An Efficient Partition-based Distributed Agglomerative
Hierarchical Clustering Algorithm for Deduplication

Yue Wang
Microsoft Research
wang.yue@microsoft.com

ABSTRACT

The Agglomerative Hierarchical Clustering (AHC) algorithm is
widely used in real-world applications. As data volumes continue
to grow, efficient scale-out techniques for AHC are becoming in-
creasingly important. In this paper, we propose a Partition-based
distributed Agglomerative Hierarchical Clustering (PACk) algorithm
using novel distance-based partitioning and distance-aware merg-
ing techniques. We have developed an efficient implementation of
PACk on Spark . Compared to the state-of-the-art distributed AHC
algorithm, PACk achieves 2X to 19x (median=9x) speedup across a
variety of synthetic and real-world datasets.

Vivek Narasayya
Microsoft Research
viveknar@microsoft.com

1 INTRODUCTION

Agglomerative Hierarchical Clustering (AHC) is a widely-used clus-
tering algorithm. As noted in the survey article [40], AHC finds ap-
plications in different problems including deduplication and record
linkage (7, 37, 54, 57], recommender systems [47], bioinformatics
[11, 16, 52], computational chemistry [14], environmental science
[20], and astronomy [59]. Given an undirected weighted graph
G = (C,W), where C is a set of items and W is a set of weighted
edges indicating the distances between pairs of items in C, AHC
initializes each item into its own cluster and repeatedly merges
the next pair of clusters with the smallest distance until no pair of
clusters have a distance below a given threshold.

When two clusters are considered for merging in AHC, the dis-
tance between the clusters is defined by a linkage criterion. A com-
monly used [40, 62] linkage criterion in practice is the average
distance over all pairs of edges across items in the two clusters.
Other linkage criteria such as minimum (resp. maximum) distance
are also used and results in more aggressive (resp. conservative)
merging of clusters compared to average distance. Some specialized
and efficient algorithms [3, 25, 42, 45, 56] only focus on min-linkage
which reduces AHC to the simpler minimum spanning tree prob-
lem. For our primary motivating scenario of fuzzy deduplication,
average-linkage is the most appropriate criterion. Min-linkage is
too aggressive and leads to clustering very dissimilar items, and
max-linkage tends to be too conservative and results in detection
of too few duplicates. Thus, in this paper we focus on the case of
average-linkage, which is also a more challenging problem.

Due to increasing data volumes in real-world applications, the
need to support AHC on Big Data platforms such as Spark is grow-
ing. For example, the Microsoft Dynamics 365 service applies clus-
tering to find duplicates in their customer profile databases, which
can have 100s of millions of records. Centralized (aka single-node)
AHC algorithms, which work effectively on relatively small datasets
by operating on the data in-memory, are however impractical on
large datasets due to their high space complexity (O(|C|?)) and

Surajit Chaudhuri
Microsoft Research
surajitc@microsoft.com

Yeye He
Microsoft Research
yeyehe@microsoft.com

0.0 / ™
(¢, ¢) (cy)
A N2 A%
’/é“\ ~ N

(c, —¢c)

0,02 2

Figure 1: The merge of C; and C; determines the merge of
Cs.

(G — ¢)
N_0.02

250 = MutualNN ~ 60m

—+—MutualNN
2 200 N PACK § 4om PACK
€ 150]
2 100 20m
l‘U

Om \\h-i—n—a—.——m

123 456 7 8 910 ..58
Iteration

(@) (b)

0 N\

Figure 2: An example real-world dataset with injected du-
plicates: (a) Our proposed PACk achieves 12X speed-up com-
pared to MutualNN. (b) PACk finishes in 5 iterations, while
MutualNN takes 58 iterations with a long tail of fewer merges.

time complexity (O(|C|?log|C|)) that lead to memory and CPU
bottlenecks on a single machine.

A straightforward adaptation of the centralized AHC algorithms
to a scale-out, distributed setting does not perform well because
the cost of accessing edges to neighboring nodes in the algorithm
becomes excessively high. For example, when the AHC algorithm
merges a pair of clusters, it must update distances between the
newly merged cluster and all other clusters. In centralized AHC,
the update is achieved via a set of relatively cheap writes in mem-
ory. However, in a distributed setting with multiple compute nodes
(e.g., VMs) working on partitions of the data, this update requires
data shuffles across partitions, which is significantly slower. Further-
more, in the distributed setting, multiple iterations of re-partitioning
and clustering may be needed thereby amplifying the data shuffle
cost.

The natural idea of parallelizing the merge operations holds
promise, but is challenging to achieve since merges may have de-
pendencies as illustrated in Figure 1. After the merge of C; and Cy,
the distance between C12 and C3 determines whether C3 should
be merged with Ci2 or C4. In other words, the merge of C3 de-
pends on the merge of C; and Cy, thereby introducing difficulty in
parallelizing merges when the graph is distributed.

The state-of-the-art distributed AHC algorithm is based on [13].
The authors show that when the linkage criterion satisfies a prop-
erty called “cluster aggregate inequality” [38], we can concurrently
merge all mutual nearest neighbor pairs in the graph without affect-
ing correctness of the result. A mutual nearest neighbor pair is a
pair of nodes (A, B) such that A is B’s nearest neighbor and B is

A’s nearest neighbor. Importantly, they show that this property is
satisfied by linkage criteria including average, max and min — and
hence is applicable for our motivating scenarios. An algorithm that
exploits this observation, which we refer to as MutualNN is rela-
tively straightforward to implement in a distributed, map-reduce
platform using traditional relational operators such as aggregation
and join. However, as we show in this paper, this algorithm is in-
efficient because the number of mutual nearest neighbors is often
limited in real-world datasets. Therefore, it often requires multiple
(10’s) of iterations, with only a few cluster merges possible per
iteration as shown in Figure 2. Consequently, MutualNN performs
many data scans and shuffles, which lead to large execution time.

In this paper we present the PACk algorithm that builds on the
above idea by introducing two novel techniques: distance-based
partitioning and distance-aware merging within a partition. Intu-
itively, the distance-based partitioning algorithm aims to include
a set of nearest neighbors in the same partition for each item. It
thereby allows more merges to happen within each partition. The
distance-aware merging algorithm computes distance bounds to
safely merge as many mutual nearest neighbors as possible inside
a partition. We show that PACk always produces the same result
as centralized AHC. In addition, PACk can perform merges having
dependencies in one iteration with guaranteed correctness, which
MutualNN cannot do. Our approach parallelizes merges much more
effectively and can sharply reduce the number of iterations required,
and therefore the overall running time — see Figure 2 for an example
on a real-world dataset.

The contributions of this paper are: (1) We present PACk, an
efficient distributed clustering algorithm for agglomerative hierar-
chical clustering. We prove the correctness of PACk, and we have
developed an efficient implementation of PACk on Spark. (2) We
provide an analytical performance analysis of PACk. We show that
PACk is more efficient and needs fewer iterations than MutualNN.
(3) We present extensive experimental results comparing the perfor-
mance and scalability of PACk with MutualNN on a variety of real-
world and synthetic graph datasets. PACk consistently outperforms
MutualNN with speed-ups ranging from 2X to 19X (median=9x). Its
compute resources including CPU and memory are comparable to
MutualNN and modestly higher. PACk also scales well to relatively
large graphs. For example, on a real-world graph evaluated by the
Dynamics 365 service in Microsoft for the task of fuzzy dedupli-
cation containing over 250 million items and 680 million edges,
PACK finishes in 40 minutes using 16 commodity eight-core VMs,
achieving 5x speed-up compared to MutualNN.

We organize the paper as follows: we present the background for
AHC in Section 2. We introduce PACk in Section 3. We present the
correctness proof and analytical performance analysis in Section 4.
We present our experimental evaluation result in Section 5. Finally,
we discuss related work in Section 6 and conclude in Section 7.

2 BACKGROUND

2.1 Cluster Labeling and Distance Comparison

When two pairs of clusters have the same distance, we must break
ties deterministically to ensure that the result of clustering is de-
terministic regardless of whether a centralized or distributed AHC

algorithm is used. Therefore, in addition to the scalar distance be-
tween clusters, we take the cluster labels into comparison.

We assume each initial item ¢ € C has an associated label denoted
by label(c) (e.g., integer, string, etc.). The labels form a totally
ordered set. We further assume that the cluster label is the maximum
label of the cluster’s items:

label(C) = rglea():((label(c)) (1)

Let dist(C;, Cj) be the scalar distance between cluster C; and Cj,
so that we can define weight w(C;, C;) as a three-element tuple:

DEFINITION 1 (CLUSTER PAIR EDGE WEIGHT).
w(Ci, Cj) = (dist, labell, label2)

where dist = dist(C;,Cj), labell = min(label(C;), label(Cj)), and
label2 = max(label(C;), label(Cj)).

When we compare two edges, we always compare the three-
element weight tuples w(C;, C;) instead of only the scalar distances
dist(C;i, Cj).

ExaMPpLE 1 (LABELING). Assume we use integer labels in Figure 3
such as label(C1) = 1, label(C2) = 2, label(C13) = 3, and so on.
Two weight examples are w(C1,C2) = (0.05,1,2) and w(Cs,Cz) =
(0.05,2,3), so w(C1,C2) < w(C3,C2) because tuple (0.05,1,2) <
(0.05,2,3).

2.2 Agglomerative Hierarchical Clustering

Given an undirected weighted graph G(C, W), where C is a set of
items and W is a set of weights indicating the distances between
pairs of items in C, and a threshold 8 > 0, Agglomerative Hierar-
chical Clustering (AHC) algorithm starts by treating each item as a
singleton cluster, iteratively merges nearest cluster pairs, and stops
when no two clusters are less than distance 6. Algorithm 1 shows
the centralized AHC algorithm, which is straightforward when the
entire graph fits in memory.
There exist several linkage criteria to compute the distance func-
tion between clusters (Line 5) in AHC. Here we list a few:
e Max-linkage (complete-linkage) [12]:
dist(Cij, Cx) = max (dist(Cy, Cx), dist(Cj, Cx))
e Min-linkage (single-linkage) [22, 48]:
dist(Cij, Cx) = min (dist(Cy, Cy), dist(Cj, Cyx))
e Average-linkage [50]:

dist(Cij, Cx) dist(c,c’)

=1 . 3
Icijl"cx‘ CGC,‘j,C'ECx
Given its suitability for the fuzzy deduplication problem as noted

earlier, in the rest of this paper, we focus on Average-linkage.

ExamPLE 2 (CENTRALIZED AHC). Figure 3 is an example that
applies Algorithm 1 to six items with threshold 0 = 0.08. Edges are
labelled with distances. In the first graph, unlabeled distances are
all 0.1. In all the graphs, edges with distance>0.1 are omitted. The
algorithm keeps merging nearest pairs until the remaining edges are
greater than 0.08.

2.3 Distributed AHC

Although the centralized AHC algorithm is straightforward, devel-
oping an efficient distributed AHC algorithm is challenging. The
efficiency of distributed depends primarily on two factors. The first

Algorithm 1: Centralized AHC

Algorithm 2: MutualNN

Input: Cluster graph G = (C, W); Threshold 6
Output: Clusters C*
1 while there exists dist(C;,Cj) < 6 do
2 (Ci.Cj) & argmin (w(Ci,Cj))
C;,Cj€CACi#C;

3 Cij<:CiUCj

4 C?CU{CU}—CI'—C]'

5 Compute w(C;j, Cx) for each Cx € C
¢ C"<=C

All unlabeled distances in the first graph are 0.1;
Edges with distance>0.1 are omitted in all graphs.

X g

0.06

0.097 @

Figure 3: An example that applies Algorithm 1 to six items.
0 =0.08.

factor is the number of iterations. Similar to the centralized AHC,
a distributed AHC usually takes multiple iterations to finish. In
distributed AHC however, each iteration has certain costs such as
scanning the graph and writing the intermediate result to persistent
storage at the end of the iteration. The second factor is data shuffle.
In each iteration, every compute node (VM) works on a partition
of a large graph. Since edges can span across partitions, VMs have
to shuffle data to find neighbors and update distances. Therefore,
techniques that reduce number of iterations and data shuffle cost
can lead to greater efficiency and improved performance.

The state-of-the-art distributed AHC is MutualNN [13], which
parallelizes merges to reduce number of iterations and data shuffle.
MutualNN is based on the Cluster Aggregate Inequality property [13,
38] that makes parallel merges possible. Specifically, in each itera-
tion, MutualNN merges all mutual nearest neighbor pairs (Cx, Cy)
where Cx’s nearest neighbor is Cy and vice versa. MutualNN guar-
antees that its result is the same as the centralized AHC as long as
the linkage satisfies Cluster Aggregate Inequality:

VC;, Cj, Cx dist(Cl-j, Cx) = min (dist(Cl-, Cx),dist(Cj,Cx)) (2)

The intuition behind Cluster Aggregate Inequality is: if Cyx
has a unique nearest neighbor Cy, dist(Cy, Cx) must be smaller
than any other dist(C;,Cx) or dist(Cj,Cx), i.e. dist(Cy,Cx) <
min (dist(Cj, Cx), dist(Cj, Cx)). Hence, merging any other clusters
C; and C;j cannot generate a new cluster C;; whose distance to Cx
is closer than dist(Cy, Cx). Therefore, when Cy and Cy are mutual

Input: Cluster graph G = (C, W); Threshold 6
Output: Clusters C*

/* Compute in parallel x/
1 while there exists dist (C;,Cj) < 6 do
2 NN & For each C in G, compute its nearest neighbor
3 MNN & Find mutual nearest neighbor pairs by self-join on
NN
4 G & Merge mutual nearest neighbors and their edges by join

and aggregation

nearest neighbors, we can safely merge them. The min-, max-, and
average-linkage all satisfy this inequality. The detailed proof of
MutualNN correctness can be found in [13]. We show why Average-
Linkage satisfies the inequality in Appendix B.1.

Algorithm 2 shows how MutualNN works. In each iteration, it
finds all mutual nearest neighbor pairs, merges them, and computes
the new weights for newly merged clusters. However, MutualNN
is inefficient as we see in Figure 2, because the number of mu-
tual nearest neighbors is often limited in real-world datasets and
MutualNN still takes too many iterations. Therefore, we propose
a Partition-based distributed Agglomerative hierarchical Cluster-
ing (PACk) algorithm which significantly increases the number of
merges in each iteration to improve the efficiency.

3 PACk ALGORITHM FOR DISTRIBUTED AHC
3.1 Intuition

PACk achieves its efficiency using two novel algorithms: distance-
based partitioning of the graph, and distance-aware merging within
each partition. When partitioning the graph, PACk places clusters
with their top nearest neighboring clusters together. To limit the size
of each partition, for each cluster in a partition, we only include a list
of edges with the shortest distances to it, and represent all ignored
edges as a lower bound by, indicating that their distances are greater
than by. The distance-aware merging algorithm works on each
partition and performs merges locally. Whenever it merges a cluster
pair, it always ensures that the two clusters are mutual nearest
neighbors by checking the distance bounds, which guarantees the
correctness of the result.! Compared to MutualNN, PACk performs
many more merges in each iteration, thereby reducing the total
number of iterations required. Although the shuffle cost for one
iteration of PACk could exceed that of MutualNN, since the number
of iterations are significantly reduced (Figure 2), the overall shuffle
cost of PACk is also much less compared to MutualNN.

Below we provide intuition on why performing more merges in
each iteration can improve performance. Observe that for a given
input graph, the total number of pair-wise merges done is the
same regardless of the specific AHC algorithm used. For instance,
given the input in Figure 3, we need four merges to get C13, C123,
Cys, and Cys6. Performing more merges in each iteration reduces
running time for three reasons: (1) Merges are performed in parallel,
which can take less time compared to sequential execution. (2) More

!Similar to MutualNN, PACK also works for Max-, Min-, Average-, and any other linkage
criterion that satisfies Cluster Aggregate Inequality. The proof of correctness is in
Section 4.1.

merges per iteration reduces the number of iterations, thereby
saving the fixed overheads incurred for each iteration. (3) More
merges in one iteration reduces the shuffle cost of intermediate
results in the following iterations. For example, assume a distributed
algorithm finishes in four iterations as shown in Figure 3. It has to
generate Graph 2 (resp. Graph 3 and 4) after Iteration 1 (resp. Iter. 2
and 3), and shuffle the graphs’ weights to compute nearest neighbor
etc. for the next Iteration 2 (resp. Iter. 3 and 4). In comparison,
PACk requires one iteration as shown in Figure 4, so we save the
shuffle cost of three intermediate graphs, Graph 2, 3, and 4, in
Figure 3. Note that the intermediate weights such as w(C3, Cz),
w(C123, Cg), etc. are still generated locally within each partition,
but they are discarded once merging is done for each partition. So
these intermediate weights are never shuffled after local merging.

Figure 2b shows an example illustrating how PACk can perform
much more merges in one iteration than MutualNN does. It plots
the number of merges done by both algorithms on one of our exper-
imental datasets. In the first iteration, PACk completes 99% merges,
which is much more than MutualNN’s 32%. Moreover, in each of
the following iterations, PACk still completes the majority of the
remaining merges, while MutualNN does only a much smaller per-
centage. For instance, in the second iteration, PACk does 98% of its
remaining merges, while MutualNN does only 37% of its remaining
ones. PACK’s ability to perform the majority of remaining merges
in each iteration significantly reduces the number of iterations and
cost of data shuffle, which shortens the running time.

3.2 Overview

Algorithm 3 describes PACk. We assume the input is a graph G =
(C, W) where C is the initial item set and W is the weights defined
in Section 2.12. PACk keeps merging clusters in iterations as long as
the graph has weights that are below the distance threshold. Each
iteration consists of four steps:

(1) Partitioning. We partition the graph by putting clusters with
their top nearest neighbors together, so that multiple merges have
a chance to happen within each partition.

(2) Distance-aware Merging. Within each partition, we merge as
many mutual nearest neighbor pairs as possible. For each merge, we
track the distance bounds between the newly merged clusters and
the other clusters. By comparing the distance bounds, we guarantee
to always merge mutual nearest pairs.

(3) Integration. The output clusters of the distance-aware merg-
ing need to be integrated because there may be overlapping clusters.
Aswe prove in Theorem 2, every cluster in the output of Algorithm 4
is a correct merge of a mutual nearest pair. Therefore, if two clusters
in the output overlap, one must be the superset of the other. Then
the integration algorithm keeps the maximal clusters, i.e. those that
are not a strict subset of any other cluster.

(4) Graph Update. For each merged cluster, we assign the new
label to all its members using a join. Then we aggregate the edges
between any two clusters to calculate sum and average distances.

2In practice, W usually contains only the pairs with meaningful distance (e.g., two
strings share at least one token) so that |W | < |C|?. Various indexing techniques are
used to efficiently retrieve close pairs in different scenarios (e.g., Locality Sensitive
Hashing for Jaccard distance, space-partitioning trees for Euclidean distance, n-gram
for edit distance, and so on). They are orthogonal to our contribution in this paper.

Algorithm 3: PACk

Input: Cluster graph G = (C, W); Threshold 6
Output: Clusters C*
1 while there exists dist (C;,Cj) < 60 do
2 P < Partition(G)
3 C" < {LocallyMerge(p)|p € P}
4 C < Integrate C’
5 W & Merge weights based on C

6 C'<=C

// Algorithm 5 or 6
// Algorithm 4

All unlabeled distances in the first graph are 0.1;
Edges with distance>0.1 are omitted in all graphs.

Partltlonlng

Figure 4: An example that applies PACk to six items. 6 = 0.08.
PACk finishes in one iteration.

Figure 4 is an example that applies PACk to the same input of
Example 2. It finishes in one iteration as we will see in the remainder
of Section 3.

Next, we start with the distance-aware merging in Section 3.3,
which is a natural extension of the centralized AHC algorithm and
allows us to do merge on a partial graph (i.e., a partition). Then, we
describe the partitioning algorithm to partition a given graph in
Section 3.4.

3.3 Distance-Aware Merging

We start with the distance-aware merging algorithm that takes
a partition as input and outputs merged clusters. It requires dis-
tance bounds as input for each partition, which will be explained
in Section 3.4. Developing a merging algorithm that works for a
partition and guarantees correctness is challenging because (a) a
partition is usually limited by size to fit into a VM’s memory, and
(b) in one iteration, each partition cannot know the change outside
this partition.

We develop a Distance-Aware Merging algorithm that tracks
distance bounds to address the above challenges. First, for each
cluster C; in a partition, instead of requiring that all its edges reside
in memory, we only require its nearest neighbors to form an edge
list £(C;) defined below, so that the memory size per partition
can be limited. Second, we convert each distance from a scalar to a
range, so that the edges outside the partition (i.e. ¢ L(C;)) can be
represented by a wildcard edge indicating the lower bound of their
distances to C;. By leveraging the bounds, we are able to safely
detect when two clusters are mutually nearest.

Specifically, we define £(C;) as the list of nearest neighbors of C;,
whose size limit is a configurable parameter. For each C; € L(C;),
we define by (C;, Cj) and by (Cj, Cj) as the lower and upper bounds
of dist(C;, Cj) respectively. by (C;,C;) and by (C;, Cj) are initial-
ized to dist(C;, Cj). In addition to the above bounds, we always
automatically attach a special wildcard C} into £(C;). Its lower
bound by (C;, C}) indicates that all remaining neighbors are beyond

Algorithm 4: Distance-aware Merging for Each Partition

Algorithm 5: Distance-based Partitioning

Input: Single partition Py, = (63, { L(C;)|Ci € €3 }); Threshold 0
Output: Clusters Coyr
/* Compute in memory */
1 G < Build a graph from P,
2 for C; € 65 do
3 NN (C;) < Cy’s nearest neighbor whose upper bound is smaller than
L the lower bounds of other C;’s neighbors; null if non-existent

4+ while true do

5 if
3(Ci,Cj) : (NN(Ci) =Cj) A(NN(Cj) =Ci) A(bu (Ci,Cj) < 6)
then

6 L Merge C; with Cj, and update G and NN (-)

7 else

8 L break

9 Cour < Merged clusters in G

distance b (Ci, C}). Its by (C;, C;) is an application-specific large
value (e.g., o) indicating the upper bound.
By the definition of Average-linkage in Section 2.2, we can com-
pute the distance between C;; and any other Cy as
dist(Ci, Cx) - |Cil|Cx| + dist(Cj, Cx) - |G| Cx|
(ICi| +1C;1) - 1Cx]
_ dist(C, Cx) - |Ci| + dist(Cj, Cx) - |C}]
ICil +1C;
Similarly, we compute the bounds in three cases:
(1) If a neighbor Cy exists in both £(C;) and L(C}), we can
precisely compute the bounds as:
br(Ci, Cx)ICil + b(Cj, Cx)ICjl

dist(Cij, Cx) =

LG 6 = G+ 1G]
by (Ci, Cx)|Cil + by (Cj, Cx)IC|
(G &) = G+ 1c)

(2) If a neighbor Cy exists in only one edge list, say, L(C;), we
use the wildcard C;f for Cj:

bL(Ci, Cx)ICil + bL(C), C7)IC]

bL(Cij’cx)z |Cz|+|C]|
by (Ci, Co)|Cil + by (C;, CHIC|
bU(Cij’cx)z |Cl|+|CJ|

(3) If a neighbor Cx does not exist in any edge list, we use the
wildcard edge (Cij, C} j) to represent it. The bounds can be
derived from edge (C;, C}) and (Cj, C;f):

br(Ci, C7)ICi| + bL(C), C7)IC;]

Cil +1Cjl
by (Ci, C))ICil + by (Cj, C7)ICj
|Ci| +1Cj
We keep merging clusters within the partition as long as (1)

we can find a pair of mutual nearest neighbor (C;,Cj); and (2)

the upper bound of dist(C;, Cj) (i.e., by (Ci, Cj)) is no greater than

0. Algorithm 4 shows more detail. It takes a partition Py, and a

threshold 6 as input. Py, consists of a set of clusters €}, and the edge

lists of the clusters { L(C;)|C; € €} It generates a set of clusters
Cour as output.

bL(Cij, Cj;) =

bu(Cij.) =

Input: Cluster graph G = (C, W); Bivariate distance function disz (-, -)
Output: Partitions P
/* Compute in parallel */
Hub < {Cp|Cy, has a mutual nearest neighbor C;I and

label(Cp) < label(C})}

-

2 rpup (+) < CalcRadius (G, Hub, dist (-, -)) // Defined below
3 foreach C; € Hub do
4 Gn = {Ch} U {Cx|W(Cp,Cx) € W & dist(Ch, Cx) < rhub(Cr)}
5 foreach C € %6}, do
6 L(Cx) & {w(Cy,Cx)|dist(Cx,Cy) < rpup(Cp)} U {wildcard
L edge for Cy }
7 Pp = (Cn, {L(Cx)|Cx € })
// Each partition P, is a tuple of cluster set and edge
list set
8 P {P}llch EHub}
9 return P

10 Function CalcRadius (G = (C, W), Hub, dist (-, -))

1 foreach C, € C do

12 Cy <« the 2nd nearest neighbor of Cx
r(Cx) < 10 - dist(Cy, Cy)

14 foreach Cj, € Hub do

15 Neighbor(Cp) < {Cp} U {Cx|W(Ch,Cx) € W}

16 rnupb (Cp) < max (r(Cx) + dist(Cy, Ch))
Cx€Neighbor(Cy)
&dist(Cp,Cx)<r(Cx)

Figure 5: Example of hub radius, in which rp,,;,(Cp,) = r(Cy,)+
dist(Cx,, Cp).

3.4 Partitioning

In Section 3.3, we show how distance bounds work in distance-
aware merging. Next we show how to partition a graph and obtain
distance bounds. A partitioning algorithm such as a random par-
titioning, puts random clusters together in each partition, which
likely cannot be merged, thereby rendering it ineffective. Therefore,
an effective partitioning algorithm must be carefully designed to
let the distance-aware merging perform as many merges as possi-
ble for each partition. Intuitively, we want to place clusters with
their nearest neighbors together in the same partition, so that more
merges can happen locally within that partition. We show in Sec-
tion 4 that a carefully designed partitioning algorithm needs no
more than half the number of iterations of MutualNN, which signif-
icantly improves the efficiency. We first present the distance-based
partitioning Algorithm 5 to illustrate the key idea, and then we
present Algorithm 6 that refines Algorithm 5 to allow it to work in
practice with the memory constraint of a compute node.
Intuitively, Algorithm 5 puts clusters with their nearest neigh-
bors together to let the merging algorithm perform as many merges
as possible. Specifically, Algorithm 5 focuses on clusters that have
mutual nearest neighbors (i.e., hubs). It creates a partition for each

hub by choosing an appropriate radius that covers many nearest
neighbors but not overlaps other partitions too much.

Algorithm 5 describes the partitioning algorithm. First, it gets a
radius for each cluster Cy (Line 11 to 13). The radius is 10 times the
distance between Cy and its second nearest neighbor (the number
10 helps us reduce number of iterations as we will see in Section 4.3).
Now, if we create a partition for each cluster with the radius, the
partitions may overlap heavily, and some merges may redundantly
happen in many partitions. So we control the number of partitions
by focusing on the “hubs” (Line 1%). A hub is a cluster that has a
mutual nearest neighbor in G, which will be merged because its
radius covers its nearest neighbor. In other words, a partition in-
cluding a hub and its mutual nearest neighbor ensures at least one
merge. Therefore, we keep only hubs’ partitions but increase the
hub radius to cover clusters in other partitions. Specifically, when
a hub Cy, is covered by another cluster Cy’s radius, we increase the
hub’s radius to cover Cy’s radius (Line 14 to 16). Then we can safely
ignore all non-hub’s partitions. Note that the hubs’ partitions may
still overlap, but the overlapping space is much smaller and will not
hurt efficiency much in practice. Figure 5 shows an example of calcu-
lating the hub’s radius, in which rp,,, (C,) = r(Cy,) +dist(Cx,, Cp)
turns out to be the maximum radius for Cy,. Finally from Line 3 to 7,
for each hub, we collect the clusters within its radius and those
clusters’ nearest neighbors to form their edge lists.

In theory, Algorithm 5 might create very large partitions that
exceeds the memory available on a VM. In order to limit the size of
each partition, we use ky to limit the number of nearest neighbors
of hubs, and k. to limit the size of edge lists. As a result, we simplify
Algorithm 5 to get the version with size limit (Algorithm 6). For
each hub, it simply gets kj nearest neighbors and top kr edges.

ExAMPLE 3 (PARTITIONING WITH S1ZE LIMIT). Assumekyn =k =
4 in Algorithm 6. Given the input graph in Figure 4, we find 2 hubs
{C1, Cy}.

C1 forms a partition Py with its nearest 4 neighbors C3, Co, Cg, and
Cy4. When P is passed to Algorithm 4, C1 and C3 are firstly merged
to get C13. Then C13 and Co become mutual nearest and are merged
into Ci23.

Cq4 forms a partition P4 with its nearest 4 neighbors Cs, Ce, C3, and
C1. When Py is passed to Algorithm 4, C1 and C3 are merged first and
dist(Cy3, Cg) are updated to 0.065. So Cg’s nearest neighbor becomes
Cy4 and is no longer blocked by C1. Then C4 and Cs are merged to Cys.
Finally Cg¢ and Cy5 are merged to Cyse.

In summary, Algorithm 6 creates two partitions P1 and P4, which
are passed to Algorithm 4 to generate C123 and Cys¢ respectively. The
whole process ends in one iteration.

Discussion of k- and k. In practice, moderate kn and kr in a
wide range like [50,500] should work reasonably well as we will
see in experiments in Section 5.3. If ky and k are too large, it can
adversely affect performance because too many distant neighbors
are scanned and shuffled without increasing the number of merges
in each iteration. Another benefit of using moderate ky and kg
is to balance the load. For instance, when ky = ki = 500, the

3Hubs can be efficiently detected through a relational group-by query and then a
self-join. The group-by scans the graph whose size is |W|. Again, |[W| < |C|? in
practice because users usually remove pairs with long distances. The self-join only
joins a table of nearest neighbors of size |C|.

Algorithm 6: Partitioning with Size Limit

Input: Cluster graph G = (C, W); Bivariate distance function
dist (-, -); Neighbor limit kxr; Edge list limit kp,

Output: Partitions P

/* Compute in parallel */
1 Hub < {Cp|Cp, has a mutual nearest neighbor C;1 and

label(Cp) < label(C})}

2 foreach C; € Hub do
3 én < {Ch} U {top kn neighbors in W}
4 foreach Cx € %, do
5 L(Cy) & {top kg, neighbors’ weights in W } U {wildcard
L edge for Cy }
6 Py, & (6, {L(Cx)|Cx € CR})
// Each partition Pj is a tuple of cluster set and
edge list set

7 P & {Py|Cp € Hub}

worst-case space of each partition is only around 10 MB (O(knkr, -
sizePerEdge)), and the worst-case time to cluster a partition is only
around 10 milliseconds (O(knkr - log(knkz))). In such case, no
partition can become a straggler.

4 ANALYSIS OF CORRECTNESS AND
PERFORMANCE

In this section we first prove the correctness of PACk and then ana-
lyze the performance of the algorithms. Specifically, We propose a
Cluster Directed Acyclic Graph (DAG) in Section 4.1 to prove the
correctness of PACk. In Section 4.2 and 4.3, we use the DAG to prove
that the number of iterations of PACk is half of MutualNN’s. In Sec-
tion 4.4, we use a simplified cost model to show the performance of
PACk is better than MutualNN in an example deduplication scenario.

4.1 Cluster DAG and Correctness

Intuitively, we prove the correctness by showing that every cluster
we generate must be a merge of two mutual nearest neighbors. It
is consistent with the Centralized AHC (Algorithm 1), which also
always merges two mutual nearest neighbors.

We propose a Cluster Directed Acyclic Graph (DAG) that helps
us model the number of iterations, which is necessary for estimating
the data shuffle cost and running time. Note that our algorithm
never explicitly constructs the DAG during execution. The DAG
below is only conceptual and for our performance analysis.

Given the set of initial singleton clusters C, the function dist (-,),
and the threshold 0, the DAG D = (%,E) is constructed based
on the execution of Algorithm 1. Specifically, we define Initial
Clusters as the clusters given in the input graph, define Merged
Clusters as those merged by Algorithm 1 in all iterations (i.e. C;; in
Line 3 of Algorithm 1), and define set € as the union of all Initial
Clusters and all Merged Clusters. We further define the following
functions to help our presentation below: (i) For each Merged cluster
Cy, we denote its two direct subclusters by CL(Cy) and CR(Cy).
Also, we call Cy as the “parent” CP () of its two direct subclusters.
E.g., CP(CE(Cx)) = Cy and CP(CR(Cy)) = Cy. (ii) If a cluster
is merged with another, we define them as “siblings” C5(.). For
example, C%(CE(Cy)) = CR(Cy) and CS(CR(Cy)) = CL(Cy). For

w(C, C) < w(C, C})

v N

w(Cy, C5) > w(Ck,CR)
Figure 7: Illustration

Figure 6: The Cluster DAG
of Example 2. Solid lines
are subset dependency.

of the proof of Theo-
rem 1. A cycle will lead to

L R L R
Dashed lines are weight w(Cx,, Cr) <w(Cx, Cy,) <o
<w(CL cR) <w(ck,cR)
dependency. X =X X1 x>

contradiction.

simplicity, we let CL(Cy) = CL, CR(Cy) = CR, cP(cx) = CE,
and C5(Cy) = C;E hereafter when the context is clear. Also, we
abbreviate nested functions such as CL(CR(Cy)) = CJI;R hereafter.

The edge set E captures all the dependencies of merges. Specif-
ically, a directed edge (Cx, Cy) means that Cx must be generated
before Cy is generated. There are two types of edges: “Subset De-
pendency” and “Weight Dependency”.

DEFINITION 2 (SUBSET DEPENDENCY EDGE). For each Merged clus-
ter Cy, we define two subset dependency edges (CL, Cy) and (CR, Cy).

Intuitively, Subset Dependency means that C% and CR must be
the prerequisites of Cy.

DEFINITION 3 (WEIGHT DEPENDENCY EDGE). For each pair of
Merged clusters Cx and Cy that satisfies Cx N Cy = 0, we build an
edge (Cx, Cy) if and only if:

3C;, € {C},CRY. C) e {CL. CR) -
w(Cy, Cr) < w(Cy, Cp)

Each Weight Dependency (Cx,Cy) means that Cy cannot be
generated yet because C;’s nearest neighbor is C;. instead of its
sibling CS(C’y).

One can view the DAG as one or more binary trees (i.e. dendro-
grams) plus extra edges: all Initial/Merged clusters and the Subset
Dependency edges form one or more binary trees, and the Weight
Dependency are the extra edges.

ExAMPLE 4 (CLUSTER DAG). Figure 6 is the Cluster DAG of Exam-
ple 2. Cy to Cg are the Initial singleton clusters. C13, C45, C123, and
Cys6 are Merged clusters.

The solid lines represent Subset Dependency, which in fact form two
binary trees (i.e., dendrograms) of the clustering process. For instance,
CE(C13) = C1, CR(Cy3) = C3, CP(C13) = Crz3, and C5(Cy3) = Co.

The dashed lines represent Weight Dependency. Weight Dependency
(C13, Cys6) is because Cq’s nearest neighbor has been C1 until the
merge (i.e., generation) of C13.

THEOREM 1. The constructed DAG D does not have cycles.

In order to prove Theorem 1 and to facilitate our following anal-
ysis, we define a few concepts.

DEFINITION 4 (GENERATED/UNGENERATED CLUSTERS). At the
beginning of an algorithm’s iteration (i.e. Line 1 of Algorithm 1 or

Figure 8: The change of Frontier in Example 5.

Line 1 of Algorithm 3), a cluster in € is a Generated Cluster if it
is an initial cluster or is already generated through merging by the
algorithm. Otherwise, it is an Ungenerated Cluster.

DEFINITION 5 (FRONTIER). At the beginning of an algorithm’s
iteration, a Frontier F is the set of clusters such that each cluster
Cx € F satisfies both conditions below:

e Cy is a Generated Cluster.
e Cy does not have parent CX, or CE is an Ungenerated Cluster.

In other words, the frontier is the “snapshot” of the clusters at
the beginning of each iteration in the algorithm.

EXAMPLE 5 (GENERATED/UNGENERATED CLUSTERS AND FRON-
TIER). Given Example 2, suppose a clustering algorithm finishes in
two iterations. The first iteration generates C13 and C4s5. The second
iteration generates C123 and Cyse.

Figure 8 shows how the frontier changes.

Initially, only {Cy, Ca, ..., Cs} are Generated, which form the fron-
tier. After the first iteration, C13 and Cy5 are Generated. So the frontier
becomes {C13, Ca, C45, Co }. After the second iteration, all clusters are
Generated. The frontier becomes {C123, C45¢}

Now we can prove Theorem 1 by contradiction (Figure 7). The
idea is to show that (1) Any cluster Cy in the cycle must be a Merged
cluster; (2) Each edge (Cx,Cy) in a cycle satisfy W(C)Ig, C,If) <
w(CL, Cls), leading to a contradiction that w(C)I;, Cf) < w(CJLC, Cff)
as we go through the cycle. The detailed proof is in Appendix B.2.

4.1.1 Correctness. After defining the set of all clusters %, we can
prove the correctness of our algorithm.

THEOREM 2. The output of Algorithm 3 is the same as that of
Algorithm 1.

Proor. (Sketch) We prove that (A) every Merged cluster in Algo-
rithm 3 is in the DAG, and that (B) every cluster with 0 out-degree
in the DAG is generated by Algorithm 3.

(A) All Merged clusters are generated in Line 6 of Algorithm 4,
which guarantees that C; and C; are mutual nearest. Therefore, C;
and C; can be safely merged, because any merge of other clusters
won’t change the fact that C; and C; are mutual nearest neighbors
[13, 38]. In addition, when integrating generated clusters (Line 4
in Algorithm 3), we only remove cluster and do not generate extra
clusters. So every Merged cluster in Algorithm 3 is in €.

(B) We prove by contradiction. Suppose there exists a cluster
with 0 out-degree in the DAG and it is not generated by Algorithm 3.
We check all its direct dependents. There are two cases:

(1) All its dependents are generated.

(@ Frontier F) len(CX, F) Erontier F
Y @ o)

len(Cy, F) = 1 RSN

len(Cy,F) =2)@

Figure 9: len(-,F) Examples: Figlire 10: \}'then len(Cx, F) =
len(Cx,F) = 1 and len(Cy, F) 1, C¥ and C;; must be mutual
-9, nearest neighbors in F.

(2) At least one dependent is ungenerated. Let it be Cy. Then
we check the dependents of Cy.

We keep checking the dependents of the ungenerated cluster un-
til all dependents are generated. This process should always stop
because all Initial clusters are Generated by definition.

When we find the ungenerated Cyx whose dependents are all gen-
erated, its direct children CL and CR must be mutual nearest in the
graph because Cy’s dependents are all generated (by Definition 3).
Then the partitioning algorithm should build a partition for CL
and CR, and Line 6 of Algorithm 4 should generate Cy = CL U CR,
Contradiction.

So every cluster with 0 out-degree in the DAG is generated by
Algorithm 3. O

4.2 Number of Iterations of MutualNN

We define length to facilitate our proofs below. Note that length
is defined only on the DAG, which is irrelevant to the distance
function. We define len(Cy) as the longest distance from any Initial
cluster to Cx € ¢, and lenpax = maxc, ¢ (len(Cx)).

EXAMPLE 6 (LENGTH FROM INITIAL CLUSTER). In the DAG in Fig-
ure 6,len(Cy) = len(Cy) = ... = len(Cg) = 0, len(C13) = len(Cys5) =
1, and len(C123) = len(Cys6) = 2. So lenmax = 2.

Given a frontier F and an Ungenerated cluster Cy, we define
len(Cy, F) as the distance between F to Cx. Formally, let pa =
(Cz, ..., Cx) be a valid path from C; to Cy where only the first cluster
C; isin F (i.e. F N pa = {C;}). Let PA be the set of such paths.
len(Cx, F) = maxp,cpa (length of pa), ie., the maximum length of
these paths.

ExampLE 7. Figure 9 is an example where Frontier F =
{Cz.Cr.CFY

Regardlng Cy, there are three valid paths in PA: (Cz, Cx), (,Cx),
and(,Cx). Solen(Cy, F) = 1. Note that (CZ,CX,Cx) is not a valid
path in PA because the second cluster CL is also in F, violating the
definition.

Regarding Cy, there are four valid paths in PA: (C;,Cy),
(Cz,Cx, Cy), (CL,Cx, Cy), and (CR, Cx, Cy). So len(Cy, F) = 2.

THEOREM 3. Given a dataset, the number of iterations of MutualNN
is lenmax of the DAG.

The idea is to prove that each iteration of MutualNN generates
all clusters Cx with len(Cy, F) = 1. Before that, we need to prove a
lemma:

All unlabeled distances in the first graph are 0.1;
Edges with distance>0.1 are omitted in all graphs.

Figure 11: An example that applies MutualNN to six items. § =
0.08. MutualNN finishes in two iterations.

LEMMA 1. Given a Merged cluster Cy. whose direct children are CL
and CR, if there exists a Cy such that w(Cy,C)I;) < w(CL, cB) or
w(Cy, CRy < w(CL, CR), the DAG must have a path including two

edges (Cy, C{;) and (C{;, Cx).

The lemma above means, if C y is closer to any of Cy’s children
than the child’s sibling, there must be a path from Cy, to its parent
ny) to Cx. The detailed proof is in the Appendix B.3.

Now we can prove Theorem 3.

Proor. In each iteration, given a Cy that satisfies len(Cy, F) =
1, CL and CR must be mutual nearest in F. Otherwise, if there
exists a Cy € F that is closer to CL (or CR), there should be a path
(CY, Ci, Cyx) according to Lemma 1. Since Cy € F, Cg must be
Ungenerated, resulting in len(Cx, F) > 2, violating len(Cy, F) = 1,
contradiction. So Cx will be generated when len(Cx, F) = 1.

So after iteration ¢, MutualNN generates all the clusters with
len(Cyx) < t. Therefore, MutualNN generates the whole DAG after
lenmax iterations, which is the length of the longest paths.]

ExAMPLE 8 (MutualNN). Figure 11 is an example that applies
MutualNN to six items. It takes two iterations, which equals the length
of the longest paths in Cluster DAG in Figure 6.

4.3 Number of Iterations of PACk

In this section, we assume metric space in which the distance func-
tion satisfies triangle inequality, then we can prove that our algo-
rithm takes much fewer iterations than MutualNN. But note that
metric space is not a requirement of the correctness of PACk.

First we prove that, if the dist(-,-) between individual items
satisfy triangle inequality, the dist(-, -) between clusters also satisfy
triangle inequality in Average-Linkage.

THEOREM 4. dist(C;, C) < dist(Cy, Cj) + dist(Cj, Cy)

We prove it by enumerating the distances (detail in Appen-
dix B.4).

THEOREM 5. Algorithm 3 finishes in [lenmqy /2] iterations when
it uses the Distance-based Partitioning (Algorithm 5) and dist(-,-) is
a metric.

Similar to the proof for MutualNN, we can prove that each itera-
tion in Algorithm 3 generates all clusters Cyx with len(Cx, F) < 2.

LEMMA 2. In each iteration, Algorithm 3 generates all clusters Cy
that satisfy len(Cx, F) < 2 where F is the frontier.

len(Cy, F) = 2 Frontier F

<2d <10d

== Distance —> Subset Dep. --->Weight Dep.

Figure 12: When len(Cx, F) = 2, Cy’s children are not in F, and
CLL’s nearest neighbor in F is Cy, Algorithm 3 will generate
Cx. (Double lines indicate distances.)

Now we can prove Lemma 2 as the following proof sketch. More
detail is in the Appendix B.5.

ProOF. (Sketch) When len(Cy, F) = 1 (Figure 10), similar to the
proof of MutualNN, Ck and CR must be mutual nearest neighbors
in F. Then Cyx will be generated in the iteration.

When len(Cx, F) = 2, depending on whether Cy’s children are
in F, there are three cases. In each case, we will prove that Cy’s de-
pendents will be in Cy’s partition so that Cy’s children will become
mutual nearest and be merged. The detailed proof is in Appen-
dix B.5.

Here we briefly present one situation in Case (3), which shows
why we set the radius to 10 times the distance between CLL and its
second nearest neighbor. In Case (3), when CLL’s second nearest
neighbor is not CR’s child. Let CLL’s second nearest neighbor be Cy,
and dist(CLL, Cy) = d. Then we can bound many distances as in
Figure 12. The longest distance is dist(CLE, Cis) < 10d, where Cl.S is
a cluster whose parent C;P has a weight dependency (Cf ,Cx). O

Using Lemma 2, we now prove Theorem 5.

PRrOOF. (Sketch) We can prove by induction that, in i-th iteration,
Algorithm 3 generates clusters Cyx with len(Cy) < 2i. So in the
[lenmax /2]-th iteration, all clusters are generated. O

We now derive the following corollary for Algorithm 6.

CoroLLARY 1. Ifdist(-,-) is a metric, and ky and ky are large
enough that every |63| and | L(Cx)| in Algorithm 6 are no less than
the corresponding |6y | and | L(Cx)| in Algorithm 5 respectively, Al-
gorithm 3 using Partitioning with Size Limit (Algorithm 6) finishes in
[lenmax /2] iterations.

4.4 Simplified Cost Model

In this section, we develop a simplified cost model for the running
time 7 in the distributed system, and then compare the cost of
MutualNN and PACk.

We define 7 as the sum of running time of all iterations:

7= SEETAHOn (7(Gy) + 1c(Gy))
In Iteration i, where G; is the input graph, the running time consists

of two main parts: data shuffle time 75(G;), and cpu time 7.(G;).
Following the cost models for distributed systems like Spark [2]

and Hadoop [23, 24] that assume almost uniform distribution of
data®, we further define:

size(Gj)

75(Gj) =
5(Gi) networkSpeed - #executors

where size(G;j) is the size of the graph in bytes, networkSpeed is
the number of bytes the system can shuffle in every unit time, and
#executors is the number of executors; and

oper(G;) - timePerOperation
#executors

(Gi) =

where oper(G;) is the number of cpu operations to process the
graph and timePerOperation is the time for each cpu operation. In
practice, #executors is much less than the number of partitions.

Example Deduplication Scenario. Now we present the cost in
a simplified scenario. Assume a set of original items S, each of
which has du duplicates. In practice, each item is very similar to its
duplicates (e.g., distance < 0.05), but its duplicates are less similar
to each other (e.g., distance > 0.05). This is a “hub-spoke” graph
where each original item is a hub and its duplicates are spokes. Each
item and its duplicates can be viewed as a group. To simplify the
analysis, further assume that groups are very different from one
another, which means no edge across groups as their distances are
above the threshold. Let the input graph be G; with initial singleton
clusters C(G1) and edge weights W(G1). So |C(G1)| = |S| - (du+1),
and |W(Gy)| = || - 4etDde.

Next, we use the Big Theta (©) notation to represent the asymp-
totic complexity.

MutualNN. In each iteration, all duplicates find their nearest
neighbor (NN) as the original item, but the original item’s NN
is only one duplicate. So MutualNN merges only one pair within
each group. Therefore, for the i-th iteration, C(G;) = |S|- (du+2-1),
and |[W(Gj)| = |S] - M It takes du iterations to finish.

Each iteration has 3 steps: (1) Find NN through an aggregation.
(2) Find mutual NN through a join of the NN pairs. (3) Merge mutual
NN and their edges. More detailed cost is in Appendix C.1, and we
only present the total costs here due to space limit:

size(G;) = ©((du +2 — i)%|S]) - sizePerEdge
oper(Gi) = O((du +2 — i)*|S])

Therefore,

#iterations

T= Z‘ (zs(Gi) + 7¢(Gi))

sizePerEdge timePerOperation

#executors

=0(du®)|S| -
(du)lS] (networkSpeed-#executors

Intuitively, the 7 contains ©(du®)|S| because the graph has
O(du?)|S| edges initially and has ©((du — i)?)|S| edges after the
i-th iteration. The algorithm stops after du iterations, resulting in

Y% ©((du -)?)|S| = ©(du?)|S| complexity.

“We empirically evaluate the performance on skewed data in Section 5.1.

Table 1: Datasets. Numbers in parentheses are of skewed
data.

Data [Type [#Items [#Edges
Song 1.0M 1.1M
Cite 43M 1.9M
LiveJ 4.8M 69.0M
wiki | Real 1.8M 28.5M
Urban 0.4M 6.5M
Bright 0.8M 24.0M
Reall 258.4M (35.4M) | 680.4M (20.9M)
Real2 | oo o | 76.8M(10.5M) | 358.3M (34.9M)
Real3 | o - 197M (27M) | 107.7M (3.2M)
USPS ca 99.5M (13.6M) | 427.4M (39.4M)
IMDB 114M (1.6M) | 41.0M (1.2M)
FEBRL | Synthetic | 10.0M (10.0M) | 124.7M (11.6M)

PACKk. In practice, since identical items (like “Seattle” vs “Seat-
tle”) are usually aggregated together before clustering happens,
so the number of different duplicates (like “Seattle” vs misspelled
“Seatttle”) is usually very small (e.g., du < 100). Thus, ky and k,
are very likely > du, meaning each item and its duplicates end up
in the same partition. So the algorithm finishes in only 1 iteration.

The only iteration has 3 major steps on G1 (due to space limit, the
detailed minor steps are in Appendix C.2): partitioning, distance-
aware merging, and cluster integration with graph update. The
total cost of all steps is:

size(G1) =©(du? - |S) - sizePerEdge
oper(G1) =0(|S| - (du? log du))
Therefore,

7 =15(G1) + 7.(G1)

_o(du)|s| - sizePerEdge

networkSpeed - #executors
+O(du? logdu)|S| - timePerOperation
#executors

Comparison. PACK is less expensive than MutualNN in both data
shuffle and CPU time in this example. In data shuffle, which is
usually orders of magnitude slower than CPU computation, PACK’s
©(du?) term in complexity saves much more time than MutualNN’s
©(du®). In CPU computation, PACk’s ©(du? log du) is also better
than MutualNN’s ©(du?). The ©(log du) term is usually very small
in practice (e.g., < 10), because it is bounded by kn and kr. So PACk
is more efficient in this example.

In other real-world graphs, the graph structure is more complex
than this example scenario. There could be random edges with long
distances across different groups, which are difficult to be captured
by the cost model. So we present experimental evaluations on the
real-world data to compare the performance. As we will see in
the evaluation, PACk still notably out-performs the state-of-the-art
MutualNN on real-world datasets.

5 EVALUATION

In this section we evaluate PACK’s (1) performance, (2) scalability
and (3) sensitivity to key parameters of the algorithm and compare
it with the state-of-the-art algorithm MutualNN.

Dataset. We evaluated PACk (Section 3) on six real, five modified-
real and one synthetic datasets shown in Table 1.

The six real datasets are Song, Cite, Live], Wiki, Urban, and
Bright. Song and Cite use Jaccard distance and are from the Mag-
ellan Data Repository [8]. Song has the titles, releases, and artist
names of 1.0M songs. We tokenize each string into a set of tokens,
and then keep the pairs of sets with Jaccard distances < 0.4 to
get 1.1M edges. Cite is the union of Citeseer and DBLP paper ti-
tles containing 4.3M items. Similar to Song, we also tokenize and
keep the pairs with Jaccard distance < 0.4 to get 1.9M edges. Live]
and Wiki are large graphs from Stanford Large Network Dataset
Collection [29]. We assign random distances following uniform
distribution in (0, 1] for the edges. Live] [1, 30] is an online social
network with 4.8M items and 69.0M edges. Wiki [27, 58] is the
hyperlink network between articles in the most popular categories.
It has 1.8M items and 28.5M edges. Urban and Bright use Euclidean
distance. Urban is a dataset of road accidents within Great Britain ur-
ban areas from the UCI Machine Learning Repository [15]. We keep
pairs within 0.5 km to get a graph with 0.4M items and 6.5M edges.
Bright [5] is a location-based social network dataset from [29]. We
retrieve the distinct locations and keep pairs within 0.5 km to get a
graph with 0.8M items and 24.0M edges.

We additionally use six datasets to freely vary the number of
duplicates, making the task more challenging. They include five
modified-real datasets (Reall, Real2, Real3, USPS, and IMDB) and
one synthetic dataset (FEBRL). The Reall, Real2, and Real3 are pro-
prietary datasets used by three different applications in Microsoft.
They include names, addresses and other contact information of
organizations. USPS is a dataset of addresses in the United States,
from which we extract distinct concatenation of street address,
city, state and zip code. IMDB contains movie data from the Inter-
net Movie Data Base, in particular the Title, Directors and Genres
columns. FEBRL [6] is a synthetic dataset generated using an open
source tool. We extract person name, address, suburb, state, and
postcode columns from it.

We generate duplicates for these six datasets following uniform
and skewed distributions. In the uniform setting, we create 9 similar
items for each original item by inserting or deleting random char-
acters. Then we perform a self-join on the data and keep the pairs
with Jaccard distance < 0.4. As shown in Table 1, the input graphs
have 10.0 to 258.4 million items, with 41.0 to 680.4 million edges. In
the skewed setting, we make the number of duplicates follow the
Zipfian distribution where the exponent= 3. Then we again keep
the pairs with Jaccard distance < 0.4. As shown in the parentheses
in Table 1, the input graphs have 1.6 to 35.4 millions items, with
1.2 to 39.4 million edges. (We also evaluate the performance when
Jaccard distance < 0.2 in the uniform setting in [55].)

Baseline. We compare with the state-of-the-art algorithm that
merges mutual nearest neighbors (MutualNN in Section 2.3) in each
iteration. The idea was proposed in [38] and later simplified and
implemented in [13].

Setting. We conduct experiments on Azure Databricks Spark clus-
ters. The cluster has 16 D8s_v3 virtual machines. Each VM has 8
cores and 32 GB memory, running Apache Spark 2.4.3 and Scala
2.11. The default values of kn and kg, are 500.

600 b4 20
W MutualNN
= 500

] NP 15
Sh00 NPACK

£ 300
£ 200

*
o
= 5
100 I
o m [| = N m N 0 |

Wiki Urban Bright Song Cite Live) Wiki Urban Bright
Dataset Dataset

Speed-up
=
o

Song Cite Livel

Figure 13: PACk is much more efficient than MutualNN on
real datasets; The speed-up ranges from 2.2x to 18.9x. (*:
MutualNN exceeds 10 hours on Bright, meaning the speed-up
on Bright > 14.8x.)

B MutualNN 20

& PACK
= PACH 15
a
2
T 10
8
Q
&
I 5
) § N l\\\ N -~ m 0

Reall Real2 Real3 USPS IMDB FEBRL Reall Real2 Real3 USPS IMDB FEBRL
Dataset Dataset

BoRN N
o u o u
S © © o

Time (minute)

@
o

Z

7

Figure 14: PACk is much more efficient than MutualNN on
modified-real and synthetic datasets when number of du-
plicates follows uniform distribution; The speed-up ranges
from 4.4x to 17.4X.

250 ® MutualNN 20
15

EZOO N PACk

5

£ 150 T

£ 10

o 100

£

= 50 5 I
o L Lo hon .

Reall Real2 Real3 USPS IMDB FEBRL
Dataset

Speed-up

Reall Real2 Real3 USPS IMDB FEBRL
Dataset

Figure 15: PACk is much more efficient than MutualNN on
modified-real and synthetic datasets when number of du-
plicates follows Zipfian distribution; The speed-up ranges
from 6.4x to 19.8x.

60 = MutualNN 8E+5

& PACk
540
%30
3
520
10 I
o Ms Hs B By Ko L

Reall Real2 Real3 USPS IMDB FEBRL Real3 USPS IMDB FEBRL
Dataset Dataset

(a) (b)

® MutualNN

6545 S PACK

Shuffle Data (MB)
IS
=
T
&

N
N
§ I\\\ A -

~

m

T

&
777
Y,

S
N
OE+0
Reall Real2

Figure 16: PACk is more efficient than MutualNN because (a)
PACk takes fewer iterations; (b) PACk shuffles less data.

5.1 Performance

Our algorithm is more efficient than the state-of-the-art MutualNN
on various datasets. Specifically, we see 2.2X to 18.9% speed-up on
the six real datasets (Figure 13), 4.4X to 17.4x speed-up on the six
modified-real and synthetic datasets in uniform setting (Figure 14),
6.4% to 19.8x speed-up on the modified-real and synthetic datasets
in Zipfian setting (Figure 15).

350 —+Reall
300

© 250
g

£ 200
g 150
£ 100

0

Real3
FEBRL

——Real2

—-USPS —<IMDB

2 4 8 16
H#VM
Figure 17: PACk scales well to the number of VMs.

60 -—+—Reall —e—Real2 Real3 60 —+—Reall —e—Real2 Real3
50 —e=USPS =<IMDB FEBRL ,0750 —-USPS —=<IMDB FEBRL
340 540
— [=
£30 £ 30
- £
£ 20 g 20
=10 = 10

e ————

0 B 0 =

2X 4X 6X 8X 10X 20% 40% 60% 80% 100%
Size (Inreasing #Duplicates) Size (Inreasing #Groups)
(a) (b)

Figure 18: PACk scales almost linearly with the size of data in
terms of (a) #duplicates per group; (b) #groups.

PACk is more efficient than MutualNN because PACk finishes in
fewer iterations and shuffles less data. For example, on the six
modified-real and synthetic datasets in uniform setting, PACk takes
only 8.6% to 22.2% of iterations in MutualNN (Figure 16a), and PACk
shuffles 45.2% to 88.2% of the data in MutualNN (Figure 16b).

5.2 Scalability

In this experiment we evaluate the scalability of PACk. We vary the
number of VMs from 2 to 16. As Figure 17 illustrates, PACk scales
well when we vary the number of VMs. For example, on Reall
dataset, the running time using 4 VMs is roughly half the time
using 2 VMs. As we increase the VMs, the curve of running time
flattens. It is because the merges within each iteration are almost
exhaustively parallelized, while the data shuffle between iterations
gradually dominates the running time.

Next, we vary the number of items per duplicate group from 2
to 10 (i.e. duplicates from 1 to 9). As Figure 18a shows, PACk scale
almost linearly with the number of duplicates.

Next, we vary the number of duplicate groups from 20% to 100%
of the original input (fixing the number of items per group at 10).
PACk scale almost linearly with the number of groups (Figure 18b).

5.3 Parameter Sensitivity

In this experiment we study how parameters in PACk impact per-
formance. Recall that, in Algorithm 6, kxr controls the size of each
partition, and kr, controls the size of each edge lists.

We first fix k; = 500 and vary kp in {5, 10, 50, 100, 500, 1000}.
As Figure 19a shows, the running time decreases slightly as kxr
grows, because more neighbors are included in a partition and more
merges can be done. The time then increases slightly for overly
large k- = 1000 as too many neighbors only adds the shuffle cost.

We then fix ky = 500 and vary kg, in {5, 10, 50, 100, 500, 1000}. As
Figure 19b shows, the running time decreases as kj, grows, because
more edges are included in a partition and more merges can be

0
o

—+—Reall -e—Real2 Real3 200 —+—Reall —e=Real2 Real3

- ~-USPS_cIMDB —FEBRL E 150 —-USPS —<IMDB

; P

B0 ——— e E100

: [

2o —_—— .t

P E —

R — 0
5 50 500 °))

Ky)
. (b)

Figure 19: (a) When k; = 500, time slightly decreases as kyn
grows because more neighbors are included in a partition;
but increases for overly large ky = 1000. (b) When ky = 500,
time decreases as k; grows because more edges are included
in a partition; but increases for overly large k; = 1000.

done. The time then increases slightly for overly large k; = 1000
because too many edges only adds the shuffle cost.

6 RELATED WORK

The study of Agglomerative Hierarchical Clustering (AHC) dates
back to 1950s with a focus on centralized algorithms [21, 26, 28,
39, 40, 49]. The idea is to initially treat each node as a singleton
cluster, and then iteratively merge small clusters into bigger clus-
ters based on their pair-wise distances. When two clusters are
merged, their distance to a third cluster is updated according to
their individual distances. There exist several strategies. For exam-
ple, Single-linkage [22, 48] takes the minimum distance; Complete-
linkage [12] takes the maximum distance; Average-linkage [50]
uses the unweighted or weighted average distance. Others strate-
gies include Minimax [4]. These papers assume a centralized AHC
that stores the graph in memory. They do not scale to large datasets
since they are limited by the compute resources (CPU and memory)
available on a single machine.

Researchers have also developed distributed AHC algorithms. In
2005, Ding and He [13] proposed multi-level hierarchical clustering
(MutualNN), which merges mutually nearest cluster pairs concur-
rently. They proved that MutualNN generates the same result as
centralized AHC as long as the distance function satisfies Cluster
Aggregate Inequality, which is a stronger version of “reducibility
property” [38] proposed in 1980s. Sun et al. [51] implemented AHC
using Map-Reduce. Their algorithm collects top K edges with maxi-
mal weights from worker nodes to the driver node and merges as
many pairs as possible in the centralized driver node. Its scalability
is limited to the data size that can fit in the driver node. As a com-
parison, PACk performs clustering distributedly in worker nodes,
which has better scalability. Zhang et al. [60, 61] solved AHC under
Euclidean distance. They utilize a quad-tree or kd-tree to partition
vertices in the Euclidean space, cluster them within each partition,
and finally merge clusters. Their technique cannot be generalized
to other distance functions like cosine, Jaccard, etc.

Some approximate algorithms reduce the running time by sac-
rificing accuracy. Ma et al. [35] merge multiple clusters in each
iteration as long as their distances are within a predefined thresh-
old. A few papers [9, 10, 31] merge edges whose distances are less
than an increasing threshold in iterations. Tanaseichuk et al. [52]
applies K-means to group items into clusters first and then uses
AHC within each cluster. Gilpin et al. [17] group items in Euclidean

space into buckets and then apply AHC within each bucket. These
approximate algorithms produce different clustering results than
conventional AHC does.

Another line of work focuses on special cases of AHC or spe-
cial computational settings. Single-linkage as a special case of
AHC is similar to the typical minimum spanning tree problem.
Several efficient distributed single-linkage algorithms have been
proposed [3, 25, 42, 45, 56]. Dash et al. [10] proposed an algorithm
using shared memory architecture. Some researchers developed a
paralle]l AHC on shared-memory [43] or SIMD machines [32, 33, 46].

Other partitioning strategies exist in some graph systems. For
example, Pregel [36] performs message passing between vertices
to perform computation on a graph. Each vertex and its neighbors
can be viewed as a trivial partition, and its message passing can be
supported as data shuffle on Spark using GraphX [19]. In addition,
Distributed GraphLab [34] performs edge-cut and PowerGraph [18]
performs vertex-cut to partition graphs. These strategies do not
leverage the domain knowledge for AHC such as mutual nearest
neighbors and distance bounds. In comparison, PACk is particularly
designed for AHC and has better performance both analytically
and in practice.

Many academic and industrial tools support centralized AHC.
The examples include MATLAB, R [41], ScikitLearn [44] and
SciPy [53] in Python, etc. Similar to the centralized AHC in the
papers above, the scalability of these tools is limited to the size of
data that can fit in a single node.

7 CONCLUSION

We propose an efficient, distributed agglomerative hierarchical clus-
tering (AHC) algorithm PACk that scales well to large data sets. PACk
derives its efficiency from novel distance-based partitioning and
distance-aware merging techniques that enable significantly more
merges to be performed in parallel, thereby reducing the number of
iterations required as well as the data shuffle cost. We implement
PACk on Spark, and compare it to the state-of-the-art approach. Our
evaluation on several synthetic and real-world datasets including
Microsoft Dynamics 365 shows that PACk achieves consistently
large speedups ranging from 2x to 19X with a median of 9x.

ACKNOWLEDGMENTS

We thank Silu Huang, Wentao Wu, Chi Wang, and Arnd Christian
Konig for their insightful comments on the paper, and Swapna
Akula, Katchaguy Areekijseree, Meiyalagan Balasubramanian, and
Lengning Liu for their design, implementation, and optimization in
Microsoft Dynamics 365 Customer Insights.

REFERENCES

(1]

3

=

L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan. Group formation in large
social networks: Membership, growth, and evolution. In Proceedings of the 12th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD 06, page 44-54, New York, NY, USA, 2006. Association for Computing
Machinery.

L. Baldacci and M. Golfarelli. A cost model for spark sql. IEEE Transactions on
Knowledge and Data Engineering, 31(5):819-832, 2019.

M. Bateni, S. Behnezhad, M. Derakhshan, M. Hajiaghayi, R. Kiveris, S. Lattanzi,
and V. Mirrokni. Affinity clustering: Hierarchical clustering at scale. In Advances
in Neural Information Processing Systems, pages 6864-6874, 2017.

[4] J.Bien and R. Tibshirani. Hierarchical clustering with prototypes via minimax

(5]

[11]

[12]
[13]
[14]
[15]
[16]

[17

(18]

linkage. Journal of the American Statistical Association, 106(495):1075-1084, 2011.
E. Cho, S. A. Myers, and J. Leskovec. Friendship and mobility: user movement
in location-based social networks. In Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 1082—
1090, 2011.

P. Christen. Febrl - an open source data cleaning, deduplication and record
linkage system with a graphical user interface. In Proceedings of the 14th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, page
1065-1068, 2008.

W. W. Cohen and J. Richman. Learning to match and cluster large high-
dimensional data sets for data integration. In Proc. SIGKDD, page 475-480,
2002.

S. Das, A. Doan, P. S. G. C., C. Gokhale, P. Konda, Y. Govind, and D. Paulsen.
The magellan data repository. https://sites.google.com/site/anhaidgroup/useful-
stuff/data.

M. Dash, H. Liu, P. Scheuermann, and K. L. Tan. Fast hierarchical clustering and
its validation. Data Knowl. Eng., 44(1):109-138, Jan. 2003.

M. Dash, S. Petrutiu, and P. Scheuermann. Ppop: Fast yet accurate parallel
hierarchical clustering using partitioning. Data Knowl. Eng., 61(3):563-578, June
2007.

Daxin Jiang, Chun Tang, and Aidong Zhang. Cluster analysis for gene expression
data: a survey. IEEE Transactions on Knowledge and Data Engineering, 16(11):1370—
1386, 2004.

D. Defays. An efficient algorithm for a complete link method. The Computer
Journal, 20(4):364-366, 1977.

C. Ding and X. He. Cluster aggregate inequality and multi-level hierarchical
clustering. In Knowledge Discovery in Databases: PKDD, pages 71-83, 2005.

G. M. Downs and J. M. Barnard. Clustering methods and their uses in computa-
tional chemistry. Reviews in computational chemistry, 18:1-40, 2002.

D. Dua and C. Graff. UCI machine learning repository, 2017.

M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster analysis and
display of genome-wide expression patterns. Proceedings of the National Academy
of Sciences, 95(25):14863-14868, 1998.

S. Gilpin, B. Qian, and I. Davidson. Efficient hierarchical clustering of large high
dimensional datasets. In Proc. CIKM, page 1371-1380, 2013.

J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Powergraph: Dis-
tributed graph-parallel computation on natural graphs. In 10th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 12), pages 17-30,
2012.

[19] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I. Stoica.

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

Graphx: Graph processing in a distributed dataflow framework. In 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 14), pages
599-613, 2014.

P. Govender and V. Sivakumar. Application of k-means and hierarchical clustering
techniques for analysis of air pollution: A review (1980-2019). Atmospheric
Pollution Research, 11(1):40-56, 2020.

J. C. Gower. A comparison of some methods of cluster analysis. Biometrics,
23(4):623-637, 1967.

J. C. Gower and G. J. Ross. Minimum spanning trees and single linkage cluster
analysis. Journal of the Royal Statistical Society: Series C (Applied Statistics),
18(1):54—64, 1969.

H. Herodotou. Hadoop performance models. Technical report, http://www.cs.
duke.edu/starfish/files/hadoop-models.pdf, 2011.

H. Herodotou and S. Babu. Profiling, what-if analysis, and cost-based optimization
of mapreduce programs. Proc. VLDB Endow., 4(11):1111-1122, Aug. 2011.

C. Jin, R. Liu, Z. Chen, W. Hendrix, A. Agrawal, and A. Choudhary. A scalable
hierarchical clustering algorithm using spark. In Proc. BIGDATASERVICE, page
418-426, 2015.

S. C. Johnson. Hierarchical clustering schemes. Psychometrika, 32(3):241-254,
1967.

C. Klymko, D. F. Gleich, and T. G. Kolda. Using triangles to improve community
detection in directed networks. In The Second ASE International Conference on
Big Data Science and Computing, BigDataScience, 2014.

G. N. Lance and W. T. Williams. A General Theory of Classificatory Sorting
Strategies: 1. Hierarchical Systems. The Computer Journal, 9(4):373-380, 1967.

[29]

(30]

(31]

(32]

'@
&

'S
20,

=
2

[41

[42]

(43]

=
&

[45

[46]

[47

(48

[50

[51

(52]

[53

[54

[55]

J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collec-
tion. http://snap.stanford.edu/data, June 2014.

J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Community Structure
in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined
Clusters. Internet Mathematics, 6(1):29 — 123, 2009.

K. Li, Y. He, and K. Ganjam. Discovering enterprise concepts using spreadsheet
tables. In SIGKDD, page 1873-1882, 2017.

X. Li. Hierarchical clustering on simd machines with alignment network. In
Proceedings CVPR °89: IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pages 660-665, 1989.

X. Li. Parallel algorithms for hierarchical clustering and cluster validity. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 12(11):1088-1092, 1990.
Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein.
Distributed graphlab: A framework for machine learning and data mining in the
cloud. Proc. VLDB Endow., 5(8):716-727, Apr. 2012.

X.-L. Ma, H.-F. Hu, S.-F. Li, H.-M. Xiao, Q. Luo, D.-Q. Yang, and S.-W. Tang. Dhc:
Distributed, hierarchical clustering in sensor networks. Journal of Computer
Science and Technology, 26:643-662, 07 2011.

G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and
G. Czajkowski. Pregel: a system for large-scale graph processing. In Proceedings
of the 2010 ACM SIGMOD International Conference on Management of data, pages
135-146, 2010.

A.-A. Mamun, T. Mi, R. Aseltine, and S. Rajasekaran. Efficient sequential and
parallel algorithms for record linkage. Journal of the American Medical Informatics
Association, 21(2):252-262, 2014.

F. Murtagh. Complexities of hierarchic clustering algorithms: state of the art.
Computational Statistics Quarterly, 1(2):101-113, 1984.

F. Murtagh and P. Contreras. Algorithms for hierarchical clustering: an overview.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(1):86-97,
2012.

F. Murtagh and P. Contreras. Algorithms for hierarchical clustering: an overview,
ii. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
7(6):¢1219, 2017.

D. Miillner. fastcluster: Fast hierarchical, agglomerative clustering routines for r
and python. Journal of Statistical Software, Articles, 53(9):1-18, 2013.

V. Olman, F. Mao, H. Wu, and Y. Xu. Parallel clustering algorithm for large data
sets with applications in bioinformatics. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 6(2):344-352, 2009.

C. F. Olson. Parallel algorithms for hierarchical clustering. Parallel Computing,
21(8):1313 — 1325, 1995.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research, 12:2825-2830, 2011.

S. Rajasekaran. Efficient parallel hierarchical clustering algorithms. IEEE Trans-
actions on Parallel and Distributed Systems, 16(6):497-502, 2005.

E. M. Rasmussen and P. Willett. Efficiency of hierarchic agglomerative clustering
using the icl distributed array processor. Journal of Documentation, 45:1-24, 1989.
A. Shepitsen, J. Gemmell, B. Mobasher, and R. Burke. Personalized recommenda-
tion in social tagging systems using hierarchical clustering. In Proceedings of the
2008 ACM Conference on Recommender Systems, RecSys *08, page 259-266, New
York, NY, USA, 2008. Association for Computing Machinery.

R. Sibson. SLINK: An optimally efficient algorithm for the single-link cluster
method. The Computer Journal, 16(1):30-34, 1973.

P. H. Sneath. The application of computers to taxonomy. Microbiology, 17(1):201-
226, 1957.

R. Sokal and C. Michener. A Statistical Method for Evaluating Systematic Rela-
tionships. University of Kansas science bulletin. University of Kansas, 1958.

T. Sun, C. Shu, F. Li, H. Yu, L. Ma, and Y. Fang. An efficient hierarchical clustering
method for large datasets with map-reduce. In 2009 International Conference on
Parallel and Distributed Computing, Applications and Technologies, pages 494-499,
2009.

O. Tanaseichuk, A. Hadj Khodabakhshi, D. Petrov, J. Che, T. Jiang, B. Zhou,
A. Santrosyan, and Y. Zhou. An efficient hierarchical clustering algorithm for
large datasets. Austin Journal of Proteomics, Bioinformatics, 2(1):1-6, 2015.

P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett,
J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson,
C.]J. Carey, L. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold,
R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.
Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python. Nature Methods,
17:261-272, 2020.

F. Wang, J. Li, J. Tang, J. Zhang, and K. Wang. Name disambiguation using atomic
clusters. In Proc. WAIM, pages 357-364, 2008.

Y. Wang, V. Narasayya, Y. He, and S. Chaudhuri. An efficient partition-based
distributed agglomerative hierarchical clustering algorithm for deduplication.

https://sites.google.com/site/anhaidgroup/useful-stuff/data
https://sites.google.com/site/anhaidgroup/useful-stuff/data
http://www.cs.duke.edu/starfish/files/hadoop-models.pdf
http://www.cs.duke.edu/starfish/files/hadoop-models.pdf
http://snap.stanford.edu/data

Technical report, https://www.microsoft.com/en-us/research/publication/tech-
report-pack/, 2021.

C.-H. Wu, S.-J. Horng, and H.-R. Tsai. Efficient parallel algorithms for hierarchical
clustering on arrays with reconfigurable optical buses. J. Parallel Distrib. Comput.,
60(9):1137-1153, Sept. 2000.

W. Wu, C. Yu, A. Doan, and W. Meng. An interactive clustering-based approach
to integrating source query interfaces on the deep web. In Proc. SSGMOD, page
95-106, 2004.

H. Yin, A. R. Benson, J. Leskovec, and D. F. Gleich. Local higher-order graph
clustering. In Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD 17, page 555-564, New York, NY,
USA, 2017. Association for Computing Machinery.

V. Zappala, A. Cellino, P. Farinella, and Z. Knezevic. Asteroid families. i-
identification by hierarchical clustering and reliability assessment. The Astro-
nomical Journal, 100:2030-2046, 1990.

W. Zhang, G. Zhang, X. Chen, Y. Liu, X. Zhou, and J. Zhou. Dhc: A distributed
hierarchical clustering algorithm for large datasets. Journal of Circuits, Systems
and Computers, 28(04):1950065, 2019.

W. Zhang, G. Zhang, Y. Wang, Z. Zhu, and T. Li. Nnb: An efficient nearest
neighbor search method for hierarchical clustering on large datasets. In IEEE
ICSC 2015, pages 405-412, 2015.

Y. Zhao, G. Karypis, and U. Fayyad. Hierarchical clustering algorithms for
document datasets. Data mining and knowledge discovery, 10(2):141-168, 2005.

[56]

[57]

[58]

[60]

[61]

[62]

A TABLE OF NOTATIONS

Notation Description

C Set/Cluster of items

dist(-, ") Bivariate distance function

0 Distance threshold

label (Cy) Label of a cluster

W = {w(Cx,Cy)} | Set of weights between cluster pairs
G=(C,W) Graph of clusters and weights

L(Cy) Edge list of Cy

br(Cx,Cy) Lower bound of distance between cluster pairs
By (Cx, Cy) Upper bound of distance between cluster pairs
€ Set of all initial clusters and merged clusters

E Set of dependency edges

D= (%,E) DAG of clusters and dependecies

Ch(Cx) = Cx Two direct children (ie., sub fC
CR(CX) _ Cff 'wo direct children (i.e., subsets) of Cy
CP(Cx) = ij Parent of Cy

C3(Cy) =C% Sibling of Cy

F Frontier of the DAG at the beginning of an iteration
len(Cy) Longest distance from any initial cluster to Cy
lenmax Maximum len(Cy) among all Cx € €
len(Cy, F) Distance between Cy and F

kN Nearest kx neighbors

193 Top ki, edges

Figure 20: Notations

Figure 20 lists the major notations.

B PROOFS

B.1 Proof of Inequality 2 and Its Extension

The detailed proof of Inequality 2 is in [13]. Here we only show why
Average-Linkage satisfies the inequality to facilitate our analysis in
the rest of this paper:

PrOOF.
diSt(Cij, Cy)

1
T |Cijl - 1Cx| Z

ceCij,c’ECx

dist(c,c’)

1
:m Z dist(c,c’) + Z dist(c,c’)
t x ceCj,c’€Cy CGCj,c’GCX
ICil Y dist(e,¢’) ICil X dist(e)
_ ceCj,c’e€Cx . ceCj,c’eCx
|Cijl |Ci[|Cx | [CilICx|
1 . .
:@ (|Cl| -dist(Ci, Cx) + |C]| 'dlSl‘(Cj,cx))
1 . . .
> col (C(IC;1 + |C;) - min (dist (Cs, Cx), dist(Cj,Cx)))
ij
1 . . .
:m((|Ci| +|C;|) - min (dist(Cy, Cx), dist(Cj,Cx)))
i J

=min (dist(Cy, Cx), dist(Cj,Cx))
o
In this paper, we also extend the inequality to get its other side

following a similar proof in Appendix B.1 to facilitate our analysis
later:

VCi, Cj, Cx : dist(Cij,Cx) < max (dist(ci, Cx), dist(Cj, Cx)) (3)
Similarly, we can prove Inequality 3:

PROOF.
dist(Cij, Cx)

1
T 1Cij] - 1Cx| Z

cECij,c’ecx

dist(c,c’)

:W (|C,| -dist(C;, Cx) + |CJ| . dist(Cj,Cx))
ij
1
SW((lcll + |CJ|) + max (dist(Ci,Cx),dist(Cj,Cx)))
ij
1
:m((|Cl| + |C]|) - max (diSt(Ci,Cx),dist(Cj,Cx)))
i J

=max (dist(C;, Cx), dist(Cj,Cx))

B.2 Proof of Theorem 1

The proof requires the following lemmas.

B.2.1 More Lemmas for Theorem 1.

LEMMA 3. When C; N Cj = 0, w(C; U Cj, Cx) > min (w(Cy, Cx),
W(Cj, Cx))

Proor. W.lo.g., assume w(Cj, Cy) >
dist(Ci,Cx) = dist(Cj, Cx).

We compare the three elements of w(C; UCj, Cx) and w(Cj, Cx):

(1) dist(C; U Cj,Cx) = dist(Cj, Cx) by Inequality 2.

Next, because label(C; U Cj) = max(label(C;), label(Cj)) >
label(Cj):

()

w(Cj,Cx). So

min(label(C; U Cj), label(Cx))
=min(max(label(C;), label(C})), label(Cx))
> min(label(Cj), label(Cx))

https://www.microsoft.com/en-us/research/publication/tech-report-pack/
https://www.microsoft.com/en-us/research/publication/tech-report-pack/

and (3)
max(label(C; U Cj), label(Cx))
=max(max(label(C;), label(Cj)), label (Cy))
> max(label(Cj), label(Cy))
So the three-element tuple
w(Ci UCj,Cx)
=(dist(C; U Cj,Cy),
min(label(C; U Cj), label(Cy)),
max(label(C; U Cj), label(Cy)))
=(dist(C; U Cj,Cy),
min(max(label(C;), lalel(C})), label(Cx)),
max(max(label(C;), lalel(C)), label(Cy)))
>w(Cj,Cx)
=min (w(Ci, Cx), w(Cj,Cx))

]

LEMMA 4. At the beginning of Algorithm 1’s iteration (i.e. Line 1),
given a Generated Cluster Cx in the frontier F and an Ungenerated
Cluster Cy with Cx N Cy = 0, there must be a Cy’s descendant C;
such thatC’; € F and w(Cx, Cy) 2 w(Cy, C*y).

ProoF. Since Cy is Ungenerated, it must have two children:
_ L R

Cy=CyuC v
Lemma 3 implies

w(Cy, Cy) 2 min (w(Cy, C}), w(Cx, C}))

Let the child with smaller weight in {CL, Cﬁ} be C’,, so w(Cy, Cy) >
w(Cy, C’y) There are two cases:

o If C,y is a Generated Cluster, according to Definition 5, C ;/ is
in F. So C’y is the Cj, we look for.

o If Cg, is an Ungenerated Cluster, we move on to check C;’s
child C/ that has the smaller weight among Cj,’s two chil-
dren.

We keep checking the child with smaller weight until we find
the first child that is a Generated Cluster, which should be the CZ'
This process always stops because all Initial Clusters are Generated
Clusters (Definition 4). O

B.2.2 Subset Dependency Edge Property.

LEMMA 5. For a Subset Dependency edge (Cx, Cy) where both Cx
and Cy are Merged clusters, W(C,LC, Cf?) < w(CL, Cﬁ).

Proor. W.lo.g., suppose Cy = Cé (Figure 21). So C§ =cLuck
Next, we prove by contradiction.
Suppose W(CJ];, Cff) > w(CL, CS). Based on Lemma 3,

w(CE, CR) = w(CL, CF)
=w(Ckuck ch

> min (w(CE, C§), w(CX, CY))

¢y =cH(c) = ¢

Frontier
w(Cg,Cy) ‘

w(C, C5)

Figure 21: Illustration of Lemma 5 about Subset Dependency
(Cx,Cy). If w(CE,CR) > w(CL,CE), we will find Cj in the
Frontier, which is either C§ or Cg’s descendant, such that
w(CL, By > w(CE, Cy), violating that CL is CB’s nearst neigh-
bor in the Frontier.

W.lo.g., assume W(Cﬁ, Cg) > w(Cff, Cg) (the proof for w(C,I;, Cg) <
w(CfS, Cg) is similar). So,
min (w(CY, C3), w(CX,Cp)) = w(CR,CF)
— w(Cy, CR) = w(Cx,CP)
Now we look at the iteration in which CL and CF becomes the
nearest pair in the Frontier (i.e. in Line 2 of Algorithm 1). In that

iteration, by definition of the Subset Dependency, Cy must be an
Ungenerated cluster.

o If C§ is Generated, by Definition 5, C§ is in the Frontier. We
define CZ = C§ so that w(CL, CB) > w(CE, C’;).

o Otherwise, C§ is Ungenerated, so according to Lemma 4, we
can always find a Cg’s descendant CZ in the Frontier such
that w(Cy, CX) = w(CR,C) = w(C¥,Cy).

In either case, we canfinda C Z in the Frontier such that w(C,% , C,If) >

w(C,}S, CZ) Then by Definition 1,

CENCy =0 — label(CE) # label(C})
— w(Cr, CR) # w(Ck C})

So, w(C,];, Cff) > w(CfS, CZ) This violates that C,I; and Cff are mu-

tual nearest in the Frontier. Contradiction.
So, w(C,%,CfS) > w(Ck, C§) is false, meaning w(C,%,CfS) <
w(CL,CR).
O

B.2.3 Weight Dependency Edge Property.

LEMMA 6. For a Weight Dependency edge (Cx, Cy), w(CEL, cRy <
w(CL,CE).

Proor. We prove by contradiction (Figure 22).

Suppose w(C,I;, C,If) > w(CL,CIJ).

According to Definition 3, we can find Cy’s child Cy and Cy’s
child C;, such that w(C},C}) < W(CL,CIJ). W.lo.g., assume we

Frontier

w(Cy, C})

w(C}, Cy)

Figure 22: Illustration of Lemma 6 about Weight Depen-
dency (Cx,Cy). If w(CL,CRy > w(CL, C§), we will find Cj, in
the Frontier, which is either Cg or C§ ’s descendant, such that
w(CL, CB) > w(CE, Cy), violating that CL is CR’s nearst neigh-
bor in the Frontier.

find C}, = CR and C}, = C§. So
w(CE,CR) > w(ck.cR) > w(cR k)

Now we look at the iteration in which CL and CR becomes the
nearest pair in the Frontier (i.e. in Line 2 of Algorithm 1). In that
iteration, Cy must be an Ungenerated cluster, because w(CL, Cf,) >

w(Ck, CIJ) meaning CIB‘, is not Clyz’s nearest neighbor yet.

o If Cllf is Generated, by Definition 5, C}; is in the Frontier. We
define C’; = Cg so that w(C,L(, CJ{‘.)) > w(C,}S, CZ)

e Otherwise, CI;: is Ungenerated, so according to Lemma 4, we
can always find a C}; ’s descendant CZ, in the Frontier such

that w(Ck, CR) > w(CR CR) > w(CE c}).

In either case, we can find a Cy, in the Frontier such that w(CL, CR) >
w(CE, Cy). This violates that CL and CR are the nearest pair in the
Frontier. Contradiction.

So, w(CJI;, Cff) > w(CL, C};) is false, meaning w(CJI;, Cff) <
w(CL,CR).

]

B.2.4 Proof of Theorem 1.
Now we can prove Theorem 1.

ProoF. We prove by contradiction.

Suppose there exists a cycle (Cy,, Cx,, Cxy, -, Cx,,)-

According to Defintion 2 and 3, only Initial clusters can have
“in-degree = 0”. Since every Cy, has “in-degree > 17, Cy, must be
Merged clusters. So each Cy; must have two children C,I;i and Cﬁi.

Based on Lemma 5 and 6, we have w(C,];l, Cffl) < W(Cchz> Cffz) <

. < W(C)lc‘m, Cffm) < w(C,LCI, Cffl), resulting in w(C?Lcl, Cﬁl) <
w(CJLq, C,Ifl) (Figure 7). Contradiction.

So there is no cycle in the graph. O

B.3 Proof of Lemma 1

Proor. W.lo.g., assume w(Cy, CLy > w(CL, CR). There are two
cases:

Figure 23: dist(CL, Cy) < dist(CL, CR) + dist(Cyx, Cy).

(1) When Cy, has parent Cg, by Definition 3, there must be a
Weight Dependency edge (CF, C*).

(2) When Cy does not have a parent, we look at the iteration in
which CL and CR are merged. In that iteration, both CL and
CR must be Generated. (a) If C y is also Generated, then ck
should be merged with Cy because w(Cy, C)LC) > W(C)Ig, Cff),
contradiction. (b) Otherwise, Cy is Ungenerated, then we
can always find Cy’s descendant Cy in the frontier satisfy-
ing w(C%, CL) > w(CL, CF) (by Lemma 4 in Appendix B.2).
Then CL should be merged with C; instead of CR, contra-
diction.
So in both situation, C,I; cannot be merged with Cf, result-
ing in a contradiction. Therefore, C y should always have a
parent, which falls in Case 1 above.

O
B.4 Proof of Theorem 4
Proor.
dist(C;, Cy)
1
= dist(cj, cx)
|CiHck| c-eC;eC '
i€CC el
1 1 Z
= — dist(c;, cx)
|ClHCk| Cigci’ckéck |C]| c]-ECj
1 1
< —_ Z (dist(ci, ¢;) +dist(cj, ck))
ICilICk o e, 1GH] 2
i€Ci.cp€C, cjeCj
1 1
= — dist(c;, cj)
|Cich| c;j€Cj,cjeCj ‘ck c;C v
i€CpCjel; k<Ck
1 1 .
* 1G] o 2 distena
cjeCj.cpeCp c;€C;
1 Z 1
= dist(ci, cj) + T dist(cj, ck)
ICi11C)1 cieCrapec; 1G5 11Ck | ¢jeClereCy
=dist(C;j, Cj) + diSt(Cj,Ck)
O

B.5 Proof of Lemma 2

We prove the following lemma before proving Lemma 2.

LEMMA 7. When the distance function satisfies triangle inequality,
given Cy = CL U CR, dist(CL, Cy) < dist(CL, CR) + dist(Cx, Cy).

Proor. Figure 23 is an example.

dist(Cx, Cy) > min(dist(CL, Cy), dist(CR, Cy)) by Inequality 2

When dist(CL,C,) < dist(CR,Cy), dist(Cx,Cy) >
min(dist (CE, Cy), dist (CR, Cy)) = dist(CL,Cy), so
dist(CL,Cy) < dist(Cx,Cy) < dist(CL CR) + dist(Cx,Cy)
because dist(CL, CR) > o.

len(Cy, F) = 2

Frontier F

Figure 24: When len(Cx, F) = 2 and both C,’s children are in
F, Algorithm 3 will generate Cy.

When dist(CL,C,) > dist(CR,Cy), dist(Cx,Cy) >
min(dist(CL, Cy), dist(CR, Cy)) = dist(CR, Cy), so dist(CL, Cy) <
dist(CL, CR) + dist(CR, Cy) < dist(CL, CR) + dist(Cy, Cy) because
of triangle inequality.

m}

Now we can prove Lemma 2.

Proor. When len(Cy, F) = 1 (Figure 10), similar to the proof of
MutualNN, Ck and CR must be mutual nearest neighbors in F. Then
Cx will be generated in the iteration.

When len(Cy, F) = 2, depending on whether Cy’s children are
in F, there are three cases. In each case, we will prove that Cx’s
dependents will be generated in Cy’s partition so that Cy’s children
will become mutual nearest and be merged.

(1) Both Cx’s children are in F. We can prove that all Cy’s depen-
dents will be generated in the iteration, so that CL and CR will
become mutual nearest and be merged. The detailed proof is in
Appendix B.5.1.

(2) Only one of Cy’s children is in F. W.lo.g., assume CL € F.
Depending on whether CL’s nearest neighbor in F is CX’s child,
there are two cases. The detailed proof is in Appendix B.5.2.

(3) None of Cy’s children is in F. So we can prove that C,I;L, C)ISL,
CLR and CER are in F, and CLL’s nearest neighbor must be
CRL Depending on whether CLL’s second nearest neighbor is
CRs child, there are two cases. The detailed proof is in Appen-
dix B.5.3.

O

B.5.1 len(Cx, F) = 2 and both Cy’s children are in F.

Cask 1. Both Cyx’s children are in F (Figure 24). In this case,
CL and CR cannot be mutual nearest in F because len(Cy, F) = 2.
W.lo.g., assume CL’s nearest neighbor in F is Cy. Let dist(CL, Cy) =
d. Note that d is no more than the distance to CL’s 2nd nearest
neighbor.

(1.1)
There must be path (Cy, CI;, Cy) by Lemma 1. So C‘Z must exist

in F, otherwise len(CE, F) > 1 and len(Cy, F) > 2, contradiction.
dist(CS ,C y) < d, otherwise, there will be a Weight Dependency
edge (Cy, Cg) forming a cycle with (chb.cy), violating Theorem 1.
dist(CS,CL) < dist(CS,Cy) + dist(Cy, CLy < 2d by triangle
inequality.
dist(CP, CL)
equality 3.

dist(C§ U Cy,C) < dist(Cy,Cx) < 2d by In-

Since dist(C3, Cy) < d, they should be in each other’s edge list.

So both Cls/ and Cy will be in CL’s partition and will be merged.

In addition, dist(C!I';, CJ];) and dist(C}yD, CJIS) will be precisely cal-
culated because all distances between {C3, Cy}x {CL,CRY are < 4d
and included in edge lists. So w(CP, CLy and w(CP, C,}f) will be
greater than w(CL, CR) in Algorithm 4.

(1.2)

dist(C,LC,CfS) < dist(C,LC, Cg) < 2d, otherwise there would be a
path (CP, CIJP, Cx) by Lemma 1, resulting in len(CF, F) > 1 and
len(Cy, F) > 2, contradiction.

(1.3)

For any C; with w(C;, CR) < w(CL, CR):

There must be path (C;, Cf, Cx) by Lemma 1. C;’s sibling CiS must
be in F and they are mutual nearest in F. Otherwise, len(Cf, F)>1
and len(Cy, F) > 2, contradiction.

w(Ci, CRY < w(CL, CRY — dist(C;, CR) < dist(CL,CR) < 2d as
Definition 1 suggests. So dist(C;, CL) < 4d by triangle inequality.

By Definition 3, (Cl}.), Cy) is a Weight Dependency. So w(C;, CZS) <
w(C,%, C,If) by Lemma 6, meaning dist(Ci,Cl.S) < dist(C,LC, Cff) < 2d.
Therefore, dist(Cf, CLy < 6d by triangle inequality.

Since dist(C;, CL) < 4d and dist(Cl.S,C,LC) < 6d, both C; and Cl.s
are in CL’s partition. In addtion, since dist(C;, Cf) < 2d,C;and Cf
should exist in each other’s edge list. So C{’ will be generated.

In addition, dist(Cf, cLy and dist(Cf, Cff) will be precisely cal-
culated because all distances between {Cj, Cis} X {C,Lc, Cf?} are < 6d
and included in edge lists. So W(CIP, C)I;) and w(Cf, Cf?) will be
greater than w(CL, CR) in Algorithm 4.

(1.4)

For any C; with w(C;, C,LC) < w(C)I;, Cf) (not shown in Figure 24):

Similar to the case above, we can prove that dist(C;, C,LC) < 2d,
dist(C;.s, C,L() < 4d, and dist(C;, Cls) < 2d.So Cj and Cis are in C,Lc’s
partition and will be merged to get Cf . In addition, w(C%D ,CL) and
w(ClP, CR) will be greater than w(Ck, CR) in Algorithm 4.

(1.5)

All other clusters C; in F are not Cy’s dependents, meaning
w(Ci,C)];) > w(C)I;, C)If) and w(C;, C)If) > W(C,];, C)If). So no matter
how they merge, they won’t be closer to CL or CR than w(CL, CF)
by Lemma 3.

(1.6)

In conclusion, all Cy’s Weight Dependents like Cl; and C{J will
be generated, so CL and CR will be mutual nearest and merged to
get Cy in Algorithm 4. O

B.5.2 len(Cx, F) = 2 and only one of Cx’s children is in F.

CAsE 2. Only one of Cy’s children is in F. W.l.o.g., assume C,I; €
F. Then Cf must be Ungenerated, and its two children C)%R and
CER must be in F.

CLR and CBR must be mutual nearest in F, otherwise len(CE, F) >
1 and len(Cy, F) > 2, contradiction. So in the rest of this case we
focus on weight dependency towards Cy.

There are two cases:

(1) When CL’s nearest neighbor in F is CER (or CRR) (Figure 25).

len(Cy, F) = 2 Frontier F

Figure 25: When len(Cy, F) = 2, CL is in F, and CL’s nearest
neighbor in F is CLR, Algorithm 3 will generate Cy.

len(Cy, F) =2 Frontier F

< 6d

<

N\

G, ek et
N

@
o

~ -

Figure 26: When len(Cy, F) = 2, CL is in F, and CL’s nearest
neighbor in F is Cy, Algorithm 3 will generate Cy.

Let dist(CL,CLR) = d. Note that d is no more than the
distance to CL’s 2nd nearest neighbor.

dist(CER CRR) < d because CLR and CRR are mutual near-
estin F.

dist(CL, CRR) < 2d by triangle inequality.

So dist(CL, CR) < 2d by Inequality 3.

(2.1.1)

For any C; with w(C;, C)If) < W(C)I;, C,If), same as Case 1.3
above, we can prove that:

dist(C;, CR) < dist(CL, CR) < 2d,

dist(C;,CL) < 2d + 2d = 4d,

dist(Ci,C?) < dist(CL, CR) < 2d by Lemma 6,

and dist(C;,CL) < 4d +2d = 6d.

So C; and Cis will be merged to Cf, and w(ClP, C,LC) and
W(Cf), C}IS) will be greated than W(C,LC, Cff).

(2.1.2)

For any C; with w(C;, CL) < w(CEL, c§), same as Case 1.4,
we can prove that dist(C;, CL) < 2d, dist(Cf,C,];) < 4d, C;j and
Cis will be merged and ClP won’t block the generation of Cy.

(2.1.3)

All other C; in F are not Cy’s dependents. No matter how
they merge, they won’t block the generation of Cy.

(2) When C)I;’s nearest neighbor in F is not C,IgR or CffR (Figure 26).

Assume CL’s nearest neighbor in F is Cy. So w(Cy, CLyis
less than w(CL, CLR) and w(CL, CRR), suggesting w(Cy, ch <
w(CEL, CR) by Lemma 3. Therefore, there must be a path
(Cy, C{;, Cx) by Lemma 1.

Let dist(C,L(, Cy) = d. Note that d is no more than the dis-
tance to CL’s 2nd nearest neighbor.

len(Cy, F) =2

Frontier F

Figure 27: When len(Cy, F) = 2,Cyx’s children are notin F, and
CLL’s nearest neighbor in F is CLR, Algorithm 3 will generate
Cx.

(2.2.1)

Same as Case 1.1 above, we can prove that:

dist(C5,Cy) < d,

dist(Cy, CE) < dist(C§, Cy) +dist(Cy, CE) < 2d,

dist(Ch, CL) = dist(Cy U Cy, CE) < dist(Cy, Ck) < 2d,

and both CZ and Cy will be in CL’s partition and be merged.
ny”s weight w(CP, CL) and w(CP, CR) will be greater than
w(CL, CR) in Algorithm 4.

(2.2.2)

dist(CL, By < dist(CL, C};) < 2d, otherwise there would
be a path (cP, CZP, Cy) by Lemma 1, making len(Cy, F) > 3,
contradiction.

Then dist(CER, CRR) < dist(CL, CR) < 2d by Lemma 5.

Wlo.g., assume dist(C)];R, C)LC) < dist(CffR, C)I;), S0
dist(CLR, CL) < dist(CR, CL) < 2d according to Inequality 2.

So dist(CL,CLR) < 2d and dist(CL,CRR) < 4d, mean-
ing they will be in CL’s partition. Since dist(CRR, CLR) < 24,
CLR and CRR will be in each other’s edge list and merged.
dist(CL, CR) will be precisely calculated.

(2.2.3)

For any C; with w(C;, CR) < w(CL, CR), same as Case 1.3
above, we can prove that: C; and C? will be merged to ClP , and
W(Cf, C,%) and w(ClP, C,If) will be greated than w(C,I;, C,}f).

(2.2.4)

For any C; with w(Ci,C)];) < w(C)I;, Cff), same as Case 1.4,
we can prove that dist(Cj, C)LC) < 2d, dist(CiS,C,I;) < 4d, Cj and
C? will be merged and CIP won’t block the generation of Cy.

(2.2.5)

All other C; in F are not Cyx’s dependents and won’t block
the generation of Cy.

In either case, Cx will be generated. O

B.5.3 len(Cx, F) = 2 and none of Cx’s children is in F.

CASE 3. None of Cy’s children is in F. Then C,L(and Cff must be
Ungenerated. In addition, CXF and CEX must be in F and be mutual
nearest; otherwise len(Cy, F) > 2, contradiction. Similarly, C,L(R and
CER must be mutual nearest in F.

CLL’s second nearest neighbor falls in two cases:

(1) When CEL’s second nearest neighbor is CLR (or CRR) (Fig-
ure 27).

~

Assume CLL’s second nearest neighbor in F is CLR. Let
dist(CLL, CLR) = ¢,

(3.1.1)

dist(CEE, CRL) < d because CEL and CRE are mutual near-
est.

dist(CER CRR) < d because CLR and CRR are mutual near-
est. So dist(CLE, CRR) < 2d by triangle inequality.

Thus, CRE, LR and CER will all be in CLL’s partition, and
CL and CR will be generated.

In addition, dist(CLL,CR) < 2d by Inequality 3.
dist(CRL, CR)y < dist(CRE, CELY + dist(CEL, CR) < 3d. So all
distances between {CLL, CRLY} x {CLR CRRY are < 3d, sug-
gesting all these edges will be included in the edge lists. So
dist(CL, CR) < 3d will be precisely calculated.

(3.1.2)

For any C; with w(C;, Cf) < W(C,I;, Cff), same as Case 1.3,
we can prove that:

dist(C;, CR) < dist(CL, CR) < 3d,

C; will be merged with Cf to get Cf, where dist(C;, Cis) <
dist(CE, CR) < 3d by Lemma 6.

So dist(CLL,C;) < dist(CLL,CRY + dist(CR,C;) < 5d,
dist(CEE, C9) < dist(CLE, ¢;) + dist(C;, CF) < 8d.

In addition, the distances between {C,L(L, C,}SL, C,I;R, CffR} X
{C, C;g} are < dist(CfSL, Cf) <
edge lists. So C;P will be generated with precise W(Cf, CLy and
w(Cf:D, CR) which are be greated than w(Ck, CF).

(3.1.3)

For any C; with w(C;, C,L() < w(C,L(, CJ}S), same as Case 3.1.2,
we can prove that dist(C;, CEL) < 4d, dist(CiS, CEY < 7d, ¢;
and Cis will be merged and Cf) won’t block the generation of
Cy.

When CLL’s 2nd nearest neighbor is not CLR or CER, Let the
2nd nearest neighbor be Cy; and dist(CLE, Cy) =d.

Obviously dist(CLL,CRL) < d because they are mutual
nearest.

(3.2.1)

Next, we prove dist(CL, CR) < 3d in two cases.

o If w(Cy,CL) > w(CL,CR),

9d, so all edges will be in

dist(CL, Ry < dist(cy, CL)
< max(dist(Cy, CEF), dist(Cy, CRF))
= dist(Cy, CRF)
< dist(Cy, CEL) + dist(CEE, CRE)
<2d

e Otherwise, w(Cy, chy < w(ck, Cf) (Figure 12).
So there must be a path (Cy, Cg, Cx) by Lemma 1. Also, Cf,
must be Cy’s nearest neighbor in F, otherwise len(C}yD, F)>1
and len(Cy, F) > 2, contradiction.
So dist(Cy, Cy) < dist(Cy,CEF) < d.
dist(CP, CLL) < max(dist(CS,CL), dist(Cy,CL)) < 2d, and
dist(CP,CRLY < 2d + d = 3d.
dist(CE, C) < max(dist(CE, CEL), dist(CE, CRL)) < 3d.

dist(CL, CR) < dist(CP, CL) < 3d, otherwise there will be a
path (CP, C‘ZP, Cx), making len(Cx, F) > 2, contradiction.

(3.2.2)

Then dist(CER, CRR) < dist(CL, CR) < 3d by Lemma 5.

Then we can prove all distances between {CLL, CRE} x
{CLR CRR} are < 7d by Lemma 7.

So CL and CR will be generated in CLL’s partition.

(3.2.3)

For any C; with w(C;, CR) < w(CL, CR), similar to Case 1.2,
we can prove that dist(C;, CR) < 3d and dist(leg,C,-) < 3d.

So dist(CEE, C;) < 7d and dist(CLE, C7) < 10d by triangle
inequality and Lemma 7.

In addition, the distances between {C)IgL, C)ISL, C,I;R, C,IfR 1 x
{Ci,Cf} are < dist(C,lfL,CiS) < 10d, so all edges will be in
edge lists. So Cf"J will be generated with precise w(CfJ, CLy and
w(ClP, Cff) which are greated than w(C,L(, Cff)

(3.2.4)

For any C; with w(C;, CL) < w(CL, CR), same as Case 3.2.3,
we can prove that dist(Cj, C,LCL) < 4d, dist(Cl.S,C,LCL) < 17d,C;
and Cis will be merged and CIP won’t block the generation of
Cx.

(3.2.5)

All other C; in F are not Cy’s dependents and won’t block
the generation of Cy.

C SIMPLIFIED COST MODEL
C.1 MutualNN

Each iteration has 3 steps:

(1) Find NN through an aggregation: size1 (G;) = O(|W(G;)|) -
sizePerEdge to scan bi-directional edge weights; oper1 (G;) =
O(|W(Gj)|) to calculate min distance within each group.

(2) Find mutual NN through a join of the NN pairs: sizez(G;) =
O(|C(G;j)|) - sizePerEdge; opera(G;) = ©(|C(Gj)l).

(3) Merge mutual NN and their edges: size3(G;) = O(|W(G;)|+
|S|) - sizePerEdge to join edges; opers(G;) = O(|W(G;)]).

size(G;j) = size1(Gj) + sizez(G;) + sizes(G;j)
=O(|W(G))| + |C(G;i)| +|S|) - sizePerEdge
=0((du+2- i)2|S|) - sizePerEdge

oper(Gj) = oper1(Gj) + opera(G;) + opers(Gj)
=O(IW(Gi)|+1C(G)D
=0((du+2-1i)?S|)

Therefore,
#iterations
T= (75(Gi) + 7c(Gi))
i=1

_@(du(Zdu2 +9du + 13)) - |S| - sizePerEdge
- -networkSpeed - #executors
. O(du(2du® + 9du + 13)) - |S| - timePerOperation

-#executors
sizePerEdge

imeP .
—o(du)|s] - + timePerOperation
#executors

networkSpeed - #executors

C.2 PACk

Each iteration in PACk has 7 steps:
The only iteration has 7 steps on Gj:

e Partitioning.

(1) Find NN through an aggregation: size;(G1) =
O(|W(Gy)|) - sizePerEdge to scan bi-directional edge
weights; opery (G1) = ©(|JW(Gy)]) to calculate min distance
within each group.

(2) Find hub through a join of the NN pairs: sizez(G1) =
O(|C(Gy)|) - sizePerEdge; opera(G1) = ©(|C(Gy))).

(3) Find top knx NNs by joining hub with edges:
size3(G1) = O(|W(Gy)l) - sizePerEdge; opers(Gi) = |S| -
O(dulogdu).

(4) Find top kr edges for each cluster in C(Gy):
size4(G1) = O(|C(Gy)| + |[W(G1)|) - sizePerEdge;
opers(Gy) = |C(G1)| - ©(dulog du).

e Distance-aware merging.

(5) For each partition, keep merging NNs using the
bounded distance-aware merging: sizes (G1) = O(|W(Gy)|) -
sizePerEdge; opers(Gy) = |S| - ©(du? log du).

o Cluster Integration and Graph Update.

(6) Keep maximal clusters: sizes(G1) = O(|C(Gy)]) -
sizePerEdge; opers(G1) = ©(|C(G1)]).

(7) Update edges: size7(G1) = O(|C(G1)| + |[W(G1)]) -
sizePerEdge; oper7(G1) = O(|C(G1)| + [W(G1))-

Given C(G1) = |S| - du and |W(G1)| = |S] - (du-;l)du,

7
size(Gy) = Z sizej(Gy)
=1
=0(|W(G1)| + |C(G1)|) - sizePerEdge

(du w;l)du N

=0(|S| - |S| - (du + 1)) - sizePerEdge

=0(du? - |S|) - sizePerEdge
9

7
oper(Gy) = Z oper;(Gy)

J=1
=0(IW(G1)| +|C(G1)]

+ (IS| + |C(G1)|) - (dulogdu) + S| - (du? log du))
=0(|S| - (du® log du))

20

50 W MutualNN 12

40 ¥ PACK 10

o
230 58
EZO § 6
o o
4
Elo . & N ’ 2
1L LI L i 111
o Y EY Ny EY B B

Reall Real2 Real3 USPS IMDB FEBRL
Dataset

Reall Real2 Real3 USPS IMDB FEBRL
Dataset

Figure 28: PACk is much more efficient than MutualNN on
modified-real and synthetic datasets when threshold=0.2;
The speed-up ranges from 2.1X to 10.6Xx.

1648 4 4 Reall eReal2 = Real3 1648 A Reall e Real2 =Real3
o ®USPS X IMDB - FEBRL . ¢ USPS < IMDB - FEBRL
S 1E+6 2 1E+6
G) [
§1E+4 ?T 1E+4
bt e > ©
- 1E+2 Y 1E+2 " :

1E+0 - * o 1E+0 % 28 XXM

0 200 400 600 800 0 200 400 600 800
Partition Sizes Edge List Sizes
(a) (b)

Figure 29: When Algorithm 5 is applied: (a) Most partitions
have < 500 clusters. (b) Most edge lists have < 500 edges.

Therefore,
7 =15(G1) +7c(G1)
sizePerEdge
networkSpeed - #executors
timePerOperation

=0(du?)|S| -

+0O(du? log du)|S| -
(du 8 wlsl #executors

D ADDITIONAL EVALUATION
D.1 Performance in different thresholds

PACK is more efficient than MutualNN when the Jaccard distance
threshold changes to 0.2 for the modified-real and synthetic datasets
in uniform setting. We observe 2.1X to 10.6x speed-up (Figure 28).

D.2 Partition Statistics

We study whether Corollary 1 holds in practice. We apply Algo-
rithm 5 to get partitions and edge lists of the input graph and
compare their sizes with kxr and kr, in Algorithm 6. We firstly com-
pute the sizes of partitions. We set bin width to 10 and plot the
frequency of each bin (Figure 29a). Most partitions have < 500
clusters. Then we compute the edge list sizes across all partitions
and plot the frequency with bin width = 10 (Figure 29b). Most edge
lists have < 500 edges. So setting kx = kp = 500 makes Corollary 1
generally hold in practice.

	Abstract
	1 Introduction
	2 Background
	2.1 Cluster Labeling and Distance Comparison
	2.2 Agglomerative Hierarchical Clustering
	2.3 Distributed AHC

	3 PAC Algorithm for Distributed AHC
	3.1 Intuition
	3.2 Overview
	3.3 Distance-Aware Merging
	3.4 Partitioning

	4 Analysis of Correctness and Performance
	4.1 Cluster DAG and Correctness
	4.2 Number of Iterations of MutualNN
	4.3 Number of Iterations of PACk
	4.4 Simplified Cost Model

	5 Evaluation
	5.1 Performance
	5.2 Scalability
	5.3 Parameter Sensitivity

	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Table of Notations
	B Proofs
	B.1 Proof of Inequality 2 and Its Extension
	B.2 Proof of Theorem 1
	B.3 Proof of Lemma 1
	B.4 Proof of Theorem 4
	B.5 Proof of Lemma 2

	C Simplified Cost Model
	C.1 MutualNN
	C.2 PACk

	D Additional Evaluation
	D.1 Performance in different thresholds
	D.2 Partition Statistics

