Trace

Microsoft Research
January 2025

Introduction

Trace is an open-source, PyTorch-like library for training Al agents using feedback (like scores,
natural language, errors, etc.). Trace and Generative Optimization enable a new kind of deep
learning that goes beyond tensor-based models. With Trace, any Python method or class can be
viewed as model and we can easily train Python objects (like prompts and hyperparameters) and
codes in-place end-to-end, just like training neural networks -- but with more intuitive and more
interpretable models.

Environment

J Stop to pick up the tomato
sauce, you’re moving
further away. You should

Feedback move to your left.
Al Agent
o000
Trace platform agent = Agent()
optimizer = OptoPrime(agent.parameters())
LLM # or
o optimizer = OPRO(agent.parameters())
Optimizer # or
optimizer = TextGrad(agent.parameters())
re optimizers to com
e.bundle(trainable=True)
ind_id(self, doc):
turn
jef act(self, doc): Trace optimizers

return self.find_id(doc)

New Release Highlight

0.1.3. Trace now supports multiple LLM-based optimizers including OptoPrime, TextGrad, OPRO,
and optimizing asyncio workflows.

== Microsoft

microsoft.com/research

Key Features

End-to-End Generative Optimization: An Al agent has many modules. Trace captures the
system's underlying execution flow and represents it as a graph. Trace can then optimize the
entire system with general feedback using LLM-based optimizers.

Native Python Support: Trace gives users full flexibility in programming Al agents. By using two
primitives (node and bundle) to wrap over Python objects and functions, Trace is compatible with
any Python program and capable of optimizing any mixture of code, string, numbers, objects, etc.

Research Platform: Trace propagates execution traces as Minimal Subgraphs to optimizers. This
common abstraction allows easy experimentation with different optimization algorithms (e.g.,
OPRO, TextGrad, OptoPrime) in Trace and gives researchers full freedom to design new
techniques for Al agents.

Benchmark Results

BBH all NLP Algorithmic BBH all NLP Algorithmic
0O-shot (23 tasks) (12 tasks) (11 tasks) 0-shot (23 tasks) (12 tasks) (11 tasks)
DSPy 41.6 53.8 32.6 DSPy + CoT 70.4 73.7 68.0

DSPy-PO 55.3 69.0 45.2 DSPy-PO + CoT 71.6 73.9 70.0
Trace 59.5 70.9 51.1] Trace + CoT 78.6 75.8 80.6

Table 1: End-to-end workflow optimization for an LLM benchmark (Big-Bench Hard) in 0-shot setup. CoT
refers to Chain-of-Thought prompting and PO refers to DSPy’s own prompt optimizer (COPRO). We use Trace
to optimize a DSPy program, starting from the same program and prompt template specified by DSPy.

OptoPrime Ti TextGrad Ti TextGrad | TextGrad

(Trace) 1me (24-10-30) 1me (Trace) | (Reported)
MMLU-Machine Learning | 86.6 (0.2) 1.7 (0.6) 86.1 (0.5) 3.5(1.1) 86.3(0.2) 88.4
MMLU-College Physics 94.1 (0.8) 1.2 (0.3) 93.1(0.7) 2.3(04) 93.3 (0.6) 95.1
Google-proof QA 59.6 (1.3) 122 (1.4) | 53.2(0.6) 19.5(1.9) | 54.0(0.7) 55.0
BBH Counting 89.4(0.1) | 559@4.5) | 89.2(1.2) | 1429(9.3) | 87.6(1.7) 91.9
BBH Word Sorting 71.6(3.1) | 82.5(10.1) | 72.0(04) | 211.1(16.8) | 71.4(2.5) 79.8
GSMSBK 82.5(0.1) — 82.4 (0.6) — 82.0(0.2) 81.1

Table 2: Comparison between Trace and TextGrad. The optimizer is GPT-40-2024-08-06, and the student
model is GPT-35-turbo-1106. The results show the mean and the standard error of success rate of the last iterate
computed by 5 seeds. The experiment time reported is in minutes (the time involves not just training but also
validation and testing by running TextGrad’s original pipeline); the time of GSM8K experiment is omitted as the
experiment time (>8hrs) is determined primarily by the evaluation not optimization.

== Microsoft

microsoft.com/research

Success
Success

—— Trace NoMem
—— Trace Masked

8 [H) 20 5 30 [5) n 2% 20

4 6 15 15
ITterations Iterations Iterations

(a) Reach (Test) (b) Pick-place (Test) (c) Push (Test)

Figure 6: Learning the feedback control policy (code) for a simulated Sawyer manipulator in LLF-Bench
Meta-World. In each iteration (x-axis), one episode of rollout (10 steps) is performed, and then the policy is
updated. The mean and standard error of the success rate over 10 seeds are shown.

Scenarios Where This Tech Shines

Trace is designed as a research platform to design the next generation agents that can self-adapt
their codes, prompts, parameters based on feedback in interactions. Near-term usages include
prompt + code optimization of agentic systems and learning through interaction to write super-
expert code (for cases where engineering is hard) (see e.g. paper).

Contact Us

Project contact: AIF-Trace@microsoft.com

== Microsoft

microsoft.com/research

https://arxiv.org/pdf/2410.15625

