [17] VITS [15]	$ \begin{vmatrix} 4.32 \pm 0.10 \\ 4.33 \pm 0.10 \\ 4.37 \pm 0.10 \\ 4.49 \pm 0.10 \end{vmatrix} $	1.0e-05 1.3e-06 0.0127 0.2429	$ \begin{array}{ c c c } -0.30 \\ -0.23 \\ -0.23 \\ -0.19 \end{array} $	5.1e-20 8.7e-17 1.2e-11 2.9e-04

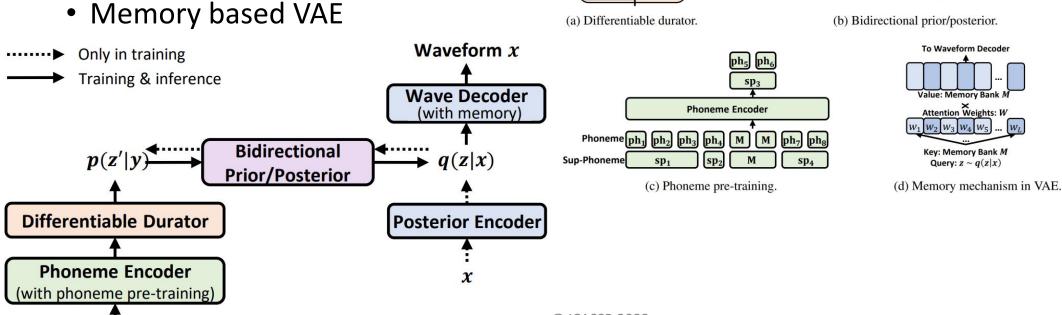
- NaturalSpeech: achieving human-level quality on LJSpeech dataset (CMOS)
- Leverage VAE to compress high-dimensional waveform x into frame-level representations $z^q(z|x)$, and is used to reconstruct waveform $x^p(x|z)$
- To enable text to waveform synthesis, z is predicted from y, z~p(z|y)

• However, the posterior $z^q(z|x)$ is more complicated than the prior $z^p(z|y)$.

Solutions

Phoneme y

- Phoneme encoder with large-scale phoneme pre-training
- Differentiable durator
- Bidirectional prior/posterior



@ ICASSP 2022

Upsampling Layer

Duration Predictor

q(z'|x) Reduce Posterior f^-

Enhance Prior f

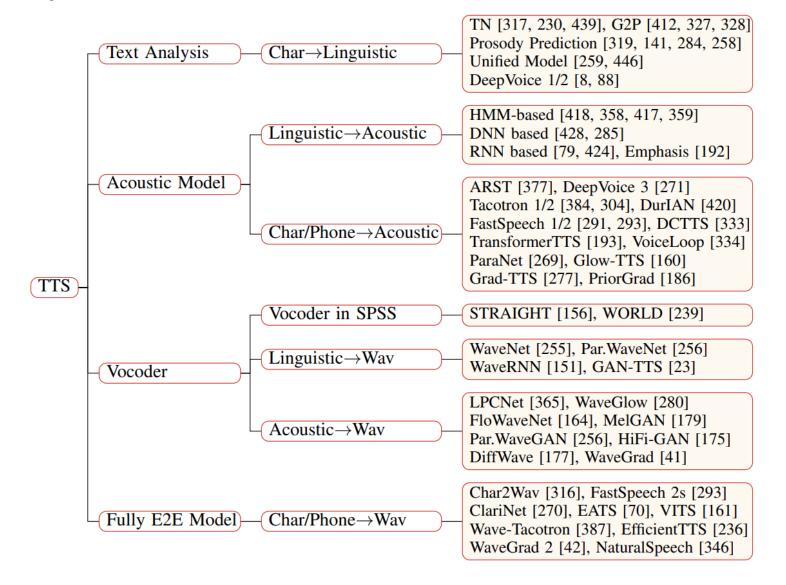
65

- Evaluations
 - MOS and CMOS on par with recordings, p-value >>0.05

Human Recordings	NaturalSpeech	Wilcoxon p-value
4.58 ± 0.13	4.56 ± 0.13	0.7145
Human Recordings	NaturalSpeech	Wilcoxon p-value
0	-0.01	0.6902

Achieving human-level quality on LJSpeech dataset for the first time!

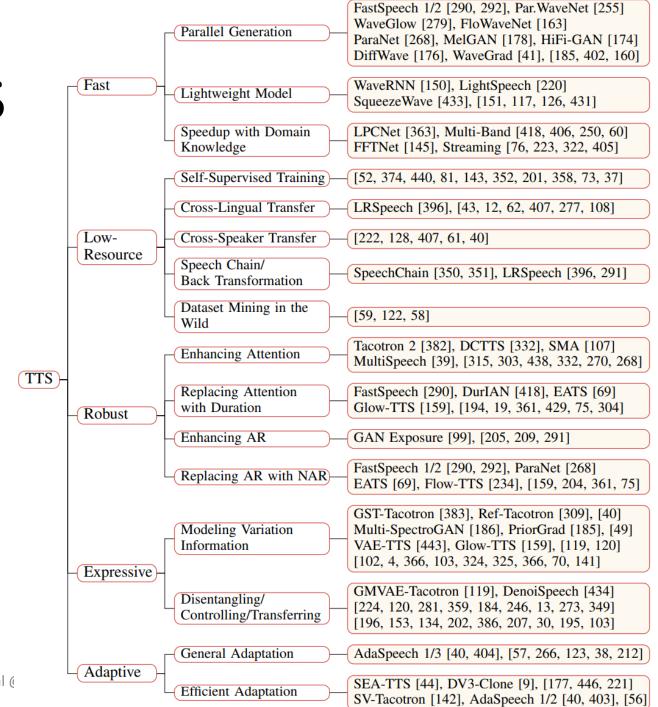
Key components in TTS



Part 3: Advanced Topics in TTS

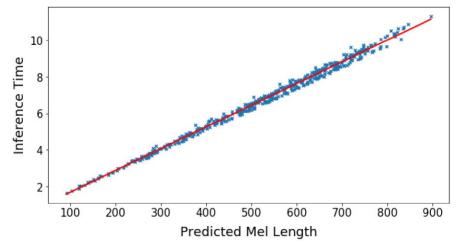
Advanced topics in TTS

- Fast TTS
- Low-resource TTS
- Robust TTS
- Expressive TTS
- Adaptive TTS



Fast TTS

- The model usually adopts autoregressive mel and waveform generation
 - Sequence is very long, e.g., 1s speech, 100 mel, 24000 waveform points
 - Slow inference speed



- The model size is usually large
 - Slow in low-end GPU and edge device

Fast TTS

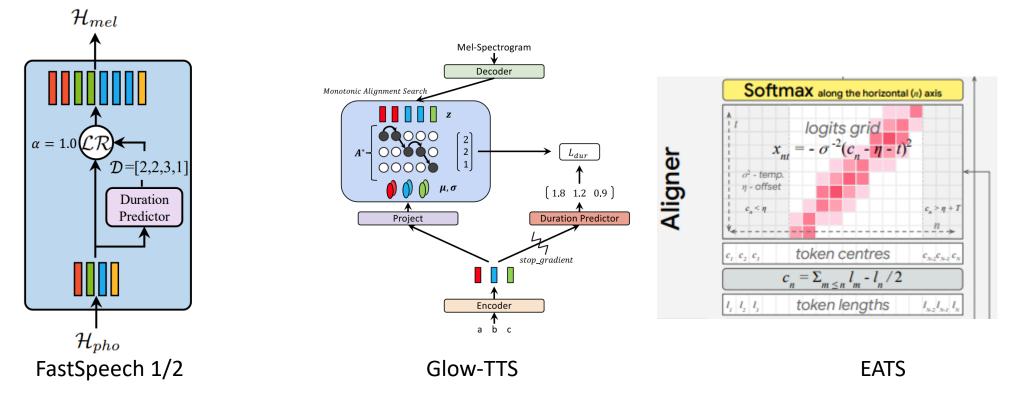
Parallel generation

Modeling Paradigm	TTS Model	Training	Inference
AR (RNN) AR (CNN/Self-Att)	Tacotron 1/2, SampleRNN, LPCNet DeepVoice 3, TransformerTTS, WaveNet	$\mathcal{O}(N)$ $\mathcal{O}(1)$	$\mathcal{O}(N)$ $\mathcal{O}(N)$
NAR (CNN/Self-Att)	FastSpeech 1/2, ParaNet	$\mathcal{O}(1)$	$\mathcal{O}(1)^{'}$
NAR (GAN/VAE) Flow (AR)	MelGAN, HiFi-GAN, FastSpeech 2s, EATS Par. WaveNet, ClariNet, Flowtron	$\mathcal{O}(1)$ $\mathcal{O}(1)$	$\mathcal{O}(1)$ $\mathcal{O}(1)$
Flow (Bipartite)	WaveGlow, FloWaveNet, Glow-TTS	$\mathcal{O}(T)$	$\mathcal{O}(T^{'})$
Diffusion	DiffWave, WaveGrad, Grad-TTS, PriorGrad	$\mathcal{O}(T)$	$\mathcal{O}(T)$

- Lightweight model
 - pruning, quantization, knowledge distillation, and neural architecture search
- Speedup with domain knowledge
 - linear prediction, multiband modeling, subscale prediction, multi-frame prediction, streaming synthesis

Fast TTS——Parallel generation

• The key is to bridge the length mismatch between text and speech



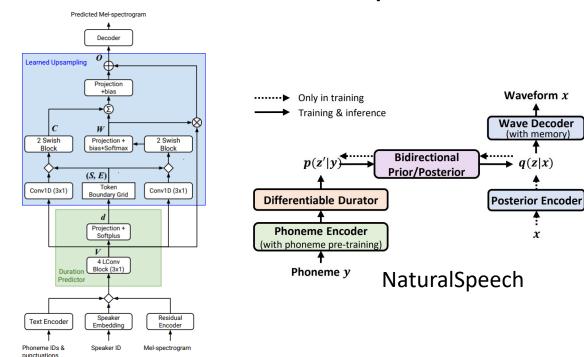
Fast TTS——Parallel generation

• The key is to bridge the length mismatch between text and speech

$$m{S}_{i,j} = i - \sum_{k=1}^{j-1} d_k, \quad m{E}_{i,j} = \sum_{k=1}^{j} d_k - i, \quad m{S}_{m imes n} \quad m{E}_{m imes n}$$

$$m{W} = ext{Softmax}(\underset{10 \to q}{ ext{MLP}}([m{S}, m{E}, ext{Expand}(ext{Conv1D}(ext{Proj}(m{H})))])),$$
 $m{C} = \underset{10 \to p}{ ext{MLP}}([m{S}, m{E}, ext{Expand}(ext{Conv1D}(ext{Proj}(m{H})))]),$

$$\boldsymbol{O} = \underset{qh \to h}{\operatorname{Proj}}(\boldsymbol{W}\boldsymbol{H}) + \underset{qp \to h}{\operatorname{Proj}}(\operatorname{Einsum}(\boldsymbol{W}, \boldsymbol{C}))$$



Parallel Tacotron 2

Low-resource TTS

- There are 7,000+ languages in the world, but popular commercialized speech services only support dozens or hundreds of languages
 - There is strong business demand to support more languages in TTS.

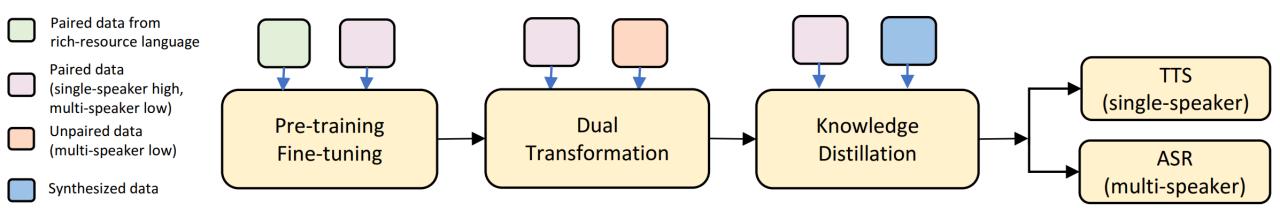
 However, lack of data in low-resource languages and the data collection cost is high.

Low-resource TTS

Techniques	Data	Work
Self-supervised Training Cross-lingual Transfer Cross-speaker Transfer Speech chain/Back transformation Dataset mining in the wild	Unpaired text or speech Paired text and speech Paired text and speech Unpaired text or speech Paired text and speech	[52, 374, 440, 81, 143, 352, 201, 358, 73] [43, 396, 12, 407, 62, 277, 108] [222, 128, 61, 407, 40] [291, 396, 350, 351] [59, 122, 58]

- Self-supervised training
 - Text pre-training, speech pre-training, discrete token quantization
- Cross-lingual transfer
 - Languages share similarity, phoneme mapping/re-initialization/IPA/byte
- Cross-speaker transfer
 - Voice conversion, voice adaptation
- Speech chain/back transformation
 - TTS ←→ASR
- Dataset mining in the wild
 - Speech enhancement, denoising, disentangling

Low-resource TTS——LRSpeech [396]



- **Step 1**: Language transfer
 - Human languages share similar pronunciations; Rich-resource language data is "free"
- Step 2: TTS and ASR help with each other
 - Leverage the task duality with unpaired speech and text data
- Step 3: Customization for product deployment with knowledge distillation
 - Better accuracy by data knowledge distillation
 - Customize multi-speaker TTS to a target-speaker TTS, and to small model

Robust TTS

- Robustness issues
 - Word skipping, repeating, attention collapse

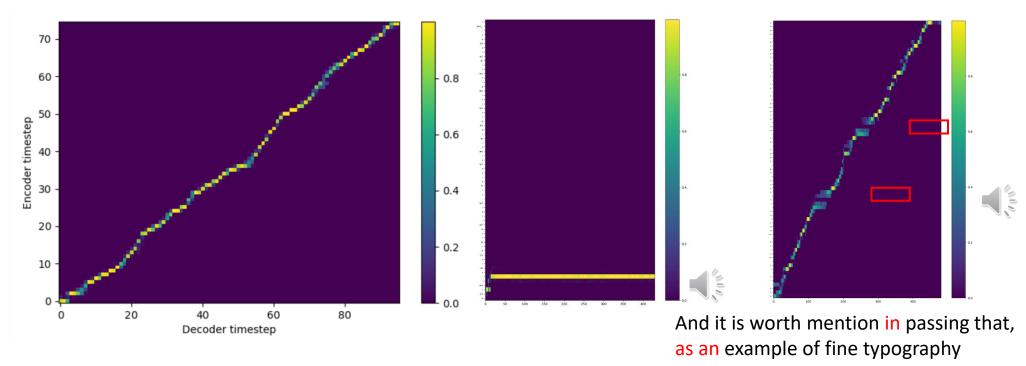
You can call me directly at 4257037344 or my cell 4254447474 or send me a meeting request with all the appropriate information.

- The cause of robustness issues
 - The difficulty of alignment learning between text and mel-spectrograms
 - Exposure bias and error propagation in AR generation
- The solutions
 - Enhance attention
 - Replace attention with duration prediction
 - Enhance AR
 - Replace AR with NAR

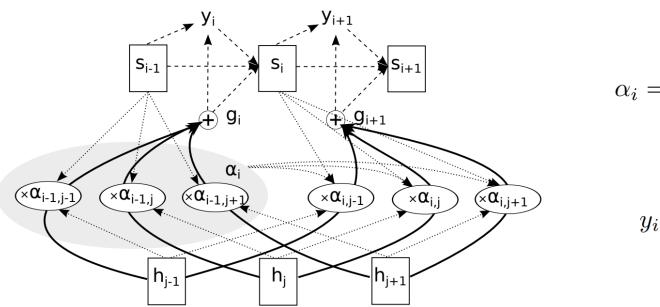
Robust TTS

Category	Technique	Work
Enhancing Attention	Content-based attention Location-based attention Content/Location hybrid attention Monotonic attention Windowing or off-diagonal penalty Enhancing enc-dec connection Positional attention	[382, 192] [315, 333, 367, 17] [303] [438, 107, 411] [332, 438, 270, 39] [382, 303, 270, 203, 39] [268, 234, 204]
Replacing Attention with Duration Prediction	Label from encoder-decoder attention Label from CTC alignment Label from HMM alignment Dynamic programming Monotonic alignment search Monotonic interpolation with soft DTW	[290, 361, 197, 181] [19] [292, 418, 194, 252, 74, 304] [429, 193, 235] [159] [69, 75]
Enhancing AR	Professor forcing Reducing training/inference gap Knowledge distillation Bidirectional regularization	[99, 205] [361] [209] [291, 452]
Replacing AR with NAR	Parallel generation	[290, 292, 268, 69]

- Encoder-decoder attention: alignment between text and mel
 - Local, monotonic, and complete



- Location sensitive attention [50, 303]
 - Use previous alignment to compute the next attention alignment

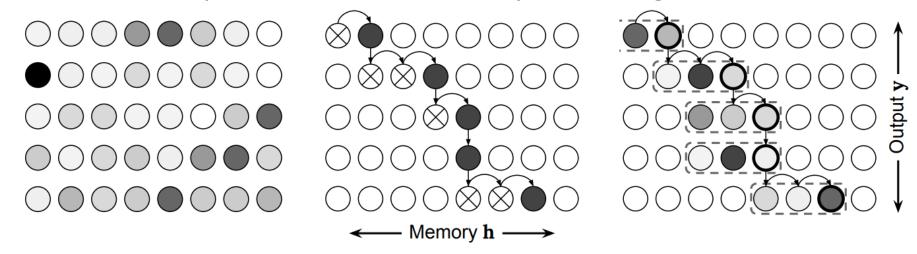


$$\alpha_i = Attend(s_{i-1}, \alpha_{i-1}, h)$$

$$g_i = \sum_{j=1}^{L} \alpha_{i,j} h_j$$

$$y_i \sim Generate(s_{i-1}, g_i),$$

- Monotonic attention [288, 47]
 - The attention position is monotonically increasing



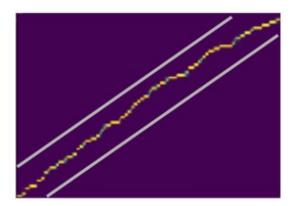
(a) Soft attention.

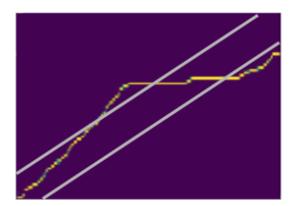
- (b) Hard monotonic attention.
- (c) Monotonic chunkwise attention.

$$e_{i,j} = \text{MonotonicEnergy}(s_{i-1}, h_j)$$

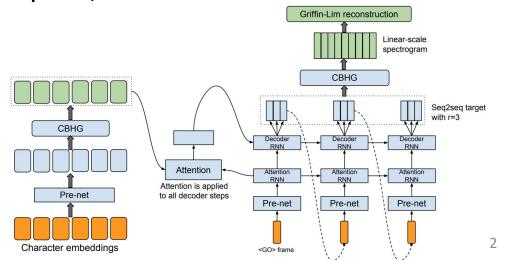
 $p_{i,j} = \sigma(e_{i,j})$
 $z_{i,j} \sim \text{Bernoulli}(p_{i,j})$

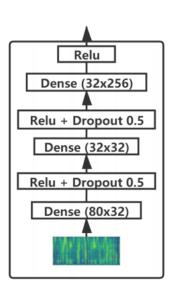
- Windowing [332, 438]
 - Only a subset of the encoding results $\hat{x} = [x_{p-w}, ..., x_{p+w}]$ are considered at each decoder timestep when using the windowing technique
- Penalty loss for off-diagonal attention distribution [39]
 - Guided attention loss with diagonal band mask





- Multi-frame prediction [382]
 - Predicting multiple, non-overlapping output frames at each decoder step
 - Increase convergence speed, with a much faster (and more stable) alignment learned from attention
- Decoder prenet dropout/bottleneck [382,39]
 - 0.5 dropout, small hidden size as bottleneck



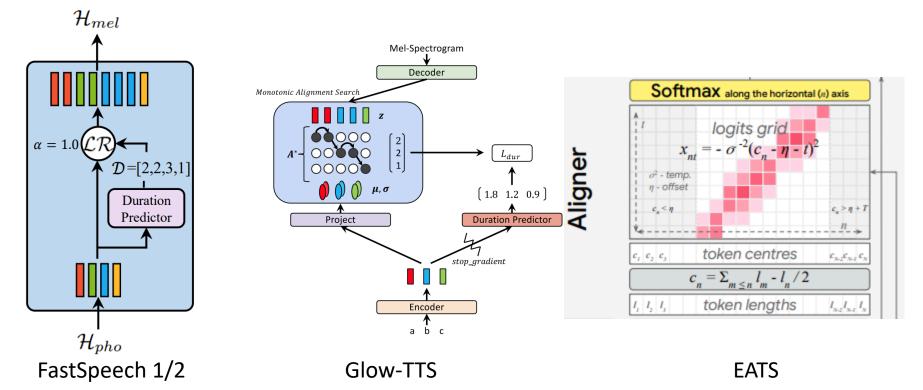


Robust TTS——Durator

Duration prediction and expansion

2022/5/23

- SPSS → Seq2Seq model with attention → Non-autoregressive model
- Duration → attention, no duration → duration prediction (technique renaissance)



Robust TTS——Durator

Differentiable duration modeling

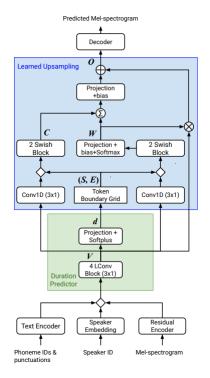
$$oldsymbol{S}_{i,j} = i - \sum_{k=1}^{j-1} d_k, \quad oldsymbol{E}_{i,j} = \sum_{k=1}^{j} d_k - i, \quad oldsymbol{S}_{m imes n} \quad oldsymbol{E}_{m imes n}$$

$$W = \operatorname{Softmax}(\operatorname{MLP}_{10 \to q}([S, E, \operatorname{Expand}(\operatorname{Conv1D}(\operatorname{Proj}(H)))])),$$

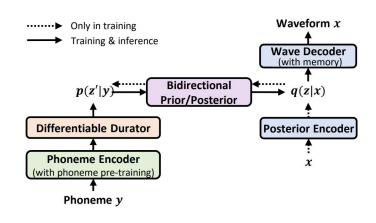
$$C = \operatorname{MID}([S, E, \operatorname{Expand}(\operatorname{Conv1D}(\operatorname{Proj}(H)))])$$

$$C = \underset{10 \to p}{\text{MLP}}([S, E, \text{Expand}(\text{Conv1D}(\text{Proj}(H)))]),$$

$$oldsymbol{O} = \underset{qh o h}{\operatorname{Proj}} (oldsymbol{W} oldsymbol{H}) + \underset{qp o h}{\operatorname{Proj}} (\operatorname{Einsum}(oldsymbol{W}, oldsymbol{C}))$$



Parallel Tacotron 2



NaturalSpeech

2022/5/23 TTS Tutorial @ ICASSP 2022 85

Robust TTS

A new taxonomy of TTS

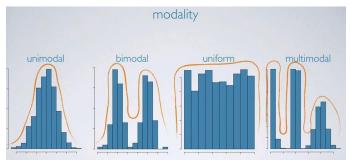
Attention?	AR	Non-AR
Attention	Tacotron 2 [303], DeepVoice 3 [270]	ParaNet [268], Flow-TTS [234]
Non-Attention	DurIAN [418], Non-Att Tacotron [304]	FastSpeech [290, 292], EATS [69]

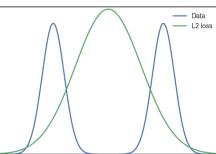
Expressive TTS

- Expressiveness
 - Characterized by content (what to say), speaker/timbre (who to say), prosody/emotion/style (how to say), noisy environment (where to say), etc
- Over-smoothing prediction
 - One to many mapping in text to speech: p(y|x) multimodal distribution

Text

multiple speech variations (duration, pitch, sound volume, speaker, style, emotion, etc)





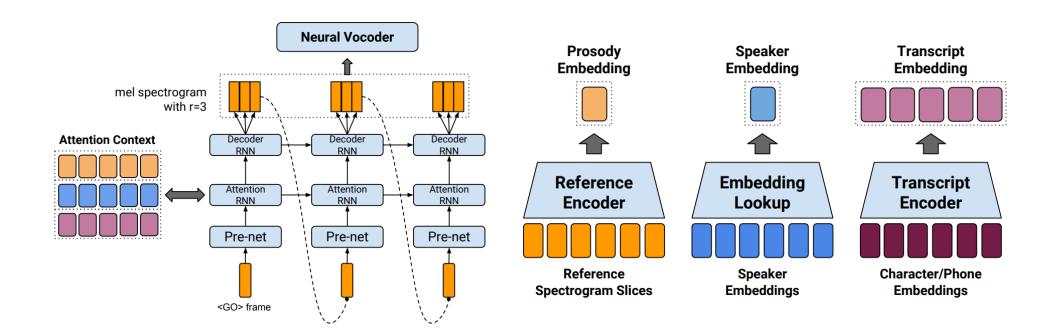
Expressive TTS

Modeling variation information

Perspective	Category	Description	Work
Information Type	Explicit	Language/Style/Speaker ID	[445, 247, 195, 162, 39]
		Pitch/Duration/Energy	[290, 292, 181, 158, 239, 365]
	Implicit	Reference encoder	[309, 383, 224, 142, 9, 49, 37, 40]
		VAE	[119, 4, 443, 120, 324, 325, 74]
		GAN/Flow/Diffusion	[224, 186, 366, 234, 159, 141]
		Text pre-training	[81, 104, 393, 143]
	Language/Speaker Level	Multi-lingual/speaker TTS	[445, 247, 39]
	Paragraph Level	Long-form reading	[11, 395, 376]
Information	Utterance Level Timbre/Prosody/Noi	Timbre/Prosody/Noise	[309, 383, 142, 321, 207, 40]
Granularity	Word/Syllable Level		[325, 116, 45, 335]
	Character/Phoneme Level	Fine-grained information	[188, 324, 430, 325, 45, 40, 189]
	Frame Level		[188, 158, 49, 434]

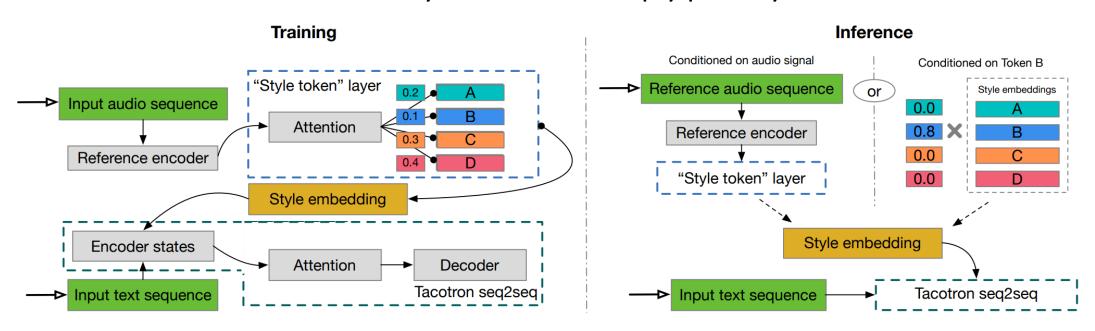
Expressive TTS——Reference encoder

• Prosody embedding from reference audio [309]



Expressive TTS——Reference encoder

- Style tokens [383]
 - Training: attend to style tokens
 - Inference: attend to style tokens or simply pick style tokens



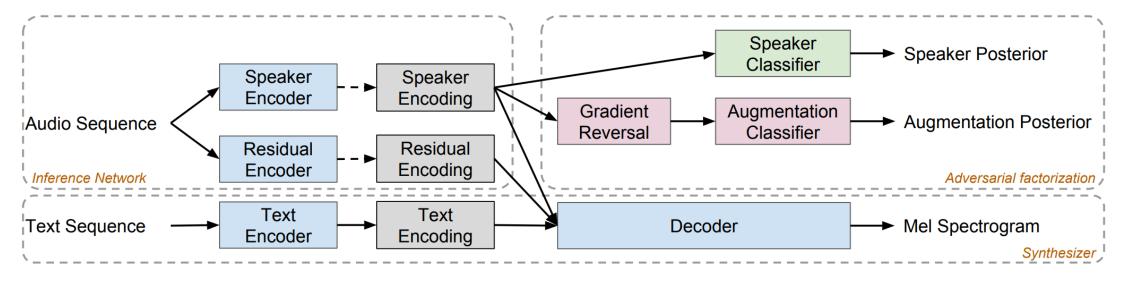
Expressive TTS——Disentangling, Controlling and Transferring

- Disentangling
 - Content/speaker/style/noise, e.g., adversarial training
- Controlling
 - Cycle consistency/feedback loss, semi-supervised learning for control
- Transferring
 - Changing variance information for transfer

Technique	Description	Work
Disentangling with Adversarial Training Cycle Consistency/Feedback for Control Semi-Supervised Learning for Control Changing Variance Information for Transfer	Disentanglement for control Enhance style/timbre generation Use VAE and adversarial training Different information in inference	[224, 120, 281, 434] [202, 386, 207, 30, 195] [103, 119, 120, 434, 302] [309, 383, 142, 443, 40]

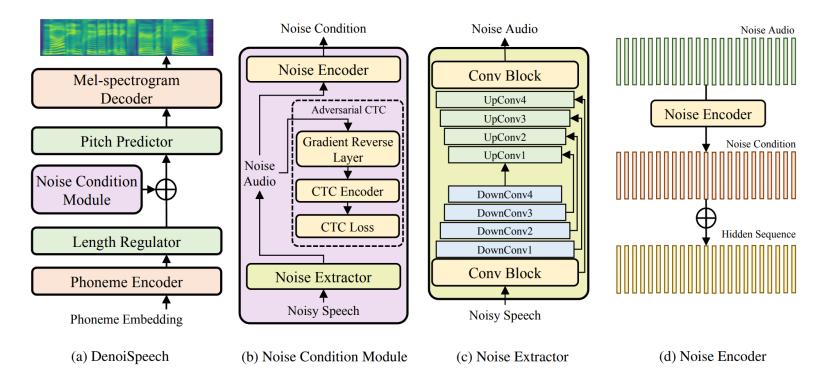
Expressive TTS——Disentangling, Controlling and Transferring

- Disentangling correlated speaker and noise [120]
 - Synthesize clean speech for noisy speakers



Expressive TTS——Disentangling, Controlling and Transferring

- Disentangling correlated speaker and noise with frame-level modeling [434]
 - Synthesize clean speech for noisy speakers



Adaptive TTS

- Voice adaptation, voice cloning, custom voice
- Empower TTS for everyone
 - Pre-training on multi-speaker TTS model
 - Fine-tuning on speech data from target speaker
 - Inference speech for target speaker
- Challenges
 - To support diverse customers, the source model needs to be generalizable enough, the target speech may be diverse (different acoustics/styles/languages)
 - To support many customers, the adaptation needs to be data and parameter efficient

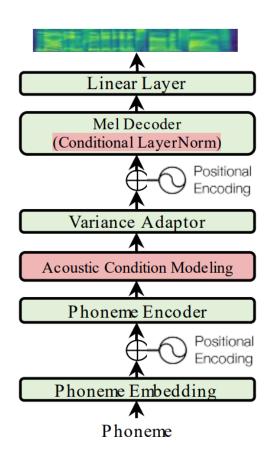
Adaptive TTS

• A taxonomy on adaptive TTS

Category	Topic	Work
	Modeling Variation Information Increasing Data Coverage	[40] [57, 407]
General Adaptation	Cross-Acoustic Adaptation Cross-Style Adaptation Cross-Lingual Adaptation	[40, 54] [404, 266, 123] [445, 38, 212]
Efficient Adaptation	Few-Data Adaptation Untranscribed Data Adaptation Few-Parameter Adaptation Zero-Shot Adaptation	[44, 9, 177, 240, 446, 49, 40, 236] [403, 133, 221] [9, 44, 40] [9, 44, 142, 56]

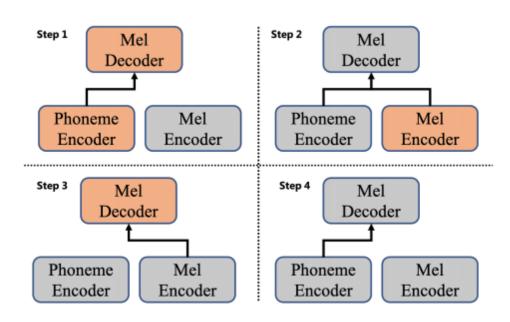
Adaptive TTS——AdaSpeech [40]

- AdaSpeech
 - Acoustic condition modeling
 - Model diverse acoustic conditions at speaker/utterance /phoneme level
 - Support diverse conditions in target speaker
 - Conditional layer normalization
 - To fine-tune as small parameters as possible while ensuring the adaptation quality



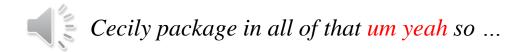
Adaptive TTS——AdaSpeech 2 [403]

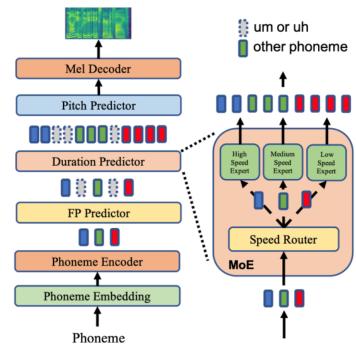
- Only untranscribed data, how to adapt?
 - In online meeting, only speech can be collected, without corresponding transcripts
- AdaSpeech 2, speech reconstruction with latent alignment
 - Step 1: source TTS model training
 - Step 2: speech reconstruction
 - Step 3: speaker adapatation
 - Step 4: inference



Adaptive TTS——AdaSpeech 3 [404]

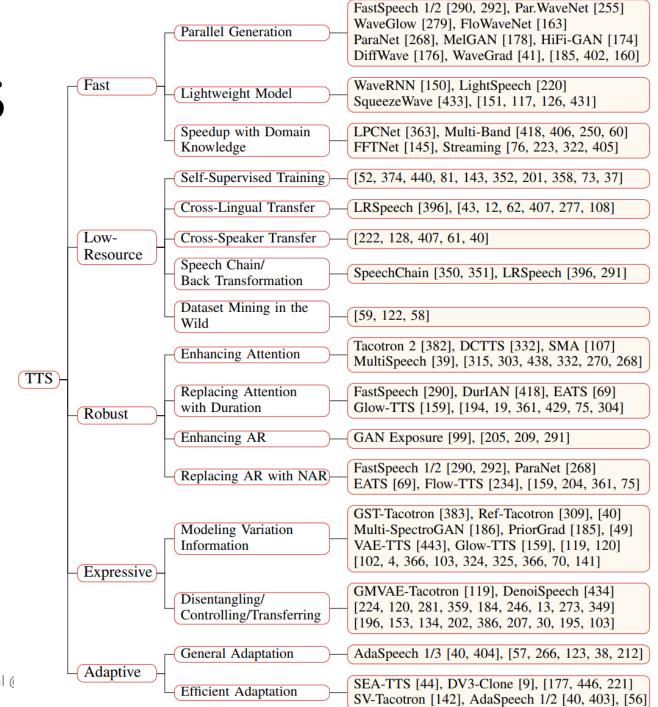
- Spontaneous style
 - Current TTS voices mostly focus on reading style.
 - Spontaneous-style voice is useful for scenarios like podcast, conversation, etc.
- AdaSpeech 3
 - Construct spontaneous dataset
 - Modeling filled pauses (FP, um and uh) and diverse rhythms





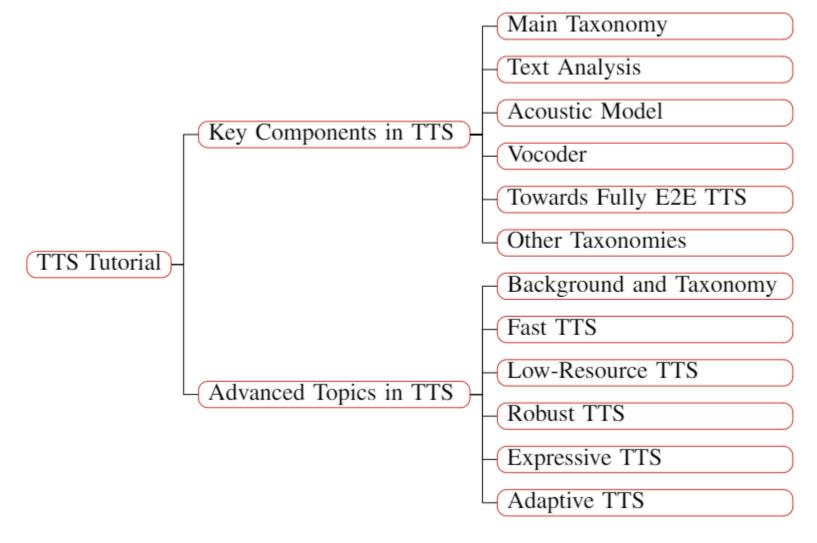
Advanced topics in TTS

- Fast TTS
- Low-resource TTS
- Robust TTS
- Expressive TTS
- Adaptive TTS



Part 4: Summary and Future Directions

Summary



Outlook: higher-quality synthesis

- Powerful generative models
- Better representation learning
- Robust speech synthesis
- Expressive/controllable/transferrable speech synthesis
- More human-like speech synthesis
 - NaturalSpeech has achieved human-level quality in LJSpeech audiobook at sentence level
 - But expressive voices, longform audiobook voices are still challenging!

Outlook: more efficient synthesis

- Data-efficient TTS
- Parameter-efficient TTS
- Energy-efficient TTS

Reference

See the reference in:

A Survey on Neural Speech Synthesis

https://arxiv.org/pdf/2106.15561v3.pdf

https://speechresearch.github.io/

We are hiring

- Research FTE (social/campus hire)
 - Speech (TTS/ASR)
 - NLP (NMT, Summarization, Conversation, Pre-training, etc)
 - Machine Learning, Deep Learning
 - Generative Models
- Research Intern
 - Speech, Music, NLP, ML

Machine Learning Group, Microsoft Research Asia Xu Tan xuta@microsoft.com

Thank You!

Xu Tan/谭旭 Senior Researcher @ Microsoft Research Asia xuta@microsoft.com

https://www.microsoft.com/en-us/research/people/xuta/ https://speechresearch.github.io/

Recent Advances in Neural Speech Synthesis

Xu Tan and Tao Qin Microsoft Research Asia

Tutorial slides: https://github.com/tts-tutorial/icassp2022

Survey paper: https://arxiv.org/pdf/2106.15561