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Abstract—In recent years, the epidemic of speculative side
channels significantly increases the difficulty in enforcing domain
isolation boundaries in a virtualized cloud environment. Although
mitigations exist, the approach taken by the industry is neither a
long-term nor a scalable solution, as we target each vulnerability
with specific mitigations that add up to substantial performance
penalties. We propose a different approach to secret isolation:
guaranteeing that the hypervisor is Secret-Free (SF).

A Secret-Free design partitions memory into secrets and non-
secrets and reconstructs hypervisor isolation. It enforces that all
domains have a minimal and secret-free view of the address
space. In contrast to state-of-the-art, a Secret-Free hypervisor
does not identify secrets to be hidden, but instead identifies non-
secrets that can be shared, and only grants access necessary
for the current operation, an allow-list approach. SF designs
function with existing hardware and do not exhibit noticeable
performance penalties in production workloads versus the un-
mitigated baseline, and outperform state-of-the-art techniques
by allowing speculative execution where secrets are invisible. We
implement SF in Xen (a Type-I hypervisor) to demonstrate that
the design applies well to a commercial hypervisor. Evaluation
shows performance comparable to baseline and up to 37%
improvement in certain hypervisor paths compared with Xen
default mitigations.

Further, we demonstrate Secret-Free is a generic kernel
isolation infrastructure for a variety of systems, not limited to
Type-I hypervisors. We apply the same model in Hyper-V (Type-
I), bhyve (Type-II) and FreeBSD (UNIX kernel) to evaluate its
applicability and effectiveness. The successful implementations on
these systems prove the generality of SF, and reveal the specific
adaptations and optimizations required for each type of kernel.

Index Terms—security-in-depth, speculative vulnerabilities, hy-
pervisor security, secret-free.

I. INTRODUCTION

In the conventional model of kernel and user space sep-
aration, exploiting user space server applications has always
been an attractive target. These applications often run with
administrative privileges and handle data from multiple parties,
which are prone to attacks from malicious clients [1]-[5].
However, sophisticated static analysis tools, dynamic code
instrumentation, new programming languages, randomization
and sandboxing techniques in recent years have significantly
increased the complexity of mounting such attacks [[6]—[9].
Instead, security researchers have turned to kernel vulnera-
bilities. The ever increasing code base of OS kernels exerts
tremendous amount of pressure on code reviews and security
auditing. For example, the size of the Linux kernel has grown
from 6.6 MLOC back in 2.6.11 to 27.8 MLOC in 2020 [10].

*Part of the work is done while at Amazon Web Services.
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Analysing all the code for security vulnerabilities is astro-
nomically difficult, if not outright impossible. The growing
attack surface inevitably leads to an increasing number of
disclosed kernel vulnerabilities, ranging from heap overflows,
use-after-free bugs, undefined behaviour to race conditions and
insufficient privilege checks [11]-[14].

In recent years, speculative vulnerabilities such as Spec-
tre [15] and Meltdown [16|] further complicate kernel and
VM isolation. Enforcing architectural boundaries is no longer
sufficient in the presence of speculative side channels. To
prevent leaking sensitive content over the speculative paths on
affected hardware, mitigations are deployed including Kernel
Page Table Isolation (KPTI) [[17]], Indirect Branch Prediction
Barriers (IBPB) and Indirect Branch Restricted Speculation
(IBRS) [[18]], fences, cache flushes, core scheduling [19],
retpolines [20f], and so on. As these mitigations introduce
undesirable performance degradation especially in system-call-
heavy workloads, hardware modifications have been proposed
to limit the effect of speculation [21]-[23]. Although these
CPU and cache changes are able to block or restrict spec-
ulation at the silicon-level, it remains to be seen how well
they integrate into high-performance server farms and how
long such integration may take before the next vulnerability
is discovered.

As existing software mitigations can be inefficient and hard-
ware modifications take time to reach commercialization, we
explore new designs of the hypervisor such that each domain
always has a minimal surface and visibility. In the wake
of recent speculative execution vulnerabilities, we no longer
assume that architectural boundaries are sufficient and must
include speculative side channels in the design. In this paper,
we present the Secret-Free (SF) hypervisor as a systematic
defense-in-depth solution. We categorize system state as either
secrets or non-secrets and restrict all domains to the minimum,
having no access to secrets. In contrast to many existing
mitigations, we operate under an allow-list approach, treating
states as secrets by default. An address space contains secrets
of its own and explicitly identified non-secret data. Unlike
KPTT or XPTI (Xen Page Table Isolation), we do not assume
full access in the hypervisor. The hypervisor is restricted to the
current guest domain upon entry, and only creates temporary
mappings for secret access when necessary.

Reaching the SF guarantees requires several key design
components, including direct-map teardown, per-domain and
per-vCPU private memory, ephemeral mappings, efficient map
cache as well as the isolation of vCPU state, guest register



frames and hypervisor stacks. Together, they guarantee the
isolation of guest and hypervisor secrets while not introducing
noticeable performance impact from strict domain isolation.
Overall, the design and implementation of a secret-free hyper-
visor do not depend on hardware changes and can be deployed
at scale on existing cloud platforms with negligible overhead,
and is a generic structure that can be extrapolated to multiple
types of kernels.
The contributions of this paper are summarized below:

« We propose a design that isolates all domains (including
the hypervisor) from secrets. Instead of identifying secrets
that need to be hidden, the SF design maintains a minimal
address space and identifies non-secrets that can be
exposed.

« We extend the isolation to guest registers, vCPU state and
hypervisor stacks using private mappings.

+ We implement optimizations to minimize the overhead
from the isolation of secrets. We invent an efficient
caching mechanism for ephemeral mappings, proving that
a full address space is unnecessary for efficiency.

o We implement and evaluate the secret-free design on the
open-source Type-I Xen hypervisor. With specific adap-
tations and optimizations to Xen, we achieve negligible
overhead in real-world workloads and superior perfor-
mance compared with default mitigations. We evaluate its
security and demonstrate that it is impervious to several
categories of architectural and speculative attacks.

o We implement the Secret-Free design in Hyper-V, bhyve
and the FreeBSD kernel. The implementations show se-
cret freedom is a generic technique that can be retrofitted
into a variety of systems including traditional UNIX
kernels, Type-I, and Type-II hypervisors. We analyse
the applicability and effectiveness of the technique on
these systems and reveal necessary adaptations for further
performance improvement and security hardening.

II. BACKGROUND

In this section, we provide the background for kernel privi-
lege separation and address-space layout. We explain why such
a structure is susceptible to a broad category of architectural
and speculative side channel attacks.

A. Address space layout of modern kernels and VMMs

Assuming no Page Table Isolation (PTI), most kernels
have a similar address space layout under virtual memory
protection. User space guest address range (typically mapped
at low addresses) maps user accessible memory which is per-
process whereas the kernel / hypervisor address range (at high
addresses) is mapped into all page tables. As is shown in
Fig. (1} the full address space of a user process includes the
global kernel mappings guarded by permission bits in the Page
Table Entry (PTE), which are architecturally accessible only
under kernel privileges. Such a global mapping accelerates
system calls, interrupts and exception handling by requiring
only a privilege level change but not a page table swap,
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Fig. 1. Kernel/user split. The dashed square indicates the full address space
of Process 3.

reducing the performance cost from the accompanying CPU
pipeline and TLB flushes.

This layout applies to hypervisors as well. The second-level
paging or shadow page tables will present a different set of
memory to each VM but the full hypervisor address range is
mapped into all address spaces, ensuring fast hypercalls and
VM exit handling. The kernel and user address split is so
ubiquitous that we have not found a different design in the
kernels or hypervisors (Xen, Linux/KVM, FreeBSD/bhyve)
studied in this paper.

B. The direct map

By taking advantage of the abundance of virtual address
space, modern 64-bit kernels implement a common facility for
performance and ease of management: the direct map. This is
a large contiguous virtual address range in kernel that is 1:1
mapped to the entire physical memory (Fig.[I). Variations exist
that deviate from a flat 1:1 mapping on different platforms.
The Xen hypervisor permits “compression” by removing large
holes on the direct map, useful for accommodating devices
with RAM starting at high addresses or in multiple disjoint
ranges. Windows NT maintains multiple paged and non-paged
pools. These pools are physical pages mapped to virtual
addresses, which are either required to remain in memory
(non-paged pool) or can be removed from the memory because
a copy is already stored on the disk (paged pool). Combined,
these pools map a large fraction of the physical memory into
the kernel address space of every process.

The direct map leverages the address space under 64-bit
ISAs and is permanently mapped in all page tables, enabling
the kernel or hypervisor to efficiently access all (or most)
memory at any time. The access is fast because such large
contiguous mappings are typically handled by superpages to
reduce TLB pressure and page-table size.

C. Exploiting kernel privileges

Kernel code is susceptible to classes of vulnerabilities
introduced by programming errors and can be exploited to per-
form data leakage, data corruption, code injection and remote
execution. The lack of mutual isolation and the monolithic
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nature open up possibilities to inject code and data directly
from lower privilege levels, as demonstrated by ref2usr and
ret2dir in Fig. 2]

In both attacks, the attacker requires no code or data injec-
tion into kernel memory. The payloads are prepared directly in
user space before redirecting kernel control flow to malicious
code or to a stack pivoting gadget [24], [25].

In response, hardware features such as Supervisor Mode Ac-
cess Prevention (SMAP), Supervisor Mode Execution Preven-
tion (SMEP) [18] and Privileged Execute-Never (PXN) [26]]
were introduced to thwart unintended redirection of kernel
access to user memory. Unfortunately, they are ineffective
against ret2dir. The direct map is valid kernel memory, thus it
is impossible to distinguish between intended and unintended
direct map access with the aforementioned hardware features.
The authors of ret2dir proposed eXclusive Page Frame Own-
ership (XPFO) as a mitigation that unmaps memory from the
direct map on page allocation to user space. However, the cost
of TLB shootdowns for direct map maintenance prohibits its
use in scenarios where processes are created and destroyed
frequently and does not scale as the core count increases.

D. Speculative execution attacks of VMs

The recent epidemic of speculative execution attacks have
shown that VMs are not excluded from the breach of tradi-
tional architectural protection boundaries. Spectre, Meltdown
and many other speculative vulnerabilities have disclosed
multiple variants that are applicable to virtualization [[15], [16],
[27]]-[29]I.

In addition, both Spectre [15]] and L1TF [27] have demon-
strated that it is insufficient to restrict speculative side channels
in the VM context, as the hypervisor can be manipulated
into fetching data into the cache. PTI, for example, recovers
the full kernel map upon entry and is not effective against
branch predictor mistraining. Worse, the presence of the direct
map allows a speculatively manipulated hypervisor to access
arbitrary physical pages. IBRS, IBPB, and STIBP [I18] are
provided to guard against mistraining. These measures either
flush potential malicious branch predictor states or isolate
between privilege levels and sibling threads. They do not
address the fundamental problem that a kernel/hypervisor
exposes a giant surface that can be exploited once another side
channel is found. As a result, several implementations have

emerged to limit the hypervisor itself, preventing speculation
from accessing secrets via its vast address space [30]], [31]].

Although necessary, the increasing number of security hard-
ening and speculation defenses that accumulated over the years
has resulted in more than 100% time overhead in several core
kernel operations [32]. Outside micro-benchmarks, the study
also revealed a degradation of more than 30% in real-world
workloads. A systematic mechanism that defends against a
class of vulnerabilities is desirable, rather than countering each
attack in different ways, which may not compose well with
other defenses, and slowly degrade performance over time as
more vulnerabilities are found.

E. Type-I, Type-1I hypervisors and Xen

Hypervisors are categorized as either Type-I or Type-II.
Type-I hypervisors (for example Xen, Hyper-V, and VMWare
ESXi) sit directly atop the hardware and manage guest oper-
ating systems, often requiring at least a privileged domain to
support driver back-ends and to issue commands to manage
unprivileged domains. Type-II hypervisors (for example KVM
or bhyve) exist atop or within an operating system, abstracting
guest domains as user processes and using the host OS drivers
for hardware access.

Xen is a Type-I hypervisor. A privileged domain, dom0, is
started first to manage other guest domains (domUs). Dom0O
has drivers for hardware, and provides virtual disks and
network access for domUs. Dom0 will run the back-end driver
for paravirtualized devices that are made available to other
domains (for example, network interfaces and disks), which
multiplexes and forwards to the hardware requests from the
front-end driver in each DomU [33].

Xen’s fully paravirtualized (PV) mode, inherited from the
Nemesis operating system, is a unique feature that predates
x86 virtualization hardware extensions. PV mode exposes
a series of hypercalls for MMU management, I/O drivers,
timers and interrupts, enabling the guest kernel and user space
to function in lower privilege rings without virtualization
extensions. Most hypervisors provide paravirtualized device
drivers, even if they rely on hardware features for CPU and
memory virtualization.

III. THREAT MODEL

We assume that an attacker resides within an unprivileged
VM. In regard to speculative execution attacks, we assume the
attacker does not co-exist in the same VM with the victim, or
in the context of OS kernels, the same process. We categorize
speculative vulnerabilities into three different classes:

a) Permission: Speculation violating permissions. These
attacks are performed directly in the lower privileged context
and target mappings that are available in the page table but
are restricted from usage within the current domain. A typical
attack of this category is Meltdown.

b) Coercion: Triggering a speculative control-flow tran-
sition in the higher-privileged context to execute a disclo-
sure gadget. The side-effects of the gadget executed under
speculation can still persist in the micro-architectural state



and can be converted to architectural state from the lower
privileged context to extract secrets. Examples of this class
include Spectre-V1 and V2.

¢) Micro-architectural: Attacks that purely gather resid-
ual signals from shared parch structures (for example store
buffers, load ports, L1D cache). These attacks are performed
directly in the lower privileged domain after it is transitioned
to. The sharing of parch can be either spatial (hyper-threading)
or temporal (hypervisor entry/exits and context switches).
LITF and MDS belong to this category.

We consider all three categories of speculative attacks to
be in scope. The secret-free design mitigates permission and
coercion attacks fully, by eliminating secrets from both guest
and hypervisor contexts. Existing mitigations for these attack
classes are therefore unnecessary. The design does not directly
address speculative side channels from the parch category, but
this work composes with existing mitigations such as Core
Scheduling. We demonstrate that the defense against the parch
class is significantly simpler to build on top of a secret-free
hypervisor than on the previous state of the art.

Randomization-based mitigations are out of scope. We do
not rely on any form of ASLR for secret isolation, as existing
literature has demonstrated that the limited entropy and possi-
ble surfaces of pointer leaking often limit its effectiveness. An
attacker is permitted to reveal the memory location of secrets,
provided that secret contents remain inaccessible.

IV. DESIGN GOAL

a) Definition of secrets: We partition data into secrets
and non-secrets. The former includes all guest register state
and memory as well as their copies (e.g., guest register spills
when entering the hypervisor, copy_from_guest () or
copy_to_guest () during hypercalls). In the case of Type-I
hypervisors, even though the privileged guest domain (dom0O)
is not directly occupied by customers, the implicit copying
between driver back-ends and domU front-ends means that
dom0 state must be treated as secret. We do not consider guest
state to be secret to its owner. An exploit that reveals register
or memory contents belonging to the attacker does not reveal
secrets by our definition.

b) Secrets by default: State-of-the-art techniques audit
each vulnerability and identify vulnerable surfaces for isola-
tion, expanding the deny-list. The secret-free design considers
all data as secrets by default. We shall explore a different
approach by constructing a minimal surface for all domains
(including the hypervisor) and identifying non-secrets that are
permitted in the address space.

c) Secret-Free: The secret-free design shall not allow
secrets to be visible to any domains other than the owner,
neither architecturally nor in any form of the speculative side
channels discussed in Section [[lIl A secret-free view defines
both guest and hypervisor space. The hypervisor entered
under a domain’s context (hypercalls, exceptions or interrupts)
cannot contain secrets of other domains. KPTI, for example,
violates this guarantee because it recovers the full address
space and maps secrets to other domains on kernel entry.

d) Performance: Overall, the overhead needs to be low
and must not impact real-world application performance. A
new hypervisor design that exhibits high overhead is unable
to provide sufficient value against existing mitigations. Many
specific mitigations are no longer required because a secret-
free design is a systematic defence against several categories
of vulnerability. Our evaluation demonstrates that the secret-
free design replaces said mitigations and shows competitive
or improved performance.

V. A SECRET-FREE HYPERVISOR

We construct the minimal and secret-free view of all do-
mains with the following components.

A. Tearing down the direct map

As discussed in Section [[I-B|] on page [2| the direct map
is a huge and permanent window to physical memory. Such
a surface contradicts the secret-free principle and has the
following drawbacks:

1) We observe that this is a major attack surface for a range
of architectural and speculative attacks [[15], [16], [25].
It is a convenient surface for malicious parties as any
attacker-controlled out-of-bound vulnerability quickly
escalates to full memory access.

2) It consumes a significant chunk of the address space,
limiting the degree of randomization in kernel. With
sufficient amount of RAM, the entropy of the kernel
ASLR can be as low as 7 bits, requiring only 128
probes [16].

3) It becomes a dependency for future kernel development.
For example, as the code heavily depends on the direct
map window for memory access, both FreeBSD and
Xen HVM on amd64 require a sufficiently large virtual
address range to cover all physical memory, without
which high physical memory would be inaccessible.

4) There are no guard zone around allocations. Out-of-
bound accesses can easily corrupt data on adjacent
pages. As a result, Linux has moved to virtually mapped
kernel stacks as the default to trap and handle over-
flows [34].

We introduce mapping APIs to all hypervisor memory
allocations so that dereferences are made only after explicit
mapping requests. The direct map is removed because the
code no longer assumes an implicit mapping before accessing
memory. The API differs depending on whether the alloca-
tion contains secrets. Non-secrets create and destroy globally
visible mappings on allocation and deallocation, allowing
fast access from all contexts during their lifetime. These are
typically hypervisor-internal data structures unrelated to guest
secrets, including the hypervisor image, host ISA descriptors
(for example, x86 host GDT, IDT, TSS), generic scheduler
state and so on. Access to secret memory will be isolated via
the mechanisms described in the following sections.
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entries. dnvm denotes the vCPU from domain n with vCPU ID m. For 2-
stage address translation, the user region may live in a separate table instead
of sharing address space with the hypervisor.

B. Domain- and vCPU-private mappings

We do not permit secrets to be mapped globally. In addition
to the user half and the globally mapped hypervisor half,
we further construct two regions: domain-private and vCPU-
private mapping areas. A vCPU is scheduled on zero or one
physical CPUs (pCPU) at any given time and so vCPU-private
implies pCPU-private. The regions can be mapped to the
abundant space made available by removing the direct map.
In modern ISAs with hierarchical page tables, shared domain-
private mappings among vCPUs and shared global non-secret
mappings can be cheaply implemented via sharing lower level
tables. In 4-level paging, all L4 (root) page table entries can be
categorized as global, domain-private or vCPU-private, shown
in Fig.[3] Private regions are intended for long-lived secret data
structures belonging to the current domain or vCPU, such as
hypervisor stacks and vCPU register frames, whose lifetimes
track their corresponding vCPUs. Short-lived objects will be
handled by ephemeral mappings later.

A hypervisor may consider guest memory as long-lived and
may map it in its entirety in the domain-private region to
simplify copy_from_guest () and copy_to_guest ()
operations. We make the design choice to avoid permanently
mapping all guest memory in hypervisor space, including in
domain- and vCPU-private regions. We have learned from
ret2dir that aliasing user memory in kernel enables gadget
injection at lower privilege levels. Thus, our secret-free design
creates ephemeral mappings to access guest memory even
if the hypervisor is entered under that guest’s context for
defense-in-depth.

C. Hypervisor stacks, vCPU state and register frames

As we define guest registers and their copies to be secrets,
any spills of register state must be isolated. Upon entry, the
hypervisor switches to its stack and a copy of the vCPU
state (including the guest register frame) is spilled onto it,
potentially leaking sensitive data to speculative side channels.

A secret-free hypervisor no longer allows such private states
to be globally mapped.

We leverage the vCPU-private region and create hypervisor
stacks for each vCPU with private mappings. This ensures
that guest register spills and hypervisor handling of guest data
on the stack are invisible to other domains and even to other
vCPUs of the same domain, assisting the guest OS to further
isolate its processes. When implementing vCPU state isolation,
one must be aware of any implicit spills by the architecture
(such as the x86 VMCS page) and should not allow them to
be visible. We find two common patterns that do not compose
with private stacks which must be addressed via global bounce
buffers.

a) Spatial bouncing: Hypervisor code may pass stack
allocations as function call arguments. The callee may not
have a mapping to the caller’s vCPU-private stack. Such a
scenario is common. For example, the callees of an Inter-
Processor Interrupt (IPI) are from different contexts and no
longer share mappings after stack isolation. We address this
using global bounce buffers which are allocated per physical
core and are globally mapped. Arguments are fetched from
the buffer instead of the caller’s stack.

Global bouncing must enforce the secret-free principle by
not storing any secrets in the buffer. When secrets are passed,
ephemeral mappings must be used instead. In practice, this
is not a concern as hypervisor IPIs typically pass function
pointers and non-secret hypervisor data, which are globally
mapped as the hypervisor image and non-secret pool anyway.

b) Temporal bouncing: Bouncing may be needed even
within the same host CPU, especially when enforcing secret
freedom on per-physical-CPU hypervisor stacks. Xen x86_64,
for example, allocates a hypervisor stack for each host core.
Context switching to another vCPU reuses the current per-
pCPU stack. This causes two problems. First, isolating the
stack mapping but still sharing the underlying memory does
not correctly enforce secret freedom. Second, after isolating
the underlying pages, the new context is unable to read the
current stack frame or perform function returns as the new
stack is empty.

For a per-pCPU stack hypervisor, we first isolate physical
memory by implementing per-vCPU stacks. Then, we ensure
the next context does not rely on previous stack frames. The
previous context writes shared variables to the per-pCPU tem-
poral bounce buffers, allowing the context switch to complete
on a new empty stack. Similar to spatial buffers, care must be
taken to ensure no secrets are bounced, otherwise ephemeral
mappings must be used instead.

Overhead from global bounce buffers: Although these
specific patterns need to be modified, avoiding hypervisor
stack allocations as function call arguments and not sharing
the stack on context switch boundaries are further hardening
of the hypervisor. The run-time overhead of spatial bouncing
is negligible. For temporal bouncing during context switch,
the overhead is higher because using two separate stacks and
the global buffer increases cache and TLB misses.



Per-vCPU stacks increase memory consumption as well.
For commercial cloud platforms, the maximum supported
number of host pCPUs and total vCPUs are 512 and 2048
for Hyper-V [35[], 768 and 4096 in ESX [36] and 288 host
CPUs (1152 vCPUs assuming an overcommit factor of 4)
for XenServer [37]]. Assuming 256 host cores with a total of
4096 vCPUs, introducing 4KiB per-pCPU bounce buffers and
16KiB per-vCPU stacks consumes 65MiB of memory, which
we do not believe is a substantial pressure on the host and is
only a pessimistic case on a per-pCPU stack hypervisor.

D. Ephemeral mappings

A secret-free hypervisor context sees only the hypervisor
image, the vCPU-private stack, register state of the cur-
rent vCPU, and internal secret-less bookkeeping structures.
The hypervisor must create ephemeral mappings for short-
lived objects or other accesses whose mappings are not
present in the minimal address space. These include walk-
ing and modifying page tables, copy_from guest () and
copy_to_guest () during hypercalls, background scrub-
bing of free heap memory and so forth. This is a stark contrast
to existing hypervisor and OS kernel designs, as we never
switch to the full page table but only grant temporary access
necessary for the hypervisor to complete the current operation.
Mapping and unmapping for a temporary access in the global
map area is costly, because the IPI and TLB operations quickly
multiply as the core count increases. For example, XPFO
suffers 27-31% performance degradation from IPIs even on
a 4-core desktop after optimizations [25]. Broadcasting is
feasible when hardware acceleration exists. AMD Milan [38]]
and Arm MP Extensions [26]] allow for TLB invalidation on all
CPUs. We do not rely on hardware TLB broadcasting because
such an architectural assist is not yet ubiquitous across ISAs
or across different generations of CPUs.

When accessing guest memory during
copy_from_guest (), for example, another hypervisor
context is unlikely to simultaneously copy and mutate data
at the same page. Based on this observation, we introduce a
per-vCPU ephemeral mapping infrastructure. The hypervisor
uses local APIs for temporary access. Ephemeral mappings
are created and destroyed in the local ephemeral address range
visible only to the current vCPU, avoiding scalability issues
from broadcasting page table maintenance operations. Care
must be taken to guarantee the private ephemeral window
does not outlive the underlying pages. For example, pages
ballooned out by a guest may be allocated to other domains.
The hypervisor must ensure the vCPU ephemeral mappings
are flushed during ballooning, or take references to prevent
the underlying memory from changing ownership while the
mappings are alive.

A brief attack window exists if the hypervisor ephemerally
maps secrets of domain B under the context of domain A. In
reality, this is not a concern because a sensible hypervisor
implementation will not map live pages from B under an
unprivileged A. If A is privileged, ephemeral mappings of for-
eign memory under its context can be triggered via privileged

Cache hit:
map(0x1234); //hit!
refcnt[0]++;

return OxffOOEO00;

Per-vCPU ephemeral
mapping area

The map cache VA refent
MFN idx | Hot? oxffeee00 3+ 1
Ox1234 © 0xff01000 1-1
Ox2345 3 N
0x1212 1 Y Oxff03000 1
Conflict eviction: Unmap:
map(0x12345); //miss! unmap (0xff01000);
va = new_slot(); //slot 2 refcnt[1]--;

if (incache &&
'refcnt[1] && !'hot)
evict (0x1212);

refcnt[2]++;
evict(0x2345);
return va; //0xff02000

Fig. 4. Structure of a direct-map map cache. Note that in the unmap case,
a hot entry will not be evicted even after all references are dropped. MFN
0x1234, 0x12345, 0x1212 are hashed to cache slot 0, 1, 2 respectively.
The index field of a cache entry points to the ephemeral mapping slot backing
the cache entry, used to look up the allocated virtual address and to adjust
the reference count.

hypercalls. However, a privileged domain such as domO is
already able to architecturally access guests’ memory (for ex-
ample, via device emulation, driver back-ends and debugging
hypercalls) and a speculative side channel is uninteresting. De-
privileging domO is outside the scope of this paper.

Self-mapping page tables: Creating ephemeral mappings
requires modifying the page table of the current hypervisor
context. We lose the ability to walk page tables after the
removal of the direct map because there is no longer a conve-
nient direct map alias to access an arbitrary physical address.
We use page table self-map to overcome this limitation to
locate and modify the PTEs of ephemeral mappings, which
is a common technique in kernel code for PTE modification
without manual page table walking (see Appendix for details).
Note that self-map can only be used for a virtual address
of the current installed page table, meaning it cannot act as
a generic page table walker starting from an arbitrary root.
A generic walker needs to be implemented on top of the
ephemeral mapping infrastructure to map arbitrary physical
addresses when the direct map is absent.

E. The map cache

The cost of manipulating mappings locally is still substan-
tially more expensive than bitwise operations to access the
direct map. The x86 invlpg instruction for TLB invalida-
tion, for example, is a serialising operation that flushes the
pipeline [[18]]. We introduce a map cache to allow for efficient
ephemeral memory access. Ephemeral mappings often observe
certain level of spatial and temporal locality: guest buffers
passed in a hypercall are likely to be reused; consecutive
mappings are either at adjacent guest physical memory, or at
least share the same top levels of page directory pages.



The structure of the map cache is shown in Fig. ] When
the hypervisor requests an ephemeral mapping to a Ma-
chine Frame Number (e.g. a 4KiB-page at physical address
0x1234000 has an MFN of 0x1234), it computes the hash
slot based on the MFN and fetches the cached entry. If the
entry already contains a mapping to the same MFN, the cache
immediately returns the virtual address by looking up the
associated ephemeral mapping slot backing the cache entry.
If not, the entry is evicted from the cache and a new mapping
is inserted. The old entry will then be replaced with the new
MEFN and its allocated ephemeral slot. We associate a reference
count to each ephemeral entry so that the mapping can be
replaced only when all owners have dropped the reference via
unmap calls.

We consider several optimizations. To exploit temporal
locality, we promote an entry to become hot when the same
mapping has been requested repeatedly, preventing it from im-
mediate eviction even when all references are dropped. To in-
crease map cache performance, we explore batch invalidation,
superpage caches and set associativity to reduce the cost of
local TLB flushes, large region mappings and collision cache
misses respectively. These caching optimizations must not
expose additional side channels. For example, no ephemeral
mapping to other domains can be cached or promoted as
hot entries under the context of an unprivileged domU. This
guarantees that cached entries and map cache contention are
only caused by the domain itself, thus an attacker is unable to
reveal secrets by probing the timing of ephemeral mappings
or by speculatively accessing the cached entries.

We explore the design space of several parameters of the
cache (elaborated in the Evaluation section) to achieve a high
hit rate to amortize ephemeral mapping costs. With an optimal
set of parameters, we are able to achieve a hit rate of 80-90%
in our implementation, greatly reducing the cost of ephemeral
access from the hypervisor. A high-performance map cache
proves that the hypervisor address space can be minimized.
Switching to a full address space like KPTI or XPTI with a
direct map is unnecessary for efficiency.

FE. parch isolation

We do not propose new defenses against pure parch sniffing
attacks, but we do not exclude this category from the threat
model for the secret-free hypervisor. As the overhead of secret
freedom is small, we are able to compose it well with other
known mitigations, including core scheduling and parch buffer
flushing on context switch, to mitigate all categories in the
threat model. Note that this is also necessary for attacks that
combine coercion and parch sharing. An attacker may mistrain
a sibling vCPU thread from another domain to fill the shared
L1 cache with secrets before launching L1TF. Without parch
isolation, secret freedom would be unable to prevent this attack
combination.

G. Putting it all together

Fig. [5] shows the address space of a vCPU. It separates the
address space into multiple tiers of secret levels. At the global
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Fig. 5. Secret-Free address space separation.

non-secret level, only the hypervisor image and non-secret
data are visible. The next tier, domain secrets, is shared with
all vCPUs of the same domain. Next, the hypervisor stack,
register frames and other vCPU secrets appear at the vCPU-
private level. Ephemeral mappings and the map cache reside
in vCPU-private range, hidden from other vCPUs and domains
while the hypervisor is temporarily accessing memory. These
provide a minimal address space that is secret-free.

There are two major differences with state-of-the-art tech-
niques. First, the minimal address space is maintained at all
times. We never expose the full hypervisor space that contains
secrets belonging to other domains, unlike PTI techniques. The
hypervisor has the same restricted address space as the guest,
and only creates ephemeral mappings when necessary. Second,
we adopt an allow-list approach by identifying and promoting
non-secrets. Data is accessed via ephemeral mappings by
default. Long-lived objects are added to the vCPU-private level
first. We promote memory to be visible within a domain or
globally only when it both does not violate secret freedom and
is performance critical. Our approach does not identify secrets
that need to be hidden. Instead, it identifies performance-
critical non-secrets that should be shared.

H. Secret-freedom as a generic design principle

The recent epidemic of speculative vulnerabilities motivates
the secret-free hypervisor design as we would like to introduce
a comprehensive framework for isolating customer secrets
in a multi-party cloud environment. However, we believe
the components introduced in this section are not unique
to any specific hypervisor and can be easily extrapolated to
a variety of implementations. For OS kernels, a secret-free
design applies as well because the abstraction of kernel, user
space, processes and threads are analogous to hypervisor, guest
domain, VMs and vCPUs.

To demonstrate the generality of the secret-free principle,
we implement and evaluate the design on multiple systems in-
cluding Xen (Type-I), Hyper-V (Type-I), bhyve (Type-II) and
FreeBSD (UNIX kernel). We are able to apply common secret-
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Fig. 6. A 2-stage page table walk. 20 ephemeral mappings are avoided by
promoting EPT to global non-secrets.

free design components to all systems and only introduce
minor changes to each. In this paper, we first elaborate on the
Xen hypervisor for detailed evaluation and analysis while later
demonstrating other implementations for comparison, showing
secret-free as a generic mechanism as well as focusing on
necessary adaptations for each type of kernel.

VI. IMPLEMENTATION: A SECRET-FREE XEN

We implemented the secret-free hypervisor in Xen 4.14.0 on
x86_64 architecture. We made several necessary adaptations to
the Xen codebase in addition to the aforementioned secret-free
components.

1) Xen requires a direct map under 4GiB during early boot.
We implemented a lightweight mapping mechanism by
reserving 5 fixmap entries (for up to 5-level paging) to
bootstrap Xen and to set up initial address spaces, which
is superseded by the per-vCPU ephemeral mapping
infrastructure once bootstrapping is done.

2) We replaced Xen’s domain_page () mapping API
with per-vCPU ephemeral mappings and revealed three
bugs that resulted from unbalanced map/unmap calls,
off-by-one-page unmap, and unmapping global memory.
The bugs did not manifest when the API was backed by
the direct map, as unmap calls on the direct map were
compiled into no-ops.

3) For Xen HVM guests with EPT [7_1 we further identi-
fied EPT pages as performance-critical non-secrets that
should be globally mapped for efficient 2-stage page
table walks.

In 3), walking 2 stages of page tables in the hypervisor
requires up to 25 ephemeral mappings, shown in Fig. [6] This
creates high and unpredictable latencies depending on the map
cache hit rate. The performance of 2-stage walks is critical
for Xen because memory arguments in Xen hypercall ABI are
passed as Guest Virtual Addresses (GVA), which need to be
manually walked by the hypervisor before copying memory.
This is a legacy of Xen’s original fully paravirtualized mode,
where pseudo-physical addresses (guest physical addresses)

'We use EPT (Extended Page Table) as a generic term for the second stage
page table. On AMD systems such pages are named NPT (Nested Page Table).

Items LoC
Introducing private and ephemeral APIs 821
Removing other dependencies and direct map teardown 411
Domain/vCPU-private region for stacks, vCPU state, etc. 729
Per-vCPU ephemeral mapping infrastructure 284
Bootstrapping for Secret-Free 115
Bug fixing, misc. 55
Total 2415

TABLE I
LINES OF CODE FOR SECRET-FREE XEN

were an ephemeral concept. We promoted EPT to the global
non-secret pool to avoid 20 ephemeral mappings. Note that
we cannot treat the 5 guest page table pages as non-secrets as
they are guest memory and may contain secrets at any point.
The amount of code changed is shown in TABLE [[}

We have sent the first patch series for new APIs and direct
map teardown to Xen upstream for review. At present, 40 out
of 54 patches have been merged into the latest main branch.
We reported the bugs revealed by Secret-Free to Xen upstream
and our fixes have been merged.

VII. EVALUATION OF SECRET-FREE XEN

A. Experimental setup

We evaluate our secret-free Xen implementation on an
AMD system, featuring a 12-core (24-thread) Ryzen 5900X
CPU, 32GB of DDR4 3200MT/s RAM running Ubuntu 18.04
as dom0. We approximate a common cloud configuration using
a guest with 8 vCPUs and 16GB RAM, matching an Azure
A8v2 or AWS c4.2xlarge instance.

We evaluate performance with a range of benchmark suites.
We show CPU and memory benchmarks using the industry
standard SPEC-CPU2017 suite. To reveal the worst case
scenarios and give insights on how the critical path is affected,
we run micro-benchmarks to show hypercall latency, context
switch speed, IPI latency and MMIO performance. We then
analyse disk and network I/O to investigate cross-domain com-
munication between domU front-end and domO back-end PV
drivers. Lastly, we run real-world workloads representative of
a wide range of cloud applications including databases, HTTP
servers, decompression, kernel builds, scientific computing,
etc.

We build several Xen configurations with different mitiga-
tion options:

Baseline: Xen without any compiled-in speculative mitiga-
tion facilities and with boot-time speculative defenses disabled.
The baseline is susceptible to all speculative execution attacks
that the underlying hardware is vulnerable to.

Default: Xen with compiled-in mitigation support and with
default boot-time mitigations by detecting the hardware. On
the 5900X CPU, this enables IBPB, 1fence for indirect
branches, conditional branch hardening and core scheduling.

XPTI: force enabling Xen Page Table Isolation for Melt-
down mitigation in addition to default Xen parameters. PV
only.
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Fig. 7. SPEC-CPU 2017. Normalized execution time
HVM (ns) | hypercall reg overhead | hypercall mem overhead | context switch overhead IPI  overhead
Baseline 303.97 776.15 1832.95 2555.25
Default 348.2 14.55% 1066.60 37.42% 2362.04 28.87% 2577.50 0.87%
SF 309.86 1.94% 780.26 0.53% 2392.78 30.54% 2602.62 1.85%
SF+EPT 312.19 2.70% 995.50 28.26% 2420.05 32.03% 2696.26 5.52%
PV (ns)
Baseline 39.60 83.81 1214.49 2584.74
Default 83.49 110.83% 131.77 57.22% 1660.24 36.70% 2686.06 3.92%
XPTI 306.40 673.74% 366.12  336.85% 1861.93 53.31% 2703.18 4.58%
SF 39.87 0.68% 84.35 0.64% 1740.84 43.34% 2592.96 0.32%
TABLE II
MICRO-BENCHMARKS
Frequency (MHz) | Baseline | Default SF | SF+EPT . . .
HV(ll\/I HleET 64 170 €04 =40 whereas all ot.her configurations are below 0.5%, showing little
STowdown | 24.68% | 3.26% | 13.50% performance impact.
TABLE III

HPET BENCHMARK. MAX FREQUENCY FROM GETTIMEOFDAY().

Secret-Free: Xen with the secret-free implementation. Ad-
dress space isolation and branch hardening options are dis-
abled. However, mitigations for parch sharing (core scheduling
and parch flushing on full domain switch) are kept.

SF+EPT: Secret-free with EPT as guest secrets. Although
EPT can be treated as non-secrets by our definition, this setup
stresses 2-stage page table walks and allows us to test the
ephemeral map cache.

Note that our setup (Ryzen 5900X) is not susceptible to
Meltdown, but we choose to add this data point to study the
impact of XPTI on Xen PV guests. Xen PV is still supported
by multiple cloud vendors on older generation hardware which
is vulnerable to Meltdown, thus XPTI must still be enabled
for isolation on these platforms.

B. SPEC-CPU 2017

Fig. [7] shows the performance impact of different con-
figurations of mitigations when running SPEC-CPU 2017.
Compared with the unmitigated baseline, the slowdown is
under 3% for all benchmarks.

Such results are within our expectation as SPEC-CPU
benchmarks are CPU- and memory-intensive. These workloads
remain largely unaffected by hypervisor mitigations because
they require few transitions into the hypervisor. We observe
that the geomeans of different setups deviate from the baseline
by less than 1.01%. XPTI and SF+EPT have the largest drop
at 1.01% and 0.86% due to the increased latency in hypercalls

C. Micro-benchmarks

We show four micro-benchmarks: hypercall register, hyper-
call memory, context switch and IPI performance. Register
hypercalls contain input and output arguments purely in regis-
ters, whereas memory hypercalls require mapping and copying
guest memory. For context switch, we launch two guest vCPUs
from two domains and schedule both on the same host core.
The TPI benchmark measures the synchronous operation of a
global IPI sequence, with its arguments placed on the caller’s
stack in the baseline configuration. These micro-benchmarks
are selected specifically to stress the paths hardened by the SF
implementation.

TABLE [M] shows the overhead of the secret-free design
relative to existing Xen mitigations. We see that the secret-
free version has shown near-baseline performance in several
categories. The overhead of both register and memory hyper-
calls is negligible. If EPT is treated as guest memory secrets,
HVM memory hypercalls see a degradation of 28.26% due to
25 total ephemeral maps from 2-stage page table walks. This
explains our desire to promote EPT to global non-secrets. For
default Xen mitigations, the overhead comes from restricted
speculations and explicit branch predictor barriers which more
than double the latency of a PV register hypercall, while the
percentage is not as significant in HVM since the majority
of the cost is VMENTER and VMEXIT. On the other hand,
XPTI shows detrimental penalties for PV guests with more
than 6x hypercall latencies due to two cr3 swaps, bringing
its hypervisor round trip cost at a comparable level with a full
VMENTER and VMEXIT.

The secret-free implementation shows noticeable degrada-
tion in full context switches. The overhead comes primarily



m default (HVM)
125.00%

120.00%

m SF (HVM)

SF+EPT (HVM) default (PV)  mXPTI ( m SF (PV)

125.26

115.00%

110.00%

105.00%

ﬂIFII|_II| |FE|F|E |Hi Hth

100.00%
95.00%
sec read sec write rand read rand write ~ TCP send file req response client to server latency geomean
HVM: 3911MB/s 2445MB/s 36.6KIOPS 34.2KIOPS 10.5Gb/s 20.1MT/s 10.6Gb/s 0.44ms
PV: 3967TMB/s  2410MB/s 42.8KIOPS 40.1KIOPS 16.4Gb/s 26.3MT /s 16.3Gb/s 0.41ms

Fig. 8. Disk and network I/O benchmarks. Sequential and random disk accesses are tested by FIO. Netperf measures TCP performance and latency. The
numbers on the X axis indicate baseline performance. Apart from TCP latency, the Y axis represents normalized execution time of fixed-size workloads.

from three sources. First, as secret-freedom alone does not
address the problem of guests sharing micro-architectural state,
we still flush parch buffers during a full context switch to 1)
prevent the next guest from sniffing secrets and to 2) isolate
the next guest against malicious states like mistrained branch
predictors. This cost only occurs when switching to a vCPU
of a different domain. Second, moving to per-vCPU stacks
means a context switch also switches to a new hypervisor
stack and mapping, resulting in increased cache and TLB
misses. Last, using global buffers to grant visibility to the
next stack reduces data locality. Existing Xen mitigations show
slightly lower overhead due to the cache and TLB locality of
the per-pCPU stack. XPTI, however, exhibits more than 50%
additional context switch latency relative to baseline.

The IPI performance remains largely unchanged and the
cost is dominated by the IPI itself rather than speculative
mitigations. Sending the IPI synchronously shows high latency
and variance. In comparison, the overhead of the secret-free
hypervisor using global bounce buffers for IPI arguments is
insignificant. The latency suggests why maintaining globally
mapped memory (like direct map maintenance in XPFO) is
costly unless hardware support is present: an IPI alone is
more expensive than a full context switch for the caller and
interrupts all callees.

HVM MMIO: We further micro-benchmark a more
realistic setup by measuring the maximum number of
gettimeofday () calls that can be issued per second from
guest user space after switching the guest Linux kernel clock
source to the High Precision Event Timer (HPET, mapped as
an MMIO device). Emulated MMIO, like memory hypercalls,
requires 2-stage walks to fetch the Guest Physical Address
(GPA) from Guest Virtual Address (GVA), although Xen walks
to Host Physical Address (HPA) to take a page reference.
We choose HPET as it represents the performance of other
MMIO emulations, tests the map cache with a mix of page
table walking and guest kernel activity, and is used in guest
OSes as a timer source.

The maximal achieved number of gettimeofday () calls
per second (denoted as Frequency and measured in MHz) is
shown in TABLE With 2MB superpages used by default
for HPET MMIO region, SF and SF+EPT map 4 and 19 pages

respectively. Compared with baseline, SF only reduces the
gettimeofday () frequency by 3.26% whereas default Xen
mitigations degrade performance by 24.68%, which means the
secret-free design offers significantly improved performance in
device emulation.

D. I/O performance

Fig. [8| shows the overhead of disk and network 1/O through-
put. Sequential read and write saturate the backing storage,
but random synchronous 4K I/O is bottlenecked by commu-
nication between the front- and back-end drivers. In these
benchmarks, we see all secret-free configurations showing
competitive performance close to baseline with the biggest
drop being SF+EPT at 7.67%. In contrast, Xen mitigations
degrade random synchronous I/O by more than 15%. XPTI
again shows severe performance impact with its latency in-
creased by 50%, resulting in 36% less IOPS.

We see an impact in TCP bandwidth by up to 2.26% in
SF which increases to 6.8% when EPT is treated as domain
secrets. XPTI is expectedly the worst performer, showing up
to 41% overhead in bandwith and 15% increase in latency.
Overall, SF demonstrates a combined geomean of all disk
and network I/O overhead at 2.63%, almost one quarter of
the 10.2% from enabling Xen default mitigations (excluding
XPTI).

E. Application benchmarks

We further collect the results from a variety of real-
world benchmarks, including Apache httpd, Linux kernel
compilation, Numpy, LLVM compilation, LevelDB, Nginx,
PostgreSQL (pgbench), SQLite and code repository decom-
pression. The normalized execution time is shown in Fig. [0}
Except for XPTI, the geomean of the overhead in each setup
falls below 2.5%, which is insignificant compared with the
stress tests in previous sections. This is expected as real-world
workloads are a mix of CPU, memory and I/O activity.

For HVM, our LevelDB benchmark heavily tests random
database mutation. The overhead tracks our I/O benchmarks
well, with Xen default showing up to 11% increase in
random write transaction latency. Averaging all read and
write sub-benchmarks, default shows a LevelDB overhead
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of 4.42%. The higher overhead from Xen default continues
for other benchmarks with random disk I/O patterns, namely
pgbench (0.97%), SQLite (1.00%) and code repo decom-
pression (1.12%). On the other hand, the large variations
of network performance across setups in Section [VII-D] do
not manifest as their maximal bandwidths have all reached
10Gbps, meaning server benchmarks are still likely execution-
bound than network-I/O-bound. As a result, no significant
overhead is seen in HTTP server workloads. SF continues to
show no noticeable degradation across all HVM benchmarks
and has a overall geomean at only 0.2% versus the default at
1.11%.

XPTI is generally unusable with server workloads, see-
ing 50% overhead in HTTP servers and in write-intensive
LevelDB benchmark. PV default mitigations without XPTI
have a noticeably higher overhead due to doubled hypercall
latency, although generally under 5%. For PV, the secret-free
version consistently outperforms the default configuration, at
less than half of the overall overhead. More importantly, our
implementation mitigates Meltdown at a significantly lower
cost than XPTI, because page table swaps are avoided on
hypervisor entry and exit.

F. Map cache performance

We explore several map cache parameters including size,
set associativity and block size (superpage cache entries). The
test application is pgbench.

We notice that the dominant factor is the cache size (number
of entries) as shown in Fig. [I0] Even though the miss rate
continues to decline as the size grows, in practice an oversized
map cache begins to hurt guest performance due to CPU cache
contention. We choose 32 entries as the optimal parameter for

negligible advantage over the direct-map one, whereas the
Least-Recently-Used eviction policy sees a more noticeable
improvement by 1.43%. Nevertheless, software implementa-
tion of set associativity requires branch instructions and is
unable to exploit parallel lookups like hardware CPU caches,
thus the minor increase in hit rate and negligible increase in
application performance do not justify the complexity.

The block size can be grown by adding superpage (2MB)
cache entries for large ephemeral mappings. However, we
fail to observe any performance improvement as almost no
ephemeral mapping request ever exceeds the 4K page size.
Eventually, we choose a direct-mapped 32-entry map cache
with only 4K mappings for the best overall performance and
a simple but fast critical path, which is the configuration used
throughout the evaluation section.

G. Security

We evaluate the security of our secret-free Xen hypervisor
using proof-of-concept speculative execution exploits from the
three categories (permission, coercion and parch). The attacks
are launched from an unprivileged domU. The victim contains
a secret message buffer in a separate VM. We also evaluate
against ret2dir by injecting a stack overflow vulnerability to
Xen.

For Meltdown, we launch a malicious PV domU El to dump
the victim buffer via the Xen direct map. For Spectre, the
attacker attempts to mistrain the branch predictor, redirecting
hypervisor speculative execution to access the secret message.
For L1TF, the malicious domain sniffs for any secrets left
in the L1 cache from the sibling thread. Redirecting code
execution to the direct map is not effective as Xen marks
it as non-executable. To exploit the ret2dir vulnerability, we
replicate the attack for non-executable direct map in [25]] using
a stack-pivoting gadget, so that the hypervisor stack pointer
can be pivoted to malicious frames on the direct map. Each

2Xen HVM guests with hardware assist run on EPT and cannot exploit
Meltdown directly.



Spectre-vl | Spectre-v2 | Meltdown | L1TF | ret2dir
Baseline X X X X X
Default v v v v X
SF v vE vE v v

* Speculative execution is still permitted. However, no secrets can
be fetched as only mappings to non-secrets exist.
TABLE IV
VULNERABILITY MATRIX

attack is run on baseline (un-mitigated), default mitigations
and Secret-Free Xen (w/ parch isolation).

As shown in TABLE the secret-free hypervisor success-
fully thwarts any attack that attempts to circumvent permission
or to mistrain the hypervisor for secret access. With parch
isolation, we further guard against L1TF. While stack-pivoting
using the direct map synonym succeeds in baseline and in
default for retdir, it fails under the secret-free Xen because
the mapping is absent, triggering a hypervisor page fault on
the first access.

From the evaluation, we are able to confirm that our Xen im-
plementation correctly enforces the secret-free principle. The
secret-free design, when compared to other mitigations, pro-
vides defence-in-depth. This guards against future attacks and
undiscovered microarchitectural vulnerabilities of the same
categories. Finding another means of information disclosure
(either executed speculatively or architecturally) is not useful,
unless an attack is successfully mounted first to bring secrets
into the address space.

VIII. HYPER-V (TYPE-I)

We explore a secret-free Hyper-V as an independent im-
plementation. We choose to focus on Xen for evaluation
because it is open-source, which allows us to elaborate on
code and implementation details. The secret-free Hyper-V has
been deployed at scale to Azure, showing the applicability of
secret freedom as a generic isolation framework for Type-I
hypervisors.

The direct map has been removed to avoid the implicit
mapping of secrets. We then leverage vCPU-private area to
construct separate secret virtual address spaces for each guest
thread. Hypervisor stacks, register frames and other vCPU
state are now placed in private mappings and are only visible
to the current context. Due to the isolation of secrets, the hy-
pervisor requests ephemeral mappings to access guest memory
or cross-domain secrets. Here, we find a major difference with
secret-free Xen on map cache pressure. The hypercall ABI of
Hyper-V takes GPA instead of GVA for arguments in guest
memory, which avoids a full manual 2-stage page table walk.
We introduce the same optimization as Xen by identifying EPT
pages as performance-critical non-secrets and promoting them
to the global non-secret pool. As only one temporary mapping
is required to perform a GPA to HPA walk for hypercalls, we
choose not to implement the map cache to avoid contending
with the guest for CPU data caches.

Our platform exposes nested virtualization capabilities on
certain types of instances. A customer may launch L2 guests

belonging to multiple security domains in the L1 hypervisor.
To ensure a strong isolation boundary for different domains
within a guest VM, we further implement state scrubbing.
When the hypervisor must copy guest secrets to complete an
operation, it overwrites buffers with zeroes prior to exiting
the LO context. This guarantees that secrets from L1 guest
hypervisor or L2 guest virtual processor state are not resident
in the cache when switching between security domains in the
L1 guest VM. We minimize the overhead by carefully tracking
the memory which needs to be scrubbed.

The secret-free design in Hyper-V makes several existing
mitigations redundant. Although core scheduling is required
for parch isolation, we no longer ask the scheduler to co-
ordinate sibling entry and exit because secrets can no longer
be fetched even in hypervisor context. Similarly, exiting the
hypervisor no longer needs to flush the L1D cache. We also
remove unnecessary guards against poisonous guest branch
predictor state on hypervisor entry as it cannot cause any
caching of secrets.

Together, we see an overall overhead of the SF implemen-
tation at only 1% (with secret data scrubbing). The implemen-
tation has been proven in production and we have not received
any reports from customers on performance degradation.

IX. BHYVE (TYPE-II)

We apply Secret-Free to bhyve, a Type-II hypervisor from
the FreeBSD OS. In this work, one challenge prevents us
from declaring our bhyve implementation secret-free. Type-II
hypervisors reuse host device drivers to feed PV devices with
data. Unfortunately, data buffers in host drivers are allocated
and cached as kernel structures, globally mapped into all
processes. I/O buffers are copied to and from guest memory,
which violate Secret-Free by our definition.

We may implement such buffers via thread- or process-
private mappings visible only to the driver daemons, but
the challenge remains. Unlike Type-I hypervisors, we find it
tremendously difficult to introduce private or ephemeral APIs
to all I/O buffers due to components being closely-intertwined
in a monolithic kernel, which requires a substantial amount of
code rewrite. Thus, we think a secret-free design would be less
intrusive for Type-I hypervisors or micro-kernels. However,
even before restructuring the kernel for back-end isolation,
a mostly secret-free design still exposes a much reduced
attack surface and provides the same guarantees as Type-I
implementations when guest I/O is hidden (for example, by
using passthrough devices or enabling disk encryption, which
are common on cloud platforms).

X. FREEBSD (UNIX KERNEL)

The bhyve implementation applies the secret-free changes
to the underlying FreeBSD kernel. The same challenge for
bhyve remains, which is the difficulty in rewriting the API
for all globally mapped I/O buffers and buffer caches in a
monolithic kernel. Further, we identify one type of workloads
that needs optimization.



Slowdown Process creation | FreeBSD kernel build

SF 38.44% 3.93%

Optimization 8.16% 0.85%
TABLE V

PROCESS CREATION OVERHEAD.

Processes and threads are significantly more dynamic than
VMs and can be created and destroyed at high frequencies,
to the point where it determines the application performance.
Such a high rate overwhelms the map cache due to the huge
number of page table copies during fork (). Unfortunately,
mapping page table pages globally like Xen EPT optimization
is unhelpful. It reduces the run-time cost when accessing the
pages but increases the overhead during process destruction,
because IPI broadcasts are issued for TLB invalidation for
changes in the global non-secret mapping range. We have
observed a staggering slowdown of 38% in process creation
micro-benchmark and 4% in FreeBSD kernel compilation
(TABLE [V)), evaluated under baremetal FreeBSD on the same
hardware setup as Xen.

We implement a proof-of-concept optimization by reserving
part of the kernel memory for non-secrets. A direct map range
is reintroduced, but only covers the non-secret pool. The pool
is globally and permanently mapped by the kernel during
early boot for page table pages. TABLE |V| shows that the
optimization brings kernel build overhead below 1%. However,
future work is needed to dynamically adjust the size of the
pool (and the non-secret direct map) when the system is under
memory pressure because the ratio of the reservation cannot
be optimally pre-determined. We have one extreme where
the system may contain lots of copy-on-write pages (high
page table to user memory ratio) and another extreme where
memory is all populated with superpage mappings (low ratio).

XI. RELATED WORK
A. eXclusive Page Frame Ownership

XPFO targets the Linux direct map to reduce the kernel
attack surface. Memory allocated to user processes will be
excluded from the direct map, guaranteeing unique ownership
of the mapping. No kernel synonyms can be used for a user
space gadget.

This approach suffers from the overhead of global map
maintenance, because pages need to be scrubbed before being
added back to the direct map and TLB shootdowns need to
be broadcast when pages are allocated to user. In contrast,
a secret-free design adopts an allow-list rather than a deny-
list approach. It has a minimal secret-free address space at all
times and its isolation is not limited to the direct map. Memory
is only temporarily mapped in while the kernel accesses it, and
the per-thread mapping infrastructure avoids TLB shootdown
and their associated scalability issues.

B. KPTI and XPTI

KPTI and XPTT address the isolation failure in CPU spec-
ulation paths, where speculative instructions are not restricted

by current privilege level. A partial page table is created for
user processes that removes most of the kernel address range.
System calls (or hypercalls) first jump to trampoline code to
restore the full kernel mapping, and switch back to the partial
table when exiting kernel space.

Our work demonstrates that a full kernel map in most (if
not all) situations is unnecessary, as the cost of two page
table swaps is intrusively expensive. A secret-free design either
handles secret access in private mappings, or uses ephemeral
mappings for guest memory and for temporary access outside
the current address space. Our evaluation has shown that the
kernel map does not have to be restored in its entirely for the
kernel to function efficiently.

C. Linux Kernel Address Space Isolation

As more kernel isolation requirements emerge to defend
against speculative vulnerabilities, Linux proposes a generic
Kernel Address Space Isolation framework (KASI) [31]. For
KVM isolation, it handles VMEXITs in a separate address
space that exposes only the per-VM structures and Linux code
and data, similar to the secret-free address space.

However, its secret-free address space is only limited to
simple VMEXIT handling. Any access outside the minimal
address space switches to the full kernel and halts sibling
thread to ensure the kernel cannot be mistrained into bringing
secrets to the shared L1 data cache. At the moment, the
performance of the framework is unknown.

D. Corevisor

Corevisor partitions the monolithic hypervisor into a trusted
core and a large untrusted hostvisor. Several kernel compo-
nents including vCPU scheduling and the memory allocator
are deprivileged into the hostvisor for a minimal TCB. For PV
I/O devices, the back-end drivers reside within the hostvisor
instead of the privileged core [39].

We welcome such separation of the hypervisor components.
SF has seen tremendous obstacles in introducing private APIs
to a Type-II hypervisor atop a monolithic kernel, because every
kernel module and device driver may potentially need source-
code modification. We anticipate that a corevisor design, with
clear separation among its components (especially the ones
interacting with guest secrets), can be easily retrofitted with
secret-free abstractions for defense against a broad category
of architectural and speculative attacks.

XII. CONCLUSION

We have presented the secret-free hypervisor, a design
atop existing hardware for a minimal and secret-free address
space. We have shown that this technique is a defence-in-
depth approach against several categories of vulnerabilities.
The optimizations bring the performance to a similar level with
an unmitigated baseline. Compared with state-of-the-art miti-
gations, we improves performance by permitting speculations
in situations where secrets are invisible. Our implementations
suggest that the Secret-Free approach is applicable to multiple
platforms and different types of kernels, as a performant



alternative to existing mitigations and as a comprehensive
framework against potential future attacks.
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APPENDIX

We first list examples of how SF blocks various categories
of speculative vulnerabilities and how it compares to state-of-
the-art mitigations. Then, we demonstrate how the self-map
technique allows accessing Page Table Entries (PTEs) without
manual page table walking.

A. Guest-to-hypervisor attacks

This category reveals secrets by entering a speculatively-
manipulated hypervisor context.
1) Spectre: Consider the following hypervisor code gadget.

if (x < arrayl_size)

y = array2[arrayl[x] = 256];

An attacker is able to mis-train the hypervisor branch
prediction to take the branch even if x is out of bounds. If x is
controlled by the attacker, the speculative overflow may fetch
any memory visible in the hypervisor space into the cache. The
direct map is often abused by such attacks to access arbitrary
physical memory.

Existing mitigations aim to prevent out-of-bound memory
accesses by restricting speculation. Common measures include
CPU fences, or array masks that guarantee in-bound indices.

unsigned long array_index_mask_nospec (
unsigned long index,
unsigned long size) {
return " (long)
(index | (size -
>> (BITS_PER_LONG -

1UL - index))
1);

The above function generates a ~0 mask when index < size,
0 otherwise. The mask sanitizes the user-controlled index to
be in bounds even in speculation.

Instead of restricting the source of speculation, SF restricts
the target, i.e., the hypervisor space itself. The array index is
permitted to be speculatively out-of-bounds, but it is unable to

Fig. 11. Core Scheduler under a non-SF hypervisor

dereference any secrets as no secrets to other domains exist in
an SF hypervisor. This holds for Spectre-V2 as well. SF does
not block indirect branches via retpolines or hardware branch
predictor flushes, but instead guarantees that no secrets are
visible to a gadget.

2) LITF: A basic implementation of Core Scheduling
prevents vCPUs of different domains from being scheduled
on sibling hyperthreads. However, this is insufficient under the
presence of guest-to-hypervisor attacks. Assuming both vCPU
A and B are from the same guest VM scheduled on sibling
threads, vCPU B could enter the hypervisor while vCPU A
is still in guest mode, actively mis-training the shared branch
predictor or sniffing secrets in L1D cache. Fully mitigating
against this attack requires coordinating sibling entry and exits
shown in Fig. [T[T] The hypervisor kicks the sibling thread A
out of guest execution until returning to guest mode on B.
Before returning to B, the hypervisor flushes the L1D cache
to ensure no secrets remain for possible LITF attacks from
either A or B.

Core Scheduling is still required under an SF hypervisor.
However, this guest-to-hypervisor attack surface is eliminated
as the hypervisor space contains no secrets outside the VM
which A and B belong to. Entering the hypervisor from one
sibling no longer requires kicking the other out of guest
execution, and returning to guest no longer needs an L1D
flush. This shows that mitigating against attacks in the parch
category is significantly simpler than state-of-the-art thanks to
an SF hypervisor.

B. Guest-to-guest attacks

This category reveals secrets directly from guest mode
without entering the hypervisor.

1) Meltdown: Meltdown circumvents page table permis-
sions in the speculative path to reveal secrets from other guests.
Current mitigations on affected hardware use PTI to remove
hypervisor page table entries on guest entry, and restores the
full hypervisor table on hypervisor entry. In this regard, SF
addresses Meltdown similarly to PTI by eliminating secrets to
other domains when running in guest mode. However, SF stays
on the secret-free address space on hypervisor entry, which
avoids the prohibitively expensive page table swaps.
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Fig. 12. Accessing a PTE using self mapping. VA o page indicates a pointer to memory, whereas VA to LI PTE is a bitwise transformation that points to
the L1 PTE. This functions only if a top level PTE pointing to itself is reserved.

2) Guest-to-guest Spectre and LITF: This category is not
mitigated by an SF address space. Two vCPUs from different
domains may be scheduled on the same host CPU, sharing
parch structures including branch predictors and caches. An
attacker may manipulate parch state to affect the speculation
path of the sibling victim, allowing secrets to be placed on
covert channels. It is impossible to prevent this direct guest-to-
guest attack without isolating the underlying hardware. There-
fore, this work reuses several physical isolation techniques,
mostly Core Scheduling, to prohibit different domains from
sharing physical CPUs to mitigate attacks in this category.
As stated in the guest-to-hypervisor L1TF example, physical
isolation is less complex under the SF design, since its
implementation no longer needs to guard against leakage from
the hypervisor.

C. Page table self mapping

Hypervisors and OS kernels often perform manual page
table walks to locate and manipulate page table entries for
modifications of an address space. This can be done efficiently
when the direct map is present because there exists a direct
map alias of any arbitrary physical address, allowing us to
quickly access the L(n — 1) page table page after decoding
the physical address pointing to it in the PTE of the Ln
level. However, kernel code often employs self mapping to
avoid manual page table walking entirely, by reserving a top
level PTE pointing to the top level table itself. Then, bitwise
transformations allow direct access to PTEs.

An example is given in Fig. [T2] Here, we assume four-level
paging under a virtual address space of 48 bits with 4KiB
pages. A pointer is comprised of four 9-bit page table page
offsets and a final 12-bit page offset. By reserving a PTE in
the top level and pointing it to the top level itself, a fixed
transformation

uintptr_t L1_PTE_from_VA (uintptr_t va) {

uintptr_t ret va >> 12 << 3;

// Insert SELF_OFFSET into L4 bits.
ret[47:39] = L4_SELF_OFFSET;

return ret;

}

returns a pointer to the L1 PTE (denoted by VA to LI PTE in
Fig.[I2) of a given VA (denoted by VA to page). This works by
asking the hardware page table walker to walk L4 twice, thus
the final access will terminate at the L1 PTE inside the page
table page instead of the actual physical memory. Note that
this can be changed to access the L2 PTE as well, by shifting
the given VA further right and insert SELF_OFFSET to L3
offset bits, effectively asking the hardware walker to walk the
L4 table three times before terminating at the L2 PTE.

Self-map is used to enable ephemeral mapping infrastruc-
ture. When a new mapping request to a physical address
comes, an ephemeral VA is allocated and its L1 PTE is located
via L1_PTE_from_VA (). The PTE is modified to point to
the requested physical address and the VA is now usable. The
motivation of using this technique for ephemeral mappings
under a secret-free hypervisor is not just efficiency. It is also
simply because the direct map is no longer present and we
cannot manipulate PTEs in the ephemeral mapping region by
a normal manual page table walk.
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