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Implicits provide a powerful mechanism for term-based inference, where “obvious” arguments can be omitted

and inferred by the type checker. This can greatly reduce the programmer’s burden and improve the clarity of

expression. As such, many languages support a form of implicits in practice, such as type classes in Haskell or

Lean, or implicits in Scala. Unfortunately, many of these systems have become increasingly complex and often

require significant implementation effort.

In this paper we take a fresh look at the design space with an arguably simpler approach based on two

orthogonal features: syntactic implicit parameters and static overloading. Each of these features is limited in

scope and has a straightforward implementation. Taken together though, they are surprisingly expressive and

we believe they can cover many of the common usage scenarios of implicits in practice.

We formalize our system and provide various examples, and prove our elaboration is coherent. We also

give an inference algorithm and show it is sound and complete. Our system is fully implemented in the Koka

language, and we describe our experience with these features at scale, and discuss further extensions.

1 INTRODUCTION
Implicits provide a powerful mechanism for term-based inference, where “obvious” terms can be

omitted and inferred by the type checker. This can greatly reduce the programmers burden and

improve the clarity of expression. For example, without implicits, a programmer may have to write

show_list show_int [1] to show a list of integers, while a Haskell programmer instead can simply

write show [1], where the correct type class dictionary for showing lists of integers is provided

implicitly.

As such, many languages support a form of implicits in practice, such as type classes in Haskell

or Lean, implicits in Scala, or in systems like Rocq and Agda where the language can provide

obvious proof terms [Devriese and Piessens 2011; Odersky et al. 2017; Selsam et al. 2020; Sozeau

and Oury 2008; P. Wadler and Blott 1989]. However, the design of many such systems has become

increasingly complex and difficult to implement, and it is not always clear how the different

approaches in all these systems relate to each other.

In this paper we take a fresh look at the design space with an arguably simpler approach based on

two orthogonal features: syntactic implicit parameters and static overloading. Each of these features

is limited in scope and has a straightforward implementation. Taken together though, they are

surprisingly expressive and we believe they can cover many of the common usage scenarios of

implicits in practice. The first idea is to treat implicit parameters syntactically as a form of dynamic

binding:

Syntactic implicit parameters are parameter names that are supplied literally as arguments at the
call site.

For example, we can define a function with an implicit parameter base as:

fun show-int( x : int, ?base : int ) : string
if x < base

then show-digit(x)
else show-int(x / base) ++ show-digit(x % base)

This function takes an implicit parameter base, denoted by the question mark, which can be used

inside the function as any regular parameter (like x < base). When calling show-int though, we do
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not have to provide the ?base parameter explicitly and can leave it out: at each call site the name

base is syntactically used as the argument, and resolved in the scope of the call site. For example,

val base = 10 in show-int(42)

elaborates to

val base = 10 in show-int(42,base)

which evaluates to "42". We see this elaboration as well in the show-int function itself where

the expression show-int(x % base) elaborates to show-int(x%base,base) where it passes the implicit

parameter base again to the recursive call.

This view of implicit parameters as a form of dynamic binding (but with a static declaration!) is

quite straightforward and seems almost too simple to be of much use. However, it turns out to be

quite expressive in combination with static overloading. This brings us to the second idea, where

we define static overloading purely as a form of automatic qualification:

Static overloading elaborates plain names to fully qualified names based on the local type context.

The essence of this idea was first described by Leijen and Ye [2025] as an application of type

inference under a prefix. First, we allow functions to be declared with qualified names, for example:

fun int/show( x : int ) : string
show-int(x,10)

fun float/show( f : float64 ) : string
show-float(f)

(where int/ and float/ can be arbitrary “module” names). Of course, such qualified names already

occur naturally as well in most languages when different modules are imported that export the

same (unqualified) name. We now allow the programmer to write an unqualified show and have it

be resolved to either definition based on the local type context. For example show(1) is elaborated

to the fully qualified int/show(1) based on the (static) type of the argument. This is already quite

convenient in practice, and is again a simple mechanism that is straightforward to implement –

for example the C language implements this form of static overloading for many common math

operations. However, static overloading by itself is quite limited as it does not allow for abstraction.
For example, consider a show function for lists:

fun list/show( xs : list<a> ) : string
match xs

Cons(x,xx) -> show(x) ++ "::" ++ list/show(xx) // rejected
Nil -> "[]"

This is rejected since we cannot at this point statically resolve which show function is required for

the show(x) expression (as the type of the list elements is polymorphic). Here is where we can now

use our new syntactic implicit parameters to delay resolving which particular show to use:

fun list/show( xs : list<a>, ?show : a -> string ) : string
match xs

Cons(x,xx) -> show(x) ++ "::" ++ list/show(xx)
Nil -> "[]"

Just like a Haskell programmer, we can now write show([1]) to show a list of integers.

• Static overloading first elaborates the plain show to list/show([1]), based on the type list<int> of

the argument.

• Subsequently, the ?show implicit parameter is now supplied as list/show([1],show).

• Static overloading kicks in again and further disambiguates this (implicit) show to int/show (again

based on the local type context), which results in the final elaboration as list/show([1],int/show).

As an aside, in the recursive call in the list/show function, the implicit parameter is also supplied as

list/show(xx,show); this does not need further disambiguation though as it is already bound locally.
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Note also that an expression like show([]) is still rejected as the element type cannot be statically

determined (similar to unresolved overloading in Haskell). Here we either need to give an explicit

type signature, or provide the implicit parameter ourselves (as show([],int/show) for example).

As we could see, the resolving of syntactic overloads and syntactic implicit parameters is applied

recursively. For example, we can show lists of lists of integers as show([[1],[2]]), which elaborates

to list/show([[1],[2]], fn(xs) list/show(xs,int/show)) (where the implicit list/show argument is

automatically eta-expanded in order to supply its own implicit argument).

Even though syntactic implicits and static overloading by themselves are straightforward features,

this recursive interaction between them makes them surprisingly expressive. We believe that they

can handle many situations that are usually addressed using more elaborate language extensions.

Also, our new features both are source-to-source elaborations and a programmer can always use

unambiguous fully qualified names, or provide implicit parameters explicitly. As a pure elaboration,

there are no new semantic features (like an “instance”), or special “implicit scopes” etc. – it is all

just names, functions, and parameters. We make the following contributions:

• We formalize syntactic implicit parameters and static overloading precisely (Section 2). The type

rules are specified using inference under prefix [Leijen and Ye 2025] to give unambiguous type

contexts which are necessary for static overloading. Our rules go beyond the original example

of static overloading by Leijen and Ye [2025] in that we study in particular its interaction with

syntactic implicit parameters and how we maintain coherence and stability (Section 2.10).

• We show that even though our two ideas look innocent enough, together they make general

type checking undecidable where we can encode a Turing machine on the type level which is

executed by the type checker (Section 3). We give an improved set of “finite” rules that recover

decidablity at the price of giving up completeness. We show though that our new finite rules are

still sound with respect to our original system.

• We give an inference algorithm for the finite rules (Section 3.4) and show it is sound and complete.

By specifying the algorithm under an effect handler we can modularly optimize the algorithm to

not explore unnecessary branches in the search space.

• Our system is fully implemented in the Koka language [Leijen 2019 2021] and we discuss various

implementation aspects of using these features at scale (Section 4).

• We also discuss the extension to phantom implicits where the compiler can resolve special

implicit parameters in other ways than by name. For example ?kk-line:int may provide the line

number at the call site. Taking this further, we show how divergence constraints in the Koka

language [Leijen 2014] can be handled by phantom implicits instead (Section 4.3).

Proofs and appendices can be found in the supplementary material.

2 FORMALIZATION
We start with formalizing both syntactic implicits and static overloading within a single calculus.

2.1 Syntax
Figure 1 gives the syntax of our core calculus that has qualified names. A plain name is written

as x while a fully qualified name is written as z (or m for modules when needed). We use the hat
operator to unqualify a name. For example, if a qualified name z has the form x1/. . ./xn/x, then
ẑ = x. All bindings can be specified with a qualified name z, and we can write 𝜆foo/x . foo/x + 1

for example.

For simplicity, our calculus does not make implicit parameters first-class and we can only bind

them at let bindings. A let binding binds a term t which can start with a sequence of implicit

parameter bindings, followed by a regular expression e. For example,

let mod/plus = 𝜆?mod . 𝜆x . 𝜆y. (x + y) %mod
in (let mod = 8 in mod/plus 5 6)
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z,m ::= m/x (qualified name)

| x (plain name)

e ::= z (variable)

| e e (application)

| 𝜆z. e (function)

| let z = t in e (let binding)

t ::= 𝜆?z. t (implicit param)

| e (expression)

ˆm/x = x (unqualify)

x̂ = x

𝜏 ::= 𝛼 (type variable)

| 𝜏 → 𝜏 (function arrow)

| int | bool | . . . (type constants)

𝜌 ::= ?x:𝜏 → 𝜌 (implicit arrow)

| 𝜏 (mono type)

𝜎 ::= ∀𝛼.𝜎 | 𝜌 (type scheme))

Γ ::= z1 :𝜎1, . . ., zn :𝜎n (type env.)

Q ::= {𝛼1=𝜏1, . . ., 𝛼n=𝜏n} (prefix)

Fig. 1. Syntax of types and terms.

binds an implicit parameter mod (and evaluates to 3).

Expressions have a monomorphic type 𝜏 which are either type variables 𝛼 , or function types

𝜏1→𝜏2. We also use types like int or bool in examples. Let-bound values are assigned a polymorphic

type scheme 𝜎 . Since let-bound values can have implicit parameters, we extend the standard type

schemes with implicit parameter types 𝜌 . An implicit parameter type ?x:𝜏 → 𝜌 denotes a function

type that takes an implicit parameter x of type 𝜏 . The type of an implicit parameter binds stronger

than the function arrow, so ?x:𝜏 → 𝜏 should be read as (?x:𝜏) → 𝜏 . A type scheme is generally of

the form ∀𝛼. ?x1:𝜏1→ . . . ?xn:𝜏n→ 𝜏 and at every variable occurrence we fully instantiate the type

variables 𝛼 and supply all implicit parameters x1 to xn.

2.2 Type Inference under a Prefix
For the purpose of static overloading, we formulate our rules as type rules under a prefix Q [Leijen

and Ye 2025]. This allows us to specify deterministic type rules with only principal derivations.

For example, consider 𝜆x . show x – we should reject this as it is ambiguous which show function

to elaborate to. However, when using standard Hindley-Milner rules one is allowed to use more

specific types in derivations, and for example assume type int or bool for the parameter which makes

it well-typed. With type inference under a prefix we avoid this issue. Moreover, as shown by Leijen

and Ye [2025], specifying the type rules under a prefix also allows us to “read off” the inference

algorithm from the rules directly, while still being close to the clarity of standard Hindley-Milner

style type rules. We only briefly describe the essential details of prefixes and refer the interested

reader to the original work.

A prefix Q is essentially just a set of type variable bounds 𝛼=𝜏 . In general a prefix is a collection

of such bounds and can be inconsistent or have duplicate bindings, like {𝛼=𝛽→int, 𝛼=int→𝛾} or
{𝛼=bool, 𝛼=int}. We write 𝜃 ⊨Q if a substitution 𝜃 is a solution to Q that satisfies all constraints

(with ∀(𝛼=𝜏) ∈ Q. 𝜃𝛼 = 𝜃𝜏). If there exists any solution, we call Q consistent and write just ⊨Q.
It turns out for any consistent Q there is also a least (or best) solution which we call the

prefix solution written as ⟨Q⟩. We often write Q[𝜏] as a shorthand for applying the prefix so-

lution as ⟨Q⟩(𝜏). Finally, two prefixes are equivalent whenever their solution substitutions are

equivalent where Q1 ≡ Q2 ⇔ ⟨Q1⟩ ≡ ⟨Q2⟩. For example, we have we have {𝛼=𝛽→int, 𝛼=𝛾→𝛾} ≡
{𝛾=int, 𝛽=𝛾, 𝛼=𝛾→𝛾} ≡ {𝛽=int, 𝛾=int, 𝛼=int→int}. Similar to 𝛼-renaming, we can always substi-

tute equivalent prefixes in type derivations.
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Q
↓
out

⊢ 𝜏
↑
in

≈ 𝜏
↑
in

𝛼 ̸∈ ftv(𝜏)
{𝛼=𝜏} ⊢ 𝛼 ≈ 𝜏

eq-var

Q1 ⊢ 𝜏1 ≈ 𝜏3 Q2 ⊢ 𝜏2 ≈ 𝜏4
Q1,Q2 ⊢ 𝜏1→ 𝜏2 ≈ 𝜏3→ 𝜏4

eq-fun

∅ ⊢ 𝜏 ≈ 𝜏
eq-id

Q ⊢ 𝜏2 ≈ 𝜏1
Q ⊢ 𝜏1 ≈ 𝜏2

eq-refl

Fig. 2. Type equivalence.

2.3 Type Equivalence under a Prefix
A consistent union is written as Q1,Q2 and denotes the union Q1 ∪ Q2 where Q1 ∪ Q2 is solvable.

We use this in the conclusion of derivation rules to concisely denote that we can only derive

consistent prefixes. This helps us write nice declarative type rules while avoiding having to thread

a substitution linearly through each sub-derivation. We see this when defining type equivalence as

shown in Figure 2.

A rule Q ⊢ 𝜏1 ≈ 𝜏2 states that a type 𝜏1 is equal to a type 𝜏2 under a (result) prefix Q. In particular,

in the rule [eq-fun] we can easily compose the prefixes Q1 and Q2 from each sub derivation. These

definitions are sound and complete [Leijen and Ye 2024]:

Theorem 2.1. (Type equivalence under a prefix is sound)
If Q ⊢ 𝜏1 ≈ 𝜏2 then Q[𝜏1] = Q[𝜏2].

Theorem 2.2. (Type equivalence under prefix is complete)
If 𝜃𝜏1 = 𝜃𝜏2, then there exists a Q such that Q ⊢ 𝜏1 ≈ 𝜏2 and Q⊑𝜃 .
Soundness states that if we can derive that 𝜏1 and 𝜏2 are equivalent under a prefix Q, then the types

are syntactically equal under the prefix solution: Q[𝜏1] = Q[𝜏2]. Completeness shows that if there

exists any substitution 𝜃 that makes two types equal, then we can also derive that these types are

equivalent under a prefix Q, and that this prefix is also the “best” (most-general) solution: ⟨Q⟩ ⊑𝜃 .
The prefix Q gives us an elegant way to declaratively specify type rules where we are assured that

we can still implement this efficiently in a compiler using a linear substitution. In the case of the type

equivalence rules, this corresponds directly to the usual unification algorithm [Pierce [2002],§22.4.5].

2.4 Instantiation
For most of the type checking rules, we are using essentially the bidirectional inference rules under

a prefix as given by Leijen and Ye [2025]. For now, we look in particular at the checking rules for

resolving variables:

z :𝜎 ∈ Γ Q | Γ ⊢ 𝜎 ⊑ 𝜏 ⇝ e

Q | Γ ⊩ z ←: 𝜏 ⇝ z e
var-direct

Here the typing judgement Q | Γ ⊩ z ←: 𝜏 ⇝ z e states that a variable z can be checked (
←
: ) to have

type 𝜏 in a type environment Γ under the (result) prefix Q, and returning an elaborated expression

z e (where e is a list of potentially instantiated implicit parameters). In particular, we must have

z :𝜎 ∈ Γ, and we must be able to instantiate the type scheme 𝜎 to 𝜏 , written as Q | Γ ⊢ 𝜎 ⊑ 𝜏 ⇝ e .
Figure 3 shows the rules for type scheme instantiation. The rule [inst-mono] says that two

mono types need to be equivalent Q ⊢ 𝜏1 ≈ 𝜏2, i.e. they need to be unifiable under Q. The rule
[inst-qantify] is also standard and instantiates a quantifier using a fresh type variable 𝛼 .
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Q
↓
out

| Γ
↑
in

⊢ 𝜎
↑
in

⊑ 𝜏
↑
in

⇝ e
↓
out

Q1 | Γ ⊢ 𝜌 ⊑ 𝜏2 ⇝ e Q2 | Γ ⊩ x ←: Q1 [𝜏1] ⇝ e

Q1,Q2 | Γ ⊢ ?x:𝜏1→ 𝜌 ⊑ 𝜏2 ⇝ e e
inst-implicit

Q ⊢ 𝜏1 ≈ 𝜏2
Q | Γ ⊢ 𝜏1 ⊑ 𝜏2 ⇝ ·

inst-mono

Q | Γ ⊢ 𝜎 ⊑ 𝜏 ⇝ e fresh 𝛼

Q | Γ ⊢ ∀𝛼.𝜎 ⊑ 𝜏 ⇝ e
inst-qantify

Fig. 3. Type scheme instantiation.

Q
↓
out

| Γ
↑
in

⊩ z
↑
in

←
: 𝜏
↑
in

⇝ e
↓
out

z :𝜎 ∈ Γ Q | Γ ⊢ 𝜎 ⊑ 𝜏 ⇝ e

Q | Γ ⊩ z ←: 𝜏 ⇝ z e
var-direct

z ̸∈dom(Γ) m/z :𝜎 ∈ Γ Q | Γ ⊢ 𝜎 ⊑ 𝜏 ⇝ e

Q | Γ ⊩ z ←: 𝜏 ⇝m/z e
var-qalify

Fig. 4. Variable rules.

2.5 Syntactic Implicit Parameters
For standard Hindley-Milner type schemes the previous rules suffice, but in our case we added one

more rule: the [inst-implicit] rule instantiates an implicit parameter type ?x:𝜏1→ 𝜌 . In this case

we can use the type rule for variables (recursively) to resolve the literal name x as:

Q2 | Γ ⊩ x ←: Q1 [𝜏1] ⇝ e

This rule concisely captures the essence of syntactic implicit parameters: we resolve the name of an
implicit parameter ?x (recursively) in the local scope Γ.

Note that we first instantiate Q1 | Γ ⊢ 𝜌 ⊑ 𝜏2 which returns the prefix Q1, and then propagate this

information to check x under Q1 [𝜏1]. This is important as the regular parameters often give rise to

further type constraints that can help to resolve the implicit parameters unambiguously. We will

show some examples after discussing static overloading.

Furthermore, each resolved implicit parameter is elaborated as e and added to the list of implicit

parameters that need to be applied (as e e ). If we look at the example at the start of this section, we

can derive for the mod/plus expression:

mod/plus : ?mod:int→𝜏 ∈ Γ

∅ ⊢ 𝜏 ≈ 𝜏
∅ | Γ ⊢ 𝜏 ⊑𝜏 ⇝ ·

mod : int ∈ Γ
∅ ⊢ int ≈ int

∅ | Γ ⊢ int⊑ int ⇝ ·
∅ | Γ ⊩ mod ←: ∅[int] ⇝mod

∅ | Γ ⊢ ?mod:int→𝜏 ⊑ 𝜏 ⇝mod
∅ | Γ ⊩ mod/plus ←: 𝜏 ⇝mod/plus mod

where we use 𝜏 = int→int→int and Γ = {mod/plus : ?mod:int → 𝜏, mod : int}. As we can see, the

variable mod/plus is now elaborated to mod/plus mod where the implicit parameter is passed to

the mod/plus function.

2.6 Static Overloading asQualification
For our notion of static overloading we require another variable rule. In particular, when we have a

variable occurrence z that is not occurring exactly in the type environment Γ, we can attempt to

find a qualified name m/z that matches the required type. Figure 4 shows the new variable rule
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[var-qalify] (together with the earlier [var-direct] rule):

z ̸∈dom(Γ) m/z :𝜎 ∈ Γ Q | Γ ⊢ 𝜎 ⊑ 𝜏 ⇝ e

Q | Γ ⊩ z ←: 𝜏 ⇝m/z e
var-qalify

The first pre-condition states that z cannot occur directly in Γ, such that applying [var-direct]
or [var-qalify] is deterministic. We can satisfy the other conditions if there exists an m with

m/z :𝜎 in Γ such that we can instantiate 𝜎 to the required type 𝜏 , giving an elaborated expression

m/z e. Note that we keep the [inst-implicit] rule (in Figure 3) unchanged such that any implicit

parameters can now also be resolved to a qualified name with the [var-qalify] rule.
However, the rule as stated introduces incoherence: there might be multiple m with m/z in Γ that

can be instantiated to the required type, each elaborating to a different expression. Which one to

choose? In our case we eliminate incoherence by construction. The main type inference rule for

variables requires a unique elaboration:

∃!e. Q | Γ ⊩ z ←: 𝜏 ⇝ e

Q | Γ ⊢ z ←: 𝜏
var

where we use the notation ∃!e for “there exists a unique e”.
These rules concisely capture the essence of static overloading: we can elaborate a name z to a fully

qualified name m/z as long as the solution is unique for a given type context 𝜏 .

Although each of these rules is quite simple, the recursive nature of the rules [var-qalify] and
[inst-implicit] make it quite expressive. Note in particular that the elaboration from z to m/z may

include further implicit parameters e that were resolved recursively. Consider for example the

following type environment Γ:

int/show : int → string, list/show : ∀𝛼. ?show:(𝛼 → string) → list 𝛼 → string

When we type check the expression show [1, 2] we can proceed as:

{𝛼=int } ⊢ list 𝛼→string ≈ list int→string
{𝛼=int } | Γ ⊢ list 𝛼→string ⊑ list int→string ⇝ ·

int/show ∈ Γ ∅ | Γ ⊢ int→string ⊑ int→string ⇝ ·
∅ | Γ ⊩ show ←

: {𝛼=int } [𝛼→string] ⇝ int/show
{𝛼=int } | Γ ⊢ ?show:(𝛼→string) → list 𝛼 → string ⊑ list int→ string ⇝ int/show

list/show : ?show:(𝛼→string) → list 𝛼 → string ∈ Γ
{𝛼=int } | Γ ⊢ ∀𝛼. ?show:(𝛼→string) → list 𝛼 → string ⊑ list int→ string ⇝ int/show
∃! {𝛼=int } | Γ ⊩ show ←

: list int→ string ⇝ list/show int/show
{𝛼=int } | Γ ⊢ show ←

: list int→ string
var

where the elaborated list/show is passed its implicit parameter as int/show (which is itself elaborated

from ?show). Here we also see the importance of applying Q1 (as Q1 [𝜏1]) in the [inst-implicit] rule:
in the above derivation this propagates the element type 𝛼 as {𝛼=int}[𝛼→string] = int→string
to resolve the implicit ?show parameter recursively in the [var-qalify] rule – where it can now

be uniquely elaborated to int/show. As another example, the expression show [[1], [2]] from the

introduction is recursively elaborated to list/show (list/show int/show) [[1], [2]]. As an aside, we

do not need eta-expansion here since in our calculus all implicit parameters come first and thus we

can use partial applications instead.

2.7 Implicit Parameter Binding
Before we give the full type inference rules, we first consider the inference (

→
: ) rule for implicit

bindings:
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Q | Γ, z :𝛼 ⊢ t →: 𝜌 fresh 𝛼

Q | Γ ⊢ 𝜆?z.t →: ?ẑ :𝛼 → 𝜌
implicit

Just like a regular lambda binding, the name z is added to the environment Γ and is in scope when

checking the body t. Following the rules for type inference under a prefix, we assign an abstract

type 𝛼 to z which can be bound in the result prefix Q (if so required).

Even though we can bind an implicit parameter with a qualified name z, we still always use a
unqualified plain name ẑ in the type: at each call site we always look for the unqualified name. This

is important when using multiple implicit parameters of the same name. Consider for example a

show function for tuples:

let tuple/show = 𝜆?fst/show. 𝜆?snd/show. 𝜆x . fst/show (fst x) ++ ”, ” ++ snd/show (snd x)
in show (1, True)
where tuple/show has type∀𝛼𝛽. ?show:(𝛼 → string) → ?show:(𝛽 → string) → (𝛼, 𝛽) → string. Here
we use qualified implicit parameters to distinguish showing each component of the tuple in the

body, while at a call site we still resolve each one individually as a plain show.
The show function for tuples nicely illustrates how static overloading and implicit parameters

can really help in practice: consider an expression like show [( [1], True)] which is automatically

elaborated to list/show (tuple/show (list/show int/show) bool/show) [( [1], True)] – significantly

reducing the programmer’s burden.

2.8 Full Type Rules
Figure 5 gives the full type rules under a prefix. These are based mostly on the rules given by Leijen

and Ye [2025] and we refer to that work for in-depth discussion on the design. For our purposes,

the variable and instantiation rules are new, and we added the [implicit] rule. For clarity, the rules
are stated without rewriting to an elaborated expression, but sometimes we make this explicit. In

particular, the full [var] rule would be:

∃!e. Q | Γ ⊩ z ←: 𝜏 ⇝ e

Q | Γ ⊢ z ←: 𝜏 ⇝ e
var

where it elaborates z to e. For all other rules the elaboration is trivial as only the [var] rule qualifies
names and adds implicit parameters – all other expressions just propagate the elaboration of their

components in the obvious way. For example, the full rule for [fun] with elaboration is:

Q | Γ, z :𝜏1 ⊢ e ←: 𝜏2 ⇝ e′

Q | Γ ⊢ 𝜆z.e ←: 𝜏1→ 𝜏2 ⇝ 𝜆z.e′
fun

An interesting aspect is that almost all rules are checking rules (
←
: ) with just three exceptions

for [inf], [gen], and [implicit] which are inference rules (
→
: ). In the [let] rule, the type of the

binding x must be inferred and we use [gen] to infer a most general type, which uses in turn [inf]
and [implicit] to infer a mono type. The [inf] rule infers a type by switching to checking if the

expression can be typed with a fresh monotype 𝛼 .

The [app-arg] rule types applications where first the function expression is checked as 𝛼→𝜏 , and

then the argument is checked where we propagate the discovered type information as Q1 [𝛼]. This
order does not always work though as often we apply an overloaded variable and we need to first

check the argument expression to discover enough type information to disambiguate the variable.

Consider for example show [1]. This is where the [app-var] rule comes in. This rule is always

preferred over [app-arg] when it can apply, and it matches syntactically over variable applications

z e1 . . . en.
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Q
↓
out

| Γ
↑
in

⊢ e
↑
in

←
: 𝜏
↑
in

, Q
↓
out

| Γ
↑
in

⊢ e
↑
in

→
: 𝜏
↓
out

, Q
↓
out

| Γ
↑
in

⊢ t
↑
in

→
: 𝜌
↓
out

, Q
↓
out

| Γ
↑
in

⊢gen t
↑
in

→
: 𝜎
↓
out

with ⊨Q

We use
←
: 𝜏 for checking type 𝜏, and →: 𝜏 for infering type 𝜏 .

∃!e. Q | Γ ⊩ z ←: 𝜏 ⇝ e

Q | Γ ⊢ z ←: 𝜏
var

Q | Γ, z :𝜏1 ⊢ e ←: 𝜏2
Q | Γ ⊢ 𝜆z.e ←: 𝜏1→ 𝜏2

fun

Q | Γ ⊢ e ←: 𝛼 fresh 𝛼

Q | Γ ⊢ e →: 𝛼
inf

Q1 | Γ ⊢ e ←: 𝜏1 Q2 ⊢ 𝜏1 ≈ 𝜏2
Q1,Q2 | Γ ⊢ (e :𝜏1) ←: 𝜏2

ann

Q1 | Γ ⊢ 𝜆z.e ←: 𝛼1→𝛼2 Q2 ⊢ 𝛼1→𝛼2 ≈ 𝛼 fresh 𝛼1, 𝛼2

Q1,Q2 | Γ ⊢ 𝜆z.e ←: 𝛼
ifun

Q | Γ, z :𝛼 ⊢ t →: 𝜌 fresh 𝛼

Q | Γ ⊢ 𝜆?z.t →: ?ẑ :𝛼 → 𝜌
implicit

Q1 | Γ ⊢gen t →: 𝜎 Q2 | Γ, z :𝜎 ⊢ e ←: 𝜏

Q1,Q2 | Γ ⊢ let z = t in e ←: 𝜏
let

Q0 | Γ ⊢ t →: 𝜌 (Q, 𝜎) = gen(Q0, Γ, 𝜌)
Q | Γ ⊢gen t →: 𝜎

gen

Q1 | Γ ⊢ e1 ←: 𝛼 → 𝜏 Q2 | Γ ⊢ e2 ←: Q1 [𝛼] fresh 𝛼

Q1,Q2 | Γ ⊢ e1 e2 ←: 𝜏
app-arg

least i with 0 ⩽ i ⩽ n fresh 𝛼 i+1, . . ., 𝛼n
Q1 | Γ ⊢ e1 →: 𝜏1 . . . Qi | Γ ⊢ ei →: 𝜏 i Q = Q1, . . . ,Qi
Q0 | Γ ⊢ z ←: Q[𝜏1] → . . .→ Q[𝜏 i] → 𝛼 i+1→ . . .→ 𝛼n→ 𝜏

Qi+1 | Γ ⊢ ei+1 ←: Q0 [𝛼 i+1] . . . Qn | Γ ⊢ en ←: Q0 [𝛼n]
Q0,Q1, . . .,Qn | Γ ⊢ z e1 . . . ei . . . en ←: 𝜏

app-var

gen : (Q, Γ, 𝜎) → (Q, 𝜎)
gen(Q · 𝛼=𝜏, Γ, 𝜌) = gen(Q, Γ, [𝛼 :=𝜏]𝜌) if 𝛼 ̸∈ ftv(Q, Γ)
gen(Q, Γ, 𝜎) = gen(Q, Γ, ∀𝛼.𝜎) if 𝛼 ̸∈ ftv(Q, Γ) ∧ 𝛼 ∈ ftv(𝜎)
gen(Q, Γ, 𝜎) = (Q, 𝜎) if (dom(Q) ∪ ftv(𝜎)) ⊆ ftv(Γ)

Fig. 5. Syntax-directed bidirectional type checking rules for static overloading with syntactic implicit param-

eters. We always prefer [app-var] over [app-argc] when applicable.

The [app-var] rule looks a bit intimidating but essentially it just tries to infer the least amount of

arguments i such that we can disambiguate z, and then propagates the remaining argument types

into the remaining argument expressions. This strategy is straightforward to implement: first try

to disambiguate z (without any inference of the arguments) and keep inferring one argument at a

time until z can be disambiguated, and eventually use checking rules for the remaining arguments.

Even though the rule has the drawback of a left-to-right bias, it seems to work well in practice with

the Koka language (but as remarked by Leijen and Ye [2025] further refinements are possible).

These type rules are all fully determined by the syntax (and the shape of the propagated type

in [fun]/[ifun]). Moreover, the rules are carefully constructed such that the (result) prefix Q only

contains constraints induced by the structure of the program and types: at all leaf nodes in the

derivation Q is empty, except for [eq-var]. As a consequence, any well-typed program has only a
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single possible derivation:

Theorem 2.3. (Principal type derivations)
For any derivations Q | Γ ⊢gen e →: 𝜎 ⇝ e1 and Q′ | Γ ⊢gen e →: 𝜎 ′ ⇝ e2 , we have Q = Q′, 𝜎 = 𝜎 ′,
and e1 = e2.

See the proof in Appendix B.3 of the supplement. This theorem is important as it also implies that

the elaboration is deterministic with coherent semantics.

2.9 Scope Based Disambiguation
The current rules do not take the scope of a qualified name into account. Sometimes that can be

inconvenient as we would like to be able to override definitions in an outer scope. For example,

fun secret-list()
fun myint/show(i:int) = "*"
show([1,2])

where we would like to elaborate to list/show([1,2],myint/show). However, with the current rules

this example would be rejected as both int/show and myint/show match. In such cases though, one

might expect instead to prefer the definition that originated from an inner scope.

We can formalize this by changing the [var] rule to instead prefer a minimal solution instead

of unique solution. Suppose we annotate every variable z with its scope depth i as zi. The global
scope depth is 0 and increments inside every let bound definition. We write e ≼ e′ if an elaborated

expression e is either equal to e′, or resolved to an inner scope relative to e′. We define this as:

zi e1 . . . en ≼ z′j e′
1
. . . e′k = i > j ∨ (z = z′ ∧ e1 ≼ e′

1
∧ . . . ∧ e′n ≼ e′n)

(where we note that if z = z′ then n = k for elaborated expressions). Let’s write the condition on

the current [var] as P (Q, e) = Q | Γ ⊩ z ←: 𝜏 ⇝ e . We can then then rephrase [var] as:

∃!e. P (Q, e) ∧ (∀Q′e′. P (Q′, e′) ⇒ e ≼ e′)
Q | Γ ⊢ z ←: 𝜏

var-scope

Our Koka implementation uses this rule instead of [var] to prioritize qualified definitions in an

inner scope.

2.10 Coherence and Stability
Schrijvers et al. [2019] present the Cochis calculus of coherent implicits. In this paper they argue

that systems that support implicit programming should be coherent and stable.
Coherence is defined as a valid program always having exactly one meaning. Our system is

coherent: this follows from the [var] rule as it requires a unique elaboration in combination with

Theorem 2.3 which guarantees unique derivations. As an example of coherence, Schrijvers et al
present a classic example from Haskell as show (read ”3”). Such expressions are rejected in Haskell

as the type class resolution is ambigious. For example, we could use instances for Int or Bool and
many others to resolve the read. Similarly, assuming appropiate qualified read definitions, our

system would reject this since the type context cannot resolve read unambiguously. Unlike Haskell

though, we can disambiguate the example explicitly without needing a type signature, for example

as show (int/read ”3”). Since overloading in our system is just elaboration to fully qualified names

we can always disambiguate manually in our system without needing extra type annotations.

Schrijvers et al. [2019] also argue that implicit type systems should be stable, where instantiation
of type variables does not affect resolution. In essence, this means that using an overloaded variable

at a more specific type does not change the semantics. This is not always the case for systems that

would disambiguate based on a most specific type for example. We can show stability in our system

formally over the variable resolution rules:

10



Theorem 2.4. (Stability)
If Q1 | Γ ⊢ z ←: 𝜏 ⇝ e with ⊨ (𝜃,Q1), then we also have Q2 | 𝜃Γ ⊢ z ←: 𝜃𝜏 ⇝ e (with Q1⊑ (𝜃,Q2)).
See the proof in Appendix B.4 of the supplement. However, in the Cochis system the notion of

stability is stronger than this. They show the following example in Haskell where overlapping

instances are allowed:

class Trans 𝛼 where trans : : 𝛼→𝛼

instance Trans 𝛼 where trans x = x
instance Trans Int where trans x = x + 1
with the definition

bad : : ∀𝛼. 𝛼→𝛼

bad x = trans x
Due to the type signature, the type class can be resolved unambiguously to the generic one. However,

that also means that bad 1 evaluates to 1, while trans 1 evaluates to 2, and it is argued this breaks

equational reasoning. We do not necessarily agree with this: as we saw before, a type annotation

is essential to the Haskell semantics (as it does not have a dynamic untyped semantics), and we

cannot just leave it out and replace bad with trans directly. In our system there is a similar situation

where we can only do equational reasoning on fully qualified identifiers. Suppose we define:

generic/trans x = x and int/trans x = x + 1
then the expression:

bad = 𝜆x . trans x

would be rejected as it is ambigious. We need to either qualify the trans variable, as for example:

generic/bad = 𝜆x . generic/trans x or int/bad = 𝜆x . int/trans x

or propagate trans explicitly as an implicit parameter:

bad = 𝜆?trans. 𝜆x . trans x

In the last case, bad 1 indeed equals trans 1 (as it gets elaborated to bad int/trans 1).
But what about the original example in Cochis with the polymorphic type signature:

bad : ∀𝛼. 𝛼→𝛼 = 𝜆x . trans x

In this case, we can argue there are two acceptable solutions. The first design (I) is that trans should
be resolved to generic/trans since the type of the argument is an abstract 𝛼 and thus only the

generic/trans can match. The other argument (II), as made in Cochis, is that this example should be

rejected as the instantiation of ∀𝛼. 𝛼→𝛼 with int would make this example ambiguous again (i.e. it

is not stable under type application).

Cochis uses a separate stable predicate to check for this form of ambiguity, but it turns out that

we can modularly describe either design in our system as two variants of the type scheme checking

rule. First we extend the syntax to allow type scheme annotations for 𝜎 (with ftv(𝜎) ⊆ ftv(Γ)) as
let z :𝜎 = t in e:

Q1 | Γ ⊢ t ←: 𝜎 Q2 | Γ, z :𝜎 ⊢ e ←: 𝜏

Q1,Q2 | Γ ⊢ let z :𝜎 = t in e ←: 𝜏
let-ann

For checking mono-types, we already have the [ann] rule. For 𝜌 types, we extend this now to check

implicit parameters:

ẑ = x Q | Γ, z :𝜏 ⊢ t ←: 𝜌

Q | Γ ⊢ 𝜆?z.t ←: ?x:𝜏→𝜌
ann-implicit
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This leaves us with checking polymorphic quantifiers ∀𝛼 . Usually, such checking rules are expressed
algorithmically by replacing the polymorphic type variables with fresh type constants c (also called
skolem constants [Peyton Jones et al. 2007]):

Q1 | Γ ⊢ t ←: [𝛼 :=c]𝜌 (Q2, ()) = gen(Q1, Γ, ()) c ̸∈ Q2 fresh c

Q2 | Γ ⊢ t ←: ∀𝛼.𝜌
ann-skolem

The condition c ̸∈ Q2 ensures that the fresh type constants do not escape the scope of their binding.

We need to use gen here to remove any unused constraints mentioning c (which can occur due to

[inst-qantify]). Consider for example:

id :∀𝛼.𝛼→𝛼 ∈ Γ
{𝛼=c} | Γ ⊢ 𝛼→𝛼 ≈ c→c fresh 𝛼

{𝛼=c} | Γ ⊢ ∀𝛼.𝛼→𝛼 ⊑ c→c ⇝ ·
∃!id . {𝛼=c} | Γ ⊩ id ←: c→c ⇝ id

{𝛼=c} | Γ ⊢ id ←: c→c (∅, _) = gen({𝛼=c}, Γ, ()) c ̸∈ ∅
∅ | Γ ⊢ id ←: ∀𝛼.𝛼→𝛼

var

var

This follows design (I) where our example gets resolved to generic/trans as the integer alternative
cannot match with the abstract skolem constant (i.e. ⊬ c ≈ int). This is the rule that is used in the

Koka implementation.

However, we can also implement design (II) by not using skolem constants in the first place, and

instead checking afterwards whether a type variable was indeed used polymorphically [Leijen 2008]:

Q1 | Γ, 𝛼 ⊢ t ←: 𝜌 (Q2,∀𝛼.𝜌) = gen(Q1, Γ, 𝜌) fresh 𝛼

Q2 | Γ ⊢ t ←: ∀𝛼.𝜌
ann-scheme

Here, we instantiate the polymorphic type as regular fresh type variables, but check afterwards

that these did not unify with any type, nor escaped the scope through any other type constraints.

To prevent generalizing early over the 𝛼 binders, we extend Γ to include type variable bindings as

well as Γ, 𝛼 (which can be seen as a shorthand for a sequence of anonymous bindings as Γ, _ :𝛼).
Interestingly, for standard Hindley-Milner either approach is valid and it makes no difference. In

our case though, by keeping 𝛼 as regular type variables, higher up in the derivation there can now

be multiple matches for overloads, and we may no longer satisfy the unique ∃!e condition in the

[var] rule. In particular, for the trans example, both generic/trans and int/trans now match (since

{𝛼 :=int} ⊢ 𝛼 ≈ int), and the example is rejected due to ambiguity – corresponding to the second

design (as advocated by Cochis).

In Cochis, the stability property is shown by translating from the core calculus into System-F

and showing that static reduction of type application preserves typing. For our case this stategy

does not quite work since once we elaborate to fully qualified names we already have an untyped

dynamic semantics. We can show stability more directly though over the [ann-scheme] rule:
Theorem 2.5. (Polymorphic Stability)
If Q1 | Γ ⊢ t ←: ∀𝛼.𝜌 ⇝ e (using [ann-scheme]), we also have Q2 | Γ ⊢ t ←: [𝛼 :=𝜏]𝜌 ⇝ e (for any 𝜏

with ftv(𝜏) ⊆ ftv(Γ)).
See Appendix B.4 of the supplement for the proof.

2.11 Definition Stability
There is another form of stability that is quite important in practice, which we call definition

stability. We call a system definition stable if the semantics of an existing function does not change
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silently when adding a new definition. Consider for example the following Haskell program:

class Trans 𝛼 where trans : 𝛼→𝛼

instance Trans 𝛼 where trans x = x
foo = trans 1
where foo = 1. However, suppose we enable overlapping instances and add a more specific definition

(maybe in an imported module):

instance Trans Int where trans i = i + 1
In this case, the trans is resolved now to the most specific instance and foo is now 2 (and thus

Haskell with overlapping instances is not definition stable). Dually, Scala prefers the most general

instance for implicits and is also not definition stable. In our system, adding either definition always

results in an ambiguity error (and is therefore definition stable). Even with the extension to scope

baced disambiguation (Section 2.9) our system is still definition stable as any outer definition is

never preferred to an inner one.

3 TYPE INFERENCE
We essentially extended the standard type rules with just two new rules for implicit parameter instan-

tiation ([inst-implicit]) and variable overloading ([var-qalify]).We saw that even though each rule

is simple, their recursive nature makes the rules quite expressive. Perhaps even too expressive since
the potential recursion between these rules can easily lead to infinite derivations! Consider for exam-

ple a function foo that requires itself as an implicit parameter, as foo : ?foo:(int → int) → int → int.
This is a problem for type inference as trying to derive an application like foo 1 would lead to

infinite recursion.

3.1 Undecidability of Type Checking
As it is, general type checking for our current rules turns out to be undecidable! In particular,

we can show it is possible to encode a Turing machine on the type level, where type checking

becomes equivalent to showing termination of the encoded Turing machine. See Appendix A of

the supplement. for an example of encoding of a 3-state busy-beaver Turing machine [Rado 1962]

in Koka. In particular, we can create types for the symbols 0 and 1, and the tape of the machine as:

type sym0 type cons<a,b> // tape with head a and tail b
type sym1 type inf // infinite tape of zeros

Furthermore, we can create machine states and a full Turing machine configuration as:

type state-a type state-b type state-c
abstract type config<s,l,r> = Start // the machine config: <state, left tape, right tape>
val start : config<state-a,inf,inf> = Start // starting machine configuration with all zeros

We can then encode the machine state transitions in the types. For example, for the 3-state busy-

beaver, if we are in state A with the head being 0, we write 1 to the head, shift the tape to the right,

and continue in state B:

fun ab/transition( st : config<state-a,cons<x,l>,cons<sym0,r>>,
?transition : (config<state-b,l,cons<x,cons<sym1,r>>>) -> () ) : () = ()

We write a overloaded function for each transition, as well as a halting rule (in state C):

fun cend/transition( st : config<state-c,l,cons<sym1,r>> ) : () = ()

See the full example in Appendix A of the supplement where we also show how can expand the inf

tape automatically to cons<sym0,inf> when so required. We can then start the machine as transition

(start), where static overloading and implicit parameters elaborate the plain transition to a full

sequence of all state transitions – for the 3-state busy-beaver machine this elaborates to 14 state

transitions.
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Q
↓
out

| Γ
↑
in

⊩n
↑
in

z
↑
in

←
: 𝜏
↑
in

⇝ e
↓
out

Q
↓
out

| Γ
↑
in

⊢n
↑
in

𝜎
↑
in

⊑ 𝜏
↑
in

⇝ e
↓
out

∅ | Γ ⊩0 z ←: 𝜏 ⇝⊥
var-cut

z :𝜎 ∈ Γ Q | Γ ⊢n 𝜎 ⊑ 𝜏 ⇝ e

Q | Γ ⊩n+1 z ←: 𝜏 ⇝ z e
var-directk

z ̸∈dom(Γ) m/z :𝜎 ∈ Γ Q | Γ ⊢n 𝜎 ⊑ 𝜏 ⇝ e

Q | Γ ⊩n+1 z ←: 𝜏 ⇝m/z e
var-qalifyk

(∃!e. Q | Γ ⊩K z ←: 𝜏 ⇝ e ) ⊥ ̸∈ e
Q | Γ ⊢ z ←: 𝜏

var-k

Fig. 6. Type rules with finite derivations (up to depth K). Instantiation passes n unchanged.

3.2 Recovering Decidability
In order to make the system decidable we need to impose some decreasing measure on the deriva-

tions to ensure termination of the type checking algorithm. One way to do this is to simply limit

the depth of the derivation tree ending in a [var] to be of at most K deep for some fixed K.

Figure 6 gives a new set of rules for variable derivations (and instantiation) as Q | Γ ⊩n z ←: 𝜏
where we pass a decreasing bound n ∈ N. Each application of [var-directk] or [var-qalifyk] de-
creases n (while n is passed unchanged through instantiation). Both [var-directk] or [var-qalifyk]
can now only be applied for n > 0. In the case n = 0, the [var-cut] rule applies which always elab-

orates to an “infinite” expression ⊥. The new [var-k] rule is now extended to always reject any

solutions that contain ⊥ expressions.

These rules are clearly terminating since n strictly decreases. As such they are incomplete with

respect to the original rules since some derivations are now rejected as too deep. We do have

soundness though: any valid derivation using [var-k] is also valid in the original rules:

Theorem 3.6. (Soundness of the Finite Rules)
If Q | Γ ⊢ z ←: 𝜏 ⇝e with [var-k], then also Q | Γ ⊢ z ←: 𝜏 ⇝e with [var].
See the proof in Appendix B.2 of the supplement. It turns out that the soundness property is a bit

subtle. In particular, in an earlier design we left out the rule [var-cut] as it seems we can just not

have any valid derivation that requires n = 0. This would be unsound with respect to the original

rules though!

Currently, any potential infinite derivation has a solution containing ⊥ using [var-cut]. As such,
it might be that the ∃!e condition in the [var-k] rule is now not satisfied as valid finite solutions

compete with such “infinite” solutions (which is also why the ⊥ ̸∈ e condition is outside the scope

of the uniqueness condition). If we leave out the [var-cut] rule though, there would be no valid

derivation instead for such “infinite” ones, and in that case a particular finite solution may suddenly

be unique and accepted. In such case though, the original rules may still find a finite derivation (of

depth > K) for our “infinite” one and reject it (as it becomes ambigious). Although we are the first

to formalize this, this issue with soundness was also remarked by White et al. [2015].

3.3 Maintaining History
Of course, our formalization based on a fixed depth K of [var-directk] or [var-qalifyk] applica-
tions is clear but perhaps also a bit naive in practice. However, we can see that in principle any
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decreasing measure would suffice to limit the depth of the derivation tree.

As our approach is name based, we observe that for any infinite recursion to happen, it must be

that we try to resolve the same qualified name more than once. Instead of a fixed K, we can instead

pass a history H of each name m/z :𝜏 in [var-qalifyk] (and z :𝜏 in [var-directk]). One way to

ensure termination is to simply reject any derivation that leads to a repeated name z in the history.

That would be too restrictive though as it would reject for example show [[1]] (where list/show is

resolved twice).

A better way is to only allow a derivation for z ←: 𝜏 to proceed if for the last z :𝜏 ′ appearing in
the history, we have that 𝜏 is “smaller” than 𝜏 ′. We can define smaller here for example as the count

of constructors in the type. This allows our earlier show [[1]] to be accepted again.

In the Koka implementation, we refine this a bit further where we require for z ←: 𝜏 that there
are either fewer than N entries for z in the history, and otherwise that the 𝜏 is smaller than any

one of the last N entries z :𝜏 ′ in the history (where N = 4 in our case). This allows for some limited

recursion where the size of the type stays can the same (or be larger) for some iterations. For

example, our implementation can now accept the 3-state busy beaver problem we discussed earlier

(but of course, still not arbitrary Turing machines).

3.4 Implementing Type Inference
As remarked by Leijen and Ye [2025], making the type rules syntax directed and under a prefix,

we can essentially “read off” the inference algorithm. This make the formalism particularly useful

not only for users to have a precise specification, but also for compiler implementors to ensure it

is implemented accordingly. As shown by Leijen and Ye [2025], we can represent valid prefixes

in a canonical form as a regular substitution, and implement unification and composition of two

prefixes as unify(𝜏1, 𝜏2) : Q and compose(Q1,Q2) : Q (see Appendix C of the supplement). These

call an operation fail() of an effect handler [Leijen 2021] if no unification exists or when the

union of the two prefixes does not have a valid solution. We can now directly implement the

Q | Γ ⊢n 𝜎 ⊑ 𝜏 ⇝ e rules for instantiation as:

inst : (Γ,N, 𝜏, 𝜏) → (Q, e)
inst (Γ, n, 𝜏1, 𝜏2) = (unify(𝜏1, 𝜏2), ·)
inst (Γ, n,∀𝛼.𝜎, 𝜏) = inst (Γ, n, 𝜎 [𝛼 :=fresh()], 𝜏)
inst (Γ, n, ?x:𝜏1→𝜌, 𝜏2) = val (Q1, e) = inst (Γ, n, 𝜌, 𝜏2); (Q2, e) = resolve(Γ, n, x,Q[𝜏1])

in (compose(Q1,Q2), e e)
Here we assume an another operation fresh to generate fresh type variables. Each definition cor-

responds immediately to the instantiation rules [inst-mono], [inst-qantify], and [inst-implicit].
That leaves the resolve function to implement the Q | Γ ⊩n z ←: 𝜏 ⇝ e variable rules:
resolve : (Γ,N, z, 𝜏) → (Q, e)
resolve(Γ, 0, z, 𝜏) = infinite()
resolve(Γ, n, z, 𝜏) | z :𝜎 ∈ Γ = val (Q, e) = inst (Γ, n−1, 𝜎, 𝜏) in (Q, z e)
resolve(Γ, n, z, 𝜏) = val (m/z, 𝜎) = forallq(Γ, z); (Q, e) = inst (Γ, n−1, 𝜎, 𝜏) in (Q,m/z e)
Again, each definition corresponds to the variable rules [var-cut], [var-directk], and [var-qalifyk].
However, we see two new operations here: infinite and forallq. The call to infinite() returns a bot-
tom expression as (∅,⊥), but forallq(Γ, z) is special as it should return a list of all m/z :𝜎 ∈ Γ. Here
is where we can use an effect handler to neatly express this in a modular way while keeping the

implementations of inst and resolve as close as possible to the type rules. In particular, we can

15



implement resolve under a handler that implements a list of successes [Philip Wadler 1985]:

explore : (Γ, z, 𝜏) → [(Q, e)]
explore(Γ, z, 𝜏) = handle resolve(Γ,K, z, 𝜏)
return x → [x]
fail() → []
infinite() → resume((∅,⊥))
forallq(Γ, z) → [x | m/z :𝜎 ∈ Γ, x ← resume(m/z, 𝜎)]

Normal results (return x) are wrapped in a singleton list [x], while failures return an empty list.

The infinite() operation just resumes at the call site with a bottom expression (as (∅,⊥)). The
forallq(Γ, z) operation is the most interesting one as it resumes for each m/z :𝜎 ∈ Γ and appends

all returned solutions. In the type checking algorithm check, we can now call explore to implement

the variable case as:

check : (Γ, e, 𝜏) → (Q, e)
. . .
check(Γ, z, 𝜏) = match explore(Γ, z, 𝜏)
[(Q, e)] | ⊥ ̸∈ e→ (Q, e) unique and not ⊥
[] → fail() unresolved
_ → fail() ambigious or infinite

This implements the ∃!e condition by essentially exploring all possible derivations and returning

normally only if there is a single successful derivation. The connection between using a list of

successes and the ∃!e condition may not be immediately apparent, but we can show that the

algorithm is sound and complete with respect to our finite type rules:

Theorem 3.7. (Algorithmic Soundness)
If check(Γ, z, 𝜏) = (Q, e), then also Q | Γ ⊢ z ←: 𝜏 ⇝e (with [var-k]).

Theorem 3.8. (Algorithmic Completeness)
If Q | Γ ⊢ z ←: 𝜏 ⇝e (with [var-k]), then also check(Γ, z, 𝜏) = (Q, e).
See the proofs in Appendix B.1 of the supplement.

3.5 Optimizing Exploration
Even though the previous theorems show our algorithm is correct, it is not the most efficient

implementation. We can make various improvements to the explore function to optimize the

exploration of the search space.

First, we observe that we never actually look at the individual solutions if there is more than

one solution. As such, we only consider a valid singleton solution [(Q, e)], an empty solution [], or
multiple solutions. We can represent this more efficiently using a specialized data type:

type sol 𝛼 = One(𝛼) | None | Amb

Furthermore, we also observe that we never accept any infinite solution with ⊥ ∈ e. Let’s only use

One((Q, e)) if ⊥ ̸∈ e, and directly use Amb for infinite solutions as well. We can then define check
as:

check(Γ, z, 𝜏) = match exploreopt (Γ, z, 𝜏)
One(x) → x
_ → fail()
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We do not need to change the definitions of resolve or inst as these use abstract operations – instead

we only need to modify the handler to use our new representation:

exploreopt (Γ, z, 𝜏) = handle resolve(Γ,K, z, 𝜏)
return x → One(x)
fail() → None

infinite() → Amb

. . .

Here we optimized the infinite operation: instead of resuming we observe that any evaluation with

infinite() will eventually have an Amb result, and thus we can directly return with an Amb result

without resuming. The main advantage of our new representation is in the definition of forallq as

we can now cut the evaluation short as soon as we encounter any Amb result without needing to

explore all possible derivations:

forallq(Γ, z) →
let find (current, candidates) = match candidates

Nil→ current
Cons(m/z :𝜎, rest) → match resume(m/z, 𝜎)
Amb → Amb

None → find (current, rest)
One(x) → match current
One(y) → Amb

None → find (One(x), rest)
in find (None, ∀m𝜎. m/z :𝜎 ∈ Γ)

The find (current, candidates) function iterates through all candidates using the current result which
is either None or One((Q, e)). As soon as we find an Amb result, we can immediately return with

Amb without trying more solutions. Similarly when already have a valid current solution, and we

find another valid solution, we can immediately return with Amb as well.

In our experience, cutting the exploration short as soon an ambigious or infinite derivation is

found is quite important in practice. In particular, the [app-var] rule often requires backtracking to

get enough type information from the first argument expressions – failing fast is important here.

As shown in Section 2.9, we can also prefer inner scope definitions instead of requiring unique

solutions. This can actually be used to optimize the exploration even further. In particular, we can

directly skip trying resolving any m/z from an outer scope as soon as we found a solution for a

definition in an inner scope.

4 SYNTACTIC IMPLICITS AND STATIC OVERLOADING IN PRACTICE
The system described in this paper is fully implemented in the Koka language [Leijen 2019 2021],

and it is quite heavily used in the standard library for functions like show, (==), map, comparison, etc.

In Koka, application is not curried and all arguments are in between parenthesis. In contrast to our

calculus, the implicit arguments always come last which fits better with the uncurried syntax. In

particular, the programmer can now pass implicit parameters explicitly by adding them as regular

parameters. For example, we can write show([1], fn(x) "*") to display a list of integers where all

elements are shown as *. In the case of multiple implicit parameters, we can pass a subset of them

by name as well, show((1,True), ?snd/show=fn(x) "*") for example.

As described in Section 2.9, Koka prefers inner-scope definitions, and as discussed in Section 3.3,

instead of cutting the search off at an arbitrary depth our implementation maintains a history

where the size of the types of implicit parameters must decrease within 4 recursive elaborations.

This makes it possible to still accept the 3-state busy beaver program (see Appendix A of the

supplement).
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A nice advantage of our system is that there is no need to declare overloaded functions in

advance, we just have regular function definitions. This also puts no constraints on the type of

these functions. This allows us in particular to overload tuple selectors for example:

fun tuple/fst ( x : (a,b) ) : a
fun triple/fst( x : (a,b,c) ) : a

and more generally selectors for fields in any datatype. This is not possible with type classes [Oder-

sky et al. 1995; P. Wadler and Blott 1989] as a specific type signature needs to be declared upfront.

4.1 Default Implementations
In the standard library, we have various definitions to compare basic types, like:

type order = Lt | Eq | Gt
fun bool/cmp( x : bool, y : bool ) : order
fun int/cmp( x : int, y : int ) : order
fun list/cmp( xs : list<a>, ys : list<a>, ?cmp : a -> order ) : order

Given these definitions, we can now write a generic equality operator:

fun default/(==)( x : a, y : a, ?cmp : (a,a) -> order ) : bool
match cmp(x,y)

Eq -> True
_ -> False

fun (!=)( x : a, y : a, ?eq : (a,a) -> bool ) : bool
!eq(x,y)

This way, for any new data type, we only need to define the comparison function cmp, and get

(in)equality for free. However, there is a problem with this as well. In particular, we may have a

new data type that can determine equality more efficiently without doing a full comparison. This

already happens in the standard library where equality between integers has a fast primitive:

fun int/(==)( x : int, y : int ) : bool
prim-int-eq(x,y)

Unfortunately, since these definitions overlap, an expression like 1==2 will always be rejected as

both int/(==) and default/(==) could apply. Haskell type classes address this problem by allowing

default implementations in class definitions that are used unless an instance provides an explicit

implementation. In our case, one way around this is to name default/(==) differently, and at each

new data type require the user to write an explicit (==) definition that can either use the default

one based on cmp or be specialized for that data type.

In Koka we use a different approach though: we pretend that any definition in the default/

namespace is defined in a scope outside the global module scope, i.e. at scope depth −1 instead
of 0. This means that when there is a choice between a regular definition and a default one, the

regular one is preferred due to the scope disambiguation (Section 2.9). Our 1==2 example is now

unambiguous, and elaborated to int/(==)(1,2).

Unfortunately, the addition of default/ can cause definition instability (Section 2.11). We may have

a function that uses a variable that is resolved to a default/ definition. If we add a more specific

version, that one is now considered to be in an inner scope relative to default/, and is preferred

without an ambiguity error. This is not ideal and we would like extend the compiler to at least

warn in such cases (while preserving the convenience of the outer default/ scope).

4.2 Grouping Operations
Oftentimes, we need multiple operations that logically belong together. It can be cumbersome

to pass each one individually as an implicit parameter in general. Haskell type classes naturally

group operations together where for example the Num class has addition, multiplication, etc. No

such thing exists in our system but instead we can pass structures directly as an implicit parameter.
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For example, we can define:

struct num<a>
(+): (a, a) -> a
(*): (a, a) -> a

and provide some “instances” as:

val int/num : num<int> = Num( (+), (*) )

However, using such structures can be a bit cumbersome, for example:

fun fadd( x : a, y : a, z : a, ?num : num<a> ) : a
match num
Num((+),(*)) -> x + (y * z)

Fortunately, Koka provides dot notation to automatically unpack structures, and we can write:

fun fadd( x : a, y : a, z : a, .?num : num<a> ) : a
x + (y * z)

which is essentially syntactic sugar for the previous explicit version. The dot notation also recur-

sively unpacks any base members which allows for linear hierarchies, for example for monad<m> and

monadplus<m>. This simple mechanism can work surprisingly well, but of course it is limited as well

compared to more specialized mechanisms like type classes. We hope to gain more experience in

practice to evaluate its limits.

4.3 Phantom Implicits
The value passed at the call site for a syntactic implicit parameters, is just the plain name of the

parameter. If the name is not in scope at the call site the program is rejected. However, we can

imagine having a special set of implicit parameter names (and associated types) for which the

compiler can supply a more elaborate argument term. We call such special names phantom implicits.
For example, our Koka implementation defines the special implicit parameter names kk-line :int

and kk-file :string (in std/core/debug). If in [inst-implicit] these names cannot be resolved, the

compiler can instead elaborate to specific value: in these cases the current source file line number

and name respectively. For example:

fun assert-line( condition : bool, msg : string, ?kk-line : int ) : exn ()
if condition then () else throw("at " ++ kk-line.show ++ ": " ++ msg)

and then use it as assert-line(False,"failed"). Since kk-line is not defined at the call site, the

compiler instead provides the current source line number for the implicit parameter, and elaborate

to assert-line(False,"failed",42). Note that we can still define kk-line explicitly. Unlike a pre-

processor macro, we can abstract over these special names. For example, we can define:

fun assert-fline(condition : bool, msg : string, ?kk-line : int, ?kk-file : string ) : exn ()
assert-line(condition, kk-file ++ ": " ++ msg )

Here, assert-line is elaborated to assert-line(condition, kk-file ++ ": " ++ msg, kk-line). Since

kk-line is in scope the compiler does not need to provide another value. However, when assert-fline

is used where kk-line and kk-file are not in scope, the current line number and file of the call site

are provided implicitly again.

For both the kk-line and kk-file phantom implicits, the compiler can supply their argument

value just based on their name. However, we can also imagine supplying the argument value of a

phantom implicit based on the caller’s type context. This would lead to a design that is more similar

to how type classes get resolved: we can imagine letting the user define type classes and instances

– when a “type class” phantom implicit needs to be resolved, for example num : num⟨int⟩, the
instance declarations can be used to construct the correct dictionary to pass.

4.3.1 Divergence. Koka has at the moment a single phantom implicit that is resolved based on

its type, namely hdiv : hdiv<h,a,e>. The type hdiv is an abstract type and users can never create
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a value of this type. Only the compiler is allowed to do so if the type contraints are satisfied. In

particular, the type hdiv<h,a,e> signifies that if the type a can contain a reference to the heap h,

then the effect e must contain the divergence effect (div). This is used in Koka to correctly infer

potential divergence where one stores self referential functions in a mutable heap. Leijen [2014]

gives the following example of Landin’s knot:

fun landin() : div () // div is inferred!
val r = ref(fn() ()) // initialize with a parameter-less function that returns unit
fun self()

(!r)() // self calls the function stored in r
r := self // store self in r now
self() // and call it

Here we create a reference r in the global heap, and later store function self in there, where self

calls the function stored in r. Even though the function has no syntactic recursion, it diverges and

Koka needs to infer the div effect in the type of landin. In order to detect such sneaky divergence,

we define the dereference operation (!) with the hdiv phantom implicit:

fun ref/(!)( r : ref<h,a>, ?hdiv : hdiv<h,a,e>) : <read<h>|e> a

This reads a value of type a from a reference r in heap h, and has a read<h> effect and possibly more

effects e. By including the phantom implicit here, we make explicit that the e effect now must

contain the divergence effect div as well whenever the value type a can contain the same heap h

in its type, i.e. whenever it is self referential. In the landin example above, the name hdiv for the

phantom implicit is not bound so the compiler tries to supply a value instead, with the type hdiv<h

, () -> <read<h>|e> (), e>. Since h is clearly in the value type () -> <read<h>|e>, the compiler unifies

e with <div|_> to satisfy the constraint on hdiv implicits, and then supplies an internal dummy

value as the evidence for the hdiv phantom implicit. This ensures that the landin function indeed

gets the div effect.

In most cases in practice, the value type is a simple type like int and it is clear that it does

not contain h. In such cases, the compiler directly supplies an internal dummy value again as

evidence, but now without unifying e with the divergence effect. Sometimes though, the value type

is polymorphic and at the call site it may still be undetermined if h can be in a. Just like with the

previous kk-line example, we can then further abstract over the hdiv implicit to delay its evaluation

– the user may not be able to create hdiv evidence values, but they are able to pass them around:

fun read2( r : ref<h,a>, ?hdiv : hdiv<h,a,e> ) : <read<h>|e> (a,a)
val x = !r in (x,x)

In this example, the polymorphic dereference !r is elaborated to ref/(!)(r,hdiv), where we essen-

tially defer resolving the hdiv evidence to the call site of read2 instead.

5 RELATEDWORK
Since the main idea of syntactic implicit parameters is so straightforward, it is not easy to directly

compare against more sophisticated systems like type classes or Scala implicits. Instead, we try to

highlight how particular usage scenarios are addressed in various systems.

Type classes [P. Wadler and Blott 1989] are a very elegant form of implicits that has seen

widespread success in languages like Haskell and Lean for example. An important difference

with our system is that type class constraints are automatically generalized if they cannot be

resolved locally, essentially introducing an implicit parameter for the dictionary at runtime. For

example, parens = 𝜆x . ”(” ++ show x ++ ”)” would result in the type parens : Show 𝛼⇒ 𝛼 → String
in Haskell. In contrast, in our system this definition is rejected, and we need to explicitly state

that we are abstracting over show, as parens = 𝜆?show. 𝜆x . ”(” ++ show x ++ ”)” (or qualify show
manually to disambiguate). Kovács [2020] investigate how much to generalize the types of inferred

dictionary parameters in dependently typed languages.
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Another difference is that type classes require global uniqueness of instances to be coherent. As

a consequence, instances live in another scope than regular values. Moreover, once we define say

an instance for Num Int, we cannot locally override this with another instance to do, say, modular

arithmetic; Sozeau and Oury [2008] and Dreyer et al. [2007] investigate how such first-class type

classes could look like. Kiselyov and Shan [2004] show how to use phantom types and rank-2

polymorphism with type classes to add implicit configuration modularly in a program and obtain

coherence without global uniqueness.

Scala [Odersky 2016; Odersky et al. 2017] is one of the first languages to use implicits extensively.

Like type classes, the implicits have a separate scope, and are resolved by their type. For example:

implicit val number : Int = 1
def add(x : Int)(implicit y : Int) = x + y
add(2)

where the add(2) would be elaborated to add(2,number) as that is the only Int in the implicit scope.

Scala users usually declare new nominal types to avoid ambiguities. B. C. Oliveira et al. [2010] show

how Scala implicits can be used to express type classes as well. However, just like in our system,

one still needs to explicitly declare the required implicit parameters. Both type classes and Scala

style implicits resolve implicits by their type. B. C. d. S. Oliveira et al. [2012] and later Schrijvers et

al. [2019] develop an implicit calculus that expresses the essence of these systems. The latter paper

in particular studies the coherence and stability properties.

In contrast, a system that uses explicit names to resolve implicit parameters is presented

by Lewis et al. [2000] (and later by Jones [1999]). This design of implicit parameters is based

on type classes where using an implicit name ?x gives rise to an implicit constraint. For example,

let f = ?y + 2 in (f with ?y = 1) evaluates to 3. The ?y here is an implicit parameter, and, just

like type classes, the type of f is generalized to ?y:Int⇒ Int. The with construct is used to resolve

such constraints with a particular value. Since names like ?y do not live in the usual lexical scope

but are instead type level constraints, this may lead to suprises. For example, consider the expres-

sion (let f = ?y + 2 in f + (f with ?y = 1)) with ?y = 2 which evaluates to 7 (and not 8) even

though lexically it may appear as if the outer binding for ?y binds the occurrence in f .
White et al. [2015] describe an extension to the OCaml language for ad-hoc polymorphism

inspired by Scala implicits and modular type classes. Their modular implicits are based on type-

directed implicit module parameters, and elaborate straightforwardly into OCaml’s first-class

functors. Devriese and Piessens [2011] present instance arguments for the Agda language. These
are inspired by both Scala’s implicits and Agda’s existing implicit arguments.

Because we resolve implicits by name, we can use history (Section 3.3) to carefully avoid non-

termination of the search. In type based systems this can be more challenging. Agda’s search avoids

any recursion in the first place at the cost of needing to be more explicit. Rocq [2025 Rocq Prover

2025], has a configurable recursion limit (Typeclasses Depth), which defaults to infinite depth-first

search. Schrijvers et al. [2019], provides a termination property based on the type head (implicit

constraints), which ensures that the size of the type is decreasing. White et al. [2015] provides a

termination property similar to ours, where successive instantiations of the same implicit functor

must be decreasing in the size of collected constraints.

6 CONCLUSION
We presented a formal system for syntactic implicit parameters and static overloading. Even though

each feature is rather straightforward, their interaction turned out to be surprisingly expressive.

With the implementation in Koka we hope to gain more experience in using this at scale and extend

it in interesting ways. In particular, we would like to improve on grouping (Section 4.2), and study

the application of phantom implicits in future work.
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A TURING ENCODING OF A 3-STATE BUSY BEAVER
This example encodes a 3-state “busy beaver” Turing machine program by Ivars Peterson

1
in the

type system. It has the following transition table:

current state A state B state C
symbol write move next write move next write move next

0 1 R B 1 L A 1 L B

1 1 L C 1 R B 1 N HALT

We encode the symbols, tape, and states using abstract types. The tape is represented as a cons list

in the type language using phantom type parameters. The tape is encoded finitely with type inf

representing an infinite sequence of sym0.

type sym0
type sym1

// a tape
type cons<a,b> // tape with head ‘a‘ and tail ‘b‘
type inf

// all states also match on ‘inf‘ and produce ‘cons<sym0,inf>‘ to simulate infinite tape
type state-a
type state-b
type state-c

We encode the configuration as the current state of the finite state machine and the left and right

tape using phantom type parameters in the config type. The machine can read or write the first

symbol on the right tape (the head).

// the machine configuration: <state, left tape, right tape>
abstract type config<s,a,c>

Start

We give an explicit type annotation to initialize the phantom types for the starting machine

configuration.

// starting machine configuration with all zeros
val start : config<state-a,inf,cons<sym0,inf>> = Start

Transitions are encoded using functions with implicit ?trans constraints with the final halt transition

requiring no further implicits.

// halting state
fun halt/trans() : ()

()

When state == A, and head == 0 we encode the transition to write 1, shift the tape right and continue

in state B as follows:

// stateA: if head==0 then write 1, shift the tape right, and continue in state B
fun a/b/trans( st : config<state-a,cons<x,l>,cons<sym0,r>>,

?trans : (config<state-b,l,cons<x,cons<sym1,r>>>) -> () ) : ()
()

Similar transitions are encoded for the other states:

1https://en.wikipedia.org/wiki/Turing_machine_examples#3-state_Busy_Beaver
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// stateA: if head==1 then write 1, shift the tape left, and continue in state C
fun a/c/trans( st : config<state-a,l,cons<sym1,cons<x,r>>>,

?trans : (config<state-c,cons<sym1,l>,cons<x,r>>) -> () ) : ()
()

// stateB: if head==0 then write 1, shift the tape left, and continue in state A
fun b/a/trans( st : config<state-b,l,cons<sym0,cons<x,r>>>,

?trans : (config<state-a,cons<sym1,l>,cons<x,r>>) -> () ) : ()
()

// stateB: if head==1 then write 1, shift the tape right, and continue in state B
fun b/b/trans( st : config<state-b,cons<x,l>,cons<sym1,r>>,

?trans : (config<state-b,l,cons<x,cons<sym1,r>>>) -> () ) : ()
()

// stateC: if head==0 then write 1, shift the tape left, and continue in state B
fun c/b/trans( st : config<state-c,l,cons<sym0,cons<x,r>>>,

?trans : (config<state-b,cons<sym1,l>,cons<x,r>>) -> () ) : ()
()

// stateC: if head==1 then write 1, do not move, and continue in state HALT
fun c/end/trans( st : config<state-c,l,cons<sym1,r>>,

?trans : () -> () ) : ()
()

Because the tape encoding is finite, at times we must expand the tape by turning the infinite

portion into zeros. However, we cannot do so arbitrarily since that can lead to ambiguity. To ensure

uniqueness, we only expand the side of the tape that needs expansion in order for a transition to

happen. For example the a/b/trans shifts from the left tape to the right, so we need a corresponding

function that if given state-a and right hand tape with head sym0 expands inf. This is done in the

inf/a/b/trans rule below, which then allows the original a/b/trans to proceed.

fun inf/a/b/trans( st : config<state-a,inf,cons<sym0,r>>,
?trans : (config<state-a,cons<sym0,inf>,cons<sym0,r>>) -> () ) : ()

()
fun inf/a/c/trans( st : config<state-a,l,cons<sym1,inf>>,

?trans : (config<state-a,l,cons<sym1,cons<sym0,inf>>>) -> () ) : ()
()

fun inf/b/b/trans( st : config<state-b,inf,cons<sym1,r>>,
?trans : (config<state-b,cons<sym0,inf>,cons<sym1,r>>) -> () ) : ()

()
fun inf/b/a/trans( st : config<state-b,l,cons<sym0,inf>>,

?trans : (config<state-b,l,cons<sym0,cons<sym0,inf>>>) -> () ) : ()
()

fun inf/c/b/trans( st : config<state-c,l,cons<sym0,inf>>,
?trans : (config<state-c,l,cons<sym0,cons<sym0,inf>>>) -> () ) : ()

()

We can evaluate the program by using the following main function and the command: koka -e busy-beaver

.kk.

fun main()
trans( start )
println("done.")

In VSCode we can hover over the call which shows us the inferred implicit chain representing the

transitions. We show the resulting chain below where we have aligned the inf and corresponding

non-inf rules for readability.
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// expands to a 14 state expansion (with the Koka termination check disabled),
// and matches the execution of:
// <https://en.wikipedia.org/wiki/Turing_machine_examples#3-state_Busy_Beaver>
/*
inf/a/b/trans(?trans=a/b/trans(_,

b/a/trans(_,
inf/a/c/trans(_,a/c/trans(_,
inf/c/b/trans(_,c/b/trans(_,
inf/b/a/trans(_,b/a/trans(_,
a/b/trans(_,
b/b/trans(_,
b/b/trans(_,
b/b/trans(_,
inf/b/b/trans(_,b/b/trans(_,
b/a/trans(_,
a/c/trans(_,
c/end/trans(_,
halt/trans))))))))))))))))

*/

To simplify the handling of infinite expansion, we can recognize that only a single function for

shifting left / shifting right is needed. Since infinite tapes are always expanded to add a sym0 we

need to know that there exists a rule that given the current head, state, and a sym0 where there

currently is inf, will shift that sym0 off of that side. However, this requires us to not only know the

shape of the head of the transition rule, but also the tail.

With higher-order implicit parameters (parameters whose types are contain implicit parameters),

we can expect an implicit parameter ?trans that shifts to the right (matching on the shape of both

the head and tail of the transition), and also require the same implicit matching only the head of

the transition rule, requiring further implicits to be handled by the caller.

// Expand the ‘inf‘ tape if the state would transition from the infinite side if it had a sym0.
fun inf/l/trans( st : config<s,inf,cons<h,r>>,

?a/trans : (config<s,cons<sym0,inf>,cons<h,r>>,
?trans: (config<s1,inf,r2>) -> ()) -> (),

?b/trans: (config<s,cons<sym0,inf>,cons<h,r>>) -> ()) : ()
()

// Expand the ‘inf‘ tape if the state would transition from the infinite side if it had a sym0.
fun inf-r/trans( st : config<s,l,cons<h,inf>>,

?a/trans : (config<s,l,cons<h,cons<sym0,inf>>>,
?trans: (config<s1,l2,cons<h2,inf>>) -> ()) -> (),

?b/trans: (config<s,l,cons<h,cons<sym0,inf>>>) -> () ) : ()
()
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B PROOFS
B.1 Algorithmic Soundness and Completeness
To prove that the algorithm is sound and complete, we first inline the handler in explore to make

the list of successes explicit without using operations.

resolve(Γ, 0, z, 𝜏) = [(∅,⊥)]
resolve(Γ, n, z, 𝜏) | z :𝜎 ∈ Γ = [(Q, z e) | (Q, e) ← inst (Γ, n−1, 𝜎, 𝜏)]
resolve(Γ, n, z, 𝜏) = [(Q,m/z e) | m/z :𝜎 ∈ Γ, (Q, e) ← inst (Γ, n−1, 𝜎, 𝜏)]

inst (Γ, n, 𝜏1, 𝜏2) = [(Q, ·) | Q← unify(𝜏1, 𝜏2)]
inst (Γ, n,∀𝛼.𝜎, 𝜏) = inst (Γ, n, 𝜎 [𝛼 :=fresh()], 𝜏)
inst (Γ, n, ?x:𝜏1→𝜌, 𝜏2) =

[(Q, e e) | (Q1, e)←inst (Γ, n, 𝜌, 𝜏2), (Q2, e)←resolve(Γ, n, x,Q1 [𝜏1]), Q←compose(Q1,Q2)]
Then check directly calls resolve, and does a case analysis on the list of results.

check : (Γ, e, 𝜏) → (Q, e)
. . .
check(Γ, z, 𝜏) = match resolve(Γ,K, z, 𝜏)
[(Q, e)] | ⊥ ̸∈ e→ (Q, e) unique and not ⊥
[] → fail() unresolved
_ → fail() ambigious or infinite

For soundness and completeness, we will need a uniqueness Lemma stating that the rules and

algorithm only produce corresponding unique results.

Lemma B.9. (Uniqueness)
∃!e. Q | Γ ⊩n z ←: 𝜏 ⇝ e iff resolve(Γ, n, z, 𝜏) = [(Q, e)].
If resolve were not complete, it could produce one solution instead of two, which could return a

value from check when there should be none. If it were not sound, it could produce one solution

instead of zero, which could return a value from check when the implicit is not derivable using the

rules. So before proving the uniqueness lemma and soundness and completeness of check we first

need to prove soundness and completeness of resolve.
Because resolve and inst are mutually recursive, we need to prove their soundness and complete-

ness together by mutual induction. To ensure completeness and termination for resolve we can use

stepwise induction on n, since n always decreases. However, instantiation does not affect n, and we

can simply prove by induction on the derivation given the soundness and completeness of resolve
at step n, this is well-founded because each inductive step of inst makes the type scheme smaller.

For the purposes of these proofs we consider ⊩0 as ⊩n with a premise n = 0 and ⊩n+1 as ⊩n
with premises n = n′ + 1 ∧ n > 0 ∧ n′ = n − 1 and n replaced by n′ within the rule. This allows for

cleaner proofs where the conclusions are all in terms of n, and the inductive case can be in terms of

n − 1, matching the algorithm.

Additionally, we generalize the proofs over all solutions S = [(Q, e)] (resolve) and Ss = [(Q, e)]
(instantiation) satisfying the inference rules, since the algorithm works via list comprehension over

all solutions.

Lemma B.10. (Resolution Soundness)
If resolve(Γ, n, z, 𝜏) = S at step n and inst is sound (1) at step n − 1 where n > 0, then also

∀(Q, e) ∈ S. Q | Γ ⊩n z ←: 𝜏 ⇝ e .

Proof. Proceeding by cases on n first with n = 0.

Case We have resolve(Γ, 0, z, 𝜏) = [(∅,⊥)] where n = 0, and need to show that (∅,⊥) is derivable
in the rules. We can derive (∅,⊥) via [var-cut] since n = 0.
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CaseWhen n > 0 (2), we have two subcases.

subcase resolve(Γ, n, z, 𝜏) | z :𝜎 ∈ Γ (4) = [(Q, z e) | (Q, e) ← inst (Γ, n−1, 𝜎, 𝜏)] (3). By sound-

ness of inst (1), we have for each element in (3), Q | Γ ⊢n−1 𝜎 ⊑ 𝜏 ⇝ e (5). And by [var-directk]
and (2,5), for each (Q, z e) we have Q | Γ ⊩n z ←: 𝜏 ⇝ z e .
subcase resolve(Γ, n, z, 𝜏) = [(Q,m/z e) | m/z :𝜎 ∈ Γ, (Q, e) ← inst (Γ, n−1, 𝜎, 𝜏)]. From the al-

gorithm we have (Q, e) ← inst (Γ, n−1, 𝜎, 𝜏) (3), and m/z :𝜎 ∈ Γ (4) with z ̸∈ Γ (5) (implicitly by

falling through the match). We can derive Q | Γ ⊢n−1 𝜎 ⊑ 𝜏 ⇝ e (6) by soundness of inst (1,3).
For each (Q, m/z e) we can show Q | Γ ⊩n z ←: 𝜏 ⇝m/z e by [var-qalifyk] using (4,5,6).

Lemma B.11. (Instantiation Soundness)
If inst (Γ, n, 𝜏1, 𝜏2) = Ss at step n and resolve is sound (1) at step n then also

∀(Q, e) ∈ Ss. Q | Γ ⊢n 𝜎 ⊑ 𝜏 ⇝ e .

Proof. We prove by induction on the derivation.

Case The first case applies to mono types: inst (Γ, n, 𝜏1, 𝜏2) = [(Q, ·) | Q← unify(𝜏1, 𝜏2)]. We derive

Q ⊢ 𝜏1 ≈ 𝜏2 (2) by the soundness of unify (Lemma C.28). We then can show Q | Γ ⊢n 𝜏1 ⊑ 𝜏2 ⇝ ·
for all (Q, e) in the resulting list by [inst-mono] and (2).

CaseThis case applies to type schemeswith quantifiers: inst (Γ, n,∀𝛼.𝜎, 𝜏) = inst (Γ, n, 𝜎 [𝛼 :=fresh()], 𝜏).
Follows directly the inductive hypothesis (given that fresh is correct).

Case The last case applies to implicits types:

inst (Γ, n, ?x:𝜏1→𝜌, 𝜏2) =

[(Q, e e) | (Q1, e)←inst (Γ, n, 𝜌, 𝜏2), (Q2, e)←resolve(Γ, n, x,Q1 [𝜏1]), Q←compose(Q1,Q2)]
From the algorithm we have (Q1, e)←inst (Γ, n, 𝜌, 𝜏2) (3), (Q2, e)←resolve(Γ, n, x,Q1 [𝜏1]) (4), and
Q←compose(Q1,Q2) (5). By induction (2,3), we have Q1 | Γ ⊢n 𝜌 ⊑ 𝜏2 ⇝ e (6). By soundnes of

resolve (1,4), we have Q2 | Γ ⊩n x ←: Q1 [𝜏1] ⇝ e (7). We can derive from the soundness of compose
(Lemma C.29) and (5), that we have ⊨ (Q1,Q2) (8) We can apply [inst-implicit] now by (6,7,8).

We also need completeness of resolve and inst.

Lemma B.12. (Resolution Completeness)
If Q | Γ ⊩n z ←: 𝜏 ⇝ e at step n and inst is complete at step n − 1 where n ⩾ 1 then

resolve(Γ, n, z, 𝜏) = S ∧ (Q, e) ∈ S.

Proof. We proceed by case analysis of the derivation. Because the rules have mutually exclusive

premises we can consider each case with respect to a single line of the algorithm.

Case From [var-cut] we have ∅ | Γ ⊩0 z ←: 𝜏 ⇝⊥ and n = 0 which requires us to include (∅,⊥)
in the result when n = 0 : resolve(Γ, 0, z, 𝜏) = [(∅,⊥)]. This is mutually exclusive with the other

cases where the conclusions require n > 0 which contracticts n = 0.

Case From [var-directk] we have z :𝜎 ∈ Γ (2), and Q | Γ ⊢n−1 𝜎 ⊑ 𝜏 ⇝ e (3). The corresponding
line in the algorithm is mutually exclusive with the other cases since the conclusion only applies

for n > 0, and ensures (2). From the inductive hypothesis and (3) we have

inst (Γ, n−1, 𝜎, 𝜏) = Ss ∧ (Q, e) ∈ Ss (4). From (4) we are required to include (Q, z e) in the results

in this case:

resolve(Γ, n, z, 𝜏) | z :𝜎 ∈ Γ = [(Q, z e) | (Q, e) ← inst (Γ, n−1, 𝜎, 𝜏)]
Case From [var-qalifyk] we have that z ̸∈dom(Γ) (2) m/z :𝜎 ∈ Γ (3) and Q | Γ ⊢n−1 𝜎 ⊑ 𝜏 ⇝ e
(4) with n > 0 (5). We do not match the first (5) or second (2) cases of the algorithmmaking this mutu-

ally exclusive. From the inductive hypothesis and (4), we have inst (Γ, n−1, 𝜎, 𝜏) = Ss ∧ (Q, e) ∈ Ss
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(6). From (6) we must include (Q,m/z e) in the results:

resolve(Γ, n, z, 𝜏) = [(Q,m/z e) | m/z :𝜎 ∈ Γ, (Q, e) ← inst (Γ, n−1, 𝜎, 𝜏)].

Lemma B.13. (Instantiation Completeness)
If Q | Γ ⊢n 𝜎 ⊑ 𝜏 ⇝ e at step n and resolve (1) is complete at step n where n ⩾ 0 then also

inst (Γ, n, 𝜏1, 𝜏2) = Ss ∧ (Q, e) ∈ Ss.

Proof. We proceed by induction on the derivation tree.

Case From Q | Γ ⊢n 𝜏1 ⊑ 𝜏2 ⇝ · we have Q ⊢ 𝜏1 ≈ 𝜏2 and by the completeness of unification, we

are required to include (Q, .) in our result: inst (Γ, n, 𝜏1, 𝜏2) = [(Q, ·) | Q← unify(𝜏1, 𝜏2)].
Case From Q | Γ ⊢n ∀𝛼.𝜎 ⊑ 𝜏 ⇝ e we have Q | Γ ⊢n 𝜎 ⊑ 𝜏 ⇝ e (3) and fresh 𝛼 . By the induc-

tion hypothesis and (3) we have that Q | Γ ⊢n 𝜎 ⊑ 𝜏 ⇝ e requires us to include results from

inst (Γ, n, 𝜎 [𝛼 :=fresh()], 𝜏), given fresh type variables.

Case From Q1,Q2 | Γ ⊢n ?x:𝜏1→ 𝜌 ⊑ 𝜏2 ⇝ e e we have Q1 | Γ ⊢n 𝜌 ⊑ 𝜏2 ⇝ e (3) and
Q2 | Γ ⊩n x ←: Q1 [𝜏1] ⇝ e (4). By the induction hypothesis and (3) we have that we must consider

each (Q1, e)←inst (Γ, n, 𝜌, 𝜏2) and for each of those we derive (Q2, e)←resolve(Γ, n, x,Q1 [𝜏1]) via
the induction hypothesis and (4). Finally due to the completeness of compose we have that (Q1,Q2)
exists, requiring us to include (Q, e e) in the results for this case:

inst (Γ, n, ?x:𝜏1→𝜌, 𝜏2) =

[(Q, e e) | (Q1, e)←inst (Γ, n, 𝜌, 𝜏2), (Q2, e)←resolve(Γ, n, x,Q1 [𝜏1]), Q←compose(Q1,Q2)]

Finally we need that uniqueness holds for both directions.

Proof. (Of Lemma B.9 (Uniqueness)) As a reminder, to prove soundness, we must first prove that

unique derivations correspond to unique resolutions in the algorithm:

∃!e Q | Γ ⊩n z ←: 𝜏 ⇝ e iff resolve(Γ, n, z, 𝜏) = [(Q, e)].
Case In the forwards direction we haveQ | Γ ⊩n z ←: 𝜏 ⇝ e (1) and ∃!e (2). From completeness and

(1) we have that resolve(Γ, n, z, 𝜏) = S where (Q, e) ∈ S. Assume there are multiple (Q, e) in S: that

immediately contradicts (2). So we only have one result, and can show resolve(Γ, n, z, 𝜏) = [(Q, e)]
Case In the backwards direction we have resolve(Γ, n, z, 𝜏) = [(Q, e)] (1). By soundness and (1) we

have thatQ | Γ ⊩n z ←: 𝜏 ⇝ e (2). Furthermore, assume that there is some otherQ′ | Γ ⊩n z ←: 𝜏 ⇝ e′ ,
then via completeness and (1) we have a contradiction. Therefore the solution (2) is unique ∃!e (3).
With (2) and (3) we are able to show the conclusion.

check : (Γ, e, 𝜏) → (Q, e)
. . .
check(Γ, z, 𝜏) = match resolve(Γ,K, z, 𝜏)
[(Q, e)] | ⊥ ̸∈ e→ (Q, e)
[] → fail() unresolved
_ → fail() ambigious or infinite

Proof. (Of Theorem 3.7 (Algorithmic Soundness)) We must prove that given check(Γ, z, 𝜏) = (Q, e),
then also

Q | Γ ⊢ z ←: 𝜏 ⇝e (1) (with [var-k]). The only case where check produces a result is when resolve
returns a unique result e with an associated Q (2). We can show (1) via the uniqueness lemma and

(2).
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Proof. (Of Theorem 3.8 (Algorithmic Completeness)) We must prove that given Q | Γ ⊢ z ←: 𝜏 ⇝e
also check(Γ, z, 𝜏) = (Q, e) (1). The rule only produces a result if ⊩n has a unique result e with an

associated Q (2). We can show (1) via the uniqueness lemma and (2).

B.2 Soundness of the Finite Type Rules

Proof. (Of Theorem 3.6) We must show that given Q | Γ ⊢ z ←: 𝜏 ⇝e (1) with [var-k], then
Q | Γ ⊢ z ←: 𝜏 ⇝e with [var].
This reduces trivially to showing that if Q | Γ ⊩n z ←: 𝜏 ⇝e (1), ∃!e (2), and ⊥ ̸∈ e (3) then
∃!e, Q | Γ ⊩ z ←: 𝜏 ⇝e (4).
We prove by cases on the number and kinds of solutions from the finite rules ⊩n .

Case None or multiple solutions: Contradiction that we have a solution (1) and that it is unique (2).

Case One solution:
subcase ⊥ ∈ e: Contradiction that the solution is not infinite (3)

subcase ⊥ ̸∈ e: Straightforward proof by induction on the derivation, the rules are identical

except for passing n. We can proceed by case analysis on the derivation of ⊥ ̸∈ e in the inductive

cases, which allows us to eliminate rule [var-cut] which is the only other difference.

More detailed proof of last subcase.

Lemma B.14.
If Q | Γ ⊩n z ←: 𝜏 ⇝ e ∧ ⊥ ̸∈ e then also Q | Γ ⊩ z ←: 𝜏 ⇝ e

Lemma B.15.
If Q | Γ ⊢n 𝜎 ⊑ 𝜏 ⇝ e ∧ ⊥ ̸∈ e then also Q | Γ ⊢ 𝜎 ⊑ 𝜏 ⇝ e

Proof. (Of Lemma B.14) Induction on the structure of the derivation, where we have

Q | Γ ⊩n z ←: 𝜏 ⇝ e (1) and ⊥ ̸∈ e (2).
Case Q | Γ ⊩0 z ←: 𝜏 ⇝⊥ : by contradiction with (2).

Case Q | Γ ⊩n z : 𝜏 ⇝ z e
subcase z :𝜎 ∈ Γ (3) We have that only [var-directk] is the only match, and we can derive

[var-direct] via (3) and the inductive hypothesis.

subcase z :𝜎 ̸∈ Γ (3) We have that only [var-qalifyk] matches since (3) contradicts with

the other subcase and thus m/z :𝜎 ∈ Γ (4), and we can derive [var-qalify] from (3,4) and the

inductive hypothesis.

Proof. ((Of LemmaB.15)) Induction on the structure of the derivationwherewe haveQ | Γ ⊢n 𝜎 ⊑ 𝜏 ⇝ e
(1) and ⊥ ̸∈ e (2). Trivial by case analysis on the derivation of ⊥ ̸∈ e and passing n for the inductive

hypotheses.

B.3 Principal Derivations
Herewe prove Theorem 2.3: For any derivationsQ1 | Γ ⊢gen e →: 𝜎 ⇝ e1 andQ2 | Γ ⊢gen e →: 𝜎 ′ ⇝ e2 ,
we have Q1 = Q2, 𝜎 = 𝜎 ′, and e1 = e2.

Leijen and Ye [2024] already show that type equivalence is principal (Theorem D.28):

Lemma B.16. (Principal type equivalence)
If Q1 ⊢ 𝜏1 ≈ 𝜏2, then for any other derivation Q2 ⊢ 𝜏1 ≈ 𝜏2, we have Q1 = Q2.

Next we show that variable resolution is principal (and coherent) as well:
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Lemma B.17. (Variable resolution is principal)
If Q1 | Γ ⊢ z ←: 𝜏 ⇝ e1 and also Q2 | Γ ⊢ z ←: 𝜏 ⇝ e2 , then Q1 = Q2 and e1 = e2.

Proof. For the elaboration, the equality e1 = e2 is by construction due to the ∃!e premise. We still

need to show though that we also have Q1 = Q2. Suppose we have Q1 | Γ ⊩ z ←: 𝜏 ⇝ e and also

Q2 | Γ ⊩ z ←: 𝜏 ⇝ e. We proceed by induction over the variable rules and instantiation:

Case [var-direct]: by induction over the premise, forQ1 | Γ ⊢ 𝜎 ⊑ 𝜏 ⇝ e andQ2 | Γ ⊢ 𝜎 ⊑ 𝜏 ⇝ e
we have Q1 = Q2.

Case [var-qalify]: there is a choice here whichm/z :𝜎 to pick from Γ. However, since they rewrite
to the samem/z e both derivations use the samem/z :𝜎 and thus by induction over the instantiation

premises, we have Q1 = Q2.

Case [inst-mono]: We have Q1 ⊢ 𝜏1 ≈ 𝜏2 and Q2 ⊢ 𝜏1 ≈ 𝜏2, and by Lemma B.16, we have Q1 = Q2.

Case [inst-implicit]: We have Q11 | Γ ⊢ 𝜌 ⊑ 𝜏2 ⇝ e and Q21 | Γ ⊢ 𝜌 ⊑ 𝜏2 ⇝ e and by induction

Q11 = Q21 (1). We also have Q12 | Γ ⊩ x ←: Q11 [𝜏] ⇝ e1 and Q22 | Γ ⊩ x ←: Q21 [𝜏] ⇝ e2. How-
ever from (1) we have Q11 [𝜏] = Q21 [𝜏], and thus by induction e1 = e2 and Q12 = Q22, and thus

Q11,Q12 = Q21,Q22.

Case [inst-qantify]: From the premise we directly have by induction Q1 = Q2.

□

With Lemma B.17 we can now follow the proof of Leijen and Ye [2024] (Appendix C) to show that

the full rules are principal:

Proof. (Of Theorem 2.3) Since the rules in Figure 5 are syntax directed (with preference for

[app-var] over [app-arg]), the structure of the two derivations must match exactly. Furthermore,

by Lemma B.16 and Lemma B.17, the premise Q ⊢ 𝜏1 ≈ 𝜏2 (in [ann]) and the [var] rule are also
principal. Therefore both derivations are exactly equal with no derivation choices. In particular,

in a [var] leaf where Q | Γ ⊢ z ←: 𝜏 ⇝ e′ we always have the same 𝜏 for any derivation over e[z],
and it always elaborates to the same e′. □

B.4 Stability
First we show monomorphic substitution, then monomorphic stability, and finally polymorphic

stability.

B.4.1 Monomorphic Substitution. Note: we first want to show other derivations exist and only

later reason about unique derivations, so the lemmas are stated over⊩ for now. Moreover, since we

need to reason about both the instance and variable rules together, we generally need to establish a

stronger extended lemma first to have strong enough invariants.

The following Lemma is the inverse of stability (Lemma B.21) which we need in order to show

that derivations are still unique in the stability theorem (Theorem 2.4).

Lemma B.18. (Extended Monomorphic Substitution)
If Q1 | 𝜃Γ ⊩ z ←: 𝜃𝜏 ⇝ e1, then for any 𝜏 ′⊑𝜏 (I) where 𝜏 = 𝜃 ′𝜏 ′ such that 𝜃 ′⊑ (Q1, 𝜃 ) (II), we also
have Q2 | Γ ⊩ z ←: 𝜏 ′ ⇝ e2 with e1 = e2 and Q2⊑ (𝜃,Q1).

Lemma B.19. (Monomorphic Substitution)
If Q1 | 𝜃Γ ⊩ z ←: 𝜃𝜏 ⇝ e1, then we also have Q2 | Γ ⊩ z ←: 𝜏 ⇝ e2 with e1 = e2 and Q2⊑ (𝜃,Q1).

Proof. This follows directly from Lemma B.18 where 𝜏 ′ = 𝜏 . □
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Note that if Q1 | 𝜃Γ ⊢ z ←: 𝜃𝜏 ⇝ e, then we cannot conclude Q2 | Γ ⊢ z ←: 𝜏 ⇝ e also holds.

We have by the premise ∃!e. Q1 | 𝜃Γ ⊩ z ←: 𝜃𝜏 ⇝ e. By Lemma B.19, for all such derivations,

we also have Q2 | Γ ⊩ z ←: 𝜏 ⇝ e with the same e (satisfying the ∃e part). However, we also need

to show that there are no other derivations Q2 | Γ ⊩ z ←: 𝜏 ⇝ e′ with e′ ≠ e (satisfying the unique
part). Unfortunately, that is not generally the case. Consider the example from Section 2.10 where we

have that ∅ | [𝛼 :=c]Γ ⊢ trans ←: [𝛼 :=c] (𝛼→𝛼) ⇝ generic/trans holds, but _ | Γ ⊬ trans ←: 𝛼→𝛼

does not as it is ambiguous.

Proof. (Of Lemma B.18) We proceed by induction over the variable and instance rules. For the

instance rules, if Q1 | 𝜃Γ ⊢ 𝜃𝜎 ⊑ 𝜃𝜏 ⇝ es1, then also Q2 | Γ ⊢ 𝜎 ⊑ 𝜏 ′ ⇝ es2 with e1 = e2 and

Q2⊑ (𝜃,Q1).
Case [var-direct]: By the premise, z :𝜃𝜎 ∈ 𝜃Γ (1a) and Q1 | 𝜃Γ ⊩ 𝜃𝜎 ⊑ 𝜃𝜏 ⇝ e1 (1b). From (1a),

we also have z :𝜎 ∈ Γ. By induction on (1b), we have Q2 | Γ ⊩ 𝜎 ⊑ 𝜏 ′ ⇝ e2 with e1 = e2, and we

can conclude Q2 | Γ ⊩ z ←: 𝜏 ′ ⇝ e2.

Case [var-qalify]: By the premise, m/z :𝜃𝜎 ∈ 𝜃Γ (1a) and Q1 | 𝜃Γ ⊩ 𝜃𝜎 ⊑ 𝜃𝜏 ⇝ e1 (1b). From
(1a), we also have m/z :𝜎 ∈ Γ. By induction on (1b), we have Q2 | Γ ⊩ 𝜎 ⊑ 𝜏 ′ ⇝ e2 with e1 = e2,
and we can conclude Q2 | Γ ⊩ m/z ←: 𝜏 ′ ⇝ e2.

Case [inst-implicit]: We haveQ11 | 𝜃Γ ⊢ 𝜃𝜌 ⊑ 𝜃𝜏 ⇝ es1 (1a) andQ12 | 𝜃Γ ⊩ x ←: Q11 [𝜃𝜏1] ⇝ e1
(1b). By induction on (1a), Q21 | Γ ⊢ 𝜌 ⊑ 𝜏 ′ ⇝ es2 (2a) with es1 = es2 (2b) and Q21 ⊑ (Q11, 𝜃 ) (2c).

By Lemma B.23, Q11 ◦ 𝜃 = (Q11, 𝜃 ), and by composition, = 𝜃 ◦ (Q11, 𝜃 ). From (1b) we therefore

haveQ12 | 𝜃Γ ⊢ x ←: 𝜃 ((Q11, 𝜃 ) [𝜏1]) ⇝ e1. By (2c), we also have (𝜏 ′ =)Q21 [𝜏1] ⊑ (Q11, 𝜃 ) [𝜏1] (= 𝜏) (I)
(and thus (Q11, 𝜃 ) [𝜏1] = (Q11, 𝜃 ) [Q21 [𝜏1]] where (Q11, 𝜃 ) ⊑ (Q11, 𝜃 ) (II)). We can now use induction

on (1b) to conclude Q22 | Γ ⊢ x←: Q21 [𝜏1] ⇝ e2 (3a), with e1 = e2 (3b) and Q22⊑ (𝜃,Q12) (3c). We

can now derive from (2a,3a), (Q21,Q22) | Γ ⊢ ?x:𝜏1→𝜌 ⊑ 𝜏 ′ ⇝ e2 es2 with e1 es1 = e2 es2 (2b,3b),
and (Q21,Q22) ⊑ ((Q11,Q12), 𝜃 ) (2c,3c).
Case [inst-mono]: We have Q1 ⊢ 𝜃𝜏1 ≈ 𝜃𝜏 from the premise, and thus by Theorem B.25, Q ⊢ 𝜏1 ≈ 𝜏
(1a) with (Q, 𝜃 ) = (Q1, 𝜃 ) (1b) and also Q⊑ (Q1, 𝜃 ) (1c). We can now derive:

(Q1, 𝜃 ) [𝜏1]
= (Q1, 𝜃 ) [Q[𝜏1]] { (1c) }
= (Q1, 𝜃 ) [Q[𝜏]] { (1a),Theorem 2.1 }
= (Q1, 𝜃 ) [𝜏] { (1c) }
= (Q1, 𝜃 ) [𝜃 ′𝜏 ′] { (I ) }
= (Q1, 𝜃 ) [𝜏 ′] { (II ) }
And by Theorem 2.2, Q2 ⊢ 𝜏1 ≈ 𝜏 ′ with Q2⊑ (Q1, 𝜃 ). □

Case [inst-qantify]: We have Q1 | 𝜃Γ ⊢ 𝜃𝜎 ⊑ 𝜃𝜏 ⇝ es1. By induction, Q2 | Γ ⊨𝜎 ⊑ 𝜏 ′ ⇝ es2
with es1 = es2 and Q2⊑ (Q1, 𝜃 ). With the same fresh 𝛼 , we can conclude Q2 | Γ ⊨∀𝛼.𝜎 ⊑ 𝜏 ′ ⇝ es2.

B.4.2 Monomorphic Stability. To prove stability, we again first establish an extended lemma:

Lemma B.20. (Extended Monomorphic Stability)
IfQ1 | Γ ⊩ z ←: 𝜏 ′ ⇝ e1, and⊨ (𝜃,Q1) (I), then for any𝜏 ′⊑𝜏 (II) where𝜏 = 𝜃 ′𝜏 ′ such that𝜃 ′⊑ (Q1, 𝜃 )
(III), we have Q2 | 𝜃Γ ⊩ z ←: 𝜃𝜏 ⇝ e2 with Q1⊑ (𝜃,Q2).

Lemma B.21. (Monomorphic Stability over Derivations)
If Q1 | Γ ⊩ z ←: 𝜏 ⇝ e with ⊨ (𝜃,Q1), then we also have Q2 | 𝜃Γ ⊩ z ←: 𝜃𝜏 ⇝ e with Q1⊑ (𝜃,Q2).

Proof. This follows directly from Lemma B.20 with 𝜏 ′ = 𝜏 . □
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Proof. (Of Lemma B.20) We proceed by induction over the variable and instance rules. For the

instance rules, if Q1 | 𝜃Γ ⊢ 𝜃𝜎 ⊑ 𝜃𝜏 ⇝ es1, then also Q2 | Γ ⊢ 𝜎 ⊑ 𝜏 ′ ⇝ es2 with e1 = e2 and

Q2⊑ (𝜃,Q1).
Case [var-direct]: By the premise, z :𝜎 ∈ Γ (1a) and Q1 | Γ ⊩ 𝜎 ⊑ 𝜏 ′ ⇝ e1 (1b) with ⊨ (Q1, 𝜃 )
(1c). From (1a), we also have z :𝜃𝜎 ∈ 𝜃Γ. By induction on (1b,1c), we haveQ2 | 𝜃Γ ⊩ 𝜃𝜎 ⊑ 𝜃𝜏 ⇝ e2
with e1 = e2, and we can conclude Q2 | 𝜃Γ ⊩ z ←: 𝜃𝜏 ⇝ e2.

Case [var-qalify]: By the premise,m/z :𝜎 ∈ Γ (1a) andQ1 | Γ ⊩ 𝜎 ⊑ 𝜏 ′ ⇝ e1 (1b) with⊨ (Q1, 𝜃 )
(1c). From (1a), we also havem/z :𝜃𝜎 ∈ 𝜃Γ. By induction on (1b,1c), we haveQ2 | 𝜃Γ ⊩ 𝜃𝜎 ⊑ 𝜃𝜏 ⇝ e2
with e1 = e2, and we can conclude Q2 | 𝜃Γ ⊩ m/z ←: 𝜃𝜏 ′ ⇝ e2.

Case [inst-implicit]: We haveQ11 | Γ ⊢ 𝜌 ⊑ 𝜏 ′ ⇝ es1 (1a),Q12 | Γ ⊩ x ←: Q11 [𝜏1] ⇝ e1 (1b), and
⊨ (Q11,Q12, 𝜃 ) (1c). By induction on (1a,1c), Q21 | 𝜃Γ ⊢ 𝜃𝜌 ⊑ 𝜃𝜏 ⇝ es2 (2a) with es1 = es2 (2b) and
Q11 ⊑ (Q21, 𝜃 ) (2c).

By (2c), we also have (𝜏 ′ =)Q11 [𝜏1] ⊑ (Q21, 𝜃 ) [𝜏1] (= 𝜏) (II), (and thus (Q21, 𝜃 ) [𝜏1] = (Q21, 𝜃 ) [Q11 [𝜏1]]
where (Q21, 𝜃 ) ⊑ (Q21, 𝜃 ) (III)).

By induction on (1b,1c) we now have Q22 | 𝜃Γ ⊢ x←: 𝜃 ((Q21, 𝜃 ) [𝜏1]) ⇝ e2 (3a), with e1 = e2 (3b)
andQ12⊑ (𝜃,Q22) (3c). By composition,𝜃 ◦ (Q21, 𝜃 ) = (Q21, 𝜃 ), and by LemmaB.23, (Q21, 𝜃 ) = Q21 ◦ 𝜃 ,
and thus from (3a), Q22 | 𝜃Γ ⊢ x←: Q21 [𝜃𝜏1] ⇝ e2 (3d).

We can now derive from (2a,3d), (Q21,Q22) | 𝜃Γ ⊢ 𝜃 (?x:𝜏1→𝜌) ⊑ 𝜃𝜏 ⇝ e2 es2 with e1 es1 = e2 es2
(2b,3b), and (Q11,Q12) ⊑ ((Q21,Q22), 𝜃 ) (2c,3c).
Case [inst-mono]: We have Q1 ⊢ 𝜏1 ≈ 𝜏 ′ (1a) from the premise with ⊨ (Q1, 𝜃 ). We can now derive:

(Q1, 𝜃 ) [𝜃𝜏1]
= (Q1, 𝜃 ) [𝜏1] { 𝜃 ⊑ (Q1, 𝜃 ) }
= (Q1, 𝜃 ) [Q1 [𝜏1]] { Q1⊑ (Q1, 𝜃 ) }
= (Q1, 𝜃 ) [Q1 [𝜏 ′]] { (1a),Theorem 2.1 }
= (Q1, 𝜃 ) [𝜏 ′] { }
= (Q1, 𝜃 ) [𝜃 ′𝜏 ′] { (III ) }
= (Q1, 𝜃 ) [𝜏] { def . }
= (Q1, 𝜃 ) [𝜃𝜏] { 𝜃 ⊑ (Q1, 𝜃 ) }
And by Theorem 2.2, Q2 ⊢ 𝜃𝜏1 ≈ 𝜃𝜏 with Q2⊑ (Q1, 𝜃 ).
Case [inst-qantify]: We have from the premise Q1 | Γ ⊢ 𝜎 ⊑ 𝜏 ′ ⇝ es1 with ⊨ (𝜃,Q1). By in-

duction, Q2 | 𝜃Γ ⊨𝜃𝜎 ⊑ 𝜃𝜏 ⇝ es2 with es1 = es2 and Q1⊑ (Q2, 𝜃 ). With the same fresh 𝛼 , we can

derive Q2 | 𝜃Γ ⊢ 𝜃 (∀𝛼.𝜎) ⊑ 𝜃𝜏 ⇝ es2.
□

Now we are able to establish stability over variable resolution: if Q1 | Γ ⊢ z ←: 𝜏 ⇝ e with ⊨ (𝜃,Q1)
(I), then we also have Q2 | 𝜃Γ ⊢ z ←: 𝜃𝜏 ⇝ e with Q1⊑ (𝜃,Q2).

Proof. (Of Theorem 2.4) From the premise of [var], we have ∃!e (1a) with Q1 | Γ ⊢ z ←: 𝜏 ⇝ e (1b).
By Theorem B.21 (1a,1b), we also have Q2 | 𝜃Γ ⊢ z ←: 𝜃𝜏 ⇝ e (2a) with Q1⊑ (Q2, 𝜃 ) (2b) satisfying
∃e. Now, we also need to show there are no other derivations Q | 𝜃 ′Γ ⊢ z ←: 𝜃 ′𝜏 ⇝ e′ for some 𝜃 ′

with e ≠ e′. However, if such derivation exists, we also have by Lemma B.19, Q′ | Γ ⊢ z ←: 𝜏 ⇝ e′

– but that contradicts (1a,1b). □

B.4.3 Polymorphic Stability. We prove Theorem 2.5: If using the [ann-scheme] rule, we have

Q | Γ ⊢ t ←: ∀𝛼.𝜌 ⇝ e , and for any 𝜏 with ftv(𝜏) ⊆ ftv(Γ) (I), then also Q′ | Γ ⊢ t ←: [𝛼 :=𝜏]𝜌 ⇝ e .

Proof. (Of Theorem 2.5) By the premise, Q1 | Γ, 𝛼 ⊢ t ←: 𝜌 ⇝ e (1a), with (Q,∀𝛼.𝜌) = gen(Q1, Γ, 𝜌)
(1b) and fresh 𝛼 (1c). By (1b), we must have 𝛼 ̸∈ dom(Q1) (1d) and 𝛼 ̸∈ ftv(Q).
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We can now show that we can also derive Q′ | Γ ⊢ t ←: [𝛼 :=𝜏]𝜌 ⇝ e by exactly following the

derivation of (1a). The interesting cases are at the [var] leaf nodes. In the original derivation, we have
a leafQ3 | Γ, 𝛼, Γ′ ⊢ z ←: 𝜏 ⇝ e3 (2a) and in the new onewe needQ4 | Γ [𝛼 :=𝜏]Γ′ ⊢ z ←: [𝛼 :=𝜏]𝜏 ⇝ e3.
We must have 𝛼 ̸∈ dom(Q3) by (1d), and therefore ⊨ ( [𝛼 :=𝜏],Q3) (2b). We can now use Theorem 2.4

with (2a,2b), to derive Q4 | [𝛼 :=𝜏]Γ, 𝛼, Γ′ ⊢ z ←: [𝛼 :=𝜏]𝜏 ⇝ e3 (3a). Since the 𝛼 bindings are anony-

mous, and fresh 𝛼 , we have Q4 | Γ, [𝛼 :=𝜏]Γ′ ⊢ z ←: [𝛼 :=𝜏]𝜏 ⇝ e3 (3b).
(As an aside, this is the situation where using skolem constants are unstable: with skolems, we

may originally have a leaf node in type equivalence as ⊬ 𝜏 ′ ≈ 𝜏 [𝛼 :=c]. But if we later instantiate
the 𝛼 , we get _ ⊢ 𝜏 ′ ≈ [𝛼 :=𝜏] and now this may hold, which can lead to a new valid derivation, and

later on the ∃!e condition in [var] cannot be satisfied.) □

B.4.4 Supporting Lemmas.
Lemma B.22. (Prefix composition can be composed)
If ftv(Q1) ∩̸ dom(Q2), then (Q1,Q2) = Q1 ◦ Q2.

Lemma B.23.
If Q | 𝜃Γ ⊢ 𝜃𝜎 ⊑ 𝜃𝜏 ⇝ e, then ftv(Q) ∩̸ dom(𝜃 ), and by Lemma B.22, (Q, 𝜃 ) = Q ◦ 𝜃 .

Lemma B.24.
If Q | 𝜃Γ ⊢ 𝜃𝜎 ⊑ 𝜃𝜏 ⇝ e, then also Q′ | Γ ⊢ 𝜎 ⊑ 𝜏 ⇝ e′

We have [Leijen and Ye 2024,D.27)]:

Theorem B.25. (Type equivalent substitution)
If Q1 ⊢ Q[𝜏1] ≈ Q[𝜏2], then also Q2 ⊢ 𝜏1 ≈ 𝜏2 with (Q,Q1) = (Q,Q2).
and also [Leijen and Ye 2024,Lemma 3.9]:

Lemma B.26. (Extraction corresponds to composition of prefix solutions)
If ⊨Q and Q = Q′ · 𝛼=𝜏 , then ⟨Q⟩ = ⟨Q′⟩ ◦ [𝛼 :=𝜏].
where

Q = Q′ ∪ {𝛼=𝜏} 𝛼 ̸∈ ftv(Q′, 𝜏)
Q = Q′ · 𝛼=𝜏

extract

We can also simplify duplicate bindings [Leijen and Ye 2024,Theorem 2.7]:

Theorem B.27. (Simplify)
If Q′ ⊢ 𝜏1 ≈ 𝜏2, then Q ∪ {𝛼=𝜏1, 𝛼=𝜏2} = Q ∪ Q′ ∪ {𝛼=𝜏1}

C UNIFICATION AND PREFIX COMPOSITION
Leijen and Ye [2025] show how to implement prefix composition (compose) and type equivalence

(unify). Unfortunately, in the original publication their formulation is not technically complete

unless we assume prefixes are always well-formed.
The reason for this is rather subtle, and requires careful reasoning about equivalent substitu-

tions. We say two substitutions 𝜃1, 𝜃2 are equivalent whenever each is an instance of the other:

𝜃1⊑𝜃2 ∧ 𝜃2⊑𝜃1 (where 𝜃 ⊑𝜃 ′ iff 𝜃 ′ = 𝜃 ′′ ◦ 𝜃 for some 𝜃 ′′). This means that a substitution from a

type variable to another has no direction: [𝛼 :=𝛽] ≡ [𝛽 :=𝛼] since each is an instance of the other.

Since equality of prefixes is defined as equivalence of the minimal solutions, this is also the case

for prefixes, where {𝛼=𝛽} = {𝛽=𝛼}. For the solve algorithm, we need to define an ordering on such

type variable equalities in order to make it easier to correctly detect cycles. We assume there is

some lexical ordering of type variables such that for every type variable equality 𝛼=𝛽 , we have
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unify : (𝜏, 𝜏) → 𝜃

unify(𝛼, 𝛼) = id
unify(𝛼, 𝛽) | 𝛼 ≠ 𝛽 = if 𝛼 < 𝛽 then [𝛼 :=𝛽] else [𝛽 :=𝛼]
unify(𝛼, 𝜏) or (𝜏, 𝛼) | 𝛼 ̸∈ ftv(𝜏) = [𝛼 :=𝜏]
unify(𝜏1→𝜏2, 𝜏

′
1
→𝜏 ′

2
) = let 𝜃1 = unify(𝜏1, 𝜏 ′1); 𝜃2 = unify(𝜏2, 𝜏 ′2) in solve(𝜃1 ∪ 𝜃2)

unify(_, _) = fail()

solve : Q→ 𝜃

solve(∅) = id
solve(Q ⊎ {𝛼=𝜏}) = solve(Q) ◦ [𝛼 :=𝜏] if 𝛼 ̸∈ ftv(Q, 𝜏)
solve(Q ⊎ {𝛼=𝜏1, 𝛼=𝜏2}) = solve(Q ∪ Q′ ∪ {𝛼=𝜏1}) if Q′ = unify(𝜏1, 𝜏2) ∧ 𝛼 ̸∈ ftv(𝜏1, 𝜏2, rng(Q))
solve(_) = fail()

compose : (Q,Q) → 𝜃

compose(Q1,Q2) = solve(Q1 ∪ Q2)

Fig. 7. Unification and solving of prefixes (where we use ⊎ for disjoint union).

that 𝛼 < 𝛽 (and 𝛽=𝛼 is never present). Moreover, we also assume we never have 𝛼=𝛼 constraints.

We call such prefixes well formed.

We can easily ensure well-formed prefixes by adapting the unify algorithm [Leijen and Ye 2025]

to include one extra case for type variable equalities, which ensures the constraint 𝛼=𝛽 is always

in the correct order with 𝛼 < 𝛽 . The full rules for unify, solve, and compose are given in Figure 7.

Essentially the solve algorithm picks non-dependent bindings and composes them recursively,

while simplifying duplicate bindings away by unifying their types using the unify function. Note

that the extra case for variable equalities also ensures now that unify(𝜏1, 𝜏2) = unify(𝜏2, 𝜏1).
As an aside, the need for well-formed prefixes can be illustrated by using the ill-formed pre-

fix {𝛽=𝛼, 𝛼=𝛽, 𝛼=int}. In such case solve would fail while there actually exists a valid substi-

tution (i.e. solve is incomplete for ill-formed prefixes). In contrast, the well-formed equivalent

{𝛼=𝛽, 𝛼=𝛽, 𝛼=int} solves indeed to [𝛼 :=int, 𝛽 :=int].

C.1 Soundness

Lemma C.28. (Unification is Sound)
If ⟨Q⟩ = unify(𝜏1, 𝜏2), then Q ⊢ 𝜏1 ≈ 𝜏2.

Lemma C.29. (Solve is sound)
If 𝜃 = solve(Q) (with a well-formed Q), then ⊨Q and 𝜃 = ⟨Q⟩.
We establish soundness of unify and solve together, since they are mutually recursive.

Proof. (Of Lemma C.28 and Lemma C.29) By induction on the rules of unify and solve.
Case unify(𝛼, 𝛼): we have ⟨Q⟩ = id and thus Q = ∅. By [eq-id], we have ∅ ⊢ 𝛼 ≈ 𝛼 .

Case unify(𝛼, 𝛽) with 𝛼 ≠ 𝛽 : With 𝛼 < 𝛽 , we have Q = {𝛼=𝛽}, and by [eq-var] we have Q ⊢ 𝛼 ≈ 𝛽 .

For 𝛽 < 𝛼 , we have Q = {𝛽=𝛼}, and by [eq-var] and [eq-refl], we also have Q ⊢ 𝛽 ≈ 𝛼 .

Case unify(𝛼, 𝜏),𝛼 ̸∈ ftv(𝜏): we have Q = {𝛼=𝜏}, and by [eq-var] we have Q ⊢ 𝛼 ≈ 𝜏 .
Case unify(𝜏, 𝛼),𝛼 ̸∈ ftv(𝜏): we have Q = {𝛼=𝜏}, and by [eq-var] and [eq-refl], we have Q ⊢ 𝜏 ≈ 𝛼 .

Case unify(𝜏1→𝜏2, 𝜏
′
1
→𝜏 ′

2
): From the premises, we have Q1 = unify(𝜏1, 𝜏 ′1) (1a), Q2 = unify(𝜏2, 𝜏 ′2)

(1b), andQ = solve(Q1 ∪ Q2) (1c). By induction over (1a,1b), we also haveQ1 ⊢ 𝜏1 ≈ 𝜏 ′1 andQ2 ⊢ 𝜏2 ≈ 𝜏 ′2.
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Moreover, by induction on solve(Q1 ∪ Q2), we have ⊨ (Q1 ∪ Q2) with ⟨(Q1,Q2)⟩ = solve(Q1,Q2). We

can now use [eq-fun] to derive (Q1,Q2) ⊢ 𝜏1→𝜏2 ≈ 𝜏 ′1→𝜏 ′
2
.

Case unify(𝜏1, 𝜏2) = fail(): in this case the precondition is not satisfied.

For the rules of solve, we have:
Case solve(∅): we have trivially ⊨∅, and 𝜃 = id = ⟨∅⟩.
Case solve(Q ⊎ {𝛼=𝜏}) with 𝛼 ̸∈ ftv(Q) (1a): we have 𝜃 = solve(Q) ◦ [𝛼 :=𝜏] (1b). By induction on

solve(Q), we have solve(Q) = ⟨Q⟩ (2a) with ⊨Q (2b). By (1a,2b), we also have ⊨ (Q ∪ {𝛼=𝜏}). By
Theorem B.26, we have ⟨(Q ∪ {𝛼=𝜏})⟩ = ⟨Q⟩ ◦ [𝛼 :=𝜏] (3). Therefore

𝜃

= solve(Q) ◦ [𝛼 :=𝜏] { (1b) }
= ⟨Q⟩ ◦ [𝛼 :=𝜏] { (2a) }
= ⟨Q ∪ {𝛼=𝜏}⟩ { (3) }

Case solve(Q ⊎ {𝛼=𝜏1, 𝛼=𝜏2}): we have ⟨Q′⟩ = unify(𝜏1, 𝜏2) (1a) and 𝜃 = solve(Q ∪ Q′ ∪ {𝛼=𝜏1})
(1b). By induction on (1a), Q′ ⊢t1≈ 𝜏2 (2a), and by induction on (1b), ⊨ (Q ∪ Q′ ∪ {𝛼=𝜏1}) (2b) where
𝜃 = ⟨(Q ∪ Q′ ∪ {𝛼=𝜏1})⟩ (2c). From Theorem B.27 and (2a), we also have (Q ∪ {𝛼=𝜏1} ∪ {𝛼=𝜏2}) =
(Q ∪ Q′ ∪ {𝛼=𝜏1}), and thus 𝜃 = ⟨(Q ∪ {𝛼=𝜏1} ∪ {𝛼=𝜏2})⟩ (2c).
Case solve(Q) = fail(): in this case the precondition is not satisfied.

□

C.2 Completeness

Lemma C.30. (Unify is complete)
If Q ⊢ 𝜏1 ≈ 𝜏2, then ⟨Q⟩ = unify(𝜏1, 𝜏2).

Lemma C.31. (Solve is complete)
If ⊨Q (with a well-formed Q), then 𝜃 = solve(Q) with 𝜃 = ⟨Q⟩.
Again, we establish completeness of unify and solve together since they are mutually recursive. For

clarity, we split the proofs and assume completeness of the other in each proof.

Proof. (Of Lemma C.30) We proceed by induction over the derivation (assuming solve is complete):

Case [eq-id]: We have ∅ ⊢ 𝜏1 ≈ 𝜏2 with 𝜏1 = 𝜏2. If we only have function arrows and variables,

we can repeatedly apply [eq-fun] (with Q1 = Q2 = ∅), ending in ∅ ⊢ 𝛼 ≈ 𝛼 . In that case we have

unify(𝛼, 𝛼) = id (with id = ⟨∅⟩). For each [eq-fun] we can apply the unify(𝜏1→𝜏2, 𝜏3→𝜏4) rules
where solve(∅,∅) = id again.

Case [eq-var]: We have {𝛼=𝜏} ⊢ 𝛼 ≈ 𝜏 (1a) with 𝛼 ̸∈ ftv(𝜏) (1b). Suppose 𝜏 = 𝛽 (with 𝛼 ≠ 𝛽 (1b)).

If 𝛼 < 𝛽 , unify(𝛼, 𝛽) = [𝛼 :=𝛽] = ⟨{𝛼=𝛽}⟩. If 𝛽 < 𝛼 , we have unify(𝛼, 𝛽) = [𝛽 :=𝛼] but that equals
also 𝛽 :=𝛼 and = ⟨{𝛼=𝛽}⟩. Otherwise, 𝜏 ≠ 𝛽 , and by (1b), we have unify(𝛼, 𝜏) = [𝛼 :=𝜏] = ⟨{𝛼=𝜏}⟩.
Case [eq-refl]: We have Q ⊢ 𝜏2 ≈ 𝜏1 by the premise, and by induction unify(𝜏2, 𝜏1) = ⟨Q⟩. We have

unify(𝜏2, 𝜏1) = unify(𝜏1, 𝜏2), and therefore we also have ⟨Q⟩ = unify(𝜏1, 𝜏2).
Case [eq-fun]:We haveQ1 ⊢ 𝜏1 ≈ 𝜏3 (1a) andQ2 ⊢ 𝜏2 ≈ 𝜏4 (1b) by the premises. The unify(𝜏1→𝜏2, 𝜏3→𝜏4)
case applies, and we have by induction over (1a,1b), ⟨Q1⟩ = unify(𝜏1, 𝜏3) and ⟨Q2⟩ = unify(𝜏2, 𝜏4),
and by Lemma C.31, ⟨(Q1,Q2)⟩ = solve(Q1,Q2).
Case If no derivation rules apply, we also have that none of the previous unify cases apply, and we

have unify(𝜏1, 𝜏2) = fail().
□
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For showing completeness of solve, we also need to establish a decreasing measure for the induction.

For well-formed prefixes, we can define a stable degree of a prefix (which decreases in each

recursive step). First we define the dependencies of 𝛼 with respect to a Q as:

• 𝛽 ∈ deps(𝛼) if 𝛼=𝜏 ∈ Q and 𝛽 ∈ ftv(𝜏).
• 𝛾 ∈ deps(𝛼) if 𝛽 ∈ deps(𝛼) and 𝛾 ∈ deps(𝛽) (transitive closure).
We say𝛼 is independent of 𝛽 ,𝛼 ≺ 𝛽 , iff𝛼 ̸∈ deps(𝛽) (where we have both𝛼 ≺ 𝛽 and 𝛽 ≺ 𝛼 for indepe-

dent type variables). The degree of Q is now the number of occurrences of distinct type variables in

the domain ordered by ≺ (in some order). For example, degree({𝛽=𝛾, 𝛼=int→𝛽,𝛾=int, 𝛼=𝛽→int})
= (2, 1, 1) (for (𝛼, 𝛽,𝛾)). We have that if 𝛼 ̸∈ codom(Q), then ∀𝛽 ∈ dom(Q). 𝛼 ≺ 𝛽 (I).

Proof. (Of Lemma C.31) We proceed by induction on the degree and shape of Q:
Case Q = ∅: in that case solve(∅) = id applies where id = ⟨∅⟩.
Otherwise Q ≠ ∅. Suppose we have that for all 𝛼 ∈ dom(Q) that 𝛼 ∈ codom(Q).

Since all domain variables appear in the co-domain, by the pigeon hole principle such prefix must

contain a cycle, for example, {𝛼=int, 𝛽=𝛼→𝛾, 𝛾=𝛽→𝛽}. Since we order type variable equalities
in a well-formed prefix, it is not possible for such cycle to consist of only type variable equalities

(like {𝛼=𝛽, 𝛽=𝛼}). Therefore, in such cycle there must be some 𝛼=𝜏 with 𝜏 being a larger type (e.g.

𝜏1→𝜏2). However, that makes it no longer possible to create an idempotent substitution and ⊭Q,
contradicting the assumption.

Therefore, we know there must be at least some 𝛼 ∈ dom(Q) where 𝛼 ̸∈ codom(Q) (1). We

proceed now by case analysis:

Case Q = Q′ ⊎ {𝛼=𝜏} with 𝛼 ̸∈ dom(Q′). In that case, with (1) we have 𝛼 ̸∈ ftv(Q′, 𝜏) (2) and the

second case of solve applies. By induction on the decreasing degree, ⟨Q′⟩ = solve(Q′) (3). By (2)

and [extract], we have Q = Q′ · {𝛼=𝜏} and by Lemma B.26, ⟨Q⟩ = ⟨Q′⟩ ◦ [𝛼 :=𝜏]. With (3) we now

have ⟨Q⟩ = solve(Q′) ◦ [𝛼 :=𝜏].
Case Otherwise, we must have Q = Q′ ⊎ {𝛼=𝜏1, 𝛼=𝜏2}. With (1), we have 𝛼 ̸∈ ftv(𝜏1, 𝜏2, rng(Q))
(1a), and the third case of solve applies. Since ⊨Q, by simplification (Theorem B.27), we have

Q′ ∪ {𝛼=𝜏1, 𝛼=𝜏2} = Q′ ∪ Q′′ ∪ {𝛼=𝜏1} (2a), with Q′′ ⊢ 𝜏1 ≈ 𝜏2 (2b).
From the completeness of unify, and (2b) we have ⟨Q′′⟩ = unify(𝜏1, 𝜏2) (3). By (2b)ftv(Q′′) ⊆ ftv(𝜏1, 𝜏2),

and thus by (1a), we have one less𝛼 ∈ dom(Q′ ∪ Q′′ ∪ {𝛼=𝜏1}). Moreover, since𝛼 ̸∈ codom(Q′ ∪ Q′′)
and (I), the degree decreases, and by induction ⟨Q⟩ = solve(Q′ ∪ Q′′ ∪ {𝛼=𝜏1}).
Since this covers all forms of Q with ⊨Q, the fail case never applies. □
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