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Abstract

We propose an end-to-end learning framework based on hier-
archical reinforcement learning, called H-TSP, for addressing
the large-scale Traveling Salesman Problem (TSP). The pro-
posed H-TSP constructs a solution of a TSP instance starting
from the scratch relying on two components: the upper-level
policy chooses a small subset of nodes (up to 200 in our ex-
periment) from all nodes that are to be traversed, while the
lower-level policy takes the chosen nodes as input and outputs
a tour connecting them to the existing partial route (initially
only containing the depot). After jointly training the upper-
level and lower-level policies, our approach can directly gen-
erate solutions for the given TSP instances without relying
on any time-consuming search procedures. To demonstrate
effectiveness of the proposed approach, we have conducted
extensive experiments on randomly generated TSP instances
with different numbers of nodes. We show that H-TSP can
achieve comparable results (gap 3.42% vs. 7.32%) as SOTA
search-based approaches, and more importantly, we reduce
the time consumption up to two orders of magnitude (3.32s
vs. 395.85s). To the best of our knowledge, H-TSP is the
first end-to-end deep reinforcement learning approach that
can scale to TSP instances of up to 10,000 nodes. Although
there are still gaps to SOTA results with respect to solution
quality, we believe that H-TSP will be useful for practical ap-
plications, particularly those that are time-sensitive e.g., on-
call routing and ride hailing service.

Introduction

Traveling salesman problem (TSP) is a well-known com-
binatorial optimization problem. It has been studied in op-
eration research community for many years. The best ex-
act solver Concorde (Applegate et al. 2009) requires 136
CPU years to find the optimal solution for an instance with
85,900 cities. Such computation time is unacceptable, so
many heuristics have been proposed to obtain near-optimal
solutions for problems arising in practice. For instance, one
of the leading heuristics algorithms LKH3 (Helsgaun 2017)
can handle TSP instances with millions of cities. How-
ever, these algorithms consist of hand-crafted rules that are
specific to TSP. More importantly, heuristics rely on itera-
tive search and are also time-consuming for large-scale in-
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stances. This limits their applications in scenarios that are
time sensitive, e.g. on-call routing (Ghiani et al. 2003) and
ride hailing service (Xu et al. 2018).

To deal with such time sensitive applications, learning-
based approaches for TSP are expected to be used as they are
very efficient during inference. They can learn useful pat-
terns from massive data during training which can generalize
to unseen instances. Moreover, they do not rely on problem
specific knowledge, hence can be extended to handle similar
problems. Because of these advantages, there have been a
soaring number of studies to solve TSP in recent years, for
instance (Vinyals, Fortunato, and Jaitly 2015; Nowak et al.
2017; Kool, Van Hoof, and Welling 2019; Kwon et al. 2020;
Fu, Qiu, and Zha 2021).

Depending on how solutions are constructed, learning
based approaches can be classified into two categories: it-
erative and constructive. For iterative approaches, a feasible
solution shall be constructed at the beginning, either ran-
domly or using some heuristic methods. The main step is
to learn a model that knows how to improve a feasible so-
lution. Finally, the model will be applied to keep improv-
ing the current solution until a termination condition is met.
On the other hand, constructive approaches start from the
initial city and learn which city to go at each step. While
these approaches have achieved competitive performance in
relatively small TSP instances (less than 1000 cities), they
cannot be extended to deal with large-scale TSP easily. One
exception is (Fu, Qiu, and Zha 2021) which can achieve so-
lutions close enough to LKH3 solutions (gap < 5%) but in
relatively shorter time. However, in (Fu, Qiu, and Zha 2021)
a Monte Carlo tree search procedure is required to improve
solutions constantly, which is still time-consuming. Accord-
ing to the experiment results in (Fu, Qiu, and Zha 2021),
for one TSP instance with 10,000 cities, it costs around 11
minutes until it finds a solution comparable with LKH3.

We noticed that the iterative approaches are time-
consuming on training and inference of large-scale TSPs,
since they require to constantly improve feasible solutions
to obtain solutions of high quality by learning a proper oper-
ator from some domain-specific heuristic operators. And the
constructive approaches are efficient on inference, but due
to their action spaces grow linearly in the number of cities,
their training procedures would easily run out of memory or
time before converging to some near-optimal solutions.



To overcome these challenges, we propose a constructive
approach based on hierarchical reinforcement learning (H-
TSP for short), that can obtain comparable results as SOTA
approaches but using much less time up to two orders of
magnitude. Starting from a partial route (initially only con-
taining the depot), our H-TSP approach decomposes solu-
tions construction into two steps: Firstly, we shall choose a
relatively small subset of cities from all remaining cities that
are to be visited; Secondly, we solve a small open loop TSP
instance that only contains the chosen cities. Once a tour for
the chosen cities is obtained, it will be merged into the ex-
isting partial route. Such a procedure will continue until all
cities have been visited and a feasible solution is obtained.
Correspondingly, we devise two policies for the two steps:
one is to choose candidate cities to be traversed, while the
other one decides in which order these cities will be visited.
These two policies are trained jointly using reinforcement
learning algorithms so that we obtain an end-to-end algo-
rithm for solving TSP. Our H-TSP solves TSP in a divide-
and-conquer manner so it can scale to large-scale TSP easily.

The contributions are summarized as follows:

* We propose an effective hierarchical framework, named
H-TSP, mainly for addressing the large-scale TSP. Using a
divide-and-conquer strategy, H-TSP is the first end-to-end
approach that can scale to TSP with up to 10,000 nodes, to
the best of our knowledge;

* We have conducted extensive experiments to show effec-
tiveness of H-TSP. As demonstrated by experiment results,
H-TSP can achieve comparable results of instances with up
to 10,000 nodes as SOTA search-based approaches, while
the time spent are less than 4 seconds. Notice that the com-
putation time is reduced considerably, up to two orders of
magnitude. Therefore, our approach will be particularly use-
ful for time sensitive applications;

* Decomposition is a common technique to solve large-
scale combinatorial optimization problems (Mariescu-
Istodor and Frénti 2021). We believe that the framework pro-
posed in this paper has potentials to be extended to other
problems. We leave it as our future work to solve other
large-scale optimization problems following the divide-and-
conquer framework.

Related Work

Due to the importance of TSP in research and industry, there
have been lots of studies on this topic. Instead of giving a
comprehensive overview, we mainly focus on related stud-
ies. We shall refer interested readers to Taillard and Hels-
gaun (2019) and Guo et al. (2019); Bengio, Lodi, and Prou-
vost (2021) for overviews of heuristic approaches and other
machine learning approaches, respectively.

Traditional TSP algorithms can be roughly classified into
two categories, exact algorithms and heuristic algorithms.
Concorde (David L. Applegate et al. 2007) is one of the
best exact solvers. It models TSP as mixed-integer program-
ming problems, then uses a branch-and-cut algorithm (Pad-
berg and Rinaldi 1991) to solve it. LKH-3 (Helsgaun 2017)
is a SOTA heuristic for solving TSP. It adopts the idea of
local search and uses the k-opt operators and an a-nearness

measure to reduce the search space. However, to obtain high
quality solutions, LKH-3 often takes hours or longer to ter-
minate when solving TSP with tens of thousands nodes.

Depending on how solutions are constructed, learning-
based algorithms can be categorized into two categories:
constructive-based methods and search-based methods.

Constructive-Based Methods Pointer network (Vinyals,
Fortunato, and Jaitly 2015) is known as the first end-to-
end method that incrementally generates solutions of TSP
from the scratch. The backbone model is a Recurrent Neu-
ral Network, which is trained in a supervised manner. Dif-
ferently, Bello (Bello et al. 2017) improved the perfor-
mance of pointer network by training it using reinforcement
learning, hence can achieve policies with better generaliza-
tion. Inspired by the success of Transformer (Vaswani et al.
2017) in many fields, such an architecture has also been
extended to deal with TSP (Kool, Van Hoof, and Welling
2019; Kwon et al. 2020). Additionally, (Kool, Van Hoof,
and Welling 2019) introduces a simple baseline based on
a deterministic greedy roll-out to train the model using
REINFORCE (Williams 1992). The work in (Kwon et al.
2020) further exploits the symmetries of TSP solutions, from
which diverse roll-outs can be derived so that a more effi-
cient baseline than (Kool, Van Hoof, and Welling 2019) can
be obtained. However, most of these works focus on solv-
ing TSP with cities no more than 100, except that (Dai et al.
2017) considers instances with up to 1,200 cities.

Search-Based Methods In (da Costa et al. 2020), a
method called DRL-20pt is proposed that uses DRL algo-
rithms to train a policy. Such a policy will select suitable 2-
opt operators to continuously improve the current solution.
Another approach called VSR-LKH in Zheng (Zheng et al.
2021) is proposed. VSR-LKH can be seen as a variant of
LKH solver. Differently, it replaces a-nearness in LKH by
a Q-value table that is obtained by running reinforcement
learning algorithms. Similar as our approach, an approach
called Att-GCN+MCTS is introduced in (Fu, Qiu, and Zha
2021) that utilizes decomposition mechanism to solve large-
scale TSP. It consists of three stages: Firstly, a supervised
model is trained that can generate heat maps for small TSP
instances; Secondly, techniques like graph sampling, graph
converting, and heat map merging are introduced that can
generate heat maps of large-scale TSP from smaller ones;
Finally, a Monte Carlo tree search procedure is introduced to
search for a good solution guided by the heat map. Search-
based methods can often obtain high-quality solutions if
given enough time. This limits their applications in scenarios
that are time sensitive.

It is worth to mention another related work (Ma et al.
2021) that relies on Hierarchical Reinforcement Learning
(HRL) to solve large-scale Dynamic Pickup and Delivery
Problems (DPDPs) in practice. DPDPs can be seen as a vari-
ant of TSP, where nodes are unknown a priori but will be re-
leased periodically. The objective is to assign these nodes
to proper routes in nearly real time which minimize the
total traverse cost. To address the problem, a hierarchical
framework is introduced, where the upper-level policy dy-
namically partitions the problem into sub-problems, while
the lower-level policy tries to solve each sub-problem ef-



ficiently. The main difference between this method and H-
TSP is that their method aims to partition a dynamic prob-
lem into multiple static sub-problems at the temporal level,
while H-TSP aims to decompose a large-scale TSP problem
into a set of small sub-problems at the spatial level.

Problem Definition

In this paper, we focus on two-dimensional Euclidean
TSP. Let G = (V, E) denote an undirected graph, where
V = {v;, |1 <i < N} represents the set of nodes, £ =
{e; ;|1 <14,j < N} is the set of edges, and N denotes the
number of nodes. For every edge e;;, define cost(i, j) as
its traverse cost, namely, the distance between ¢ and j. We
define a special node vy € V representing the depot node
where the salesman starts from and ends at. A feasible so-
lution of a TSP instance is defined as a Hamiltonian cycle
that visits all the nodes in V' exactly once. Our goal is to
minimize the total cost of the solution route 7, which can be
written as L(7), shown in Eq.(1).

L(r) = ZZ]\SI cost(1;, Tix1) + cost(tn, 1) (1)
Where 7; is the i-th node in the route. Without loss of gen-
erality, we assume all coordinates are in [0, 1].

Sub-Problem Definition

Our hierarchical method decomposes TSP into small sub-
problems at the spatial level. In order to facilitate sub-
solutions merging, we define our sub-problem as a variant of
TSP, named open-loop TSP with fixed endpoints (Papadim-
itriou 1977). Given an undirected graph G = (V, E), the
open-loop TSP has two special nodes v and vy in V' rep-
resenting the source node and target node, respectively. A
feasible solution of a open-loop TSP is no longer a cycle but
a path, which starts from vy, visits all other nodes exactly
once and ends in v;. It is easy to see that solutions of two
open-loop TSPs can be merged to a close-loop path. The
two endpoints in the sub-problem need to be fixed and spec-
ified in advance, if not, the sub-solutions will have arbitrary
endpoints, which further leads to a poor combined solution.

The Hierarchical Framework

This paper proposes a Deep Reinforcement Learning (DRL)
based hierarchical framework to solve the large-scale TSP,
which is denoted as H-TSP. Following the divide-and-
conquer approach, H-TSP contains policies/models in two
levels, which are responsible for generating sub-problems
and solving sub-problems, respectively.

The entire procedure of H-TSP is summarized in Algo-
rithm 1. It starts with an initial solution containing the depot,
and then inserts the node nearest to it as two fixed endpoints
of the first sub-problem. The upper-level policy is responsi-
ble for decomposing the original problem and merging sub-
solutions from the lower-level policy. As decomposition will
inevitably downgrade quality of final solutions, to alleviate
this we let the upper-level policy learn to generate a decom-
position strategy in an adaptive and dynamic manner. On
the other hand, once a sub-problem is identified, it will be

Algorithm 1: Hierarchical TSP Algorithm

Input: TSP instance V' = {v1,vg, - - -
solution Tt = {vg

Output: Solution route 7 = {71, 72, -+ , 7N }
1 T < Tinit, the nearest node v of vy ;
2 while len(7) < N do
3 SubProb + GenerateSubProb(V, ) ;
4 SubSol < SolveSubProb(SubProb) ;
5 T+ MergeSubSol(SubSol, T) ;
6 end
7 return T

, UN }, initial

handed over to the lower-level policy to solve it as a open-
loop TSP. Its solution will then be passed to the upper-level
policy to merge into the existing partial route.

Upper-Level Model

As mentioned before, the upper-level model is to decompose
the large-scale TSP so that they can be solved efficiently
without significantly downgrading quality of final solutions.
To achieve this, we conduct decomposition in an adaptive
and dynamic manner. This differentiates from the existing
decomposition-based approach in (Fu, Qiu, and Zha 2021),
where all sub-problems are pre-generated before merging
them into the final solution. By interleaving decomposition
and merging, the upper-level model can learn an adaptive
policy that can make its best decision based on current par-
tial solution and distribution of remaining nodes.

A Scalable Encoder One of the key obstacles in solving
the large-scale TSP with DRL is to encode a large num-
ber of edges in the graph. For achieving a scalable en-
coder, inspired by a technique used in 3D point cloud pro-
jection (Lang et al. 2019), we propose a Pixel Encoder to en-
code the graph as pixels. The idea is to convert point clouds
into a pseudo-image, which are nodes of a TSP instance in
our case.

As a first step, the 2D space is discretized into an evenly
spaced H x W grid, creating a set of pixels. Then the nodes
are divided into different clusters based on the grid they
are on. We augment features of each node with a vector
(xay Ya, AJZQ, Ayga Az, Ay, Tpres Ypre, Tnaty Ynwts mselect),
where (z,,y,) is the absolute coordinate of the node,
(Azgy, Ayg) and (Az., Ay.) are the relative coordinates
to the gird center and the node cluster center, respectively.
If the node has been visited, we let (Zpre; Ypre, Tnzts Ynat)
denote coordinates of its neighbors on the partial route,
otherwise they are 0. The boolean variable m ¢ indicates
whether this node has been visited or not.

For a TSP instance with N nodes, we have a tensor of
size (N, D), where D = 11 is the number of features.
Then this tensor is processed by a linear layer to generate
a (N, C) sized high dimensional tensor. According to the
divided clusters, we use a max operation over the C' dimen-
sion to get the feature of each grid, and we use zero padding
for the empty grids. The combination of each grid forms
a pseudo-image: a tensor of size (H, W, C). This pseudo-



image can be further processed by a convolutional neural
network (CNN), resulting in an embedding vector of the
whole TSP instance for the DRL model.

The DRL model follows the actor-critic architecture, there
is a policy head for the policy function and a value head for
the state value function. Both of the two heads are composed
of fully connected layers and activation functions.

Sub-Problem Generation and Merging The action space
of our upper-level policy is continuous with 2 dimensions,
each of which denotes coordination of a point in the grid.
We illustrate in this paragraph how a sub-problem is gener-
ated and merged given an upper-level policy. The procedure
is depicted in Algorithm 2. For a given action Coordp,cq,
let v, be the node closest to C'oordy,.q that has not been
visited yet. We further let v, be the node closed to v,
that has already been visited. Then, we keep expanding the
sub-problem by selecting nodes that have not been visited
from neighbors of v, based on a k-Nearest Neighbor (k-
NN) graph, until size of the sub-problem reaches max Num
or all nodes are visited or selected. Intuitively, the k-NN
graph is implemented by associating each node a set of k
closest nodes and the sub-problem expansion will follow a
breadth-first search on the k-NN graph. Finally, we enrich
the sub-problem (Select F'ragment) with a fragment of vis-
ited nodes centering at vy so that the resulting sub-problem
has nodes not greater than subLength. In this way, we break
the existing partial route to obtain a path with two endpoints,
while after solving the sub-problem as a open-loop TSP, we
would obtain another path with two endpoints.

Markov Decision Process Now we shall be able to intro-
duce underlying MDPs of upper-level policies formally in
this paragraph. Let Mg = (S, A, P, R,~) denote an MDP
modelling a given TSP instance G = (V, E), where

» S is the set of all states containing all possible path frag-
ments 7 of G;

*+ A =10,1] x [0,1] is the set of all actions containing all
points in a unit grid;

e P:SxA — Sisadeterministic transition function given
both upper-level and lower-lever policies;

* R: S5 x AxS — Ris the reward function defined by
R(r,a,7") = L(v') — L(7), where 7 is the current partial
route, and 7’ is the previous partial route;

* ~ is the discount factor, which is set to 1 in our experi-
ments.

Lower-Level Model

The lower-level model is trained for solving open-loop TSPs
with fixed endpoints generated by the upper-level model. As
lower-level policies will be launched for many times during
training and interference, its performance will have a sig-
nificant impact on the performance of our approach. For-
tunately, there have been many end-to-end approaches that
can solve relatively small-scale TSPs effectively and effi-
ciently (Kool, Van Hoof, and Welling 2019; Kwon et al.
2020). We adopt main ideas of these approaches to devise
an efficient lower-level policy, which we will briefly illus-
trate in this section.

Algorithm 2: Sub-problem Generation
Input: k-NN graph Gpnny = (V, E), the partial
solution at step ¢ 7, = {v},vZ,--- }, length of
the sub-problem subLength, maximum
number of unvisited nodes max Num, upper
layer model Upper M odel
Output: Sub-problem
P = {’UL U?a . ’,U:;mbLength}’ two
endpoints vs, vy € P
1 P« ®7 SU < Tt Qnew < Deque();
Upper Model inputs Gy n and 7, outputs
Coordyred ;
v, is the unvisited node closest to C'oordp,cqd;
vy, 1s the visited node closest to v, ;
Push vy, to the end of Qe 5
while len(P) < maxNum and Qe is not empty
do

~

[ N7 B L)

7 v; <— PopFront(Qnew) ;

8 | forv; € Ng,\(vi)andv; ¢ S, do
Push v; to the end of Qe ;

10 Add v into S, and P ;

11 end

12 end

13 oldLength = subLength — len(P) ;

14 P, + SelectFragment(tt, vy, oldLength) ;
15 P+~ PUP;,;

16 vg, vy < SetEndpoints(P;) ;

17 return P, vg, vy

Neural Network The underlying neural network of our
lower-level model is a Transformer network, which has been
widely used in the fields of natural language processing and
computer vision in recent years. It consists of a Multi-Head
Attention and a Multi-Layer Perceptron layer, with a mask
mechanism to remove all invalid actions.

Our neural network follows the encoder-decoder struc-
ture, where the encoder uses self-attention layers to encode
the input node sequence, while the decoder outputs a se-
quence of nodes in an auto-regressive manner. In approaches
presented in (Kool, Van Hoof, and Welling 2019; Kwon et al.
2020), the following context is used as input of the encoder,

Gcontext = Qgraph + qfirst + Qlast (2)

where qgraph, Grirst> and qiqs represent the feature vec-
tors of the whole graph, the first node and the last node of
the current partial solution, respectively. While enough for
TSPs, it is inadequate for open-loop TSPs where we shall
keep in mind that there are two fixed endpoints. Therefore,
we add two more vectors to encode the features of the two
endpoints, namely, input of our encoder is a context vector
defined as follows:

Gcontext = Qgraph + qfirst + Qiast + Qsource + Qtarget (3)

The POMO approach introduced in (Kwon et al. 2020)
takes advantage of the symmetry property of TSPs, which
improves its performance considerably. Although open-loop



TSPs do not have the same symmetry property due to ex-
isting of fixed endpoints, we can achieve such a symme-
try property easily as follows: During the node selection, all
nodes except the endpoints will be treated as in TSP without
any constraint. Whenever an endpoint is chosen, we let the
other one be chosen automatically. The final solution of the
origin open-loop TSP is obtained by removing the redundant
edge between the two endpoints.

Markov Decision Process The underlying MDPs of the
lower-level policies can be defined similarly as in (Kool, Van
Hoof, and Welling 2019; Kwon et al. 2020), where
 States: The states contain all possible contexts defined as
in Eq. (3);

* Action: The actions contain all nodes in a TSP, with dy-
namic masks to remove nodes that have been visited;

* Rewards: A reward equating the negative cost of a route
is assigned whenever a state corresponding to a feasible so-
lution is encountered; otherwise the reward is 0.

Training
The proposed framework are trained by a hierarchical DRL
algorithm. More specifically, the two levels of models are
trained with DRL jointly.

Upper-Level Model

The upper-level model is trained by the known Proximal
Policy Optimization (PPO) (Schulman et al. 2017) algo-
rithm, which is one of SOTA DRL algorithms based on an
actor-critic architecture. It learns a stochastic policy by min-
imizing the following clipped objective function:

L(9) = &, [min (rt(Q)At7 clip (1¢(8),1 — €, 1 + ¢) At)}

“
denotes the probability ratio of

7o (as|st)
Mo (arlse)
two policies, A; denotes the advantage function, € is a hy-
perparameter controlling the clipping range. The advantage
function represents the advantage of the current policy over
the old policy, here we use the Generalized Advantage Esti-
mator (GAE) to compute the advantage.

where () =

Ay = Y2 () (Tt F AV (s04141) = V (3t+l)) )

where r; is the reward at time ¢, V is the state value function,
~ is the discount factor, and A is the hyper-parameter that
controls the compromise between bias and variance of the
estimated advantage.

Besides the policy loss, we also add the value loss and
entropy loss:

X T a2
LV () =T, [V - V3] ©)
LE(0) =B [mg (a | 5)logmg (a | 5)] @)

The total loss of upper-level model is:
LUPPER(g) — N\ L(6) + A, LY (8) — A LE(6)  (8)
where )\, is the weight of value loss, and ). is the weight

of entropy loss for balancing the policy’s exploration and
exploitation.

Lower-Level Model

The lower-level model is an end-to-end model for solving
open-loop TSPs with relatively a small amount of nodes. It
is trained by the classic REINFORCE (Williams 1992) al-
gorithm with a shared baseline, as in (Kool, Van Hoof, and
Welling 2019; Kwon et al. 2020). The REINFORCE algo-
rithm collects experience by Monte Carlo sampling and the
policy gradient is computed as follows:

Vod(0) = Er, [Vologme(T | s)A™ (7)]
o~ % Zi\rzl (R (7'1) - b(s)) Vo log mg (Ti | 5)

where 7 denotes a trajectory, namely, a feasible solution of
a TSP instance. The reward R(7?) = —L(7*) is defined as
the negative cost of 7%. The shared baseline b(s) is used to
reduce the variance and improve the training stability, which
is obtained by averaging the return of a set of trajectories that
are generated from the same instance:

b(s) = % Ty (R (7)) (10)

€))

Joint Training

In order to improve the performance of the upper-level
and lower-level models, we adopt a joint training strategy.
Specifically, the current lower-level policy will be used to
collect trajectories for training the upper-level model, and in
the meanwhile, sub-problems generated by the upper-level
policy will in turn be stored to train the lower-level model.
By such an interleaving training procedure, policies in two
levels can receive instant feedback from each other, hence
make the learning of a cooperative policy possible.

As mentioned before, solution quality of lower-level poli-
cies has a significant impact on the final solution. If we start
from a random lower-level policy, the upper-level policy
would receive much misleading feedback making its train-
ing hard to converge. To alleviate it, we introduce a warm-up
stage for the lower-level model by pre-training it with sub-
problems randomly generated from the original TSP. Ac-
cording to our experiment, such a warm-up stage will ac-
celerate convergence and make the training more stable.

Experiments

To demonstrate how our approach works on the large-scale
TSP problem, we adopt four datasets to evaluate it. The
four datasets contains TSP instances with problem sizes
of 1000, 2000, 5000, and 10000 nodes, denoted as Ran-
dom1000, Random2000, Random5000, and Random10000,
respectively. To make experiment results comparable, Ran-
dom1000 and Random10000 contain the same instances
used by Fu et al. in their work (Fu, Qiu, and Zha 2021),
while instances in Random2000 and Random5000 are gen-
erated with nodes that are uniformly distributed in a unit
square, in line with existing approaches. Each dataset con-
tains 16 TSP instances except Random1000, which contains
128 instances. All our experiment results were obtained on
a machine with an NVIDIA® Tesla V100 (16GB) GPU and
Intel(R) Xeon(R) Platinum CPU.



Hyper-Parameters Setting The upper-level model con-
sists of a pixel encoder and a DRL agent model. We use
a 3-layer CNN for the pixel encoder with 16, 32, 32 chan-
nels respectively, and it outputs a 128 dimensional feature
vector. And our DRL model with actor-critic architecture
consists of an actor network and a critic network, each of
them is a 4-layer MLP. The lower-level model follows the
encoder-decoder structure, there is a 12-layer self-attention
encoder and a 2-layer context-attention decoder. Most of the
embedding dimension in the neural network is set to 128 ex-
cept for the CNN layers, the first encoding layer and the out-
putting layer. During training, we use the AdamW optimizer
with a learning rate of le-4 and a weight decay of 1e-6. For
the sub-problem generation stage, we set k& = 40 for the
k-nearest neighbor and set the sub-problem length as 200
and the maximum number of new nodes in sub-problem as
190. The lower-level model is trained for 500 epochs in the
warm-up stage, and the joint training stage takes 500, 1000,
1500, 2000 epochs respectively for different datasets. Our
algorithm is implemented based on PyTorch (Paszke et al.
2019)], the trained models and related data are publicly avail-
able.

Baselines We apply the following six SODA TSP solvers
for comparison. (1) Concorde (David L. Applegate et al.
2007) is one of the SOTA exact solvers for TSP. (2) LKH-
3 (Helsgaun 2017) is one of the SOTA heuristic solvers for
TSP. (3) OR-Tools? is an operational problem solver re-
leased by Google. It has a wide range of applications and can
solve a variety of combinatorial optimization problems such
as TSP, VRP, and packing problems. (4) POMO (Kwon
et al. 2020) is an end-to-end DRL-based TSP algorithm,
and its performance is comparable to the SOTA methods.
(5) DRL-20pt (da Costa et al. 2020) is a search-based DRL
algorithm, and one of the SOTA method in this category.
(6) Att-GCN+MCTS (Fu, Qiu, and Zha 2021) is a novel
method that combines GCN model trained with supervised
learning and MCTS searching to solve large-scale TSP. It
can solve TSP instances with up to 10,000 nodes at the cost
of a long searching time.

Comparative Study

We conduct comparative study on four randomly distributed
TSP datasets. The experimental results are shown in Table 1.
The time in tables is the average time required for each in-
stance, and Concorde is not tested on Random5000 and Ran-
dom10000 as the exact solver takes too much time. H-TSP
achieves comparable results to the SOTA methods in terms
of solution quality. The length of route generated by H-TSP
is close to the search-based approach Att-GCN+MCTS and
much shorter than the two DRL-based algorithms. More-
over, H-TSP outperforms all baselines in terms of efficiency,
the computation time of H-TSP is one to two magnitude
less than the baseline algorithms. The high efficiency in-
dicates that H-TSP has significant potential in many real-
world scenarios that require solving large-scale TSP in a

Uhttps://github.com/Learning4Optimization-HUST/H-TSP
2OR-Tools. https://developers.google.com/optimization/

Table 1: Comparisons with seven solvers on large scale TSP

Random1000 Random2000
Algorithm Length Gap Time Length Gap Time
(%) (9 (%) (3

Concorde 23.12 0.00  487.89 3248 0.00 7949.97
LKH-3  23.16 0.17 2201 32.64 049 79.75
OR-Tools 24.23 4.82 104.34 34.04 482 532.14
POMO 3052 32.01 4.28 4649 43.15 35.89
DRL-20pt 37.90 6393 5556 115.59 255.92 827.43
Att-GCN

+MCTS 23.86 3.22 5.85 3342 2091 200.28
H-TSP  24.65 6.62 0.33 34.88 7.39 0.72

Random5000 Random10000
Algorithm Length Gap Time Length Gap Time
(%) () (%) (s
LKH-3 5136 0.00 561.74 7245 0.00  4746.59
OR-Tools 53.35 3.86 5368.24 7495 344  21358.66

POMO  80.79 5729 575.63 OOM OOM OOM
DRL-20pt 754.91 1369.76 2308.48 2860.86 3848.66 6073.43
Att-GCN

+MCTS 52.83 2.86 37747 7493 342 395.85
H-TSP  55.01 7.10 1.66 7175 132 3.32

short time even real-time. It is worth noting that POMO and
DRL-2o0pt perform poorly in all experiments, because they
cannot be trained directly on large-scale graphs, and mod-
els trained on small-scale graphs cannot be generalized to
large-scale graphs as well. It is precisely the shortcomings
of these two types of methods that motivate us to propose
a new approach. For the three baselines, LKH-3, OR-Tools
and Att-GCN+MCTS, that have better solution quality than
H-TSP, we have attempted to limit their searching time to
the same magnitude as H-TSP. However, these methods re-
quire at least ten times as much time as H-TSP in order to
generate a feasible solution. Furthermore, we trained four
models with different scales of TSP instances, denoted as
Model1000, Model2000, Model5000 and Model10000, re-
spectively. In order to demonstrate the generalization abil-
ity of H-TSP, we test the four trained models on randomly
generated datasets with different number of nodes. Figure 1
shows that H-TSP has a good generalization performance
with TSP instances from 1000 nodes to 50000 nodes. Note
that the optimality gap on Random50000 is smaller than the
gap of Random20000, because the optimal solutions of these
datasets are generated by LKH-3, and the solution quality of
LKH-3 also declines as the number of nodes increases.

Ablation Study

Effect of Two Levels of Models The H-TSP framework
consists of two levels of models, and both models are trained
by DRL. We conduct an ablation study during the infer-
ence stage to demonstrate the effect of each level by re-
placing each of them with other heuristic methods. For
the upper-level model, we simply use a random policy to
generate coordinates, starting which a sub-problem can be
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Figure 1: The optimality gaps of models tested on datasets
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Figure 2: Optimality gap of models with different upper-
level and lower-level model

generated. For the lower-level model, we introduce a sim-
ple but effective constructive heuristic called Farthest In-
sertion (Rosenkrantz, Stearns, and Lewis 1974). We eval-
uate four combinations on the four datasets. The experimen-
tal results in Figure 2 show that our DRL-based framework
outperforms other alternatives in all experiments. Moreover,
the effect of lower-level model is more significant than the
upper-level model. Thus we further investigate this effect by
combining LKH-3 with H-TSP, which is one of the SOTA
heuristic TSP solvers. LKH-3 is capable of solving nu-
merous TSP variants including our sub-problem. We sim-
ply combine the trained upper-level model and the LKH-3
solver as the lower-level model.

The experimental results are shown in Table 2. H-TSP
with LKH-3 achieves better solution quality than the original
H-TSP, but it takes longer solving time as LKH-3 is a search-
based method that consumes more time than constructive
methods. However, if compared with Att-GCN+MCTS, H-
TSP with LKH-3 still has higher efficiency, especially on
larger TSPs. This indicates that we can use the DRL-based
lower-level model to speed up the training speed and replace
it with LKH-3 solver during inference, which makes H-TSP
of better practical value.

Sub-Problem Generation and Training Strategy We
conduct four ablation experiments on the sub-problem gen-

Table 2: Comparison of H-TSP and its variant with LKH-3

Random1000 Random?2000
Gap Time Gap Time
(%) () (%) ()
H-TSP 6.62 0.33 7.39 072

H-TSP with LKH-3  4.06 3.53 5.01 6.88
Att-GCN+MCTS 322 585 291 200.28

Algorithm

Random5000  Random10000

Gap Time Gap Time
(%) () (%) (s
H-TSP 7.10 1.66 732 3.32

H-TSP with LKH-3  5.10 15.12 5.57 2794
Att-GCN+MCTS 2.86 37747 3.42 395.85

Algorithm

eration process and our training strategy. “Visited fragment”
refers to the fragment of visited nodes in sub-problem gen-
eration, and “k-NN” means the k-NN graph. “Joint train-
ing” and “warm-up” are the previously proposed training
strategies. Due to time limitations, we train the five mod-
els with TSP instances of 1000 nodes for 250 epochs, and
test them on Random1000. Table 3 shows the test results,
where all four techniques are helpful in improving overall
performance. The warm-up stage of lower-level model has
the greatest influence on the performance, as the training of
models on both levels become slow and unstable if starting
with a poor lower-level policy.

Table 3: Analysis of four critical techniques

Gap (%) A Gap (%)

H-TSP 6.76 0.00
w/o visited fragment  7.42 +0.66
w/o k-NN 7.69 +0.93
w/o joint training 7.53 +0.77
w/o warm-up 27.05 +20.29
Conclusion

In this paper, we propose a hierarchical deep reinforcement
learning framework for the large-scale TSP, named H-TSP,
which solves TSP in a divide-and-conquer manner. We test
H-TSP on four datasets with different numbers of nodes,
and the results show that H-TSP outperforms other SOTA
baselines in terms of efficiency, while the solution qual-
ity of H-TSP remains comparable with the SOTA learning-
based methods. The ablation studies show that the lower-
level model significantly affects the performance of H-TSP,
and the solution quality can be further improved by replac-
ing the lower-level model with SOTA LKH-3 solver dur-
ing inference, allowing us to achieve a flexible trade-off be-
tween efficiency and solution quality. Furthermore, we be-
lieve that the divide-and-conquer method can be generalized
to other large-scale problems such as vehicle routing and job
scheduling, and we leave these as our future works.
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