Pond: CXL-Based Memory Pooling Systems for Cloud Platforms

Huaicheng Li
Virginia Tech
Carnegie Mellon University

Daniel Ernst
Microsoft Azure

Monish Shah

Microsoft Azure

Ishwar Agarwal

Daniel S. Berger
Microsoft Azure
University of Washington

Pantea Zardoshti

Microsoft Azure

Samir Rajadnya
Microsoft Azure

Mark D. Hill

Intel Microsoft Azure

Lisa Hsu
Unaffiliated

Stanko Novakovic
Google

Scott Lee
Microsoft

Marcus Fontoura
Stone Co

University of Wisconsin-Madison

Ricardo Bianchini
Microsoft Azure

ABSTRACT

Public cloud providers seek to meet stringent performance require-
ments and low hardware cost. A key driver of performance and
cost is main memory. Memory pooling promises to improve DRAM
utilization and thereby reduce costs. However, pooling is challeng-
ing under cloud performance requirements. This paper proposes
Pond, the first memory pooling system that both meets cloud per-
formance goals and significantly reduces DRAM cost. Pond builds
on the Compute Express Link (CXL) standard for load/store access
to pool memory and two key insights. First, our analysis of cloud
production traces shows that pooling across 8-16 sockets is enough
to achieve most of the benefits. This enables a small-pool design
with low access latency. Second, it is possible to create machine
learning models that can accurately predict how much local and
pool memory to allocate to a virtual machine (VM) to resemble
same-NUMA-node memory performance. Our evaluation with 158
workloads shows that Pond reduces DRAM costs by 7% with per-
formance within 1-5% of same-NUMA-node VM allocations.

CCS CONCEPTS

« Computer systems organization — Cloud computing; «
Hardware — Emerging architectures.

KEYWORDS

Compute Express Link; CXL; memory disaggregation; memory
pooling; datacenter; cloud computing.

ACM Reference Format:
Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst, Pantea Zardoshti,
Stanko Novakovic, Monish Shah, Samir Rajadnya, Scott Lee, Ishwar Agarwal,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ASPLOS °23, March 25-29, 2023, Vancouver, BC, Canada

© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9916-6/23/03.

https://doi.org/10.1145/3575693.3578835

Mark D. Hill, Marcus Fontoura, and Ricardo Bianchini. 2023. Pond: CXL-
Based Memory Pooling Systems for Cloud Platforms. In Proceedings of the
28th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2 (ASPLOS °23), March 25-29,
2023, Vancouver, BC, Canada. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3575693.3578835

1 INTRODUCTION

Motivation. Many public cloud customers deploy their workloads
in the form of virtual machines (VMs), for which they get virtual-
ized compute with performance approaching that of a dedicated
cloud, but without having to manage their own on-premises data-
center. This creates a major challenge for public cloud providers:
achieving excellent performance for opaque VMs (i.e., providers do
not know and should not inspect what is running inside the VMs)
at a competitive hardware cost.

A key driver of both performance and cost is main memory. The
gold standard for memory performance is for accesses to be served
by the same NUMA node as the cores that issue them, leading
to latencies in tens of nanoseconds. A common approach is to
preallocate all VM memory on the same NUMA node as the VM’s
cores. Preallocating and statically pinning memory also facilitate
the use of virtualization accelerators [4], which are enabled by
default, for example, on AWS and Azure [12, 14]. At the same time,
DRAM has become a major portion of hardware cost due to its poor
scaling properties with only nascent alternatives [73]. For example,
DRAM can be 50% of server cost [7].

Through analysis of production traces from Azure, we identify
memory stranding as a dominant source of memory waste and a
potential source of massive cost savings. Stranding happens when
all cores of a server are rented (i.e., allocated to customer VMs)
but unallocated memory capacity remains and cannot be rented.
We find that up to 25% of DRAM becomes stranded as more cores
become allocated to VMs.

Limitations of the state of the art. Despite this significant amount
of stranding, reducing DRAM usage in the public cloud is challeng-


https://doi.org/10.1145/3575693.3578835
https://doi.org/10.1145/3575693.3578835
https://doi.org/10.1145/3575693.3578835

ing due to its stringent performance requirements. For example,
existing techniques for process-level memory compression [51, 78]
require page fault handling, which adds microseconds of latency,
and moving away from statically preallocated memory.

Pooling memory via memory disaggregation is a promising ap-
proach because stranded memory can be returned to the disag-
gregated pool and used by other servers. Unfortunately, existing
pooling systems also have microsecond access latencies and require
page faults or changes to the VM guest [51, 59].

Our work. This work describes Pond, the first system to achieve
both same-NUMA-node memory performance and competitive cost
for public cloud platforms. To achieve this, Pond combines hard-
ware and systems techniques. It relies on the Compute Express
Link (CXL) interconnect standard [5], which enables cacheable
load/store (1d/st) accesses to pooled memory on Intel, AMD, and
ARM processors [11, 16, 23] at nanosecond-scale latencies. CXL
access via loads/stores is a game changer as it allows memory to
remain statically preallocated while physically being located in a
shared pool. However, even with loads/stores, CXL accesses still
face higher latencies than same-NUMA-node accesses. Pond intro-
duces systems support for CXL-based pooling that dramatically
reduces the impact of this higher latency.

Pond is feasible because of four key insights. First, by analyzing
traces from 100 production clusters at Azure, we find that pool sizes
between 8-16 sockets lead to sufficient DRAM savings. The pool
size defines the number of CPU sockets able to use pool memory.
Further, analysis of CXL topologies lead us to estimate that CXL will
add 70-90ns to access latencies over same-NUMA-node DRAM with
a pool size of 8-16 sockets, and add more than 180ns for rack-scale
pooling. We conclude that grouping 8 dual-socket (or 16 single-
socket) servers is enough to achieve most of the benefits of pooling.

Second, by emulating either 64ns or 140ns of additional memory
access overheads over same-NUMA-node memory latency, we find
that 43% and 37% of 158 workloads are within 5% of the performance
on same-NUMA-node DRAM when entirely allocated in pool mem-
ory. However, more than 21% of workloads suffer a performance
loss above 25%. This emphasizes the need for small pools and shows
the challenge with achieving same-NUMA-node performance. This
characterization also allows us to train a machine learning (ML)
model that can identify a subset of insensitive workloads ahead of
time to be allocated on the Pond memory pool.

Third, we observe through measurements at Azure that ~50% of
all VMs touch less than 50% of their rented memory. Conceptually,
allocating untouched memory from the pool should not have any
performance impact even for latency-sensitive VMs. We find that
— while this concept does not hold for the uniform address spaces
assumed in prior work (e.g., [51, 57]) — it does hold if we expose
pool memory to a VM’s guest OS as a zero-core virtual NUMA
(zZNUMA) node, i.e., a node with memory but no cores, like Linux’s
CPU-less NUMA [52]. Our experiments show zZNUMA effectively
biases memory allocations away from the zNUMA node. Thus, a
VM with a zZNUMA sized to match its untouched memory will
indeed not see any performance impact.

Fourth, Pond can allocate CXL memory with same-NUMA-node
performance using correct predictions of a) whether a VM will be
latency-sensitive and b) a VM’s amount of untouched memory. For

intel/AMD/ARM |—ache Miss s Request (Red) __ Memory
Core/LLC/Fabric PortData Response (DRS) |-Device
Cache Write Back

Intel/AMD/ARM OX Request with Data (RwD) | [Memory

Core/LLC/Fabric Port|*No Data Response (NDR).Device
e RSt BOREHN - -
Fabric<=—{"|ink Layers Mux~—PCle PHY/~Wires

Round-trip latency measured

on Intel Sapphire Rapids 4ns 2ns 19ns
Figure 1: CXL Request Flow (§2). CPU cache misses and write-backs to
addresses mapped to CXL devices are translated to requests on a CXL port by

the HDM decoder. Intel measures the round-trip port latency to be 25ns.

incorrect predictions, Pond introduces a novel monitoring system
that detects poor memory performance and triggers a mitigation
that migrates the VM to use only same-NUMA-node memory. Fur-
ther, we find that all inputs which are needed to train and run Pond’s
ML models can be obtained from existing hardware telemetry with
no measurable overhead.

Artifacts. CXL is still a year from broad deployment. Meanwhile,
deploying Pond requires extensive testing within Azure’s system
software and distributed software stack. We implement Pond on
top of an emulation layer that is deployed on production servers.
This allows us to prove the key concepts behind Pond by exercising
the VM allocation workflow, zZNUMA, and by measuring guest
performance. Additionally, we support the four insights from above
by reporting from extensive experiments and measurements in
Azure’s datacenters. We evaluate the effectiveness of pooling using
simulations based on VM traces from 100 production clusters. An
open-source version of Pond’s emulation layer and a sample of VM
traces are available at https://github.com/vtess/Pond.

Contributions. Our main contributions are:

e The first public characterization of memory stranding and un-
touched memory at a large public cloud provider.

o The first analysis of the effectiveness and latency of different
CXL memory pool sizes.

e Pond, the first CXL-based full-stack memory pool that is practical
and performant for cloud deployment.

e An accurate prediction model for latency and resource manage-
ment at datacenter scale. These models enable a configurable
performance slowdown of 1-5%.

e An extensive evaluation that validates Pond’s design including
the performance of zZNUMA and our prediction models in a pro-
duction setting. Our analysis shows that we can reduce DRAM
needs by 7% with a Pond pool spanning 16 sockets, which corre-
sponds to hundreds of millions of dollars cost-savings for a large
cloud provider.

2 BACKGROUND

Hypervisor memory management. Public cloud workloads are
virtualized. To maximize performance and minimize overheads,
hypervisors perform minimal memory management and rely on
virtualization accelerators to improve I/O performance [4, 8, 56].
Examples of common accelerators are direct I/O device assignment
(DDA) [8] and Single Root I/O Virtualization (SR-IOV) [4]. Acceler-


https://github.com/vtess/Pond

.40
§, Outliers
230 /\
e}
S 95! Percentile
220 '
# .
> 5" Percentile JL 1 4
o}
g 10 1 -+
E/?) 0 ?—"—iﬂr T
60 90

70 80
Scheduled CPU Cores [%]

Figure 2: Memory stranding (§3.1). Stranding increases significantly as
more CPU cores are scheduled. Error bars indicate the 5" and 95 percentiles
(outliers in dots).

ated networking is enabled by default on AWS and Azure [12, 14]. As
pointed out in prior work, virtualization acceleration requires stati-
cally preallocating (or “pinning”) a VM’s entire address space [55].

Memory stranding. Cloud VMs demand a vector of resources (e.g.,
CPUs, memory, etc.) [41, 48]. Scheduling VMs thus leads to a multi-
dimensional bin-packing problem [32, 45, 48] which is complicated
by constraints such as spreading VMs across multiple failure do-
mains. Additionally, it is difficult to provision servers that closely
match the resource demands of future incoming VM mixes at design
time. When the DRAM-to-core ratio of VM arrivals and the server
resources do not match, tight packing becomes more difficult. We
define a resource as stranded when it is technically available to be
rented to a customer but is practically unavailable as some other
resource has exhausted. The typical scenario for memory stranding
is that all cores have been rented, but there is still memory available
in the server.

Reducing stranding. Multiple techniques can reduce memory
stranding. For example, oversubscribing cores [30, 77] enables more
memory to be rented. However, oversubscription only applies to
a subset of VMs for performance reasons. Our measurements at
Azure (§3.1) include clusters that enable oversubscription and still
show significant memory stranding.

The approach we target is to disaggregate a portion of memory
into a pool that is accessible by multiple hosts. This breaks the fixed
hardware configuration of servers. By dynamically reassigning
memory to different hosts at different times, we can shift memory
resources to where they are needed, instead of relying on each
individual server to be configured for all cases pessimistically. Thus,
we can provision servers close to the average DRAM-to-core ratios
and tackle deviations via the memory pool.

Pooling via CXL. CXL contains multiple protocols including 1d/st
memory semantics (CXL.mem) and I/O semantics (CXL.io). CXL.mem
maps device memory to the system address space. Last-level cache
(LLC) misses to CXL memory addresses translate into requests on a
CXL port whose reponses bring in the missing cachelines (Figure 1).
Similarly, LLC write-backs translate into CXL data writes. Neither
action involves page faults or DMAs. CXL memory is virtualized
using hypervisor page tables and the memory-management unit
and is thus compatible with virtualization acceleration. The CXL.io
protocol facilitates device discovery and configuration. CXL 1.1
targets directly-attached devices, CXL 2.0 [6, 15] adds switch-based
pooling, and CXL 3.0 [28, 70] standardizes switch-less pooling (§4)

—100

3 Percentage of pool memory
<§( assigned to each VM
Dof 95 10%
© R
(]
> 30%
@) ]
et 90
1
% 50%
r 85-+— T T .
2 8 16 32 64

Pool Size [CPU Sockets]

Figure 3: Impact of pool size (§3.1). Small pools of 32 sockets are
sufficient to significantly reduce memory needs.

and higher bandwidth.

CXL.mem uses PCle’s electrical interface with custom link and
transaction layers for low latency. With PCle 5.0, the bandwidth of
a bidirectional x8-CXL port at a typical 2:1 read:write-ratio matches
a DDR5-4800 channel. CXL request latencies are largely determined
by the CXL port. Intel measures round-trip CXL port traversals
at 25ns [69] which, when combined with expected controller-side
latencies, leads to an end-to-end overhead of 70ns for CXL reads
in a basic topology, compared to NUMA-local DRAM reads. While
FPGA-based prototypes report higher latency [44, 60], 70ns-latency-
overheads match industry-expectations for ASIC-based memory
controllers [28, 60, 69].

3 MEMORY STRANDING & WORKLOAD
SENSITIVITY TO MEMORY LATENCY

3.1 Stranding at Azure

This section quantifies the severity of memory stranding and un-
touched memory at Azure using production data.

Dataset. We measure stranding in 100 cloud clusters over a 75-day
period. These clusters host mainstream first-party and third-party
VM workloads. They are representative of the majority of the server
fleet. We select clusters with similar deployment years but spanning
all major regions on the planet. A trace from each cluster contains
millions of per-VM arrival/departure events, with the time, duration,
resource demands, and server-id.

Memory stranding. Figure 2 shows the distribution of hourly
snapshots of the amount of stranded DRAM bucketed by the per-
centage of CPU cores that are scheduled to host VMs. We find that
6% of memory is stranded in the median snapshot (blue line) where
75% of CPU cores are scheduled for VMs. The median grows to over
10% when ~85% of CPU cores are allocated to VMs. This makes
sense since stranding is an artifact of highly utilized nodes, which
correlates with highly utilized clusters. The figure also indicates
outliers and error bars, representing 5° h and 95¢h percentiles. Vari-
ability is largely due to different VM mixes. For example, the VM
mix in some snapshots is biased towards compute-heavy VM types
that do not require much DRAM. This can create high stranding,
even at low utilization. At the 95" percentile, stranding reaches
25% during high utilization periods. Individual outliers even reach
30% stranding.



Slowdown: performance under all remote
memory relative to all local memory

M Local: 115ns, remote: 255ns (222%)
M Local: 78ns, remote: 142ns (182%)

1007 1 1 1 1 1 1 . f
. Q! o Q? Spark : GAPBS : TPC-H : SPEC CPU 2017 : : Qt
2801 '&\é@ ' q,b\. O\\Q. ' .| Not run on red . . %((/O ! vc:o‘z‘
Z \oQ & 'A ' ' 1| configuration, ' ' \??s ' Q\’
2601< Lo : insufficient DRAM ! 'Q 2
_8 . . . per NUMA node |, ! !
E 40 1 1 1 1 1 1 1
U) 1 1 1 1 1
20 1 | : I
1 | '
| 1 1
P1 = P13 YCSBA—F ML/Web, etc.  bc, bfs, cc, pr, sssp, tc Queries 1 = 22 501.perlbench_r — 657.xz_s facesim, vips, fft, etc.

Figure 4: Performance slowdowns when memory latency increases by 182-222% (§3.3). Workloads have different sensitivity to additional memory

latency (as in CXL). X-axis shows 158 representative workloads; Y is the normalized performance slowdown, i.e., performance under higher (remote) latency relative

to all local memory. “Proprietary” denotes production workloads at Azure.

CDF of slowdowns under CXL

/ Three outliers under 255ns
with->100% slowdowns

(max 124%)

‘ Remote: 142ns (182%) ==
Remote: 255ns (222%) ==

05 25 50 75 100
Slowdown (%)

o v r o ®

Figure 5: CDF of slowdowns (§3.3). Higher remote latency (red) only
slightly affects the head of the distribution (workloads with less than 5% slow-
down). The body and tail of the distribution see significantly higher slowdowns.

NUMA spanning. Many VMs are small and can fit on a single
socket. On two-socket systems, the hypervisor at Azure seeks to
schedule such that VMs fit entirely (cores and memory) on a single
NUMA node. In rare cases, we see NUMA spanning where a VM
has all of its cores on one socket and a small amount of memory
from another socket. We find that spanning occurs for about 2-3%
of VMs and fewer than 1% of memory pages, on average.

Savings from pooling. Azure currently does not pool memory.
However, by analyzing its VM-to-server traces, we can estimate
the amount of DRAM that could be saved via pooling. Figure 3
presents average reductions from pooling DRAM when VMs are
scheduled with a fixed percentage of either 10%, 30%, or 50% of
pool DRAM. The pool size refers to the number of sockets that can
access the same DRAM pool. As the pool size increases, the figure
shows that required overall DRAM decreases. However, this effect
diminishes for larger pools. For example, with a fixed 50% pool
DRAM, a pool with 32 sockets saves 12% of DRAM while a pool
with 64 sockets saves 13% of DRAM. Note that allocating a fixed
50% of memory to pool DRAM leads to significant performance
loss compared to socket-local DRAM (§6). Pond overcomes this
challenge with multiple techniques (§4).

Summary and implications. From this analysis, we draw a few

important observations and implications for Pond:

o We observe 3-27% of stranded memory in production at the 95:%
percentile, with some outliers at 36%.

e Almost all VMs fit into one NUMA node.

e Pooling memory across 16-32 sockets can reduce cluster memory
demand by 10%. This suggests that memory pooling can produce
significant cost reductions but assumes that a high percentage
of DRAM can be allocated on memory pools. When implement-
ing DRAM pools with cross-NUMA latencies, providers must
carefully mitigate potential performance impacts.

3.2 VM Memory Usage at Azure

We use Pond’s telemetry on opaque VMs (§4.2) to characterize the
percentage of untouched memory across our cloud clusters. Gener-
ally, we find that while VM memory usage varies across clusters, all
clusters have a significant fraction of VMs with untouched memory.
Overall, the 50" percentile is 50% untouched memory.

Summary and implications. From this analysis, we draw key
observations and implications for Pond:

e VM memory usage varies widely.

e In the cluster with the least amount of untouched memory, still
over 50% of VMs have more than 20% untouched memory. Thus,
there is plenty of untouched memory that can be disaggregated
at no performance penalty.

o The challenges are (1) predicting how much untouched memory
a VM is likely to have and (2) confining the VM’s accesses to
local memory. Pond addresses both.

3.3 Workload Sensitivity to Memory Latency

To characterize the performance impact of CXL latency for typical
workloads in Azure’s datacenters, we evaluate 158 workloads under
two scenarios of emulated CXL access latencies: 182% and 222%
increase in memory latency, respectively. We then compare the
workload performance to NUMA-local memory placement. Experi-
mental details are in §6.1. Figures 4 and 5 show workload slowdowns
relative to NUMA-local performance for both scenarios.

Under a 182% increase in memory latency, we find that 26% of
the 158 workloads experience less than 1% slowdown under CXL.



An additional 17% of workloads see less than 5% slowdowns. At the
same time, some workloads are severely affected with 21% of the
workloads facing >25% slowdowns.

Different workload classes are affected differently, e.g., GAPBS
(graph processing) workloads generally see higher slowdowns.
However, the variability within each workload class is typically
much higher than across workload classes. For example, within
GAPBS even the same graph kernel reacts very differently to CXL
latency, based on different graph datasets. Overall, every workload
class has at least one workload with less than 5% slowdown and
one workload with more than 25% slowdown (except SPLASH2x).

Azure’s proprietary workloads are less impacted than the overall
workload set. Of the 13 production workloads, 6 do not see no-
ticeable impact (<1%); 2 see ~5% slowdown; and the remaining
half are impacted by 10-28%. This is in part because these produc-
tion workloads are NUMA-aware and often include data placement
optimizations.

Under a 222% increase in memory latency, we find that 23% of
the 158 workloads experience less than 1% slowdown under CXL.
An additional 14% of workloads see less than 5% slowdowns. More
than 37% of workloads face >25% slowdowns. Generally, we find
that higher latency magnifies the effects seen under lower latency:
workloads performing well under 182% latency also tend to perform
well under 222% latency; workloads severely affected by 182% are
even more affected by 222%.

Summary and implications. While the performance of some
workloads is insensitive to disaggregated memory latency, some
are heavily impacted. This motivates our design decision to include
socket-local DRAM alongside pool DRAM to mitigate CXL latency
impact for those latency-sensitive workloads. Memory pooling
solutions can be effective if they are effective at identifying sensitive
workloads.

4 POND DESIGN

Our measurements and observations at Azure (§2-3) lead us to
define the following design goals.

G1 Performance comparable to NUMA-local DRAM

G2 Compatibility with virtualization accelerators

G3 Compatibility with opaque VMs and unchanged guest OSes/
applications

G4 Low host resource overhead

To quantify (G1), we define a performance degradation margin
(PDM) for a given workload as the allowable slowdown relative
to running the workload entirely on NUMA-local DRAM. Pond
seeks to achieve a configurable PDM, e.g., 1%, for a configurable
tail-percentage (TP) of VMs, e.g., 98% (§3.1). To achieve this high
performance, Pond uses a small but fast CXL pool (§4.1). As Pond’s
memory savings come from pooling instead of oversubscription,
Pond must minimize pool fragmentation and wastage in its system
software layer (§4.2).

To achieve (G2), Pond preallocates local and pool memory at VM
start. Pond decides this allocation in its allocation, performance
monitoring, and mitigation pipeline (§4.3). This pipeline uses novel
prediction models to achieve the PDM (§4.4). Finally, Pond overcomes
VM-opaqueness (G3) and host-overheads (G4) using lightweight

Comparison: AMD Genoa

8-socket Pond
: 64 PCle 5.0 lanes - 6 channels
8 hosts w/ x8 CXL link: DDR¢ =7,
oot ol ing (EMO oove g <726,
2 coo i
16-socket Pond | e
128 PCle 5.0 lanes 12 channels | ——— . 7m channels
sl ol [EMC oo g =070/ 00, boRs

lanes (efels] [ef&fp) 397mm
32/64-socket Pond cco llccd

CCD @CCD

&
2
I
& 64 PCle 5.0 lanes
WU channels

P __(6 hosts w/ x8 CXL links)

o (8 switches w/ 3
. . x8 CXL links)

Figure 6: External memory controller (EMC) (§4.1). The EMC is
multi-headed which allows connecting multiple CXL hosts and DDR5 DIMMs.
A 16-socket Pond requires 128 PCle 5.0 lanes and 12 DDR5 channels, which is
comparable to the I0-die (I0D) on AMD Genoa [10, 11]. Larger Pond configu-
rations combine a switch with the multi-headed EMC.

hardware counter telemetry.

4.1 Hardware Layer

Hosts within a Pond pool have separate cache coherency domains
and run separate hypervisors. Pond uses an ownership model where
pool memory is explicitly moved among hosts. A new external
memory controller (EMC) ASIC implements the pool using multiple
DDR5 channels accessed through a collection of CXL ports running
at PCle 5 speeds.

EMC memory management. The EMC offers multiple CXL ports
and appears to each host as a single logical memory device [6, 15].
In CXL 3.0 [28, 70], this configuration is standardized as multi-
headed device (MHD) [28, §2.5]. The EMC exposes its entire capacity
on each port (e.g., to hosts) via a Host-managed Device Memory
(HDM) decoder. Hosts program each EMC’s address range but
treat them initially as offline. Pond dynamically assigns memory
at the granularity of 1GB memory slices. Each slice is assigned to
at most one host at a given time and hosts are explicitly notified
about changes (§4.2). Tracking 1024 slices (1TB) and 64 hosts (6
bits) requires 768B of EMC state. The EMC implements dynamic
slice assignment by checking permission of each memory access,
i.e., whether requestor and owner of the cacheline’s slice match.
Disallowed accesses result in fatal memory errors.

EMC ASIC design. The EMC offers multiple X8-CXL ports, which
communicate with DDR5 memory controllers (MC) via an on-chip
network (NOC). The MCs must offer the same reliability, availabil-
ity, and serviceability capabilities [2, 3] as server-grade memory
controllers including memory error correction, management, and
isolation. A key design parameter of Pond’s EMC is the pool size,
which defines the number of CPU sockets able to use pool mem-
ory. We first observe that the EMC’s 10, (De)Serializer, and MC
requirements resemble AMD Genoa’s 397mm? 10-die (IOD) [10, 11].
Figure 6 shows that EMC requirements for a 16-socket Pond parallel
the IOD’s requirements, with a small 8-socket Pond paralleling half
an IOD. Thus, up to 16-sockets can directly connect to an EMC.
Pool sizes of 32-64 would combine CXL switches with Pond’s multi-
headed EMC. The optimal design point balances the potential pool
savings for larger pool sizes (§6) with the added cost of larger EMCs
and switches.



Latency assumptions

CXL Port 25ns

Local DRAM (REne) | Flight time 5ns
Local DRAM (85ns) Reﬁimer 20ns

Core/LLC Address mapping, permission (ACL) 5ns
/Fabri DRAM Network-on-chip (NOC) 10ns
-W 45n Switch arbitration (ARB) 10ns
. - Core/LLC/Fabric 40ns
Memory Controller (MC) MC & DRAM | 45ns

8-socket Pond (155ns, 182%)

EMC %o
Core/LLC ﬁ_ 38
/Fabri Port 0 NOC“ DRAM ©

" 40ns " "25ns'Bns 25ns 15ns

16-socket Pond (180ns, 212%)
Core/LLC|>[CXL w_

40ns 25ns- 5+20+6ns | 25ns 15ns 4

EMC

16-socket Pond

C_Jcrul_Icrd

32/64-socket Pond (>270ns, 318%)

EVC
NC &
Pori NGOG DRAM

- [ i -———————a [ -
40ns 25ns  542045ns  25ns 20ns 25ns  5+42045ns  25ns 15ns  45ns

Figure 7: Pool size and latency tradeoffs (§4.1). Small Pond pools of
8-16 sockets add only 75-90ns relative to NUMA-local DRAM. Latency increases
for larger pools that require retimers and a switch.

EMC Latency. While latency is affected by propagation delays, it
is dominated by CXL port latency, and any use of CXL retimers and
CXL switches. Port latencies are discussed in §2 and [69]. Retimers
are devices used to maintain CXL/PCle signal integrity over longer
distances and add about 10ns of latency in each direction [17, 18].
In datacenter conditions, signal integrity simulations [39] indicate
that CXL could require retimers above 500mm. Switches add at
least 70ns of latency due to ports/arbitration/NOC with estimates
above 100ns [61].

Figure 7 breaks down Pond’s latency for different pool sizes.
Figure 8 compares Pond’s latency to a design that relies only on
switches instead of a multi-headed EMC. We find that Pond reduces
latencies by 1/3 with 8-and 16-socket pools adding only 70-90ns
relative to NUMA-local DRAM. In practice, we expect Pond to be
deployed primarily with small 8/16-socket pools, given the latency
and cost overheads, and diminishing returns of larger pools (§3).
Modern CPUs can connect to multiple EMCs which allows scaling
to meet bandwidth and capacity goals for different clusters.

4.2 System Software Layer

Pond’s system software involves multiple components.

Pool memory ownership. Pool management involves assign-
ing Pond’s memory slices to hosts and reclaiming them for the
pool (Figure 9). It involves 1) implementing the control paths for
pool-level memory assignment and 2) preventing pool memory
fragmentation.

Hosts discover local and pool capacity through CXL device dis-
covery and map them to their address space. Once mapped, the
pool address range is marked hot-pluggable and “not enabled.” Slice
assignment is controlled at runtime via a Pool Manager (PM) that
is colocated on the same blade as the EMCs (Figure 7). In Pond’s
current design, the PM is connected to EMCs and CPU sockets via
a low-power management bus (e.g., [20]). To allocate pool memory,
the Pool Manager triggers two types of interrupts at the EMC and

E 300 Switches only\ > Swichos
oy 1 Switch

e :

© 200 1 Switch

E -36%

P No switches ~ Pond with multi-headed design
@ 100+

3 NUMA-local latency baseline

< 9 1] ‘

1 8 16 32 64
Pool Size [Sockets]

Figure 8: Pool access latency comparison (§4.1). Pond reduces latencies
by 1/3 compared to switch-only designs.

host driver. Add_capacity(host, slice) interrupts the host driver
which reads the address range to be hot-plugged. The driver then
communicates with the OS memory manager to bring the memory
online. The EMC adds the host id to its permission table at the
slice offset. Release_capacity(host, slice) works similarly by
offlining the slice on the host and resetting the slice’s permission
table entry on the EMC. An alternative to this design would be
inband-communication using the Dynamic Capacity Device (DCD)
feature in CXL 3.0 [28, §9.13]. This change would maintain the same
functionality for Pond.

Pond must avoid fragmenting its online pool memory as the
contiguous 1GB address range must be free before it can be offlined
for reassignment to another host. Pool memory is allocated to VMs
in 1GB-aligned increments (§4.3). While this prevents fragmenta-
tion due to VM starts and completions, our experience has shown
that host agents and drivers can allocate pool memory and cause
fragmentation. Pond thus uses a special-purpose memory partition
that is only available to the hypervisor. Host agents and drivers
allocate memory in host-local memory partition, which effectively
contains fragmentation.

With these optimizations, offlining 1GB slices empirically takes
10-100 milliseconds/GB. Onlining memory is near instantaneous
with microseconds/GB. These observations are reflected in Pond’s
asynchronous release strategy (§4.3).

Failure management. Hosts only interleave across local memory.
This minimizes the EMCs’ blast radius and facilitate memory hot-
plugging. EMC failures affect only VMs with memory on that EMC,
while VMs with memory on other EMCs continue normally. CPU/
host failures are isolated and associated pool memory is reallocated
to other hosts. Pool Manager failures prevent reallocating pool
memory but do not affect the datapath.

Exposing pool memory to VMs. VMs that use both NUMA-
local and pool memory see pool memory as a zZNUMA node. The
hypervisor creates a zZNUMA node by adding a memory block
(node_memblk) without an entry in the node_cpuid in the SLIT/
SRAT tables [75]. We later show the guest-OS preferentially allocates
memory from the local NUMA node before going to zNUMA (§6).
Thus, if ZNUMA is sized to the amount of untouched memory;, it is
never going to be used. Figure 10 shows a Linux VM which includes
the correct latency in the NUMA distance matrix (numa_s1it). This
facilitates guest-OS NUMA-aware memory management [79, 81]
for the rare case that the zZNUMA is used (§4.4).



Hosts map local and Time t=0 t=1 t=2 | t=3 t=4
EMC memory at boot = = = = =
Host1 | <BEeSh, Workload ; Monitor
Local (H1) M Used prediction
DRAM "M by V2 )
g g g g U VM request ——
U U = = == = YRR scheduler RS Mitigation
x| | emc X Host2 | | Manager
= memo / | [} Used
o sartsin ¥ H2) : oy Yivs
L offline / [ U = L U Pool
0 state O O = g g = Manager ,,,,,,,,,,,,,,,,,
- - EMC1 :‘ .
Ll || y | Figure 11: Pond control plane workflow (§4.3). A) The VM scheduler
L ool = === = uses ML-based predictions that identify latency-sensitive VMs and their likely
Add capacity M Release Add amount of untouched memory to decide on VM placement (see Figure 13). B)
events lead anager capacity capacity . L. . . .
the host OS (PM) () «(H2y) The monitoring pipeline reconfigures VMs if quality-of-service (QoS) not met.
to online the VM New VM
?ngc'?ted scheduler b ] )
slice Second, we use hypervisor telemetry to track a VM’s untouched

Figure 9: Pool management example (§4.2). Pond assigns pool memory
to at most one host at a time. This example shows Pond’s asynchronous memory
release strategy which engages when a VM departs (t=1 and t=2). During VM
scheduling, memory is added to the corresponding host before the VM starts
(t=3 and t=4).

node distances:
node 0 1

0: 10 20

1: 20 10

sudo numactl --hardware
cpus: © 1234567891011
size: 24124 MB

cpus:
size: 8038 MB

0

0

0 free: 23546 MB
1

1

1 free: 7999 MB

Figure 10: zNUMA (§4.2). zNUMA seen from a Linux VM.

Reconfiguration of memory allocation. To remain compati-
ble with (G2), local and pool memory mapping generally remain
static during a VM’s lifetime. There are two exceptions that are
implemented today. When live-migrating a VM or when remapping
a page with a memory fault, the hypervisor temporarily disables
virtualization acceleration and the VM falls back to a slower I/O
path [67]. Both events are quick and transient and typically only
happen once during a VM’s lifetime. We implement a third variant
which allows Pond a one-time correction to a suboptimal memory
allocation. Specifically, if the host has local memory available, Pond
disables the accelerator, copies all of the VM’s memory to local
memory and enables the accelerator again. This takes about 50ms
for every GB of pool memory that Pond allocated to the VM.

Telemetry for opaque VMs. Pond requires two types of telemetry
for VMs. First, we use the core-performance-measurement-unit
(PMU) to gather hardware counters related to memory performance.
Specifically, we use the top-down-method for analysis (TMA) [25,
80]. TMA characterizes how the core pipeline slots are used. For
example, we use the “memory-bound” metric, which is defined as
pipeline stalls due to memory loads and stores. Figure 12 lists these
metrics. While TMA was developed for Intel, its relevant parts are
available on AMD and ARM as well. We modify Azure’s production
hypervisor to associate these metrics with individual VMs (§5) and
record VM counter samples in a distributed database. All our core-
PMU-metrics use simple counters and induce negligible overhead
(unlike event-based sampling [29, 65]).

pages. We use an existing counter that tracks guest-committed mem-
ory, which overestimates used memory. This counter is available
for 98% of Azure VMs. We also scan access bits in the hypervisor
page table (§5). Since we only seek untouched pages, frequently
access bits reset is not required. This minimizes overhead.

4.3 Distributed Control Plane Layer

Figure 11 shows the two tasks performed by Pond’s control plane:
(A) predictions to allocate memory during VM scheduling and (B)
QoS monitoring and resolution.

Predictions and VM scheduling (A). Pond uses ML-based pre-
diction models (§4.4) to decide how much pool memory to allocate
for a VM. After a VM request arrives (A1), the scheduler queries
the distributed ML serving system (A2) for a prediction on how
much local memory to allocate for the VM. The scheduler then
informs the Pool Manager about the target host and associated pool
memory needs (A3). The Pool Manager triggers a memory onlining
workflow using the configuration bus to the EMCs and host (A4).
Memory onlining is fast enough to not block a VM’s start time
(§4.2). The scheduler informs the hypervisor to start the VM on a
zNUMA node matching the onlined memory amount.

Memory offlining is slow and cannot happen on the critical path
of VM starts (§4.2). Pond resolves this by always keeping a buffer
of unallocated pool memory. This buffer is replenished when VMs
terminate and hosts asynchronously release associated slices.

QoS monitoring (B). Pond continuously inspects the performance
of all running VMs via its QoS monitor. The monitor queries hy-
pervisor and hardware performance counters (B1) and uses an ML
model of latency sensitivity (§4.4) to decide whether the VM’s per-
formance impact exceeds the PDM. In this case, the monitor asks
its mitigation manager (B2) to trigger a memory reconfiguration
(§4.2) through the hypervisor (B3). After this reconfiguration, the
VM uses only local memory.

4.4 Prediction Models
Pond’s VM scheduling (A) and QoS monitoring (B) algorithms rely
on two prediction models (in Figure 13).

Predictions for VM scheduling (A). For scheduling, we first check
if we can correlate a workload history with the VM requested. This
works by checking if there have been previous VMs with the same



CPU Core Offline A/B tests
test on internal
-.__ |[PMU runs workloads

!}

|Re|ative slowdown if on pool memory|

TMA pipeline slot for:
backend-bound, Labels

memory-bound,
Model training

store-bound,
Latency insensitive?

DRAM-latency-bound
Other counters: LLC MPI,
memory bandwidth,
memory parallelism

Features

Metrics

Figure 12: Pond latency insensitive model (§4.2). This model uses
metrics from the core’s performance-measurement-unit (PMU). It is trained
with labels gathered from offline runs and internal workloads.

metadata as the request VM, e.g., the customer-id, VM type, and
location. This is based on the observation that VMs from the same
customer tend to exhibit similar behavior [41].

If we have prior workload history, we make a prediction on
whether this VM is likely to be memory latency insensitive, ie.,
its performance would be within the PDM while using only pool
memory. (Model details appear below.) Latency-insensitive VMs
are allocated entirely on pool DRAM.

If the VM has no workload history or is predicted to be latency-
sensitive, we predict untouched memory (UM) over its lifetime. In-
terestingly, UM predictions with only generic VM metadata such as
customer history, VM type, guest OS, and location are accurate (§6).
VMs without untouched memory (UM = 0) are allocated entirely
with local DRAM. VMs with a UM > 0 are allocated with a rounded-
down GB-aligned percentage of pool memory and a corresponding
zZNUMA node; the remaining memory is allocated on local DRAM.

If we underpredict UM, the VM will not touch the slower pool
memory as the guest OS prioritizes allocating local DRAM. If we
overpredict UM, we rely on the QoS monitor for mitigation. Impor-
tantly, Pond always keeps a VM’s memory mapped in hypervisor
page tables at all times. This means that even if our predictions
happen to be incorrect, performance does not fall off a cliff.

QoS monitoring (B). For ZNUMA VMs, Pond monitors if it over-
predicted the amount of untouched memory during scheduling. For
pool-backed VMs and zZNUMA VMs with less untouched memory
than predicted, we use the sensitivity model to determine whether
the VM workload is suffering excessive performance loss. If not,
the QoS monitor initiates a live VM migration to a configuration
allocated entirely on local DRAM.

Model details. Pond’s two ML prediction models consume teleme-
try that is available for opaque VMs from Pond’s system software
layer (§4.2). Figure 12 shows features, labels, and the training proce-
dure for the latency insensitivity model. The model uses supervised
learning (§5) with core-PMU metrics as features and the slowdown
of pool memory relative to NUMA-local memory as labels. Pond
gets samples of slowdowns from offline test runs and A/B tests of
internal workloads which make their performance numbers avail-
able. These feature-label-pairs are used to retrain the model daily.
As the core-PMU is lightweight (§5), Pond continuously measures
core-PMU metrics at VM runtime. This enable the QoS monitor to
react quickly and enables retaining a history of VMs that have been
latency sensitive.

VM Metadata
VM type, OS, Region,
Percentiles of memory

Decision

Prediction model
CPU -
X Workload history?
Yes,

Latency insensitive?

usage in previous VM
by same Customer,
Workload name.

Yes Untouched memory?

{A) VM scheduling

Entirely pool DRAM

Pool DRAM=untouched
N\
- Hypervisor
%: access b|ts

e
Yes | Overpredicted untouched? |

Entirely local DRAM

Latency insensitive?

(B} QoS monitoring

Reconfiguration mitigation Continue monitoring

Figure 13: Pond prediction models (§4.4). Pond’s two prediction models
(dark grey) rely on telemetry (blue boxes) that is available for all VM types,
including third-party opaque VMs.

Figure 14 shows the inputs and training procedure for the unto-
uched-memory model. The model uses supervised learning (details
in §5) with VM metadata as features and the minimum untouched
memory over each VM’s lifetime as labels. Its most important fea-
ture is a range of percentiles (e.g., 80th-99th) of the recorded un-
touched memory by a customer’s VMs in the last week.

Parameterization of prediction models. Pond’s latency insen-
sitivity model is parameterized to stay below a target rate of false
positives (FP), i.e., workloads it incorrectly specifies as latency in-
sensitive but which are actually sensitive to memory latency. This
parameter enforces a tradeoff as the percentage of workloads that
are labeled as latency insensitive (LI) is a function of FP. For ex-
ample, a rate of 0.1% FP may force the model to 5% of LI.

Similarly, Pond’s untouched memory model is parameterized to
stay below a target rate of overpredictions (OP), i.e., workloads that
touch more memory than predicted and thus would use memory
pages on the zZNUMA node. This parameter enforces a tradeoff as
the percentage of untouched memory (UM) is a function of OP. For
example, a rate of 0.1% OP may force the model to 3% of UM.

With two models and their respective parameters, Pond needs
to decide how to balance FP and OP between the two models. This
balance is done by solving an optimization problem based on the
given performance degradation margin (PDM) and the target per-
centage of VMs that meet this margin (TP). Specifically, Pond seeks
to maximize the average amount of memory that is allocated on
the CXL pool, which is defined by LI and UM, while keeping the
percentage of false positives (FP) and untouched overpredictions
(OP) below the TP.

maximize (LIppy) + (UM)
subject to (FPppy) + (OP) < (100 — TP) (1)

Note that TP essentially defines how often the QoS monitor has to
engage and initiate memory reconfigurations.

Besides PDM and TP, Pond has no other parameters as it automat-
ically solves the optimization problem from Eq.(1). The models rely
on their respective framework’s default hyperparameters (§5).



Guest-committed | | Access bits never
memory counter set since VM start

I { N
VM: memory, cores, OS; [Untouched memory percentage |

Location: region, lLabeIs

availability zone;
Model training

Customer history from
Untouched memory?

Address AM

Hypervisor
page tables

previous VMs:
0/25/50/75/100
percentile untouched;

Workload name

Features

Figure 14: Training of the untouched memory model (§4.4). This
model uses VM metadata as features and labels of untouched memory gathered
from hypervisor telemetry.

5 IMPLEMENTATION

We implement and evaluate Pond on production servers that emu-
late pool latency.

System software. This implementation comprises three parts. First,
we emulate a single-socket system with a CXL pool on a two-socket
server by disabling all cores in one socket, while keeping its memory
accessible from the other socket. This memory mimics the pool.

Second, we change Azure’s hypervisor to instantiate arbitrary
zNUMA topologies. We extend the API between the control plane
and the host to pass the desired ZNUMA topology to the hypervisor.

Third, we implement support in Azure’s hypervisor for the
telemetry required for training Pond’s models. We extend each
virtual core’s metadata with a copy of its core-PMU state and trans-
fer this state when it gets scheduled on different physical cores.
Pond samples core-PMU counters once per second, which takes
1ms. We enable access bit scanning in hypervisor page tables. We
scan and reset access bits every 30 minutes, which takes 10s.

Distributed control plane. We train our prediction models by
aggregating daily telemetry into a central database. The latency
insensitivity model uses a simple random forest (RandomForest)
from Scikit-learn [63] to classify whether a workload exceeds the
PDM. The model uses a set of 200 hardware counters as supported
by current Intel processors. The untouched memory model uses a
gradient boosted regression model (GBM) from LightGBM [49] and
makes a quantile regression prediction with a configurable target
percentile. After exporting to ONNX [62], the prototype adds the
prediction (the size of zZNUMA) on the VM request path using a
custom inference serving system similar to [42, 43]. Azure’s VM
scheduler incorporates ZNUMA requests and pool memory as an
additional dimension into its bin packing, similar to other cluster
schedulers [37, 48].

6 EVALUATION

Our evaluation addresses the performance of ZNUMA VMs (§6.2,
§6.3), the accuracy of Pond’s prediction models (§6.4), and Pond’s
end-to-end DRAM savings (§6.5).

6.1 Experimental Setup

We evaluate the performance of our prototype using 158 cloud
workloads. Specifically, our workloads span in-memory databases
and KV-stores (Redis [22], VoltDB [27], and TPC-H on MySQL [26]),
data and graph processing (Spark [19] and GAPBS [33]), HPC
(SPLASH2x [82]), CPU and shared-memory benchmarks (SPEC

N w
Access Count

[

Guest Physical Addresses (GiB)

0 8 16 24 32 40 48
Time(h)

Workloads ‘ Traffic to ZNUMA

Video 0.25%

Database 0.06%

KV store 0.11%

Analytics 0.38%

Figure 15: Effectiveness of zZNUMA (§6.2). Latency sensitive work-
loads get a local YNUMA node large enough to cover the workload’s footprint.
zNUMA nodes holds the VM’s remaining memory on Pond CXL pool. Access
bit scans, e.g., for Video (right), show that this configuration indeed minimizes
traffic to the zZNUMA node.

CPU [24] and PARSEC [35]), and a range of Azure’s internal work-
loads (Proprietary). Figure 4 overviews these workloads. We quan-
tify DRAM savings with simulations.

Prototype setup. We run experiments on production servers at
Azure and similarly-configured lab servers. The production servers
use either two Intel Skylake 8157M sockets with each 384GB of
DDR4, or two AMD EPYC 7452 sockets with each 512GB of DDR4.
On Intel, we measure 78ns NUMA-local latency and 80GB/s band-
width and 142ns remote latency and 30GB/s bandwidth (3/4 of a
CXL %8 link). On AMD, we measure 115ns NUMA-local latency and
255ns remote latency. Our BIOS disables hyper-threading, turbo-
boost, and C-states.

We use performance results of VMs entirely backed by NUMA-
local DRAM as our baseline. We present zZNUMA performance as
normalized slowdowns, i.e., the ratio to the baseline. Performance
metrics are workload specific, e.g., job runtime, throughput and tail
latency, etc.

Each experiment involves running the application with one of 7
zNUMA sizes (as percentages of the workload’s memory footprint
in Figure 16). With at least three repetitions of each run and 158
workloads, our evaluation spans more than 3,500 experiments and
10,000 machine hours. Most experiments used lab servers; we spot
check outliers on production servers.

Simulations. Our simulations are based on traces of production
VM requests and their placement on servers. The traces are from
randomly selected 100 clusters across 34 datacenters globally over
75 days.

The simulator implements different memory allocation policies
and tracks each server and each pool’s memory capacity at second
accuracy. Generally, the simulator schedules VMs on the same
nodes as in the trace and changes their memory allocation to match
the policy. For rare cases where a VM does not fit on a server, e.g.,



60

Overprediction of untouched memory
Correct
O\'_O' Untouched
= 40 Prediction
c
2
o
'g All local
S 20| memory ; l
[}
A\
0 T T T T T T T T
0 0% 10% 20% 40% 60% 75%  100%

Pool Memory [%]

Figure 16: Slowdown under different pool allocations (§6.3). Perfor-
mance for no pool memory and a correctly-sized zZNUMA is comparable. Small
slowdowns arise from run-to-run variation. Slowdown become noticeable as
soon as the workload spills into the zZNUMA and steadily increases until the
whole workload is allocated on pool memory (100% spilled).

due to insufficient pool memory, the simulator moves the VMs to
another server.

Model evaluation. We evaluate our model with production re-
source logs. About 80% of VMs have sufficient history to make a sen-
sitivity prediction. Our deployment does not report each workload’s
perceived performance (opaque VMs). We thus evaluate latency
sensitivity model based on our 158 workloads.

6.2 zNUMA VMs on Production Nodes

We perform a small-scale experiment on Azure production nodes
to validate ZNUMA VMs. The experiment evaluates four internal
workloads: an audio/video conferencing application, a database
service, a key-value store, and a business analytics service. To see
the effectiveness of zZNUMA, we assume a correct prediction of
untouched memory, i.e., the local footprint fits into the VM’s local
vNUMA node. Figure 15 shows access bit scans over 48 hours from
the video workload and a table that shows the traffic to the ZNUMA
node for the four workloads.

Finding #1: We find that ZNUMA nodes are effective at containing
the memory access to the local YNUMA node. A small fraction of
accesses goes to the ZNUMA node. We suspect that this is in part
due to the guest OS memory manager’s metadata that is explicitly
allocated on each vYNUMA node. We find that the video workload
sends fewer than 0.25% of memory accesses to the ZNUMA node.
Similarly, the other three workloads send 0.06-0.38% of memory
access to the zZNUMA node. Accesses within the local vNUMA
node are spread out.

Implications. With a negligible fraction of memory accesses on
zZNUMA, we expect negligible performance impact given a correct
prediction of untouched memory.

6.3 zNUMA VM:s in the Lab

We scale up our evaluation to 158 workloads in a lab setting. Since
we fully control these workloads, we can now also explicitly mea-
sure their performance. We rerun each workload on all-local mem-
ory, a correctly sized ZNUMA (0% spilled), differently-sized zZNUMA
nodes sized between 10-100% of the workload’s footprint. Figure 16
shows a violin plot of associated slowdowns. This setup covers both

3= 20 |-
20
5o Memory-Bound ‘ ¢
o A
o c
83 10
£ ‘
° )
%] |
0 e ——— T T T
0 10 20 30 40 50 60

Workloads Insensitive to CXL Latency [%]

Figure 17: Latency insensitivity model (§6.4). As we increase how
many workloads are marked as insensitive (LI), the rate of false positives (FP)
increases. Pond’s RandomForest slightly outperforms a heuristic based only on
the DRAM-bound TMA performance counter.

normal behavior (all-local and 0% spill) and misprediction behavior
for latency sensitive workloads. Thus, this is effectively a sensitivity
study.

Finding #2: With a correct prediction of untouched memory, the
distribution of workload slowdowns is similar to all-local memory.

Implications. This performance result is expected since the
zNUMA node is rarely accessed (§6.2). Our evaluation can thus
assume no performance impact under correct predictions of un-
touched memory (§6.5).

Finding #3: For overpredictions of untouched memory (and cor-
respondingly undersized local YNUMA node), the workload spills
into zZNUMA. Many workloads see an immediate impact on slow-
down. Slowdowns further increase if more workload memory spills
into ZNUMA. Some workloads are slowed down by up to 30-35%
with 20-75% of workload memory spilled and up to 50% if entirely
allocated on pool memory. We use access bit scans to verify that
these workloads indeed actively access their entire working set.

Implications. Allocating a fixed percentage of pool DRAM to VMs
would lead to significant performance slowdowns. There are only
two strategies to reduce this impact: 1) identify which workloads
will see slowdowns and 2) allocate untouched memory on the pool.
Pond employs both strategies.

6.4 Performance of Prediction Models

We evaluate Pond’s prediction models (§4.4) and its combined pre-
diction model based on Eq.(1).

6.4.1 Predicting Latency Sensitivity. Pond seeks to predict whether
a VM is latency insensitive, i.e., whether running the workload
on pool memory would stay within the performance degradation
margin (PDM). We tested the model for PDM between 1-10% and
on both 182% and 222% latency increases, but report details only
for 5% and 182%. Other PDM values lead to qualitatively similar
results. The 222% model is 16% less effective given the same false
positive rate target. We compare thresholds on memory and DRAM
boundedness [25, 80] to our RandomForest (§5).

Figure 17 shows the model’s false positive rate as a function of
the percentage of workloads labeled as latency insensitive, similar
to a precision-recall curve [36]. Error bars show 99% confidence



(4]

= Pond with CXL latency emulated
°§ 41 — At 222% (255ns)
D 5| —At182% (142ns)
A
S 2
o
e
2]
%)
0 7 7 7
0 20 40 60

Average Pool DRAM [%]

Figure 18: Combined model (§6.4). Pond’s overall tradeoff between
average allocation of pool memory and mispredictions after solving Eq.(1).

from a 100-fold validation based on randomly splitting into equal-
sized training and testing datasets.

Finding #4: While DRAM boundedness is correlated with slow-
down, we find examples where high slowdown occurs even for a
small percentage of DRAM boundedness. For example, multiple
workloads exceed 20% slowdown with just two percent of DRAM
boundedness.

Implication. This shows the general hardness of predicting
whether workloads exceed the PDM. Heuristic as well as predictors
will make statistical errors.

Finding #5: We find that “DRAM bound” significantly outper-
forms “Memory bound” (Figure 17). Our RandomForest performs
slightly better than “DRAM bound”.

Implication. Our RandomForest can place 30% of workloads on
the pool with only 2% of false positives.

6.4.2  Predicting Untouched Memory. Pond predicts the amount of
untouched memory over a VM’s future lifetime (§4.4). We evalu-
ate this model using metadata and resource usage logs from 100
clusters over 75 days. The model is trained nightly and evaluated
on the subsequent day. Figure 19 compares our GBM model to the
heuristic that assumes a fixed fraction of memory as untouched
across all VMs. The figure shows the overprediction rate as a func-
tion of the average amount of untouched memory. Figure 20 shows
a production version of the untouched memory model during the
first 110 days of 2022.

Finding #6: We find that the GBM model is 5X more accurate
than the static policy, e.g., when labeling 20% of memory as un-
touched, GBM overpredicts only 2.5% of VMs while the static policy
overpredicts 12%.

Implication. Our prediction model identifies 25% of untouched
memory while only overpredicting 4% of VMs.

Finding #7: The production version of our model performs sim-
ilarly to the simulated model. Distributional shifts lead to some
variability over time.

Implication. We find that accurately predicting untouched mem-
ory is practical and a realistic assumption.

25

20+

154 Fixed Amount / VM

»
""" GBM Model 1GB-aligned

Overpredictions [% VMs]

0 -‘.“---—

0 10 20 30 40 50
Average Untouched Memory [% GB-Hours]

Figure 19: Untouched memory model (§6.4). As we increase untouched
memory (UM), our GBM has a significantly lower rate of overpredictions (0P)
that a strawman model.

6.4.3 Combined Prediction Models. We characterize Pond’s com-
bined models (Eq.(1)) using “scheduling mispredictions”, ie., the
fraction of VMs that will exceed the PDM. This incorporates the
overpredictions of untouched memory, how much the model over-
predicted, and the probability of this overprediction leading to a
workload exceeding the PDM. Further, Pond uses its QoS monitor
to mitigate up to 1% of mispredictions. Figure 18 shows schedul-
ing mispredictions as a function of the average amount of cluster
DRAM that is allocated on its pools for 182% and 222% memory
latency increases, respectively.

Finding #8: Pond’s combined model outperforms its individual
models by finding their optimal combination.

Implication. With a 2% scheduling misprediction target, Pond
can schedule 44% and 35% of DRAM on pools with 182% and 222%
memory latency increases, respectively.

6.5 End-to-end Reduction in Stranding

We characterize Pond’s end-to-end performance while constraining
its rate of scheduling mispredictions. Figure 21 shows the reduction
in aggregate cluster memory as a function of pool size for Pond
under 182% and 222% memory latency increase, respectively, and
a strawman static allocation policy. We evaluate multiple scenar-
ios; the figure shows PDM =5% and TP =98%. In this scenario, the
strawman statically allocates each VM with 15% of pool DRAM.
About 10% of VMs would touch the pool DRAM (Figure 19). Of
those touching pool DRAM, we’d expect that about }1 would see
a slowdown exceeding a PDM =5% (Figure 16). So, the strawman
would have about 2.5% of scheduling mispredictions.

Finding #9: At a pool size of 16 sockets, Pond reduces overall
DRAM requirements by 9% and 7% under 182% and 222% latency
increases, respectively. Static reduces DRAM by 3%. When varying
PDM between 1 and 10% and TP between 90 and 99.9% we find the
relative savings of the three systems to be qualitatively similar.

Implication. Pond can safely reduce cost. A QoS monitor that mit-
igates more than 1% of mispredictions, can achieve more aggressive
performance targets (PDM).

Finding #10: Throughout the simulations, Pond’s pool memory
offlining speeds remain below 1GB/s and 10GB/s for 99.99% and



" 10
c
o u
g 5 9 ‘Mvv
§ =
2
o
0

5 50
@
5 401
3 =
g ESO’\N

S / —
8 5%
g = 10
2 o : : ‘ ‘

0 25 50 75 100

Day in 2022

Figure 20: Untouched memory ML model performance in produc-
tion (§6.4). Our production model targets 4% overpredictions (OP). It average
untouched memory percentage is similar to the simulated model (Figure 19).

99.999% of VM starts, respectively.

Implication. Pond is practical and achieve design goals.

7 DISCUSSION

Robustness of ML. Similar to other oversubscribed resources
(CPU [77] and disks [13]), customers may overuse resources to
get local memory. When multiplexing resource for millions of cus-
tomers, any individual customer’s behavior will have a small impact.
Providers can also provide small discounts when resources are not
fully utilized.

Alternatives to static memory preallocation. Pond is designed
for compatibility static memory as potential workarounds are not
yet practical. The PCle Address Translation Service (ATS/PRI) [1]
enables compatibility with page faults. Unfortunately, ATS/PRI-
devices are not yet broadly available [55]. Virtual IOMMUs [31, 34,
74] allow fine-grained pinning but require guest OS changes and
introduce overhead.

8 RELATED WORK

Hardware-level disaggregation: Hardware-based disaggregation
designs [47, 64] are not easily deployable as they do not rely on com-
modity hardware. For instance, ThymesisFlow [64] and Clio [47]
propose FPGA-based rack-scale memory disaggregation designs on
top of OpenCAPI [21] and RDMA. Their hardware layer shares goals
with Pond. Their software goals differ fundamentally, e.g., Thymes-
isFlow advocates application changes for performance, while Pond
focuses on platform-level ML-driven pool memory management
that is transparent to users.

Hypervisor/OS level disaggregation: Hypervisor/OS level ap-
proaches [46, 51, 68] rely on page faults and access monitoring
to maintain the working set in local DRAM. Such OS-based ap-
proaches bring significant overhead, jitter, and are incompatible
with virtualization acceleration (e.g., DDA).

Runtime/application level disaggregation: Runtime-based dis-
aggregation designs [38, 66, 76] propose customized APIs for remote

-
o
o

'0\7 Fixed 15% percentage of VM memory
S with CXL latency at 182%
<
[a ey i
a 95
® Pond with CXL latency at 222%
5
5 907
19 o
?-J' Pond with CXL latency at 182%
T 85- T T T T
2 8 16 32 64

Pool Scope [CPU Sockets]

Figure 21: Memory savings under performance constraints (§6.5).
Simulated end-to-end evaluation of memory savings achieved by Pond under
PDM =5% and scheduling mispredictions TP =98%.

memory access. While effective, this approach requires developers
to explicitly use these mechanisms at the application level.

Memory tiering: Prior works have considered the broader impact
of extended memory hierarchies and how to handle them [50, 51].
For example, Google achieves 6is latency via proactive hot/cold
page detection and compression [9, 51]. Nimble [79] optimizes
Linux’s page tracking mechanism to tier pages for increased migra-
tion bandwidth. Pond takes a different ML-based approach looking
at memory pooling design at the platform-level and is orthogonal
to these works.

ML for systems: ML is increasingly applied to tackle systems
problems, such as cloud efficiency [41, 77], memory/storage op-
timizations [58, 84], microservices [83], caching/prefetching poli-
cies [71, 72]. We uniquely apply ML methods for untouched memory
prediction to support pooled memory provisioning to VMs without
jeopardizing QoS.

Coherent memory and NUMA optimizations: Traditional cache
coherent NUMA architectures [53] use specialized interconnects to
implement a shared address space. There are also system-level op-
timizations for NUMA, such as NUMA-aware data placement [54]
and proactive page migration [81]. NUMA scheduling policies [40]
balance compute and memory across NUMA nodes. Pond’s own-
ership overcomes the need for coherence across the memory pool.
zNUMA’s zero-core nature requires rethinking of existing optimiza-
tions which are largely optimized for symmetric NUMA systems.

9 CONCLUSION

DRAM costs are an increasing cost factor for cloud providers. This
paper is motivated by the observation of stranded and untouched
memory across 100 production cloud clusters. We proposed Pond,
the first full-stack memory pool that satisfies the requirements of
cloud providers. Pond consists of contributions at the hardware, sys-
tem software, and distributed system layers to manage pooled/CXL
memory. Our results showed that Pond can reduce the amount of
needed DRAM by 7% with a pool size of 16 sockets and assum-
ing CXL increases latency by 222%. This translates into an overall
reduction of 3.5% in cloud server cost.



10

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their tremendous feedback
and comments which help improve the quality of the paper. The
work was mainly done when Huaicheng was affiliated with CMU
Parallel Data Lab (PDL) and we thank the member companies of
the PDL Consortium for their support.

REFERENCES

(1]

[2

[11]

[12

[13]
[14]

(15

[16]

[17

[19]

[20

[21]
[22]
[23]

[24
[25]

[26]
[27
[28]

[29

[30

2009. PCI Express Address Translation Services. https://composter.com.ua/doc
uments/ats_r1.1_26Jan09.pdf.

2015. Reliability, Availability, and Serviceability (RAS) Integration and Validation
Guide for the Intel Xeon Processor E7 Family. https://www.intel.com/content/
dam/develop/external/us/en/documents/emca2-integration-validation- guide-
556978.pdf.

2017. AMD EPYC brings new RAS capability. https://www.amd.com/system/fil
€s/2017-06/ AMD-EPYC-Brings-New-RAS-Capability.pdf.

2019. Single-Root Input/Output Virtualization. httpp://www.pcisig.com/specific
ations/iov/single_root.

2020. Compute Express Link Specification. Available at https://www.computee
xpresslink.org.

2020. CXL 2.0 Specification. https://www.computeexpresslink.org/download-
the-specification.

2020. CXL And Gen-Z Iron Out A Coherent Interconnect Strategy. https:
//www.nextplatform.com/2020/04/03/cxl-and-gen-z-iron- out-a-coherent-
interconnect-strategy/.

2020. Intel Virtualization Technology for Directed I/O. https://software.intel.c
om/content/dam/develop/external/us/en/documents/vt-directed-io-spec.pdf.
2020. Linux Memory Management Documentation - zswap. https://www.kernel
.org/doc/html/latest/vm/zswap.html.

2021. AMD EPYC Genoa and SP5 Platform Leaked. https://wecftech.com/amd-
epyc-genoa-zen-4-server-cpus-and-sp5-1ga-6096-server-platform-details-
leaked/ accessed 8/23/22.

2021. AMD Unveils Workload-Tailored Innovations and Products at The Acceler-
ated Data Center Premiere. https://www.amd.com/en/press-releases/2021-11-08-
amd-unveils-workload- tailored-innovations-and- products- the-accelerated.
2021. AWS: Enhanced Networking Support. https://docs.aws.amazon.com/AW
SEC2/latest/UserGuide/enhanced-networking html.

2021. AWS: Optimize Disk Performance for Instance Store Volumes. https:
//docs.aws.amazon.com/AWSEC2/latest/UserGuide/disk-performance.html.
2021. Azure Accelerated Networking: Supported VM Instances. https://docs.mic
rosoft.com/en-us/azure/virtual-network/accelerated-networking-overview.
2021. Compute Express Link 2.0 White Paper. https://b373eaf2-67af-4a29-b28c-
3aae9e644f30.filesusr.com/ugd/0c1418_14c5283e7f3e40f9b2955c7d0f60bebe.pdf.
2021. CXL Consortium Member Spotlight: Arm. https://www.computeexpressli
nk.org/post/cxl-consortium-member-spotlight-arm.

2021. CXL Use-cases Driving the Need For Low Latency Performance Retimers.
https://www.microchip.com/en-us/about/blog/learning- center/cxl- - use- cases-
driving-the-need-for-low-latency-performance-reti.

2021. Enabling PCIe 5.0 System Level Testing and Low Latency Mode for CXL.
https://www.asteralabs.com/videos/aries- smart-retimer-for-pcie-gen-5-and-
exl/.

2021. HiBench: The Bigdata Micro Benchmark Suite. https://github.com/Intel-
bigdata/HiBench.

2021. MIPII3C Bus Sensor Specification. https://www.mipi.org/specifications/i3c-
sensor-specification.

2021. OpenCAPI Consortium. https://opencapi.org/.

2021. Redis. https://redis.io.

2021. Sapphire Rapids Uncovered: 56 Cores, 64GB HBM2E, Multi-Chip Design.
https://www.tomshardware.com/news/intel-sapphire-rapids-xeon-scalable-
specifications-and-features.

2021. SPEC CPU 2017. https://www.spec.org/cpu2017.

2021. Top-down Microarchitecture Analysis Method. https://software.intel.com
/content/www/us/en/develop/documentation/vtune-cookbook/top/methodolo
gies/top-down-microarchitecture-analysis-method.html.

2021. TPC-H Benchmark. http://www.tpc.org/tpch.

2021. VoltDB. https://www.voltdb.com.

2022. CXL 3.0 Specification. https://www.computeexpresslink.org/download-
the-specification.

Soramichi Akiyama and Takahiro Hirofuchi. 2017. Quantitative Evaluation of
Intel PEBS Overhead for Online System-noise Analysis. In Proceedings of the 7th
International Workshop on Runtime and Operating Systems for Supercomputers
(ROSS).

Pradeep Ambati, [fiigo Goiri, Felipe Vieira Frujeri, Alper Gun, Ke Wang, Brian
Dolan, Brian Corell, Sekhar Pasupuleti, Thomas Moscibroda, Sameh Elnikety,
Marcus Fontoura, and Ricardo Bianchini. 2020. Providing SLOs for Resource-

(31]

(32

[33

&
=)

[35

[36

[37

[38

[39

[40

[41

[42

[43

[44

[45

[46

[47

[48

[49

[50

[51

(52

Harvesting VMs in Cloud Platforms. In Proceedings of the 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI).

Nadav Amit, Muli Ben-Yehuda, IBM Research, Dan Tsafrir, and Assaf Schuster.
2011. vVIOMMU: Efficient IOMMU Emulation. In Proceedings of the 2011 USENIX
Annual Technical Conference (ATC).

Yossi Azar, Ilan Reuven Cohen, Seny Kamara, and Bruce Shepherd. 2013. Tight
Bounds for Online Vector Bin Packing. In Proceedings of the 45th ACM Symposium
on Theory of Computing (STOC).

Scott Beamer, Krste Asanovi¢, and David Patterson. 2015. The GAP Benchmark
Suite. arXiv:1508.03619 (2015).

Muli Ben-Yehuda, Michael D. Day, Zvi Dubitzky, Michael Factor, Nadav Har’El,
Abel Gordon, Anthony Liguori, Orit Wasserman, and Ben-Ami Yassour. 2010.
The Turtles Project: Design and Implementation of Nested Virtualization. In
Proceedings of the 9th USENIX Symposium on Operating Systems Design and
Implementation (OSDI).

Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The
PARSEC Benchmark Suite: Characterization and Architectural Implications. In
IEEE International Conference on Parallel Architectures and Compilation Techniques
(PACT).

Michael Buckland and Fredric Gey. 1994. The Relationship Between Recall and
Precision. Journal of the American Society for Information Science 45, 1 (1994).
Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John Wilkes.
2016. Borg, Omega, and Kubernetes. Commun. ACM 59, 5 (2016).

Irina Calciu, M. Talha Imran, Ivan Puddu, Sanidhya Kashyap, Hasan Al Maruf,
Onur Mutlu, and Aasheesh Kolli. 2021. Rethinking Software Runtimes for Dis-
aggregated Memory. In Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems (ASP-
LOS).

Elene Chobanyan, Casey Morrison, and Pegah Alavi. 2020. End-to-End System-
Level Simulations with Retimers for PCle Gen5 & CXL. DesignCon, slides
available at https://www.asteralabs.com/wp-content/themes/astera-labs/images/
retimer-cxl.pdf.

Jonathan Corbet. 2012. AutoNUMA: the other approach to NUMA scheduling.
https://lwn.net/Articles/488709/.

Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura,
and Ricardo Bianchini. 2017. Resource Central: Understanding and Predicting
Workloads for Improved Resource Management in Large Cloud Platforms. In
Proceedings of the 26th ACM Symposium on Operating Systems Principles (SOSP).
Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura,
and Ricardo Bianchini. 2017. Resource Central: Understanding and Predicting
Workloads for Improved Resource Management in Large Cloud Platforms. In
Proceedings of the 26th ACM Symposium on Operating Systems Principles (SOSP).
Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J. Franklin, Joseph E. Gon-
zalez, and Ion Stoica. 2017. Clipper: A Low-Latency Online Prediction Serving
System. In Proceedings of the 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI).

Donghyun Gouk, Sangwon Lee, Miryeong Kwon, , and Myoungsoo Jung. 2022.
Direct Access, High-Performance Memory Disaggregation with DirectCXL. In
Proceedings of the 2022 USENIX Annual Technical Conference (ATC).

Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram Rao, and
Aditya Akella. 2014. Multi-Resource Packing for Cluster Schedulers. In Proceed-
ings of the ACM Special Interest Group on Data Communication (SIGCOMM).
Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury, and Kang G.
Shin. 2017. Efficient Memory Disaggregation with Infiniswap. In Proceedings of
the 14th USENIX Symposium on Networked Systems Design and Implementation
(NSDI).

Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong Huang, and Yiying Zhang. 2022.
Clio: A Hardware-Software Co-Designed Disaggregated Memory System. In
Proceedings of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS).

Ori Hadary, Luke Marshall, Ishai Menache, Abhisek Pan, Esaias E Greeff, David
Dion, Star Dorminey, Shailesh Joshi, Yang Chen, Mark Russinovich, and Thomas
Moscibroda. 2020. Protean: VM Allocation Service at Scale. In Proceedings of
the 14th USENIX Symposium on Operating Systems Design and Implementation
(OSDI).

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. 2017. Lightgbm: A Highly Efficient Gradient Boosting
Decision Tree. Advances in Neural Information Processing Systems (NIPS) (2017).
Jonghyeon Kim, Wonkyo Choe, and Jeongseob Ahn. 2021. Exploring the Design
Space of Page Management for Multi-Tiered Memory Systems. In Proceedings of
the 2021 USENIX Annual Technical Conference (ATC).

Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal, Neha Agarwal, Radoslaw
Burny, Shakeel Butt, Jichuan Chang, Ashwin Chaugule, Nan Deng, Junaid Shahid,
Greg Thelen, Kamil Adam Yurtsever, Yu Zhao, and Parthasarathy Ranganathan.
2019. Software-Defined Far Memory in Warehouse-Scale Computers. In Pro-
ceedings of the 24th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS).

Christopher Lameter. 2019. Flavors of Memory supported by Linux, Their Use and


https://composter.com.ua/documents/ats_r1.1_26Jan09.pdf
https://composter.com.ua/documents/ats_r1.1_26Jan09.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/emca2-integration-validation-guide-556978.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/emca2-integration-validation-guide-556978.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/emca2-integration-validation-guide-556978.pdf
https://www.amd.com/system/files/2017-06/AMD-EPYC-Brings-New-RAS-Capability.pdf
https://www.amd.com/system/files/2017-06/AMD-EPYC-Brings-New-RAS-Capability.pdf
httpp://www.pcisig.com/specifications/iov/single_root
httpp://www.pcisig.com/specifications/iov/single_root
https://www.computeexpresslink.org
https://www.computeexpresslink.org
https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification
https://www.nextplatform.com/2020/04/03/cxl-and-gen-z-iron-out-a-coherent-interconnect-strategy/
https://www.nextplatform.com/2020/04/03/cxl-and-gen-z-iron-out-a-coherent-interconnect-strategy/
https://www.nextplatform.com/2020/04/03/cxl-and-gen-z-iron-out-a-coherent-interconnect-strategy/
https://software.intel.com/content/dam/develop/external/us/en/documents/vt-directed-io-spec.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/vt-directed-io-spec.pdf
https://www.kernel.org/doc/html/latest/vm/zswap.html
https://www.kernel.org/doc/html/latest/vm/zswap.html
https://wccftech.com/amd-epyc-genoa-zen-4-server-cpus-and-sp5-lga-6096-server-platform-details-leaked/
https://wccftech.com/amd-epyc-genoa-zen-4-server-cpus-and-sp5-lga-6096-server-platform-details-leaked/
https://wccftech.com/amd-epyc-genoa-zen-4-server-cpus-and-sp5-lga-6096-server-platform-details-leaked/
https://www.amd.com/en/press-releases/2021-11-08-amd-unveils-workload-tailored-innovations-and-products-the-accelerated
https://www.amd.com/en/press-releases/2021-11-08-amd-unveils-workload-tailored-innovations-and-products-the-accelerated
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/disk-performance.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/disk-performance.html
https://docs.microsoft.com/en-us/azure/virtual-network/accelerated-networking-overview
https://docs.microsoft.com/en-us/azure/virtual-network/accelerated-networking-overview
https://b373eaf2-67af-4a29-b28c-3aae9e644f30.filesusr.com/ugd/0c1418_14c5283e7f3e40f9b2955c7d0f60bebe.pdf
https://b373eaf2-67af-4a29-b28c-3aae9e644f30.filesusr.com/ugd/0c1418_14c5283e7f3e40f9b2955c7d0f60bebe.pdf
https://www.computeexpresslink.org/post/cxl-consortium-member-spotlight-arm
https://www.computeexpresslink.org/post/cxl-consortium-member-spotlight-arm
https://www.microchip.com/en-us/about/blog/learning-center/cxl--use-cases-driving-the-need-for-low-latency-performance-reti
https://www.microchip.com/en-us/about/blog/learning-center/cxl--use-cases-driving-the-need-for-low-latency-performance-reti
https://www.asteralabs.com/videos/aries-smart-retimer-for-pcie-gen-5-and-cxl/
https://www.asteralabs.com/videos/aries-smart-retimer-for-pcie-gen-5-and-cxl/
https://github.com/Intel-bigdata/HiBench
https://github.com/Intel-bigdata/HiBench
https://www.mipi.org/specifications/i3c-sensor-specification
https://www.mipi.org/specifications/i3c-sensor-specification
https://opencapi.org/
https://redis.io
https://www.tomshardware.com/news/intel-sapphire-rapids-xeon-scalable-specifications-and-features
https://www.tomshardware.com/news/intel-sapphire-rapids-xeon-scalable-specifications-and-features
https://www.spec.org/cpu2017
https://software.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/methodologies/top-down-microarchitecture-analysis-method.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/methodologies/top-down-microarchitecture-analysis-method.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/methodologies/top-down-microarchitecture-analysis-method.html
http://www.tpc.org/tpch
https://www.voltdb.com
https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification
https://www.asteralabs.com/wp-content/themes/astera-labs/images/retimer-cxl.pdf
https://www.asteralabs.com/wp-content/themes/astera-labs/images/retimer-cxl.pdf
https://lwn.net/Articles/488709/

[53]

[54]

[55

[56

[57

[58

[59

[60

[61]

[62]

[64]

[65]

[66]

[67]

Benefit. https://events19.linuxfoundation.org/wp-content/uploads/2017/11/The-
Flavors-of-Memory-Supported-by-Linux- their-Use-and-Benefit- Christoph-
Lameter-Jump-Trading-LLC.pdf.

James Laudon and Daniel Lenoski. 1997. The SGI Origin: A ccNUMA Highly
Scalable Server. In Proceedings of the 24th Annual International Symposium on
Computer Architecture (ISCA).

Baptiste Lepers, Vivien Quéma, and Alexandra Fedorova. 2015. Thread and
Memory Placement on NUMA Systems: Asymmetry Matters. In Proceedings of
the 2015 USENIX Annual Technical Conference (ATC).

Ilya Lesokhin, Haggai Eran, Shachar Raindel, Guy Shapiro, Sagi Grimberg, Liran
Liss, Muli Ben-Yehuda, Nadav Amit, and Dan Tsafrir. 2017. Page Fault Support
for Network Controllers. In Proceedings of the 22nd ACM International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS).

Huaicheng Li, Mingzhe Hao, Stanko Novakovic, Vaibhav Gogte, Sriram Govindan,
Dan R. K. Ports, Irene Zhang, Ricardo Bianchini, Haryadi S. Gunawi, and Anirudh
Badam. 2020. LeaplO: Efficient and Portable Virtual NVMe Storage on ARM SoCs.
In Proceedings of the 25th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS).

Kevin T. Lim, Jichuan Chang, Trevor N. Mudge, Parthasarathy Ranganathan,
Steven K. Reinhardt, and Thomas F. Wenisch. 2009. Disaggregated Memory
for Expansion and Sharing in Blade Servers. In Proceedings of the 36th Annual
International Symposium on Computer Architecture (ISCA).

Martin Maas, David G. Andersen, Michael Isard, Mohammad Mahdi Javanmard,
Kathryn S. McKinley, and Colin Raffel. 2020. Learning-based Memory Allocation
for C++ Server Workloads. In Proceedings of the 25th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS).

Hasan Al Maruf and Mosharaf Chowdhury. 2020. Effectively Prefetching Remote
Memory with Leap. In Proceedings of the 2020 USENIX Annual Technical Conference
(ATC).

Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner, Niket Agarwal,
Pallab Bhattacharya, Chris Petersen, Mosharaf Chowdhury, Shobhit Kanaujia,
and Prakash Chauhan. 2022. TPP: Transparent Page Placement for CXL-Enabled
Tiered Memory. arXiv:2206.02878 (2022).

Timothy Prickett Morgan. 2021. PCI-Express 5.0: The Unintended but formidable
datacenter interconnect. DesignCon, slides available at https://www.nextpl
atform.com/2021/02/03/pci-express-5-0-the-unintended-but-formidable-
datacenter-interconnect/.

ONNZX. 2021. Open Neural Network Exchange: the Open Standard for Machine
Learning Interoperability. https://onnx.ai/.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research (JMLR) 12, 85 (2011).
Christian Pinto, Dimitris Syrivelis, Michele Gazzetti, Panos Koutsovasilis, Andrea
Reale, Kostas Katrinis, and Peter Hofstee. 2020. ThymesisFlow: A Software-
Defined, HW/SW Co-Designed Interconnect Stack for Rack-Scale Memory Disag-
gregation. In 53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO-53).

Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan Erez, and Simon Peter. 2021.
HeMem: Scalable Tiered Memory Management for Big Data Applications and
Real NVM. In Proceedings of the 28th ACM Symposium on Operating Systems
Principles (SOSP).

Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguilera, and Adam Belay. 2020.
AIFM: High-Performance, Application-Integrated Far Memory. In Proceedings of
the 14th USENIX Symposium on Operating Systems Design and Implementation
(0SDI).

Adam Ruprecht, Danny Jones, Dmitry Shiraev, Greg Harmon, Maya Spivak,
Michael Krebs, Miche Baker-Harvey, and Tyler Sanderson. 2018. VM Live Migra-

[68

(69

[70

(71

[72

[73

(74

[78

[79

[80

(82

[83

[84

]

]
]

]

]

]

tion at Scale. ACM SIGPLAN Notices 53, 3 (2018).

Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018. LegoOS: A Dis-
seminated, Distributed OS for Hardware Resource Disaggregation. In Proceedings
of the 13th USENIX Symposium on Operating Systems Design and Implementation
(OSDI).

Debendra Das Sharma. 2022. Compute Express Link: An Open Industry-standard
Interconnect Enabling Heterogenous Data-centric Computing. In Proceedings of
the 29th IEEE Hot Interconnects symposium (HotI29).

Debendra Das Sharma. 2022. CXL 3.0: New Features for Increased Scale and
Optimized Resource Utilization. In Flash Memory Summit.

Zhan Shi, Xiangru Huang, Akanksha Jain, and Calvin Lin. 2019. Applying
Deep Learning to the Cache Replacement Problem. In 52nd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-52).

Zhan Shi, Akanksha Jain, Kevin Swersky, Milad Hashemi, Parthasarathy Ran-
ganathan, and Calvin Lin. 2021. A Hierarchical Neural Model of Data Prefetching.
In Proceedings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS).

Shil%eru Shiratake. 2020. Scaling and Performance Challenges of Future DRAM.
In IEEE International Memory Workshop (IMW).

Kun Tian, Yu Zhang, Luwei Kang, Yan Zhao, and Yaozu Dong. 2020. colOMMU:
A Virtual IOMMU with Cooperative DMA Buffer Tracking for Efficient Memory
Management in Direct I/O. In Proceedings of the 2020 USENIX Annual Technical
Conference (ATC).

UEFL 2021. Advanced Configuration and Power Interface Specification.
Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li, Zhenyuan Ruan, Khanh Nguyen,
Michael D. Bond, Ravi Netravali, Miryung Kim, and Guoqing Harry Xu. 2020.
Semeru: A Memory-Disaggregated Managed Runtime. In Proceedings of the 14th
USENIX Symposium on Operating Systems Design and Implementation (OSDI).
Yawen Wang, Kapil Arya, Marios Kogias, Manohar Vanga, Aditya Bhandari,
Neeraja J. Yadwadkar, Siddhartha Sen, Sameh Elnikety, Christos Kozyrakis, and
Ricardo Bianchini. 2021. SmartHarvest: Harvesting Idle CPUs Safely and Effi-
ciently in the Cloud. In Proceedings of the 2021 EuroSys Conference (EuroSys).
Johannes Weiner, Niket Agarwal, Dan Schatzberg, Leon Yang, Hao Wang, Blaise
Sanouillet, Bikash Sharma, Tejun Heo, Mayank Jain, Chunqiang Tang, and Dim-
itrios Skarlatos. 2022. TMO: Transparent Memory Offloading in Datacenters. In
Proceedings of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS).

Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee. 2019. Nimble
Page Management for Tiered Memory Systems. In Proceedings of the 24th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS).

Ahmad Yasin. 2014. A Top-Down Method for Performance Analysis and Counters
Architecture. In IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS).

Huang Ying. 2019. AutoNUMA: Optimize Memory Placement for Memory Tiering
System. https://lwn.net/Articles/835402/.

Xusheng Zhan, Yungang Bao, Christian Bienia, and Kai Li. 2017. PARSEC3.0:
A Multicore Benchmark Suite with Network Stacks and SPLASH-2X. ACM
SIGARCH Computer Architecture News (CAN) 44, 5 (2017).

Yanqi Zhang, Weizhe Hua, Zhuangzhuang Zhou, G. Edward Suh, and Christina
Delimitrou. 2021. Sinan: ML-Based and QoS-Aware Resource Management for
Cloud Microservices. In Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS).

Giulio Zhou and Martin Maas. 2021. Learning on Distributed Traces for Data
Center Storage Systems. In Proceedings of the 4th Conference on Machine Learning
and Systems (MLSys).

Received 2022-07-07; accepted 2022-09-22


https://events19.linuxfoundation.org/wp-content/uploads/2017/11/The-Flavors-of-Memory-Supported-by-Linux-their-Use-and-Benefit-Christoph-Lameter-Jump-Trading-LLC.pdf
https://events19.linuxfoundation.org/wp-content/uploads/2017/11/The-Flavors-of-Memory-Supported-by-Linux-their-Use-and-Benefit-Christoph-Lameter-Jump-Trading-LLC.pdf
https://events19.linuxfoundation.org/wp-content/uploads/2017/11/The-Flavors-of-Memory-Supported-by-Linux-their-Use-and-Benefit-Christoph-Lameter-Jump-Trading-LLC.pdf
https://www.nextplatform.com/2021/02/03/pci-express-5-0-the-unintended-but-formidable-datacenter-interconnect/
https://www.nextplatform.com/2021/02/03/pci-express-5-0-the-unintended-but-formidable-datacenter-interconnect/
https://www.nextplatform.com/2021/02/03/pci-express-5-0-the-unintended-but-formidable-datacenter-interconnect/
https://onnx.ai/
https://lwn.net/Articles/835402/

	Abstract
	1 Introduction
	2 Background
	3 Memory Stranding & Workload Sensitivity to Memory Latency
	3.1 Stranding at Azure
	3.2 VM Memory Usage at Azure
	3.3 Workload Sensitivity to Memory Latency

	4 Pond Design
	4.1 Hardware Layer
	4.2 System Software Layer
	4.3 Distributed Control Plane Layer
	4.4 Prediction Models

	5 Implementation
	6 Evaluation
	6.1 Experimental Setup
	6.2 zNUMA VMs on Production Nodes
	6.3 zNUMA VMs in the Lab
	6.4 Performance of Prediction Models
	6.5 End-to-end Reduction in Stranding

	7 Discussion
	8 Related Work
	9 Conclusion
	10 Acknowledgments
	References

