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Abstract

AI for IT Operations (AIOps) aims to automate complex
operational tasks, such as fault localization and root cause
analysis, to reduce human workload and minimize customer
impact. Traditionally, DevOps tools and AIOps algorithms
focus on different isolated operational tasks. However, the
rapid recent advancements in Large Language Models (LLMs)
and AI agents are revolutionizing AIOps by enabling end-to-
end and multitask automation. In this paper, we envision a
future where AI agents can seamlessly handle different types
of operational tasks across the incident lifecycle stack and
achieve an autonomous, self-healing cloud systems, creating
a new paradigm termed Agent for Operations, i.e., AgentOps.
To realize this vision, a holistic framework is needed to em-
power these agents. We contribute to this goal by propos-
ing and implementing an evaluation framework, AIOpsLab,
that allows users to design, build, and assess the effective-
ness and performance of agents in cloud environments with
a focus on microservice scenarios. This paper first discusses
the essential requirements for such a holistic framework and
proposes AIOpsLab, which orchestrates applications, injects
fine-grained, realistic faults, and interfaces with agents. By
evaluating state-of-the-art AIOps LLM agents within AIOp-
sLab, we provide an analysis that offers valuable insights into
their capabilities and limitations in handling complex opera-
tional tasks in cloud environments.

1 Introduction

The rapid evolution of IT applications and services has en-
tered an era where enterprises increasingly rely on complex
cloud-based hyper-scale cloud systems. Further, the adoption
of the microservices architecture and serverless computing
has enabled faster development and scaling by decompos-
ing monolithic applications into independently deployable
services. This flexibility allows developers to leverage cloud
elasticity for more rapid innovation than ever before.

However, these architectures introduce significant chal-
lenges in managing and ensuring system reliability. The de-
centralization and statelessness that enhance scalability also
create operational complexity. In such distributed environ-
ments, an issue can cascade into widespread outages due to
complex dependencies, as demonstrated by a recent Amazon
outage that cost an estimated $100million in just one hour [55].

The burden of maintaining the seamless operation of these
complex cloud environments primarily rests on the shoulders
of Site Reliability Engineers (SREs) and DevOps profession-
als. These experts are responsible for developing, deploying,
monitoring, and maintaining cloud services, often under im-
mense pressure to minimize downtime and ensure optimal
performance. Incidentmanagement typically involvesmultiple
stages: detection, triaging, root cause analysis, and mitigation,
as shown in Figure 1. Beyond these reactive measures, there
is an increasing emphasis on proactive strategies such as fault
prediction and preventive maintenance to avert failures before
they impact the system.

Despite the proliferation of incident management tools,
engineers are often overwhelmed by the sheer volume of data
and the complexity of decision, making required in large-scale
cloud environments. This challenge is further compounded by
the trend toward real-time observability, where continuous
monitoring generates vast amounts of telemetry data that must
be rapidly analyzed and acted upon. The interplay of numerous
microservices and the dynamic nature of cloud environments
make traditional manual approaches untenable.

To address these challenges, there is a growing movement
toward the adoption of AIOps (Artificial Intelligence for IT
Operations). AIOps leverages AI and machine learning to auto-
mate and enhance IT operations, from monitoring and anom-
aly detection to fault diagnosis and recovery. The ultimate goal
is to create Autonomous Clouds, where AI-driven agents can
detect, localize, and mitigate faults with minimal human inter-
vention. The concept of self-healing clouds is not new [14, 35],
having been proposed over a decade ago, but the maturity of
AI technologies and the emergence of AIOps have brought
this vision closer to reality [16, 22, 36, 40, 49, 50, 56, 59, 61, 63].



We envision a future that extends beyond traditional AIOps
capabilities, a new paradigm we term AgentOps. In this par-
adigm, AI agents can not only work on different isolated op-
erational tasks, but also seamlessly handle multiple, cross-
layer tasks across the entire operational stack. AgentOps rep-
resents an evolution where autonomous agents are not just
tools but integral components of cloud operations, capable
of making real-time decisions and taking actions to ensure
system reliability and performance. These agents would foster
truly autonomous, self-healing cloud systems that can adapt
to changes and recover from failures without human interven-
tion.

However, the journey toward fully realizing AgentOps is
fraught with challenges, particularly in the design, develop-
ment, and evaluation of AI-driven agents capable of handling
complex operational tasks. Existing AIOps approaches often
focus only isolated aspects of the incidents lifecycle, such
as anomaly detection or fault localization, without having a
cohesive framework that can evaluate these approaches and
help decision making process to chain these algorithms or
choose which agent is suitable for which scenario. Moreover,
recent initiatives to leverage AIOps for cloud operations have
been impeded by the reliance on proprietary services and
datasets, which hampers reproducibility and the generaliza-
tion of research outcomes. Other approaches employ ad hoc
benchmarks and static metrics that fail to capture the dynamic
and complex nature of real-world cloud services. Most of the
benchmarks are text-based without enabling the agent to in-
teract with the system environment. Additionally, the absence
of standardized metrics and taxonomies for evaluating opera-
tional tasks creates difficulties in comparing the effectiveness
of different AIOps agents.

These challenges highlight the need for a standardized and
principled framework for testing and evaluating AIOps agents.
Such a framework should enable realistic and reproducible
interactions with operational tasks, allowing researchers and
practitioners to benchmark their solutions against a common
set of criteria. It should be flexible enough to accommodate
new applications, workloads, and fault scenarios, ensuring
its applicability in a rapidly evolving technological landscape.
Crucially, the framework should facilitate the iterative im-
provement of AIOps agents by providing rich observability
data and serving as a training environment where agents
can learn from simulated operational tasks and refine their
decision-making processes [62]. While existing tools address
individual components of the AIOps lifecycle, such as observ-
ability and introspection [21, 48], application suites [15, 32],
chaos engineering and fault injection [9, 10, 45], and agent-
computer interfaces [57], they lack the integration necessary
to support the development of holistic AIOps solutions.

Summary. This paper makes the following contributions:

• We unravel the requirements and challenges of a compre-
hensive framework that supports the design, development,
and evaluation of autonomous AIOps agents;
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Figure 1: Cloud Incident Management Lifecycle.

• We develop a framework - AIOpsLab that combines a fault
injector, workload generator, cloud-agent orchestrator, and
telemetry observer to simulate production incidents and
provide an agent-cloud interface for orchestrating and eval-
uating AIOps agents;

• We integrate 4 AIOps algorithms and 5 agents to demon-
strate the application of our preliminary framework in eval-
uating an LLM-based agent with different types of AIOps
tasks.

• We will make AIOpsLab publicly available.

2 Background and Motivation

We discuss the gaps between current AIOps approaches
and existing benchmarks as the background and motivation
for our work. Ideally, all of the approaches including the LLM-
based AIOps agents should be evaluated in a standardized
benchmark that allows easy comparison for different types of
operation tasks.

2.1 AIOps Approaches

Our AIOps approaches to discuss include: traditional AIOps
approaches, human-driven operations, and LLM-based agents.

Traditional AIOps Approaches. These approaches leverage
machine learning models, statistical analysis, and rule-based
automation to perform tasks like anomaly detection, log anal-
ysis, and predictive maintenance. They have proven effective
at processing large amounts of structured data and identifying
patterns that indicate potential issues. However, they typi-
cally function as passive tools, capable of providing insights
but requiring human intervention for decision-making and
mitigation.

Human-driven Operations. Incident management in cloud
systems has been heavily reliant on human operators. These
operators use their expertise, intuition, and manual workflows
to identify, diagnose, and resolve incidents. While human-
driven operations are adaptable and capable of understanding
complex situations, they are inherently limited by scalability
and response time.

LLM-based Agents. Recent advancements in large language
models, particularly those augmented with tool usage and
reasoning capabilities, have introduced a new type of AIOps
approach: LLM-based agents [43, 47]. These agents go beyond
language models by integrating external tools such as retrieval
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systems, code interpreters, andweb search engines, etc. This al-
lows them to dynamically interact with their environment [53],
enabling them to not only detect and analyze incidents but
also autonomously manage the entire incident lifecycle. LLM-
based agents can perform tasks across different layers of the
system stack, from monitoring and anomaly detection to root
cause analysis and corrective actions, providing an end-to-end
solution for incident management. Their ability to adapt in
real-time and collaborate with other agents or human oper-
ators makes them potentially suited for managing complex
cloud infrastructures.

2.2 AIOps Benchmarks

Current benchmarks for AIOps approaches suffer from sev-
eral key limitations, making it challenging to effectively eval-
uate and compare different AIOps approaches.

Existing benchmarks are mostly static, providing datasets
such as Key Performance Indicators (KPIs) or system met-
rics [20, 28], i.e., time series data, or fixed question-answer
format [38] that often do not reflect the dynamic nature of
real-world cloud environments. These static benchmarks can
be limited in fidelity, failing to replicate the unpredictable and
evolving conditions found in production systems and incident
management process. As a result, the evaluations may not
accurately assess the robustness of AIOps agents in realistic
settings.

Second, there is also a lack of clear task definitions in exist-
ing benchmarks, particularly concerning the types of faults
introduced. Though there are many fault injection tools for
testing the resilience of cloud systems [1, 4–6, 8, 11, 13, 19,
26, 31, 34, 39, 41, 42, 44, 46, 51, 60], many benchmarks focus
solely on injecting system symptoms with existing fault injec-
tor [9, 10], such as pod failure, high CPU utilization or network
latency. These coarse-grained faults existing in the existing
benchmarks can only cause disruption without modeling the
underlying, fine-grained root causes [11, 18, 34, 39, 44, 51].
They cannot evaluate true capabilities of AIOps agents to diag-
nose and mitigate root causes, limiting people to understand
how well these agents perform at different types of the in-
cident tasks. However, to evaluate AIOps agents effectively,
the failure scenarios must go beyond simple performance or
crash failures. Instead, they should reflect realistic cases that
challenge the agents’ ability.

Also, current benchmarks lack customization and exten-
sibility, making them unsuitable for diverse user scenarios.
Real-world incidents can vary significantly across different
cloud environments and application domains. This lack of
adaptability prevents users from tailoring benchmark scenar-
ios to reflect their specific operational challenges.

To fully realize the potential of LLM agents in real-world
AIOps, a standardized framework to easily evaluate and bench-
mark these agents in an online fashion is needed. By providing
a common platform for evaluation, the framework would facil-
itate the comparison of different agents and approaches, drive

advancements in the field, and accelerate the adoption of LLM
agents in cloud operations.

3 AIOpsLab

In this section, we discuss the AIOpsLab design principles
that can lead to a holistic and standardized framework to
evaluate different agents.

3.1 Overview of AIOpsLab Design

In designing AIOpsLab as an evaluation framework for
AIOps approaches, one of the central goals is to create a
robust and flexible interface between agents and the cloud.
The interface must accommodate a variety of users, from hu-
man engineers, AIOps algorithms to LLM agents. AIOpsLab
should ensure effective communication, action-taking, and
feedback from the cloud systems. Yang et al. [30] introduce
agent-computer-interface for coding agents, inspired by human-
computer interaction (HCI) principles, suggesting that agents
should have a simplified interfaces for tasks. Here, we posit
that agents should have a similar simplified interface to inter-
act with services and clouds—the Agent Cloud Interface (ACI).

We propose Agent-Cloud Interface (ACI) as the core compo-
nent that facilitates this interaction. It acts as an orchestrator,
simplifying the complexities of cloud operations for agents,
enabling them to interact seamlessly with cloud services, de-
tect and resolve issues, and adapt to dynamic environments.
The following design decisions shape the ACI’s structure and
functionality.
Unified Interaction with Cloud Services. The ACI is de-
signed to present a consistent, unified interface for interacting
with cloud services. Whether it is a human operator or an au-
tomated AIOps tool, the interaction model remains the same,
through clearly defined, documented APIs. These APIs ex-
pose key actions, such as retrieving logs, gathering metrics,
executing commands, or scaling services. By standardizing
these interactions, the ACI ensures that agents, regardless of
their type, can engage with cloud systems without needing
deep domain-specific knowledge of how individual services
are implemented.
Automated Action-Oriented Feedback Another design
aspect of the ACI is its ability to provide meaningful and ac-
tionable feedback for every action taken by the agent. After
each request, whether successful or not, the system generates
detailed feedback, including error messages, system responses,
and output logs. This feedback loop ensures that agents can
adjust their actions based on real-time data, learning from
each step in the process.
Simplified Action Space. To make the interface more acces-
sible to different types of agents, the ACI simplifies the action
space into a clear and manageable list of valid API calls. These
APIs encapsulate common cloud operations, e.g., Kubernetes
commands. By reducing the complexity of available actions,
the ACI makes cloud operations more approachable, partic-
ularly for AI agents that rely on a well-structured and clear
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Figure 2: Overview of AIOpsLab. The Orchestrator coordinates interactions between various system components and serves as
the Agent-Cloud-Interface (ACI). Agents engage with the Orchestrator to solve tasks, receiving a problem description, instructions,
and relevant APIs. The Orchestrator generates diverse problems using the Workload and Fault Generators, injecting these into
applications it can deploy. The deployed service has observability at multiple layers, providing telemetry, traces, and logs. The
Orchestrator communicates with the service and the cloud using several tools such as Kubernetes, Helm, and even a Shell.
Agents act via the Orchestrator, which executes them and updates the service’s state. The Orchestrator evaluates the final solution
using predefined metrics for the task.

action space. This design allows agents to focus on solving
problems effectively without getting bogged down in technical
details or irrelevant tasks, improving their overall performance
in managing cloud environments.
Orchestration Between Agent and Cloud. At its core, the
ACI serves as an orchestrator between the agent and the cloud
environment, handling interactions and enforcing boundaries.
Agents do not have direct control over the cloud infrastructure
but instead interact through the ACI, which ensures that all
requests are validated and that actions are performed safely.

The ACI acts as a safeguard, preventing agents from caus-
ing unintended disruptions in cloud services. By mediating
agent requests, the ACI ensures that agents operate within
a controlled environment, maintaining the integrity of cloud
services even when managing complex tasks such as fault de-
tection and resolution in real-time. This orchestration ensures
a balanced approach to agent autonomy while maintaining
cloud system reliability and safety.

3.2 Evaluation Scenarios of AIOpsLab

To effectively assess different AIOps approaches, we design
evaluation scenarios that replicate realistic incidents. These
scenarios involve deliberately introducing faults at various
system levels, simulating the diverse operational challenges
that AIOps tools and human operators must address.

We present a fault level taxonomy that categorizes faults
according to different stages of the incident management life-
cycle, with progressively increasing complexity. Our claim
is that the higher level the fault is, the harder of the task
the fault can provide to evaluate the agents. This taxonomy

provides a structured framework for evaluating how AIOps ap-
proaches, be they AI agents, traditional algorithms, or human
teams, detect, localize, analyze, and mitigate issues in complex
cloud environments. By defining faults at multiple levels, we
simulate a wide range of real-world challenges, from simple
anomaly detection to advanced tasks like mitigation. Table 1
summarizes the levels of fault complexity.

Table 1: Fault Taxonomy for AIOps Agent Evaluation.

Level Fault Type Evaluation Focus

1 Detection Can the approach accurately detect anom-
alies or deviations?

2 Localization Can the approach pinpoint the exact source
of a fault, e.g., a specific microservice?

3 Root Cause Analysis Can the approach determine the underlying
cause of the fault?

4 Topology
Can the approach identify and analyze mul-
tiple concurrent faults and their interdepen-
dencies?

5 Mitigation Can the approach give effective solutions to
recover the environment?

Level 1: Detection Ability. The foundational requirement
for any AIOps approach is the ability to detect anomalies. Level
1 focuses on the preliminary identification of unusual behavior
within the system. For example, detecting a sudden spike in
CPU usage or an unexpected drop in network throughput in-
dicates deviations from normal operations. Effective detection
serves as the first line of defense, enabling the cloud systems
to mark the symptoms and flag potential problems.
Level 2: Localization Ability. Once an anomaly is detected,
the next step is to localize the fault within the system. Level
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2 assesses the ability to accurately determine which compo-
nent, such as a specific microservice, is malfunctioning. For
instance, if a particular service is down, the approach should
pinpoint that service rather than attributing the issue to the
entire system. Effective localization is crucial for prompt and
precise intervention, reducing the time and resources spent
on diagnosing issues.

Level 3: Root Cause Analysis Ability. Level 3 evaluates
whether the approach can diagnose why a service or compo-
nent has failed. For example, if a microservice crashes due to
an unhandled exception, the method should identify the fault
type, i.e., code defect, causing the failure. This level challenges
the approach to go beyond surface symptoms and provide
insights into the root problem.

Level 4: Handling of Multiple Concurrent Faults. In com-
plex cloud environments, multiple faults can occur simultane-
ously. Level 4 shifts the focus to detecting and understanding
these concurrent faults, which may or may not be related. For
example, a hardware failure in one server and a software bug
in a microservice could happen at the same time, collectively
leading to significant system disruption. This level evaluates
whether the approach can identify multiple faults occurring
concurrently and assess their combined impact on the system.

Level 5: Resolution andMitigation. The final level assesses
the ability to take effective corrective actions. Level 5 eval-
uates whether the approach can resolve issues by applying
appropriate solutions. Key factors include the automation of
the resolution process (if applicable) and the specificity and
actionability of the proposed solutions. For example, if the root
cause is a misconfigured microservice, the approach should
adjust its configuration to restore normal operations of that
specific microservice instead of re-configure everything. It is
crucial to resolve the issue without introducing side effects,
such as causing additional faults elsewhere in the system. Ad-
ditionally, the agent must avoid getting stuck in a loop or
taking an excessive amount of time, which could lead to non-
termination.

4 Implementation and Use Cases

In this section, we introduce how we implement AIOpsLab,
and show how AIOpsLab can be easily used with examples.

4.1 Problem Definition

To support a wide range of AIOps problems in AIOpsLab,
we first formalize an AIOps problem instance 𝑃 as a tuple:
𝑃 = (𝑇,𝐶, 𝑆), where𝑇 represents a task,𝐶 represents a context,
and 𝑆 represents the solution. The task 𝑇 defines the specific
AIOps operation to be performed, categorized into four types:
detection, localization, (root cause) analysis, and mitigation.
These tasks are defined as in Table 1. Each task type is associ-
ated with a set of success criteria and evaluation metrics. For
instance, the detection task employs the time-to-detect (TTD)
metric to measure the time taken to detect a fault.

The context 𝐶 can be further formalized as a tuple: 𝐶 =

(𝐸, 𝐼 ), where 𝐸 is the operational environment in which the
problem occurs and 𝐼 is the problem information used to de-
scribe the problem to the agent. The operational environment
includes the cloud service, the fault model, and the work-
load model used to generate the problem instance; This is not
shared with the agent and is used to evaluate the agent’s per-
formance. The problem information comprises information
such as service description, task descriptions, and documenta-
tion about available APIs that is directly share with the agent.
It also subsumes indirect information (including logs, metrics,
and traces observed in the operational environment) that is
queryable by the agent at runtime. Finally, 𝑆 is the expected
outcome of the task, which is used to evaluate the agent’s per-
formance. The solution is typically problem and task specific,
and is carefully designed for evaluation. Note that some prob-
lems (e.g., mitigation tasks) can be solved in multiple ways. In
such cases, AIOpsLab evaluates the state of the entire system
after the problem is resolved, rather than focusing solely on the
targeted resource where the fault was injected, because other
services or resources may have been inadvertently affected
during the mitigation process.

Example 4.1. Consider a problem to localize a Kubernetes
target port misconfiguration in a microservices-based social
network application. AIOpsLab makes it easy to define this
problem instance in just a few lines by extending the LocalizationTask
interface.

from aiopslab import LocalizationTask, SocialNetwork
from aiopslab import Wrk, VirtFaultInjector

class K8STargetPortMisconf(LocalizationTask):
def __init__(self):

self.app = SocialNetwork()
self.ans = "user-service"

def start_workload(self):
wrk = Wrk(rate=100, duration=10)
wrk.start_workload(url=self.app.frontend_url)

def inject_fault(self):
inj = VirtFaultInjector(self.app.ns)
inj.inject([self.ans], "misconfig_k8s")

def eval(self, soln, trace, duration):
res["TTL"] = duration
res["success"] = is_exact_match(soln, self.ans)
return res

Here the task𝑇 is localization and the solution 𝑆 is the service
named “user-service”. The context 𝐶 includes the social net-
work application, a misconfiguration fault from AIOpsLab’s
fault library, and a standard workload using the wrk tool. AIOp-
sLab provides several such interfaces for all major AIOps tasks
(Table 1) and allows users to add new problems by extending
them. Once problems are defined, AIOpsLab can instantiate
them and allow agents to interact with them using an Orches-
trator that we describe next.

4.2 Orchestrator

AIOpsLab strictly enforces the separation of concerns be-
tween the Agent and the Service, using a well-defined central
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piece we call the Orchestrator. It provides a robust set of inter-
faces that allow seamless integration and extension of various
system components.

4.2.1 Agent Cloud Interface

A key responsibility of the Orchestrator is to provide a
well-defined interface for the Agent to interact with the cloud
environment. Typically, developers operate clouds and ser-
vices with various programming (e.g., APIs, CLIs) and user
interfaces (incident portals, dashboards etc.). However, exist-
ing interfaces to the cloud are not well-designed for LLMs and
agents. For instance, humans can reliably ignore irrelevant
information, but the same can prove distracting for agents and
hamper performance.

The Orchestrator acts as the ACI, as mentioned in Sec-
tion 3.1, and specifies (1) the set of valid actions available to
the agent, and (2) how the service’s state is conveyed back to
the agent as the observation of its actions. In doing so, the
Orchestrator abstracts the complexity of the cloud environ-
ment, and simplifies the agent’s decision-making process. The
ACI is designed to be intuitive and easy to use, with a con-
cise list of APIs, each documented to ensure that agents can
make meaningful progress towards objectives. Some APIs that
AIOpsLab provides by default include get_logs (fetch logs
from a service), get_metrics (fetch metrics from prometheus),
get_traces (fetch traces from Jaeger), and exec_shell (exe-
cute shell commands).

Example 4.2. In this simplified example, we illustrate how
the ACI is defined in AIOpsLab as APIs that agents can use.

class TaskActions:
def get_logs(ns: str, serv: str) -> str:

"""Collects log data from a pod using Kubectl.
Args:

ns (str): The K8S namespace.
serv (str): The name of the service.

Returns:
str: Logs from the service.

"""
try:

pod = KubeCtl().get_pod_name(ns, f"app={serv}")
return KubeCtl().get_pod_logs(pod, namespace)

except Exception:
return "Error: Service/namespace does not exist."

def get_traces(ns: str, duration: int = 5) -> str:
"""
Collects trace data from the service using Jaeger.
Args:

ns (str): The K8S namespace.
duration (int): Duration to collect traces.

Returns:
str: Path to the directory where traces saved.

"""
trace_api = TraceAPI(ns)
end_t = datetime.now()
start_t = end_t - timedelta(duration)
traces = trace_api.extract_traces(start_t, end_t)
return trace_api.save_traces(traces)

As shown, the ACI encapsulates complex operations behind
simple APIs like get_logs and get_traces. On initializing a
problem, the Orchestrator automatically extracts documenta-
tion from these APIs to provide as context (Section 4.1) to the
agent. At runtime, agents can specify a wide range of actions
on the service (e.g., scaling, redeploying, patching) by way of

the Orchestrator’s privileged access. Finally, the Orchestrator
conveys the service’s state after each action with high-quality
feedback to the agent, including outputs, error messages, and
tracebacks. This design maintains a consistent interface across
different services, allowing agents to be easily ported across
different problems.

4.2.2 Session Interface

Another key responsibility of the Orchestrator is to man-
age the lifecycle of the agent and the service. We implement
the Orchestrator as a session-based system, where a Session
is created for each instance of an agent solving a problem.
Agents can be registered with the Orchestrator, and a ses-
sion can be started with simple API calls passing a unique
problem identifier. AIOpsLab is designed to be highly flexi-
ble and integratable with the growing LLM and agent frame-
work space. Our only requirement is that the agent must im-
plement a get_action method with the following signature:
async def get_action(state: str) -> str. It takes the service’s
state as input from the Orchestrator and returns the next ac-
tion the agent wants to take. Note, this could simply be a
wrapper function around any existing agent framework.

Example 4.3. In this simplified example, we illustrate how
an Agent can be onboarded to AIOpsLab.

from aiopslab import Orchestrator

class Agent:
def __init__(self, prob_desc, instructs, apis):

self.prompt = self.set_prompt(prob_desc, instructs, apis)
self.llm = GPT4()

async def get_action(self, state: str) -> str:
return self.llm.generate(self.prompt + state)

#initialize the orchestrator
orch = Orchestrator()
pid = "misconfig_app_hotel_res-mitigation-1"
prob_desc, instructs, apis = orch.init_problem(pid)

#register and evaluate the agent
agent = Agent(prob_desc, instructs, apis)
orch.register_agent(agent, name="myAgent")
asyncio.run(orch.start_problem(max_steps=10))

As shown on initializing a problem, the Orchestrator shares
context necessary for the agent to solve the problem. It then
iteratively polls the agent (via get_action) for its next action.

4.2.3 Other Interfaces

Problem Initializers. As described in Section 4.1, each prob-
lem is defined with a context which includes its operational
environment. This environment is the service, fault, and work-
load conditions under which the problem occurs. Here, the
Orchestrator deploys services and uses infrastructure-as-code
tools like Helm [23] to deploy the required cloud service for
each problem. We describe services already integrated into
AIOpsLab in Section 4.3.

As shown in Figure 2, to create realistic benchmarks sce-
narios, the Orchestrator then interfaces with two pieces: (1) a
workload generator and (2) a fault generator. These generators
are responsible for introducing controlled service disruptions,
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simulating live benchmark problems. As the workload genera-
tor, AIOpsLab currently uses the wrk2 tool [15] which supports
several workload policies and also replaying industry work-
loads. However, the AIOpsLab is extensible to other workload
generators. For fault generation, AIOpsLab uses a custom fault
library that instantiates faults across different levels of the sys-
tem stack such as application and virtualization. The library
contains and extends to several fine-grained and paramet-
ric faults that go beyond surface-level symptoms and engage
deeper and complex resolution strategies. We describe the
fault library in detail in Section 4.4.

Problem Evaluators. Finally, the Orchestrator plays a critical
rols in evaluating the Agent’s performance on a problem. It
compares the Agent’s solutions against predefined success
criteria and evaluation metrics specific to each task. AIOpsLab
supports several default and common metrics for each task
(e.g., Time-to-detect for detection, number of steps taken, and
tokens produced by an LLM-powered agent). Additionally,
AIOpsLab provides qualitative evaluation of agent trajecto-
ries using LLMs-as-Judges [64]. Beyond that, all user-defined
evaluation metrics specific to the problem instance are run.
For instance, for the localization problem in Example 4.1, the
metric success is defined by the agent’s submission matching
the fault microservice’s name. Lastly, the Orchestrator main-
tains comprehensive logs of all agent trajectories, including
actions taken and resulting system states, facilitating detailed
analysis and debugging.

4.3 Services

AIOpsLab deploys live services to simulate production ser-
vices. AIOpsLab is currently integrated with the HotelReser-
vation and SocialNetwork from DeathStarBench [15] and the
Google’s Online Boutique application [17]. The SocialNetwork
application has 28 microservices that together implement sev-
eral features of real-world social networking applications. The
constituent microservices are Nginx, Memcached, MongoDB,
Redis, as well as microservices that implement the logic of the
application. The constituent microservices are similar to the
ones in the social networking application. The HotelReserva-
tion application, implemented using Go and gRPC, supports
services like reserving hotels, recommending hotels based
on user profiles, etc. The online boutique is a web-based e-
commerce application implemented as a cloud-first microser-
vices application. It supports activities like browsing items,
adding them to the cart and purchasing them. It consists of
11 microservices implemented using different languages that
communicate via gRPC.

4.4 Fault Library

To instantiate faults across different levels, we classify them
into two main types, symptomatic faults and functional faults,
as shown in Figure 4.

Frontend

Search User Recommend

Rate Geo

Mongodb-geo

Error: Not authorized on 

geo-db to execute command

Revoke the admin’s 

privilege during execution

Figure 3: Revoke authentication fault example. Injection hap-
pens at Mongodb-geo service, while Geo service will be ab-
normal and generate error logs.

4.4.1 Symptomatic Faults

Symptomatic faults, such as performance degradation and
crash failures, manifest as observable symptoms, like increased
latency, resource exhaustion, or service outages. These faults
typically satisfy Level 1 and Level 2 in the fault taxonomy
(Table 1), which can help construct scenarios that to evaluate
AIOps approaches’ detection and localization ability. These
faults provide an overview of potential problems but don’t nec-
essarily reveal the deeper, underlying reason of issues (since it
does not have one), e.g., the root cause behind the pod failure.

AIOpsLab integrates existing fault injection tools, e.g., Chaos-
Mesh [9], to inject symptomatic faults to various components
within microservices. AIOpsLab currently supports five types
of symptomatic faults to including CPU stress, memory stress,
pod failure, request abort, and request delay.

4.4.2 Functional Faults

For Level 3 (Root Cause Analysis) faults, more fine-grained
fault injection is required, which is where functional faults
come into play. Functional faults, such as misconfigurations or
critical software bugs, cause a system or service to fail. These
faults require the AIOps approaches to not only detect and
localize the failure but also diagnose the root cause, such as
incorrect settings or code-level bugs, and apply the correct
mitigation strategies. By using functional faults at the deeper
levels of the taxonomy, we ensure that AIOps approaches
especially the AI agents are tested on their ability to move
beyond surface-level symptoms and engage in the more com-
plex task of identifying and resolving the underlying causes of
failures. Our fault injection methodology is designed to chal-
lenge agents across a wide range of scenarios, from application
malfunctions to complex virtualization-level failures. We im-
plement seven different categories of faults in both application
and virtualization system levels. Note that users can apply
these faults to different microservices to construct various
evaluation test cases.

Example 4.4. In the following example, we illustrate the
structure of the application-level fault injector for a revoke
authentication fault and its usage example in AIOpsLab.

from aiopslab.generators.fault.base import FaultInjector
from aiopslab.service.apps.hotelres import HotelReservation
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Faults Provided by
AIOpsLab (§4.4)

Symptomatic
Faults (§4.4.1)

Functional
Faults (§4.4.2)

CPU
Stress

Pod
Failure

Memory
Stress

Application-
level Faults

Virtualization-
level Faults

Figure 4: Fault categories to construct evaluation scenar-

ios in AIOpsLab.

class ApplicationFaultInjector(FaultInjector):
def inject_revoke_auth(self, microservices: list[str]):

"""Inject a fault to revoke MongoDB admin privileges."""
...

def recover_revoke_auth(self, microservices: list[str]):
"""Recover the revoke admin privileges fault."""
...

# Usage Example
class MongoDBRevokeAuth:

def __init__(self):
self.app = HotelReservation()

def inject_fault(self):
injector = ApplicationFaultInjector(ns)
injector._inject(["mongodb-geo"], "revoke_auth")

Users can define problems using the existing fault library. For
instance, users can specify different faulty services or even
construct a task that injects multiple faults to multiple services.

Users can also customize their own faults to generate vari-
ous problem tuple 𝑃 , as mentioned in Section 4.1. For instance,
if the user provides a general functional fault that can be ap-
plied to all of the 28 SocialNetwork’s microservices, then the
number of the problems will be 28 ∗ 4 = 112 as evaluation
scenarios. Lastly, AIOpsLab not only provides the injection
function for its associated failure scenarios, but also offers the
corresponding mitigation mechanism to recover the system
from the erroreous state.

4.5 Observability

AIOpsLab is equippedwith an extensible observability layer
designed to provide comprehensive monitoring capabilities.
AIOpsLabcollects a wide array of telemetry data, including (1)
traces from Jaeger detailing the end-to-end paths of requests
through distributed systems, (2) application logs formatted
and recorded by Filebeat and Logstash, and (3) system met-
rics monitored by Prometheus. Note that AIOpsLabnot only
supports data collection during the interaction with the LLM
agents, but also is able to export the data offline to facilitate the
other traditional AIOps approachs to test. Besides, AIOpsLab
is designed to capture information from other dimension, e.g.,
codebase, configuration, and cluster information. Developer

can also design and expose even low-level system information
such as syscall logs to agents by using AIOpsLab’s interface.

5 Experimental Setup

5.1 Research Questions

• How different AIOps algorithms and agent perform in
our benchmarks?

• What kind of faults are challenging for AIOps algo-
rithms and agents?

• How flexible and extensible is the AIOpsLab?

5.2 Evaluated Approaches

5.2.1 AIOps Algorithms

AIOps has been a popular research domain, even before
LLMs, with several classical approaches at various stages of
the operations lifecycle. In this work, we evaluate a few state-
of-the-art solutions across the board on tasks in AIOpsLab.
MKSMC. MKSMC adopts a new unsupervised anomaly de-
tection technique based on Monte Carlo sampling to detect
anomalies and enhance the interpretability of anomaly detec-
tion in multivariate data.
RMLAD. RMLAD localize failure components by computing
log anomaly scores with DeepLog and assessing the mutual
information between metrics and log anomalies. Metrics are
ranked based on their correlation with log anomalies to predict
root causes, with modality fusion managed by correlation
computations.
PDiagnose. PDiagnose handles diagnosis by conducting sepa-
rate anomaly detection on metrics, call chains, and logs, using
a voting system to aggregate results and identify root causes
through thresholds and suspicious fields.
MicroCBR. MicroCBR uses fault fingerprints and spatio-temporal
knowledge graphs, integrating fault fingerprints with sys-
tem topology for fault classification. It performs single-modal
anomaly detection, constructs new fault fingerprints, and ap-
plies hierarchical case-based reasoning, relying heavily on
accurate fault fingerprints.

5.2.2 LLM based agents

GPT-w-Shell. GPT is a family of LLMs trained on a massive
corpus of data on the web. This makes them capable to do a
variety of AIOps tasks such as analyzing multi-source data
and even writing code or commands to mitigate issues. In all
the experiments that follow we use a leading language models
from the GPT family [2]. Our naive baseline (GPT-w-Shell) is a
LM with access to only a secure shell.
ReAct. ReAct (Reasoning and Acting) is a framework that ex-
tends the idea of chain-of-thought [54] reasoning by introduc-
ing an interleaved reasoning-and-acting paradigm. Reasoning
traces help the model induce, track, and update action plans as
well as handle exceptions, while actions allow it to interface
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with external sources, such as the AIOpsLab environment, to
gather additional information.
TaskWeaver. TaskWeaver is a code-first agent framework
that interprets user requests through code snippets to plan
and execute data analytics tasks. It coordinates various plugins
as functions to perform tasks, enabling seamless and efficient
execution of complex data analytics workflows.

5.3 Metrics

Correctness. This metric measures the accuracy of the agent’s
response to faults. It evaluates whether the agent successfully
detected, localized, and resolved the faults as expected. For ex-
ample, in a detection task, correctness would indicate whether
the agent identified the presence of an anomaly, while in a
root cause analysis task, it would assess whether the agent
correctly diagnosed the system level and fault type.
Time/Latency/Steps. This metric evaluates the efficiency
of the AIOps agent by measuring the time and steps taken
to detect and mitigate faults. It includes two key submetrics:
Time-to-Detect (TTD), which is the time elapsed from the
occurrence of a fault to its detection, and Time-to-Mitigate
(TTM), the time taken from detection to complete resolution
of the fault. Additionally, the metric assesses overall system
latency and the number of steps or actions required to miti-
gate the issue. Lower values in TTD, TTM, latency, or fewer
steps indicate a more efficient and effective agent. Optimiz-
ing for these factors ensures quicker detection and recovery,
minimizing the impact of faults on the system.
Cost. The cost metric evaluates the overall resource consump-
tion incurred by the AIOps agent. This includes average com-
putational costs such as CPU and memory usage, operational
costs like system downtime or cloud resource expenditure,
and the cost of external services like LLM token usage.

6 Experimental Results

6.1 Agent Evaluation

To validate the effectiveness of the AIOpsLab framework,
we integrated various AIOps agents and evaluated their per-
formance across a series of fault scenarios and tasks, including
detection, localization, root cause analysis (RCA), and miti-
gation. The agents were tested on a range of fault scenarios
in a Kubernetes-based microservices environment. Below, we
present detailed evaluations for each task, supported by ex-
perimental results.

6.1.1 Detection

In the detection task, the AIOps agents were tasked with
identifying faults in real-time from a set of predefined opera-
tional anomalies. This task is critical for ensuring that faults
are promptly identified before they can impact system perfor-
mance or availability. Table 2 captures the agents’ performance
on detecting different faults. There is clear performance gap
between GPT-4 and GPT-3.5 when both are provided shell

Agent F1 F2 F3 F4 F5 F6 F7 Correctness (%)

GPT-w-Shell (GPT-4) ✗ ✓ ✗ ✓ ✓ ✗ ✓ 57%
GPT-w-Shell (GPT-3.5) ✗ ✗ ✗ ✗ ✗ ✗ ✗ 0%
ReAct (GPT-4) ✓ ✓ ✓ ✓ ✗ ✓ ✓ 86%
TaskWeaver (GPT-4) ✗ ✓ ✗ ✗ ✓ ✗ ✓ 43%
MKSMC ✗ ✗ ✓ ✓ ✗ ✗ ✗ 29%

Table 2: Performance on detection task. F1–F7 are the

faults against which the agents are evaluated.

Agent Avg. Time (s) Avg. Steps Avg. Input Avg. Output

Tokens Tokens

GPT-w-Shell (GPT-4) 7 4 8,179 118
GPT-w-Shell (GPT-3.5) 17 20 2,932 590
ReAct (GPT-4) 32 11 6,886 785
TaskWeaver (GPT-4) 195 14 3,946 283
MKSMC 1 N/A N/A N/A

Table 3: Agent efficiency for detection task.

access. GPT-4 successfully completed 4 out of 7 tasks (57%),
while GPT-3.5 failed to complete any tasks successfully. This
disparity highlights the significant improvement in problem-
solving capabilities offered bymore advanced languagemodels.
TaskWeaver, also using GPT-4, showed mixed results, success-
fully completing 3 out of 7 tasks (43%) While it performed
well on certain tasks, such as detecting Kubernetes target port
misconfigurations, it struggled with others due to its inability
to come up with the correct solution format. The ReAct agent,
utilizing GPT-4, showed impressive performance, successfully
completing 6 out of 7 tasks (86%). It demonstrated consistent
success across various problem types, from Kubernetes mis-
configurations to MongoDB authentication issues. This high
correctness score suggests that the ReAct approach, which
combines reasoning and acting, is particularly effective for
AIOps detection tasks.

The efficiencymetrics of various agents, as shown in Table 3,
reveal significant differences in performance and approach.
GPT-w-Shell (GPT-4) demonstrated the fastest average execu-
tion time at 7 seconds, while ReAct (GPT-4) took 32 seconds,
and TaskWeaver (GPT-4) required 195 seconds on average.
Token usage patterns varied, with GPT-w-Shell using more
input tokens (8,179) but fewer output tokens (118) compared to
ReAct’s 6,886 input and 785 output tokens, suggesting ReAct’s
more detailed reasoning process. The average number of steps
taken also differed, with GPT-w-Shell at 4, ReAct at 11, and
TaskWeaver at 14, indicating more complex problem-solving
processes for the latter two. A specific task comparison for Ku-
bernetes misconfiguration highlighted these differences: GPT-
w-Shell failed in 10 seconds with 4 steps, ReAct succeeded in
21 seconds with 10 steps, and TaskWeaver succeeded but took
160 seconds with 13 steps. The traditional MKSMC method,
while significantly faster with an average execution time of 1
seconds, only correctly identified 2 out of 7 anomalies, demon-
strating a trade-off between speed and accuracy in AI-driven
versus traditional approaches.
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6.1.2 Localization

Agent Correctness (%) Avg. Time (s) Avg. Avg. Input Avg. Output

Steps Tokens Tokens

GPT-w-Shell (GPT-4) 71% 8 5 4,912 134
GPT-w-Shell (GPT-3.5) 0% 10 20 180 335
ReAct (GPT-4) 57% 46 13 5,768 1,066
TaskWeaver (GPT-4) 29% 150 9 108,448 81,582
PDiagnose 14% 1 N/A N/A N/A
RMLAD 7% 2 N/A N/A N/A

Table 4: Performance for localization task.

Fault localization is the process of pinpointing the exact
location of the fault within the microservices architecture. The
agents were evaluated based on their ability to utilize system
metrics and traces to accurately localize faults.

The localization task evaluation, as presented in Table 4,
reveals significant variations in performance across different
agents and models. GPT-w-Shell (GPT-4) demonstrates supe-
rior performance with the highest correctness score of 71%
and the most efficient execution, requiring only 8 seconds
and 5 steps on average. In contrast, GPT-w-Shell with GPT-
3.5 failed to localize any faults, highlighting the substantial
performance gap between GPT-3.5 and GPT-4 models. ReAct
(GPT-4) shows competitive performance with 57% correctness
but requires significantly more time (46 seconds on average)
and steps (13) compared to GPT-w-Shell (GPT-4). TaskWeaver
(GPT-4) demonstrates moderate correctness at 29% but exhibits
the highest resource consumption, with an average execution
time of 150 seconds and extensive token usage, particularly in
output tokens (81,582 on average). Traditional methods like
PDiagnose and RMLAD show faster execution times (1 and
2 seconds respectively) but achieve lower correctness (14%
and 7% respectively) compared to the AI-driven approaches.
This underscores the trade-off between speed and accuracy in
fault localization tasks. The results suggest that there’s still
room for improvement in correctness and achieving a bal-
ance between correctness and efficiency across all agents. This
comparison provides valuable insights for selecting and opti-
mizing AI agents for AIOps localization tasks, demonstrating
the effectiveness of the evaluation framework in highlighting
performance differences across various approaches.

6.1.3 Root Cause Analysis

Agent Correctness (%) Avg. Time (s) Avg. Avg. Input Avg. Output

Steps Tokens Tokens

GPT-w-Shell (GPT-4) 14% 8 5 3,198 147
GPT-w-Shell (GPT-3.5) 0% 15 20 260 570
ReAct (GPT-4) 14% 23 7 4,466 609
TaskWeaver (GPT-4) 0% 265 15 32,608 410
MicroCBR 14% 1 N/A N/A N/A

Table 5: Performance for root cause analysis (RCA).

The root cause analysis (RCA) task aimed to identify the
fundamental cause behind observed system faults by analyz-
ing logs, metrics, and traces, correlating events, and deduc-
ing causal relationships. Table 5 presents the performance

of different agents in completing this task, revealing notable
differences in execution time and efficiency.

GPT-w-Shell (GPT-4), exhibited moderate overall perfor-
mance, completing the task in an average of 8 seconds with 5
steps. Although relatively fast, its correctness remained at 14%,
demonstrating limited accuracy. GPT-w-Shell (GPT-3.5), on
the other hand, failed to identify any root cause successfully,
often reaching the maximum step limit of 20, with an average
execution time of 15 seconds. ReAct (GPT-4) performed worse
than GPT-w-Shell (GPT-4) in terms of speed and steps, averag-
ing 23 seconds and 7 steps, with the same correctness rate of
14%. Despite taking longer and requiring more steps, its accu-
racy did not improve over GPT-w-Shell (GPT-4). TaskWeaver,
also based on GPT-4, had the longest execution times, aver-
aging 265 seconds and 15 steps. Despite the extended time
for processing, TaskWeaver was unable to solve any problem
correctly. MicroCBR, a case-based reasoning approach, stood
out for its speed, completing tasks in just 1 second on average.
However, it failed to achieve better correctness rates, matching
the 14% success of GPT-w-Shell and ReAct.

This comprehensive evaluation highlights the significant
variability in agent performance for RCA tasks. While some
models, likeMicroCBR, excel in speed, others, like TaskWeaver,
struggle despite extended analysis time. The AIOpsLab frame-
work plays a crucial role in enabling this detailed comparison,
providing insights into the trade-offs between speed, steps
taken, and success rates for identifying root causes in complex
systems.

6.1.4 Mitigation

Agent Correctness (%) Avg. Time (s) Avg. Avg. Input Avg. Output

Steps Tokens Tokens

GPT-w-Shell (GPT4) 43 127 13 9,313 1,038
GPT-w-Shell (GPT3.5) 0 19 20 1,298 1,139
ReAct (GPT4) 43 57 15 23,433 1,227
TaskWeaver (GPT4) 29 260 16 54,757 28,587

Table 6: Agent performance for mitigation task.

The mitigation task focused on the agents’ ability to not
only detect issues but also perform corrective actions in real-
time. As shown in Table 6, the evaluation revealed considerable
variations in performance across the tested agents.

GPT-w-Shell (GPT-4) and ReAct (GPT-4) both achieved the
highest correctness at 43%, completing tasks with an average
time of 127 and 57 seconds, respectively. ReAct was notice-
ably faster but required more steps (15 steps) compared to
GPT-w-Shell (GPT-4)’s 13 steps. TaskWeaver (GPT-4) showed
a lower success rate at 29%, with the longest average execution
time of 260 seconds and the highest average input token usage
at 54,757 tokens. GPT-w-Shell (GPT-3.5), while the fastest in
terms of execution time (averaging just 19 seconds), failed
to succeed in any of the scenarios. It consistently reached
the maximum step count of 20, highlighting its struggles to
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effectively resolve the mitigation tasks. In terms of input to-
ken usage, ReAct (GPT-4) processed 23,433 tokens on aver-
age, much more than GPT-w-Shell (GPT-4) with 9,313 tokens.
TaskWeaver was an outlier, processing significantly more to-
kens on average, yet this didn’t translate into better success
rates. GPT-w-Shell (GPT-3.5), despite using only 1,298 tokens
on average, faced context length limitations and often failed
to complete the tasks effectively.

In summary, GPT-w-Shell (GPT-4) and ReAct (GPT-4) dis-
played similar levels of correctness, with ReAct standing out
for its faster execution times. TaskWeaver’s performance was
hampered by long execution times and excessive input pro-
cessing, while GPT-w-Shell (GPT-3.5) demonstrated speed but
at the cost of success. This comparison highlights the varying
trade-offs between speed, correctness, and processing effi-
ciency across different agents.

7 Discussion

Ease of Use for Developers. One primary objective of AIOp-
sLab is to ensure that developers can easily create their own
incident scenarios to evaluate the agents. By offering a user-
friendly interface, we lower the barrier to entry, allowing devel-
opers to focus on crafting scenarios that best reflect incidents
in their systems and define what ability their agents can have.
For example, developers just need to register TaskWeaver in
AIOpsLab and optionally provide the tools to use, such as the
scripts for anomaly detection, which developers can easily
modify or extend to fit their specific needs.
Challenges with LLM Agents.While LLM agents hold po-
tential for automating cloud operational tasks, their current
implementation often introduces unnecessary complexity or
leads agents astray. A recurring issue is its redundancy. LLM
agents could repeatedly perform tasks or pursue ineffective
strategies, e.g., reading the microservices status via kubectl,
that complicate the process rather than resolving it. In many
cases, LLM agents lack the precision or task-specific optimiza-
tion needed to effectively manage cloud systems. As gener-
alized agents, they are designed to handle a broad range of
tasks but often struggle with specialized problems that require
detailed system knowledge or domain-specific actions.

8 Related Work

AIOps Agents. Recent advancements in cloud management
handling have increasingly integrated large language models
(LLMs) to enhance anomaly detection, localization, root cause
analysis, and mitigation. Methods like fine-tuned GPT [3],
RCACopilot [12], RCAgent [52], MonitorAssistant[58], and
Xpert [29] exemplify the application of LLMs in monitoring
and analyzing system behaviors, significantly improving the
accuracy of these processes. However, a notable gap in the field
is the lack of a comprehensive online evaluation benchmark
for assessing performance across these various tasks.
Agent benchmarks. assess the general abilities of LLMs
across various tasks. These tasks evaluate LLMs’ capacity

for logical reasoning, general knowledge, common sense, and
other similar abilities rather than being confined to a particular
domain. MMLU [24, 25] is a benchmark designed to measure
knowledge acquired during pretraining by evaluating models
exclusively in zero-shot and few-shot settings, covering 57
subjects across STEM. HELM [33, 37] offers a comprehensive
evaluation of LLMs’ capabilities across multiple dimensions
especially text-to-image. BIG-bench [7] comprises 204 tasks
spanning a wide array of topics, with a particular focus on
tasks deemed beyond the reach of current LLMs. C-Eval [27] is
a comprehensive Chinese evaluation suite designed to assess
Chinese LLMs’ advanced knowledge and reasoning abilities.
However, all of these benchmarks are text-based and static.,
which do not fit the interactive and dynamic operation cloud
environment.

9 Conclusion

In this paper, we unravel the requirements and challenges
of a comprehensive framework that supports the design, de-
velopment, and evaluation of autonomous AIOps agents; and
develop a prototype framework - AIOpsLab that combines a
fault injector, workload generator, cloud-agent orchestrator,
and telemetry observer to simulate production incidents and
provide an agent-cloud interface for orchestrating and evalu-
ating AIOps agents. We have tested 4 AIOps algorithms and
5 agents to demonstrate the application of our preliminary
framework in evaluating an LLM-based agent with different
types of AIOps tasks.
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