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Abstract

The widespread adoption of Large Language Models (LLMs)
has enabled diverse applications with very different latency
requirements. Existing LLM serving frameworks rely on
siloed infrastructure with coarse-grained workload segrega-
tion — interactive and batch — leading to inefficient resource
utilization and limited support for fine-grained Quality-of-
Service (QoS) differentiation.

We present QOSERVE, a novel QoS-driven inference serv-
ing system that enables efficient co-scheduling of diverse
workloads on shared infrastructure. QOSERVE introduces
fine-grained QoS classification allowing applications to spec-
ify precise latency requirements, and dynamically adapts
scheduling decisions based on real-time system state. Lever-
aging the predictable execution characteristics of LLM infer-
ence, QOSERVE implements dynamic chunking to improve
overall throughput while maintaining strict QoS guarantees.
Additionally, QoSERVE introduces hybrid prioritization to
balance fairness and efficiency, and employs selective request
relegation for graceful service degradation during overloads.
Our evaluation demonstrates that QOSERVE increases serv-
ing capacity by 23% compared to current siloed deployments,
while maintaining QoS guarantees on an A100 cluster, and
improves per-replica goodput by up to 2.4x compared to
Sarathi on a shared cluster. Notably, under extreme load, our
system reduces SLO violations by an order of magnitude
compared to current strategies.

CCS Concepts: « General and reference — Reliability,
Metrics; « Computing methodologies — Neural networks;
« Software and its engineering — Software reliability;
Scheduling.
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Figure 1. Efficiency of QoSERVE under uniform load and
transient overload. (top left) Illustration of QOSERVE co-
scheduling vs current siloed deployments. (top right) A100
GPUs needed to serve a fixed load of 35QPS while meeting
the QoS targets of requests divided equally among 3 QoS
tiers in a real cluster. QOSERVE improves efficiency by 23%
compared to the state-of-the-art Sarathi [4] siloed deploy-
ment. (bottom left) Bursty overload scenario. (bottom right)
QOSERVE maintains low latency while SOTA scheduling suc-
cumbs to cascading deadline violations under bursty loads.
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1 Introduction

Large language models (LLMs) have transformed applica-
tions across diverse domains including conversational as-
sistants, coding assistants, content generation, and summa-
rization. These applications can have very different latency
requirements — for example, autocomplete coding assistants
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demand responses within milliseconds, while summariza-
tion tasks can reasonably tolerate longer latencies. As LLM
deployments scale to serve billions of users and diverse ap-
plications, inference serving systems must efficiently handle
this diverse spectrum of latency requirements while ensuring
high GPU utilization.

Current LLM serving solutions primarily adopt a coarse-
grained categorization, segregating requests into two broad
service classes: latency-sensitive interactive applications,
and throughput-oriented batch processing, and serve them
independently [9]. Interactive requests are typically served
with smaller prefill chunks [4] to minimize latency, but that
can result in relatively higher operational costs due to re-
duced throughput (e.g., 28% lower as shown in Figure 4).
Batch requests, on the other hand, employ larger chunks
to achieve higher throughput as latency is not a constraint.
This siloed deployment, however, creates other inefficien-
cies: it leads to significant GPU resource under-utilization,
as workload demands fluctuate across the two classes. More-
over, such partitioning inhibits the introduction of more QoS
classes with fine-grained latency requirements, as doing so
further exacerbates the partitioning inefficiencies.

Furthermore, current inference systems struggle under
load fluctuations and overload conditions. Typical schedul-
ing mechanisms such as first-come-first-served (FCFS) in-
discriminately delay all incoming requests under overload,
degrading user experience across the board. Alternatively,
naive throttling approaches reject all new incoming requests
when reaching capacity, ignoring their QoS requirements
or relative priorities. Neither strategy adequately manages
the complex trade-offs between throughput, latency, and
fairness during such demand surges.

In this paper, we present QOSERVE, a QoS-driven LLM
inference serving system that addresses these limitations
through two key ideas. First, QOSERVE supports fine-grained
QoS classes which allows applications to precisely specify
their latency requirements. Multiple QoS classes are served
efficiently by co-scheduling requests with diverse QoS targets
on a shared rather than siloed infrastructure. Second, QOSERVE
implements a hybrid prioritization and an eager relegation
policy that allows graceful service degradation during overload
conditions. Figure 1 compares QOSERVE to state-of-the-art
Sarathi-Serve [4] siloed deployment, demonstrating signifi-
cant performance improvements.

Efficiently supporting multiple QoS classes on a shared
serving instance poses significant challenges. One approach
is to use the smallest chunk size necessary to meet the latency
constraint of the strictest QoS class on all serving instances.
However, this would result in low throughput [4] and high
cost for all service classes. Instead, QOSERVE leverages the
unique execution characteristics of LLM inference — particu-
larly the distinct prefill and decode phases and the inherent
predictability of the prefill phase — to dynamically adjust

chunk sizes based on the observed system state and individ-
ual QoS targets. Co-serving multiple QoS classes allows us
to exploit deadline slack of requests with relaxed latency re-
quirements to schedule bursts of larger chunk sizes, thereby
increasing throughput opportunistically.

For managing overload conditions gracefully, QOSERVE
employs a hybrid prioritization and an eager relegation pol-
icy. Simple overload handling approaches like shortest-job-
first (SJF) manage overload by prioritizing short requests.
This helps reduce load due to the quadratic dependence of re-
quest length on LLM system load [17]. However, SJF neglects
the QoS requirements of longer jobs, leading to SLO viola-
tions even at low load (Figure 2). On the other hand, Earlier
Deadline First (EDF) scheduling is optimal under low load but
suffers excessive violations even when load is slightly higher
than capacity. Thus, QOSERVE introduces a hybrid policy
that smoothly interpolates between EDF and SJF, allowing
deployments to minimize SLO violations across both low and
high load. Additionally, QOSERVE proactively employs eager
relegation, selectively degrading service for a small subset of
requests to ensure stable performance, even under extreme
load conditions. In multi-QoS scenarios, QOSERVE leverages
application-provided hints about request importance, such
as whether a request originates from a free or paid tier, to
perform relegation. This ensures that lower-priority requests
are affected first during overload conditions, allowing the
system to maintain QoS for the majority of high-priority
requests. Our evaluations show that during significant over-
load scenarios (50% above capacity), QOSERVE consistently
meets latency targets for over 95% of requests, translating
into substantial cost savings and enhanced user experience
across diverse applications relying on LLM infrastructure.

Our work makes the following key contributions:

1. We develop a QoS-aware adaptive scheduling algo-
rithm that exploits the unique characteristics of LLM
inference to co-schedule requests belonging to multi-
ple QoS classes on shared infrastructure, improving
throughput while maintaining latency guarantees.

2. We design and implement a hybrid prioritization and
eager relegation policy that minimizes SLO violations
under both optimal load and overload conditions.

3. We evaluate QOSERVE across workloads and scenarios,
demonstrating up to 32% higher serving capacity while
meeting QoS guarantees compared to baseline.

The rest of the paper is structured as follows. (§2) outlines
the need for QoS-based serving systems and (§3) details the
architecture and implementation of QOSERVE. (§4) presents
our evaluation methodology and results.

2 Background and Motivation
2.1 LLM Inference

Large language model (LLM) inference is fundamentally dif-
ferent from traditional computing workloads, characterized
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Figure 2. Comparison of traditional policies for multi-SLA scheduling. The graphs plot the latency and violations in the
strictest QoS class. FCFS breaks down very quickly because urgent requests can be stalled by non-urgent ones. Deadline-aware
policies like EDF are better than FCFS, but cannot gracefully degrade at high loads because of intense queue buildup. SJF/SRPF
on the other hand can maintain QoS in the median case but violates SLOs of the majority of long jobs even at a low load of 2.5
QPS. QOoSERVE interpolates smoothly between SJF and EDF and minimizes violations across all load conditions.

by two distinct computational phases that significantly im-
pact system design: the prefill and decode stages. During the
prefill phase, the entire input prompt is processed simultane-
ously, making it computationally intensive. The subsequent
decode phase generates output tokens auto-regressively,
with each token’s generation depending on the previously
generated tokens.

Scheduling. In this work, we assume co-located LLM in-
ference scheduling as seen in popular serving frameworks
like vLLM [11] and SGLang [21] where prefills and decodes
of a request are executed on the same replica using chun-
ked prefills [4] for better serving efficiency. Chunked prefills
split a prefill request into equal-sized chunks, allowing for
efficient batching and scheduling without pausing ongoing
decodes. This approach helps balance the trade-off between
throughput and latency, and is used as a standard scheduling
practice in production systems [18].

Latency metrics. LLM inference encompasses three pri-
mary latency metrics, which serve as critical performance
indicators across different application types:

1. Time to First Token (TTFT). This metric captures the
initial response latency, measuring the duration from re-
quest submission to generating the first output token. For
interactive applications like chatbots and coding assis-
tants, TTFT is crucial as it directly influences user percep-
tion of system responsiveness.

2. Time Between Tokens (TBT). This metric measures
the interval between the generation of consecutive out-
put tokens of a request, and affects the overall perceived
fluidity of the response which is particularly important
for interactive applications where users expect a smooth,
uninterrupted stream of generated content.

3. Time to Last Token (TTLT). This metric focuses on
the total time required to complete the entire generation
process. TTLT is particularly relevant for non-interactive,
batch-oriented applications such as document summariza-
tion, comprehensive research analysis, or offline content
generation. In these scenarios, the overall completion time

matters more than the speed of initial response or token-

by-token generation.
The application’s nature determines which of these metrics
take priority. User-facing, interactive applications critically
depend on both TTFT and TBT, as these metrics directly
impact user experience and perceived system responsiveness.
In contrast, non-interactive applications primarily concern
themselves with TTLT, prioritizing the total time to generate
a complete output over the speed of initial token generation.

2.2 Production Deployment Landscape

Due to the fundamental differences in workload character-
istics and performance requirements between these appli-
cation types, current industrial practices for LLM inference
deployment predominantly employ a siloed infrastructure
model [9], maintaining two distinct GPU clusters: (1) a dedi-
cated fleet for latency-sensitive, interactive requests, and (2)
a separate cluster for batch processing and background jobs.

Overload management. When faced with traffic exceeding
capacity, current systems employ limited and often ineffec-
tive overload management techniques.

1. Rate Limiting: These mechanisms simply reject excess
requests without considering their relative importance
or potential impact.

2. Short Request Prioritization: These techniques favor
shorter requests, which can unfairly disadvantage longer
but potentially more important queries.

Such approaches are unable to provide application-aware
or graceful service degradation, resulting in either uniform
performance degradation across workloads or complete re-
jection of a class of requests without any fairness guarantees.

2.3 Deployment Challenges

Current LLM deployments create significant operational in-
efficiencies due to the siloed infrastructure model.

Resource provisioning and utilization. As workload de-
mands fluctuate, dedicated clusters often operate well below
their maximum capacity, resulting in substantial resource un-
derutilization. An interactive cluster might be overwhelmed
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during peak hours, while a batch processing fleet remains
largely idle, leading to inefficient computational resource
allocation. The complexity intensifies when supporting ap-
plications with multiple different latency requirements. Each
unique performance profile potentially necessitates a dedi-
cated infrastructure cluster, which can increase operational
complexity significantly. What begins as a straightforward
architectural decision quickly transforms into a management
challenge, with each new cluster introducing additional ca-
pacity provisioning challenges and monitoring overhead.

Lack of graceful service degradation. Existing mecha-
nisms for overload management, such as user rate limit-
ing and prioritizing short requests, are often unfair and not
application-aware, and thus lack an ability to gracefully de-
grade QoS. These techniques can lead to poor user experi-
ences and inefficient resource utilization.

2.4 Analysis of Multi-SLA scheduling policies

A practical approach to mitigating the operational complex-
ities and resource inefficiencies of siloed infrastructure is
to co-schedule requests from various applications within a
unified cluster. In this section, we examine the effects of tradi-
tional scheduling policies from the literature on multi-tenant
scheduling and assess their performance for LLM inference
across three key dimensions: latency, SLO violations, and
the fairness of SLO violations. This analysis highlights the
necessity for a novel multi-tenant, SLO-aware scheduling
policy tailored for LLM inference.

Scheduling policies. We compare four different schedul-
ing policies from the literature for multi-tenant systems.
First-Come-First-Served (FCFS) represents the most basic
approach, processing requests in the order they arrive. More
advanced policies include Shortest Job First (SJF), which pri-
oritizes jobs with the shortest expected execution time, and
Shortest Remaining Prompt First (SRPF), which continuously
re-evaluates and preempts jobs to minimize overall waiting
time, based on the outstanding prompt tokens to be pro-
cessed. Finally, Earliest Deadline First (EDF) schedules jobs
based on their impending deadlines.

Figure 2 compares the multiple scheduling policies and
plots the (a) median and (b) p99 latency of requests in the
system, (c) percentage of requests that violated their SLO,
and (d) the number of long requests (requests with prompt
length in the 90th percentile of the dataset) that violated their
SLO. Despite their theoretical foundations, we observe that
these scheduling approaches fundamentally struggle when
applied to large language model (LLM) inference workloads.
QOSERVE exploits the unique computational characteristics
of LLMs — including variable input complexity, distinct pre-
fill and decode phases, and the predictability of the prefill
phase to devise an SLO-aware scheduling policy which mini-
mizes latency and SLO violations while maximizing through-
put, as we show in our evaluations (figs. 10 and 11).
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Figure 3. Overview of QOSERVE

Summary. In this paper, we address these critical infrastruc-
ture challenges by introducing a QoS-aware serving frame-
work, QOSERVE. Our system transforms LLM inference serv-
ing from a static, siloed approach to a dynamic, application-
aware computational system. By introducing sophisticated
service level objective (SLO) management, QOSERVE enables
more efficient, responsive, and cost-effective infrastructure
for next-generation Al applications.

3 QOSERVE: Design and Implementation

QOSERVE is designed to efficiently manage concurrent LLM
inference requests with diverse QoS requirements, while
maximizing resource utilization across the shared infras-
tructure. We address the limitations outlined earlier by dy-
namically adapting scheduling decisions based on real-time
system state and QoS targets of the in-flight requests.

3.1 Overview

The architecture of QOSERVE is shown in Figure 3. A request
in QOSERVE can be in one of three queues — 1) prefill queue,
2) decode queue, or 3) relegated queue. (1) When a request
enters the system, it is put into the prefill queue. In each iter-
ation, QOSERVE constructs a batch consisting of all requests
in the decode queue and a prefill-chunk from a request in the
prefill queue. The prefill selector uses hybrid prioritization
to select the prefill request for the current batch. (2) The
violation checker module validates that the chosen request
has not already violated (or will not violate) its QoS targets
in the current iteration. 3) If it does, it is eagerly moved into
the relegated queue and a different prefill request is chosen.
The relegated requests are serviced opportunistically during
periods of lower system load, ensuring eventual completion
without permanent rejection; while enabling graceful degra-
dation under overload conditions. (4) A lightweight predictor
is then used to estimate the latency of the batch to make
sure that the QoS targets are not violated, while maximizing
the chunk size for efficiency. (5) A mixed batch of prefill
and decode tokens is constructed using the chosen prefill
chunk and the requests in the decode queue, which is then
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(® dispatched to the execution engine on the GPU for pro-
cessing. (7) Once the prefill portion of a request is completed,
it is moved to the decode queue, and subsequent iterations
continue.

3.2 QoS Classes and Deadlines

QOSERVE defines two QoS classes: interactive and non in-
teractive. Interactive requests use two SLOs — TTFT (time
to first token) and TBT (token-by-token latency), which en-
sure immediate responsiveness and consistent pacing. Non-
interactive requests have a single TTLT (total latency) target,
focused on overall completion. Although, we define two
QoS classes, the application owner is free to specify their
custom SLO targets within the class, allowing for flexibility
and customization to specific application needs as shown
in Table 3.

The deadline for each request is determined based on
its QoS class. For the interactive QoS class, following the
approach in [2], the deadline for the first token is defined as:

Dfirst = tarrival + SLOTTFT, (1)
while subsequent tokens’ deadlines are calculated using:
Dy = tarrival + SLOrTPT + (N — 1) - SLO7TBY, (2)

where n is the token position. For non-interactive requests a
deadline is set only for the full completion of the request as:

Diotal = tarrival + SLOTTLT (3)

Once we have defined the deadlines for each request,
QOSERVE scheduling aims to minimize deadline violations
while maximizing throughput.

3.3 Dynamic Chunking

State-of-the-art LLM inference serving frameworks [4, 11]
serve requests using chunked-prefills, where each iteration
processes a fixed number of tokens (called chunk size), which
includes both prefill and decode tokens from different re-
quests using fused prefill-decode MLP to improve the com-
pute efficiency of memory-bound decode phase [5]. However,
this involves a fundamental trade-off between throughput
and latency - a larger chunk results in better throughput

ASPLOS °26, March 22-26, 2026, Pittsburgh, PA, USA

but increases the TBT of the decodes in the batch. This is
illustrated in Figure 4.

A naive approach for co-scheduling jobs of different QoS
classes with deadlines on TTFT, TBT, and TTLT would be
to use the smallest chunk size necessary to meet the latency
constraint of the strictest QoS class. However, this results in
low throughput and high cost for all service classes.

QoSERVE employs dynamic chunking to opportunistically
maximize the chunk size for the prefill request by exploiting
any slack in the deadlines of the requests being currently
serviced. For each request in the decode queue, we define
slack as the difference between the deadline for the next
token (Eq. 2) and current time. Using this slack and charac-
teristics of the requests in decode phase, we calculate the
chunk size which maximizes throughput under the given
latency budget. We elaborate on the design in Section 3.6.1

3.4 QOSERVE Scheduling

While dynamic chunking allows us to choose an optimal
chunk size for a prefill request, we also need to decide which
request from the prefill queue should be processed in the
current scheduling iteration.

Hybrid Prioritization. As shown in Figure 2, existing sched-
uling policies struggle with LLM workloads at higher loads.
For example, EDF which prioritizes requests with earlier
deadline has very low deadline violation rates (Figure 2(c))
at low loads, but the violation rates spike to almost 100%
once the load exceeds a certain threshold. On the other hand,
policies which prioritize short work requests — SRPF and
SJF — handle higher loads much better but are worse than
EDF at lower loads. Further, SRPF and SJF achieve this at the
expense of unfairly penalizing long jobs (Figure 2(d)) with-
out any regard to the request priorities. To handle varying
load conditions which are common in production services
and maintain fairness across requests, our first key insight
is a hybrid prioritization scheme which interpolates between
SRPF and EDF. This allows us to get EDF characteristics
at low loads, and leverage SRPF semantics under overload
conditions while maintaining fairness.

To implement this scheduling, QOSERVE smoothly inter-
polates between EDF and SRPF to compute the priority of
a request. For interactive requests, the priority is computed
by taking a linear combination of the TTFT deadline (this
incorporates EDF semantics) and the estimated time taken
which will be needed to process the remaining prefills (this
incorporates SRPF semantics) of the request as:

P =t . +SLOyrpr +ax* Prefilll,,. )

Note that we only consider the TTFT deadline, as TBT dead-

lines are maintained by our dynamic chunking scheme. For
non-interactive requests, the priority is computed as

Pi = tcilrrival +SLO§"TLT toax (Prefilli

rem

+ Decode!,,.), (5)



ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA  Kanishk Goel, Jayashree Mohan, Nipun Kwatra, Ravi Shreyas Anupindi, & Ramachandran Ramjee

—e— No relegation
w103

—— Eager relegation SLO

5%

ow/'o%/ o'%/M

3.0 3.5 4.0
Load (QPS)

Median latency
=
o
e
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quests enormously helps in maintaining the quality of service
for the median request in the system, which otherwise grows
exponentially due to a cascade of violations.

where Decode, ., indicates the time to compute all the de-
code tokens. Since decode length is unknown in LLM in-
ference, this introduces a challenge in modeling the prior-
ity of non-interactive requests. We address this with a sim-
ple insight — for non-interactive jobs, the TTLT deadline
is typically much greater than the actual processing time.
Therefore, given an application, we can use historic informa-
tion on the decode tokens generated by that application and
over-approximate it by two standard deviations. We show in
(§4.4.1) that this simple prediction sufficiently captures the
priority of non-interactive jobs.

Eager Relegation. Our hybrid prioritization strikes a bal-
ance between minimizing deadline violations and fairness.
However, as shown in Figure 5, under overload conditions,
QOSERVE (or any scheduling policy) still cannot service all
incoming requests at the desired QoS SLOs. Our second
key insight is that by eagerly relegating a small fraction of
requests that we know will miss their deadlines, one can pro-
vide stable performance for the majority, enabling graceful
service degradation under overload conditions. The key idea
is simple — if a request has already violated its TTFT / TTLT
deadline, or is about to violate it in the current iteration, then
QOSERVE de-prioritizes this request into a relegated queue.
In multi-tenant deployments, we also use application hints
such as free vs paid tier to preferentially relegate low-priority
requests to ensure stability of service to the high priority
ones. Only when there are no more low-priority requests,
QOSERVE proactively relegates high-priority requests that
have violated their deadlines to prevent cascading deadline
violations. This enables graceful degradation of service even
under extreme load. As shown in Figure 5, by relegating just
5% of the requests, we can maintain latency SLOs even under
very high overload conditions.

Selective Preemption. Note that our hybrid prioritization
scheduling can preempt an in-flight request for which a few
prefill chunks have already been processed to instead service
a new request with strict QoS target (see eq 4). Preemption

Algorithm 1 Dynamic Batch Creation Algorithm

1: function CREATE_BATCH

2: selected_jobs «<— GET_ALL_DECODES
3: batch_decode_context «<— GET_DECODE_CONTEXT (selected_jobs)
4: num_decodes < selected_jobs
5: min_decode_slack < GET_MIN_SLACK (selected_jobs)
6: // Below invokes the predictor model to find dynamic chunk size
7: C « GET_PREFILL_BUDGET(num_decodes, batch_decode_context, min_decode_slack)
8: Jjob_queue «— PRIORITY_QUEUE(COMPARATOR)
9: prefill_token_count < 0
10: while prefill_token_count < C do
11: top_job < job_queue. TOP
12: if WILL_VIOLATE(top_job) then
13: UPDATE_RELEGATE_STATUS(top_job, true)
14: Jjob_queue.PUSH(top_job)
15: continue
16: else
17: curr_job_tokens «— min(C — prefill_token_count, REM_TOKENS(top))
18: prefill_token_count < prefill_token_count + curr_job_tokens
19: top_job.prefill tokens_taken < curr_job_tokens
20: selected_jobs. APPEND(top_job)
21: Jjob_queue.POP
22: end if

23: end while

24: PROCESS_BATCH((selected_jobs)

25: end function

26: function COMPARATOR(job1, job2)

27: if jobl.drop_status # job2.drop_status then

28: return jobl.drop_status < job2.drop_status

29: end if

30: priorityl « jobl.arrival_time+ jobl. TTFT_SLO+ o X jobl.rem_prefill tokens
31: priority2 « job2.arrival_time+ job2. TTFT_SLO+ o X job2.rem_prefill_tokens
32: return priorityl < priority2

33: end function

is a desirable capability as it avoids head-of-line blocking of
small interactive requests behind long batch requests. How-
ever, in LLM serving, the memory overhead of preemption
can be significant as the KV-cache of requests can be large.
To avoid this, QOSERVE uses selective preemption, where we
preempt a request to accommodate another with a higher
priority only if (1) the in-flight request is in the prefill queue
(i.e., requests in the decode queue are never preempted), and
(2) preempting that request for an iteration does not lead to
deadline violation. We do not preempt requests in the de-
code queue as TBT targets are typically strict (10s of ms), and
thus preempting them significantly increases the chances of
TBT violation. This also ensures that the KV-cache for each
request remains in the GPU for the shortest necessary dura-
tion, thereby minimizing memory pressure. The pseudocode
for hybrid batch creation and prioritization in QOSERVE is
presented in Algorithm 1.

3.5 An Illustrative Example

Figure 6 illustrates QOSERVE with an example of five requests
(A-E) across 3 QoS buckets. A is an interactive request while
others are non-interactive. State-of-the-art LLM schedulers
like vLLM [11] and Sarathi [4] will execute each iteration
using a fixed chunk size and process requests in arrival order
(FCFS). Our solution introduces two key improvements.
First, we prioritize requests based on their QoS targets
using our hybrid prioritization, which will prioritize request
Abefore D due to its earlier deadline. Second, we dynamically
adjust chunk sizes based on accumulated slack. For example,
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Figure 6. An illustration of how QOSERVE improves through-
put using dynamic chunking compared to SOTA scheduling.

after A’s prefill phase completes earlier than its deadline, it
accumulates significant slack before its next token is due. We
exploit this slack by dynamically increasing the chunk size,
adding more prefill tokens from requests B and D (which
have the earliest deadlines in the queue), thereby improving
throughput without violating any ongoing request deadlines.
When the interactive job A enters its decode phase, we
revert to the original smaller chunk size necessary to meet its
TBT, though we still exploit slack accumulated if decoding
completes faster than predicted. Once A completes and no
remaining requests impose strict TBT constraints, we again
increase chunk size to maximize throughput while respect-
ing the TTLT deadlines of ongoing requests. This approach
effectively leverages the deterministic execution character-
istics of LLMs to dynamically optimize chunk sizes during
runtime, balancing throughput and deadline requirements.

3.6 Implementation

We implemented QOSERVE by extending the Sarathi sched-
uler [4], which is built on top of the vLLM inference sys-
tem [11]. The implementation focuses on enhancing the
scheduler component while maintaining compatibility with
vLLM’s efficient tensor parallelism and Paged Attention mech-
anisms. We extended the vLLM API to associate each in-
ference request with its corresponding QoS requirements
(TTFT, TBT, and/or TTLT) and priority level during request
submission. The hybrid prioritization policy is implemented
using a priority queue that incorporates both deadline prox-
imity and estimated processing time, with the interpolation
factor « configurable as a deployment parameter. For non-
interactive requests, we maintain a running history of token
generation patterns per application to estimate the expected
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decode length. « is a configurable hyperparameter. For fixed-
QPS runs, we perform an offline sweep of « values from 0 to
10 and select the value that minimizes SLO violations. An «
of 8 ms/token provided the best trade-off, reducing violations
without affecting tail latency. For variable-QPS, we employ
load-adaptive tuning. At low loads, we set @ = 1 ms/token
as Figure 14 shows that smaller values achieve comparable
violation rates and median latency while limiting tail latency.
This optimizes tail latency at low loads while minimizing
deadline violations at high loads. To support multi-tenant
deployments, we add a priority field to each request that
enables relegation decisions based on application hints such
as free-tier versus premium users.

3.6.1 Dynamic chunking batch predictor. Given the
statistics of the requests in a batch, e.g. number of requests,
context lengths, etc., the dynamic chunk size predictor de-
termines the optimal chunk size that maximizes throughput
while adhering to the latency constraints. For this, we train
a lightweight random forest model which predicts the execu-
tion time of a given batch. The model is trained on latency
profiles of MLP and attention operation collected at varying
chunk sizes, batch sizes as well as context lengths. To collect
this data, we use a lightweight harness exposed by an infer-
ence simulator Vidur [3], and collect profiles for each model,
hardware, and parallelism configuration of interest.

The prediction runs on the CPU and incurs a negligible
overhead with < 10% error margin on chunk size prediction.
We tune the model to err on the side of under-predicting
chunk size. While this may scarcely miss on fully maximizing
throughput; it ensures no inadvertent latency increase due to
over-prediction. Modifying the chunk size at runtime incurs
no additional cost — simply requiring pulling appropriate
number of tokens from the pending prefill queue. (§4.1.4)
illustrates how dynamic chunking adapts to varying slack
under load and dynamically tunes chunk size per iteration.

4 Evaluation

Our evaluation aims to answer the following questions.

1. What is the improvement due to QOSERVE in the serv-
ing capacity while meeting specified QoS SLOs at a
cluster scale (§4.1.1), with PD (Prefill-Decode) coloca-
tion (§4.1.2), and with PD disaggregation (§4.1.3), and
the impact of dynamic chunking (§4.1.4)?

2. What is the impact of QOSERVE on request latencies
and deadline violations under high load conditions (§4.2)?

3. How does QOSERVE react to transient load spikes (§4.3)?

4. What is the independent impact of the different opti-
mizations and design choices used in QOSERVE, impact
of varying workload compositions and SLOs (§4.4)?

5. How does QOSERVE empirically and qualitatively com-
pare to other relevant concurrent work (§4.5)?
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Model GPU (TP) Attention

Llama3-8B | A100 - 80GB (TP1) | GQA
Qwen-7B | A100 - 80GB (TP2) | MHA
Llama3-70B | H100 - 80GB (TP4) GQA

Table 1. Model configurations and hardware setup

Prompt tokens | Decode tokens
p50 po0 p50 po0
ShareGPT | 1730 5696 415 834

Azure Conv | 928 3830 41 342
Azure Code | 1930 6251 8 43

Dataset

Table 2. Datasets used in evaluation

Models and Hardware. We evaluate QOSERVE across three
different models, tensor parallel (TP) degrees, two hardware
platforms, and attention mechanisms to demonstrate the
diversity and generality of our results across models and
hardware configurations, as shown in Table 1. Our evaluation
spans three different datasets with varying ratios of prefill
to decode tokens, as shown in Table 2.

Workloads and QoS Tiers. For workloads, we use popular
open-source datasets such as ShareGPT [19] and coding and
conversation production traces from multiple LLM inference
services in Azure [15]. Request arrival times are generated
using a Poisson distribution, [4, 13], while maintaining the
prefill and decode token counts of the respective traces. To
emulate different applications, we divide the dataset into
three equal parts, and assign each part with a different ap-
plication type and the corresponding QoS bucket and SLO.
We consider three QoS buckets: one interactive and two
non-interactive, as shown in Table 3.

We selected the SLO targets to be representative of three
key production workloads at a large cloud provider (<re-
tracted>): Q1: O(ms) - interactive responses (e.g. chat ap-
plications), Q2: O (minutes) — user-facing but relaxed SLO
(e.g. video summaries), and Q3: O (hours) - batch processing
(e.g. email insights). For interactive applications, the SLOs
track the TTFT and TBT latency metrics, while for non-
interactive applications we only track TTLT. In the first set
of experiments, we assume an equal mix of requests from
these three representative application categories (33% each).
Furthermore, to demonstrate resilience to the choice of work-
load split and SLOs, we also evaluate QOSERVE with varying
workload composition and SLO targets in (§4.4.2).

Baselines. We built QOSERVE on top of Sarathi-Serve [4],
which itself extends vLLM [11]. Our evaluation includes sev-
eral baseline configurations: (1) Sarathi-Silo (SOTA), the
State-of-the-art siloed deployment where each QoS bucket
is assigned an independent GPU cluster with each replica
running a Sarathi scheduler (2) Sarathi-FCFS, which co-
schedules requests across all QoS Tiers on a unified cluster

QoS | Request Interactive Non-interactive
bucket | ratio | TTFT(s) TBT(ms) TTLT(s)

Q1 | 33.33% 6 50 -

Q2 33.33% - - 600

Q3 33.33% - - 1800

Table 3. QoS classes and workload composition

using Sarathi with FCFS policy, and (3) Sarathi-EDF, which
again co-schedules but also imparts deadline-awareness dur-
ing scheduling by using the Earliest Deadline First policy on
Sarathi. The strictest QoS bucket with 50ms TBT deadline
uses a chunk size of 256, while the other two QoS classes
use a large chunk size of 2K to maximize throughput in the
siloed baselines. For shared cluster baselines, the chunk size
chosen is 256, to meet the TBT targets of the strictest tier.

By default, all experiments are run with PD colocation
with chunking enabled, except in (§4.1.3) where the experi-
ments are run with PD disaggregation. We evaluate differ-
ent scheduling policies within the same serving framework
(VLLM) to isolate algorithmic improvements from imple-
mentation artifacts. This approach ensures fair comparison
by eliminating performance variations due to different sys-
tem implementations. Since Sarathi demonstrates superior
throughput over vanilla vLLM through chunking, we do not
present the non-chunked vLLM baseline.

Setup. We first evaluate QOSERVE under uniform load condi-
tions to identify the impact of our design on goodput (§4.1)
as well as on latency and SLO violations (§4.2). Next, we
evaluate how QOSERVE performs under transient spikes in
load (§4.3), and finally we perform detailed ablation of our
individual techniques (§4.4).

4.1 Capacity and Goodput at Regular Load

4.1.1 Cluster-scale evaluation. We evaluate QOSERVE
over a cluster of 16 A100 GPUs (4 nodes, 4 GPUs per node)
with pairwise NVLink and 80GB memory per GPU. Table 4
presents the results for serving the Az-Code trace at 35 QPS
across 360K requests (equally split among 3 QoS classes
as shown in Table 3) using Llama3-8B. The silo baseline
allocates dedicated replicas based on capacity estimation
from per-replica throughput for each QoS tier: 7 replicas
for Q1 and 3 each for Q2 and Q3, totaling 13 GPUs. In con-
trast, QOSERVE meets the latency SLOs at each tier, with no
deadline violations using 10 mixed-workload replicas. Both
deployments use round-robin load balancing across replicas.

QOSERVE achieves comparable p99 latencies and no dead-
line violations with 23% fewer GPUs. To validate QOSERVE’s
resource efficiency, we reduce the silo allocation to match
QOoSERVE’s GPU count (6,2,2 replicas), which causes viola-
tions to surge to 60.4%. An alternate 4,3,3 allocation faces
approximately 95% Q1 violations with p99 latency of 385.36s.
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Figure 7. Maximum goodput per replica in a shared cluster across models, hardware, and datasets
Scheme Total p99 Latency in s (SLO) Overall — Qoserve p—
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Figure 9. Chunk sizes in QOSERVE using dynamic chunking
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Figure 8. Goodput with PD disaggregation

QOSERVE achieves better resource efficiency than siloed
deployments by maximizing throughput while meeting QoS
targets through dynamic chunking. Since the lengths of re-
quests (prompt length as well as number of decode tokens)
can vary over time, even at uniform QPS the compute load
on the serving system varies. QOSERVE benefits from dynam-
ically increasing chunk size by exploiting any deadline slack
of the non-interactive QoS requests as well as any slack of in-
teractive requests during lower load. On the other hand, the
siloed replicas serving the strict QoS requests are limited by
the small chunk sizes required to meet the TBT constraints
resulting in lower efficiency.

4.1.2 Goodput under PD colocation. We measure the
system’s goodput, which we define as the number of requests
served per replica per second while meeting the latency tar-
gets (p99). We allow at most 1% of total requests to violate
their deadlines. For these single replica experiments, we com-
pare against the Sarathi-FCFS and Sarathi-EDF baselines.
Figure 7 shows the goodput while serving requests over a 4-
hour period across three different datasets and models listed
in Table 1. As shown, QOSERVE achieves 1.5x to 2.4x higher

4.1.3 Goodput under PD disaggregation. QOSERVE’s
techniques of hybrid prioritization and eager relegation are
directly applicable to the prefill nodes of disaggregated serv-
ing. We evaluate QOSERVE on the PD disaggregated mode of
vLLM [1] using the Az-conv trace with identical QoS classes
from Table 3. We set a large chunk size of 8K as default
as we are not constrained by TBT in the prefill nodes for
disaggregated serving. As done in the colocated case, we
use the Sarathi-FCFS and Sarathi-EDF baselines for these
experiments and report the maximum goodput supported
per (prefill) replica. In all deployments, the number of decode
replicas and their SLO attainment is identical as they work
with a maximum batch size that meets the strictest TBT. Ef-
ficiently supporting different TBT SLOs in the decode nodes
is left to future work. As shown in Figure 8, across models,
hardware and parallelism, QOSERVE achieves better prefill
goodput (QPS) compared to the baselines. This directly trans-
lates to fewer required prefill nodes in disaggregated serving.
The throughput gains are lower compared to PD colocation
because we are unable to exploit dynamic chunking here,
because of the large baseline chunk size.

4.14 Dynamic chunking. Figure 9 shows the effective-
ness of dynamic chunking by analyzing chunk sizes and
batch latency relative to accumulated slack for Az-conv trace
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Figure 10. Latency of requests across the three QoS buckets as we vary load in the system

on Llama3-8B for 200 consecutive iterations. As shown, when
high slack accumulates across requests, QOSERVE uses an in-
creased chunk size until slack is exhausted. Dynamic chunk-
ing achieves 20% throughput improvement by exploiting
latency slack to optimize chunk sizes. We set the chunk size
maximizing the throughput using the performance profile in
Figure 4. As throughput saturates around 2500, we choose
that as the maximum chunk size. Note that 2500 chunk size
delivers 2x higher throughput compared to the default 256
chunk size mandated by tight TBT constraints.

4.2 Latency and SLO violations under Overload

We comprehensively evaluate system behavior at various
loads by comparing QOSERVE against baselines on a shared
cluster. We measure three key parameters: (1) median and
p95 latency (TTFT, TBT, and TTLT) across all requests, (2)
percentage of deadline violations across all SLO buckets, and
(3) deadline violations in each SLO bucket and violations
categorized by request length to assess scheduling fairness.
For this evaluation, we add another baseline, Sarathi-SRPF
which prioritizes jobs with the lowest pending prefill tokens.

Latency. Figure 10 shows the median and p95 latency across
all requests for Llama3-8B on the Azure-Code dataset. As
load exceeds the optimal operating point, queuing delay
increases because the system cannot process requests as fast
as they arrive. This causes a sharp increase in latency for
all requests. While this happens in every system, the point
where scheduling delay becomes unreasonably large defines
the maximum serviceable load. We omit TBT plots since
across all schemes, the average TBT violations was less than
0.1%, by virtue of carefully chosen chunk size.

There are several takeaways from these graphs.

o The State-of-the-art Sarathi-FCFS scheduler ignores in-
dividual request deadlines. As load increases, SLOs for
jobs with stricter QoS requirements are violated. At
heavy overloads, head-of-line blocking causes denial of
service to all requests.

e Adding deadline awareness through mechanisms like
EDF (Sarathi-EDF) better maintains QoS than Sarathi-
FCFS, but doesn’t scale well with load because we must
sacrifice throughput to meet SLOs for the strictest QoS
tier. It also degenerates at high loads similar to FCFS
due to head-of-line blocking.

e Schedulers that prioritize short jobs like Sarathi-SRPF
maintain good median latency at the expense of tail
latency. The p95 latency, however, grows unboundedly
because SRPF ignores longer requests. Since it is not
deadline-aware it prioritizes minimizing latency across
requests of all SLO-buckets, which could have otherwise
been used to prioritize those with stringent SLOs.

e QOSERVE handles up to 40% higher load while meet-
ing tail latency SLOs in each QoS bucket compared
to baselines. Notably, QOSERVE’s hybrid prioritization
smoothly balances between deadline prioritization (EDF)
and length prioritization (SRPF), achieving low median
latency without drastically increasing tail latency.

Deadline violations. For the same workload, Figure 11(a)
shows the overall percentage of SLO violations across all
requests as load varies. QOSERVE maintains zero deadline vi-
olations for up to 30% higher load than the next-best scheme,
Sarathi-EDF. Even at extreme overloads, QOSERVE has the
fewest deadline violations compared to all other shared-
cluster scheduling policies. These lower deadline violation
result in the higher goodput we saw in (§4.1.2).
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Figure 11. Deadline violations across all jobs, split by request length and QoS buckets

Finally, we analyze whether deadline violations are dis-
tributed fairly across request lengths and different QoS buck-
ets. Figure 11(b,c) plot the deadline violations by request
length (combined across all QoS buckets). We classify re-
quests as long if their prompt token count is greater than
or equal to the 90th percentile, and short otherwise. Our
analysis reveals three key patterns:

o Sarathi-FCFS and Sarathi-EDF violate SLOs for short
and long requests at similar rates. These schedulers do
not differentiate between request lengths. At high loads
when head-of-line blocking occurs, all requests violate
SLOs due to a cascade effect.

o Sarathi-SRPF shows a very high ratio of violations for
long versus short jobs, and ignores all long requests be-
yond certain load. Even at very low loads (<2 QPS),
when other schedulers have no deadline violations,
Sarathi-SRPF unnecessarily deprioritizes long requests
and misses their deadlines. This approach is not only
unfair but also counterproductive in real-world settings
where request importance doesn’t correlate with length.

e QOSERVE achieves balance between these extremes. It
does not deprioritize long requests under normal condi-
tions. During overload, it adjusts the o parameter (§3) to
incorporate SRPF-like behavior. This approach allows
QOSERVE to maintain fairness at reasonable loads while
gracefully degrading service as load increases.

Figure 11d-f plots the split of deadline violations across
the three constituent QoS buckets. We observe that Sarathi-
FCFS first violates requests in the strictest QoS bucket and
then continues to the less strict buckets. This happens be-
cause Sarathi-FCFS is deadline unaware, and due to head-
of-line blocking, it violates requests with the shortest dead-
lines when they get blocked by other requests. Sarathi-EDF
equally misses deadlines across all tiers because it treats all

requests equally with respect to their individual deadlines.
Sarathi-SRPF shows a pattern similar to Sarathi-FCFS, vio-
lating the strictest tier first due to being deadline unaware.
However, it has fewer overall violations by ignoring long
jobs, which frees up capacity for the larger proportion of
short requests. On the contrary, QOSERVE combines the best
of these strategies via hybrid prioritization, and achieves
fewer overall violations than even Sarathi-SRPF.

4.3 Transient Overload Scenario

We evaluate whether QOSERVE can gracefully degrade ser-
vice during transient overload by running an end-to-end
evaluation with diurnal load patterns. Load in the system
varies dynamically between low (QPS:2.0) and high (QPS:5)
points every 15 minutes over a total of 4 hours as shown in
Figure 12(a). This workload pattern models realistic diurnal
request rate variations typically observed over a weekly cycle
in production, compressed into a shorter evaluation time-
frame to facilitate the 4-hour experimental duration. This
pattern incorporates a 2.5x peak-to-trough ratio consistent
with request rate variability documented in LLM production
traces [9]. To evaluate QoSERVE handling of requests with
multiple priorities, we mark a random set of 20% of requests
in each QoS bucket as low priority, based on application hints.
The remaining 80% of requests in each bucket are marked as
high priority or Important.

Figure 12(b) shows the overall deadline violations ob-
served in the system. While the baselines collapse under
this load and violate deadlines for all requests, QOSERVE
misses deadlines for no important tasks and only 8.75% of
all requests. This improvement comes from leveraging appli-
cation hints to perform eager relegation. Additionally, the
throughput gains from dynamic chunking and hybrid priori-
tization help QOSERVE sustain higher loads.
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Scheme

Violations (%)

Overall | Important | QoS 1 | QoS 2 | QoS 3
Sarathi-FCFS | 81.88 81.96 97.13 | 89.14 | 59.57
Sarathi-EDF 84.12 84.09 79.3 83.27 | 89.77
QOSERVE 8.64 0 16.03 9.98 0
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Figure 12. Workload with varying QPS and overall deadline violations across different schemes
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Figure 13. Rolling average of p99 latency of all high-priority requests during a dynamic workload with varying request rates

Figure 13 plots the rolling p99 latency (over 60s windows)
of all requests in the system for the three QoS buckets. We
see that the baseline Sarathi-FCFS fails to sustain perfor-
mance during the first request burst. It cannot recover from
the queueing delay and enters request denial mode beyond
that point for all classes. While Sarathi-EDF sustains the first
burst and absorbs some of it until the second peak, it suc-
cumbs to queueing delay beyond this point. QOSERVE handles
both high and low load periods, meeting the latency SLOs for
a large majority of requests (all important requests and 92%
of all requests). For relegated requests in QOSERVE, the max-
imum latency observed was no more than 3900s, while the
maximum latency in baselines reached 5582s. Across all re-
quests, irrespective of whether they are relegated, QOSERVE
has better tail latency compared to the baselines. These re-
sults demonstrate graceful service degradation—proactively
dropping a few requests during overload to maintain service
levels for the majority, thereby eliminating cascading effects.
In fact, the p50 rolling average for QOSERVE remains much
more uniform and resilient to load changes.

4.4 Ablation Studies

4.4.1 Impact of various techniques. We now examine
how each component of our system design affects through-
put and SLO violations. For this analysis, we tag all requests
as important and evaluate three design elements—dynamic
chunking, hybrid prioritization, and eager relegation—starting
with the Sarathi-EDF baseline. Table 5 shows that dynamic
chunking provides a 20% boost in throughput, while eager

Optimal Load | High load (QPS=6)

Config QPS % gain | % viol % impr.
Sarathi-EDF 2.75 - 100 -
QoSERVE (DC) 3.3 20% 74 26%
QoSERVE (DC+ER) 3.6 9% 26 68%
QoSERVE (DC+ER+HP) | 3.65 1.4% 16 32%

Table 5. Impact of QOSERVE’s optimizations. (DC:Dynamic
Chunking, ER:Eager Relegation, HP:Hybrid Prioritization)

relegation adds another 9%. The impact of hybrid prioriti-
zation appears marginal in the optimal load scenario but
becomes significant at high load.

To further illustrate the impact of hybrid prioritization,
Figure 14 plots the median latency and percentage of dead-
line violations as we vary system load across three different
values of a, our hybrid prioritization parameter. As « in-
creases, the system increasingly deprioritizes longer requests.
This significantly reduces median latency for all requests
but comes at the cost of violating deadlines for most long
requests. This demonstrates the importance of tuning this
parameter as load increases to strike a balance between low
median latency and fair service for long requests.

4.4.2 Varying workload composition and SLOs. We
now evaluate QOSERVE’s robustness across diverse SLO con-
figurations and workload compositions.

Workload mix. We evaluate QOSERVE under skewed work-
load distributions: 70-15-15 (interactive dominant) and 15-15-
70 (batch-dominant) at 4.5 QPS. Table 6 presents p99 laten-
cies and SLO violations. While baseline systems fail to meet
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Figure 14. Varying the hybrid prioritization parameter

Median latency (in s) S
Scheme 01(6) Q2(600)y Q3(1800) % Violations
Composition: 70-15-15
Sarathi-FCFS | 4835.2 4843.6 4825.7 100%
Sarathi-EDF 33543 42147 6033.6 98%
QOSERVE 0.77 425.31 1625.15 5%
Composition: 15-15-70
Sarathi-FCFS | 4835.2 4843.6 4825.7 100%
Sarathi-EDF | 1800.75 2621.5 4436.4 82.78%
QOSERVE 0.779 4.7 1027.5 0.5%

Table 6. Latency across workload compositions.

SLO targets under these loads, QOSERVE maintains SLO com-
pliance across all tiers through a combination of strategic
relegation (0.5-5% of requests), deadline-aware scheduling,
and increased throughput via dynamic chunking.

Varying SLO. We modify the SLO targets to (3s, 50ms), (6s,
50ms), and (1000s) for Q1, Q2, and Q3 respectively, with equal
request distribution. This configuration increases the propor-
tion of interactive workloads compared to previous experi-
ments. On the Azure-Conv trace with Llama3-8B, QOSERVE
achieves 5 QPS goodput while Sarathi-EDF sustains only 3.7
QPS — a 26% performance degradation.

4.5 Comparison to concurrent work

Although the concurrent work discussed in Section 5 are not
open-source, we provide best-effort comparisons with three
representative approaches.

4.5.1 Medha - Adaptive chunking. Medha [6] uses adap-
tive chunking that starts with large chunks and progressively
shrinks to maintain consistent TBT as attention overhead
increases in later chunked iterations. We implement the dy-
namic chunking policy from Medha within our framework.
Figure 15a compares chunk size choices between QOSERVE
and Medha across 1000 consecutive batches using a synthetic
trace (10K prefill tokens, 500 decode tokens per request) on
Llama3-8B since chunking overhead is negligible for the me-
dian prompt lengths (<5K tokens) in our evaluation datasets.

While Medha progressively reduces chunk sizes within
a prefill, it is unaware of slack accumulated by the current
batch of requests. In contrast, QOSERVE opportunistically in-
creases chunk sizes when slack becomes available, as demon-
strated in Figure 15a. For fairness, we evaluate QOSERVE with
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Figure 15. Comparison with concurrent work

only dynamic chunking under FCFS scheduling, disabling all
other techniques. Compared to Medha’s adaptive chunking
(also under FCFS), this isolated setup yields a 23% goodput
improvement (0.32 vs. 0.26 QPS), showing the gains arise
solely from the chunking strategy.

4.5.2 PolyServe. PolyServe [22] is a multi-SLO schedul-
ing system designed to serve interactive workloads with
diverse TBT requirements. It partitions requests into sepa-
rate deployments based on TBT SLO categories, employing
dedicated resources and autoscaling for each deployment. It
uses a similar adaptive chunking policy as Medha. We do not
implement autoscaling and request migration in PolyServe
or QOSERVE to compare only the core techniques.

We compare PolyServe against QOSERVE’s collocated ap-
proach using PolyServe’s evaluation methodology. Our ex-
perimental setup comprises two interactive job categories:
Q1:50ms TBT and Q2: 100ms TBT, both maintaining 6s TTFT
SLOs. We determine the A100 GPU requirements for serving
Llama3-8B on Azure Conversation traces at 50 QPS total load,
varying the distribution of requests between QoS classes. We
calculate GPU requirements by determining maximum per-
replica goodput for each QoS class, then computing total
resources needed for specific load configurations.

Figure 15b presents the comparative capacity require-
ments as we vary request composition across the two TBT
classes for PolyServe and QoSERVE. Compared to PolyServe,
QOSERVE always has lower resource requirement due to colo-
cation of requests which allows exploiting prefill slack and
improving throughput using dynamic chunking.

4.5.3 SLOs-Serve. We provide a qualitative comparison
with SLOs-Serve [8], which employs periodic dynamic pro-
gramming to optimize scheduling across all active and queued
requests. Despite sharing similar multi-QoS objectives with
QOSERVE, SLOs-Serve’s O (N Ny,,M) scheduling complexity
(where N represents running requests, Ny.,, denotes queued
requests, and M indicates KV blocks) exhibits poor scalabil-
ity. In comparison, QOSERVE requires O (log(Npey)) time to
choose the prefill tokens to schedule from the priority queue.
In their paper, SLOs-Serve is evaluated with MHA models
(which limits the KV-cache size) with constrained batch sizes
on 40GB GPUs, where the scheduling overheads would be
lower; whereas QOSERVE efficiently scales to larger model
configurations and distributed deployments.
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5 Related work

Model-level optimization. Approaches like AlpaServe [12]
focus on optimal model parallelism strategies to meet vary-
ing SLO requirements across different models. Learned Best-
Effort LLM Serving [10] employs deep reinforcement learn-
ing to route requests across multiple models for accuracy-
latency optimization. Unlike these approaches that optimize
across models, deployments, or sacrifice accuracy, QOSERVE
focuses on exploiting temporal slack within a single model
to maximize throughput without compromising quality.

Adaptive chunking. Systems such as Medha [6] and Pol-
yServe [22] introduce a variant of dynamic chunking that
progressively reduces chunk size to maintain consistent TBT
as attention overhead increases in the later chunked itera-
tions of Sarathi [4]. Unlike QOSERVE, they assume fixed TBT
targets and don’t exploit SLO slack across requests.

Workload collocation. ConServe [14] advocates collocated
serving by prioritizing interactive jobs and adding offline
tasks when latency permits, using reactive preemption dur-
ing load surges. However, its binary interactive-offline clas-
sification is inadequate for multi-QoS scenarios where all
requests have definite SLO requirements. SageServe [9] pro-
poses a simple reactive heuristic, adding batch jobs when
interactive replica load drops below 60%. Without hybrid pri-
oritization and slack awareness, SageServe’s SLO-agnostic
approach would exhibit high SLO violations similar to naive
collocation. Unlike these, QOSERVE employs fine-grained
proactive scheduling across multiple QoS classes.

Multi-SLO scheduling. SLOs-Serve [8], uses periodic dy-
namic programming over all running and queued requests.
While conceptually similar to QOSERVE’s multi-QoS goals,
SLOs-Serve’s scheduling complexity makes it significantly
less scalable than QOSERVE for large batch sizes and multi-
replica deployments. PolyServe [22] advocates binning re-
quests with different TBT constraints into independent de-
ployments with appropriate autoscaling. Unlike QOSERVE’s
unified serving approach, PolyServe’s deployment isolation
prevents cross-QoS slack exploitation and requires separate
resource provisioning for each SLO class.Tempo [20] adopts
an SLO-aware approach that leverages conservative output
length prediction and online refinement to maximize service
gain, in contrast to QOSERVE’s slack-aware dynamic chunk-
ing and hybrid prioritization for efficient QoS co-scheduling.

6 Conclusion

We address the challenge of co-scheduling multiple QoS
classes in LLM inference serving, and graceful service degra-
dation during overload. We achieve this using three key
techniques: (1) dynamic chunking to opportunistically maxi-
mize throughput while meeting latency targets, (2) hybrid
prioritization to strike a balance between maintaining low
median latency and fairness in serving longer requests, and

(3) eager relegation to enable graceful service degradation.
Our evaluation shows that QOSERVE significantly improves
QoS attainment compared to State-of-the-art LLM serving
systems, particularly under high load. As LLMs power more
applications with varying performance needs, we believe
that techniques supporting multiple QoS classes will become
essential for production deployments.
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A Artifact Appendix
A.1 Abstract

QOSERVE is a QoS-driven LLM inference serving framework
that enables efficient co-scheduling of requests across multi-
ple QoS classes on shared infrastructure. This artifact con-
tains the source code, datasets, and scripts to reproduce key
results from our paper (Figures 7, 8, 10, 11). QOSERVE is
built on Sarathi-Serve [4], extending vLLM [1] with deadline-
aware scheduling capabilities.

A.2 Artifact check-list (meta-information)

o Algorithm: Hybrid prioritization, dynamic chunking, eager
relegation for multi-SLO LLM serving

e Model: Llama3-8B [16], Llama3-70B [16], Qwen-7B [7]

e Data set: ShareGPT [19], Azure Conversation traces [15],
Azure Code traces [15]

e Run-time environment: Ubuntu 20.04+, CUDA 12.1, Python
3.10, PyTorch 2.3.0

e Hardware: 4xA100 80GB GPUs (preferred for Llama3-8B
and Qwen-7B experiments). Minimum: 2XA100 with pair-
wise NVLink for Qwen-7B (TP2). For Llama3-70B: 4xH100
80GB GPUs with NVLink (TP4). Tiny scripts available for
single A100 GPU.

e Metrics: TTFT, TBT, TTLT, goodput (QPS), deadline viola-
tions (%)

¢ Experiments: Maximum goodput per replica, latency and
deadline violations under varying load

e How much disk space required?: ~150 GB

e How much time to prepare workflow?: 20-60 minutes

e How much time to complete experiments?: ~61 hours
on 4xA100 (Figure 7: 13h, Figure 8: 8h, Figures 10-11: 40h)

e Publicly available?: Yes, on GitHub and Zenodo.

e Archived (DOI)?: Yes, DOI: 10.5281/zenodo.18218177

A.3 Description

A.3.1 How to access. The artifact is publicly available
on GitHub and archived on Zenodo with DOI: 10.5281/zen-
0do.18218177.

A.3.2 Hardware dependencies. The evaluation scripts
assume a 4xXA100 80GB node with NVLink. Qwen-7B re-
quires minimum 2xXA100 with pairwise NVLink (TP2). Llama3-
70B requires 4xH100 80GB GPUs with NVLink (TP4). For
resource-constrained environments, tiny scripts are provided
that run on a single A100 GPU with reduced execution times
while preserving core trends.

A.3.3 Software dependencies. Python 3.10, PyTorch 2.3.0,
CUDA 12.1, FlashInfer 0.1.1. See README for complete de-
pendency list and installation instructions.
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A.3.4 Data sets. ShareGPT [19] and Azure production
traces (Code, Conversation) [15]. Scripts automatically down-
load datasets from public Azure blob storage.

A.3.5 Models. Llama3-8B, Qwen-7B, Llama3-70B accessed
via Hugging Face (requires HF token with model access).

A.4 Installation

Refer to README for detailed installation instructions. Sum-
mary: create conda environment, install dependencies via
pip, download datasets, export HF _TOKEN, and configure GPU
clocks for reproducibility.

A.5 Experiment workflow
The artifact provides automated bash scripts for each figure:

e tester. sh: Quick validation run (~5 minutes)

e fig7.sh: Goodput with PD colocation (13 hours, Llama3-
8B TP1 only)

e fig7_tiny.sh: Goodput with PD colocation (8 hours,
single A100)

e fig8.sh: Goodput with PD disaggregation (8 hours,
Llama3-8B TP1 only)

e fig1@_11.sh: Latency and violations under load (40
hours)

e figl10_11_tiny.sh:Latency and violations under load
(11 hours, single A100)

Results are saved to benchmark_output/ (raw logs) and
paper_plots/ (plots and graphs).

A.6 Evaluation and expected results

Figure 7 (Goodput, PD colocation): QOSERVE achieves
1.5-2.4% higher goodput than Sarathi-FCFS and 20-40% over

Sarathi-EDF. Current artifact reproduces Llama3-8B TP1 on
Azure Code Trace.

Figure 8 (Goodput, PD disaggregation): QOSERVE shows
consistent goodput improvements across disaggregated serv-
ing. Current artifact reproduces Llama3-8B TP1 on Azure
Conv. Trace.

Figures 10-11 (Latency and violations): QOSERVE is
capable of handling significantly higher load while meeting
tail latency SLOs and reduces deadline violations by an or-
der of magnitude under overload. Note: artifact uses fewer
requests and coarser QPS sweep than paper for manageable
runtime; trends and relative performance remain consistent.
The sweep is done on Llama3-8B TP1 for the Azure Code
Trace.

A.7 Experiment customization
Key parameters can be modified in source files:

e QoS tiers: sequence.py (line 11)
e Hybrid prioritization a: sequence. py (line 79)
e Scheduling logic: deadline_scheduler.py
Refer to README for implementation details and cus-
tomization guide.

A.8 Notes

GPU clock locking (described in README) is essential for re-
producible measurements. The current artifact uses a smaller
number of requests for manageable runtime; the original pa-
per evaluated on significantly larger request volumes for
stronger statistical significance. This may lead to variations
in reproducing exact numerical results, though relative per-
formance trends and conclusions remain consistent.
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