Syntactic Implicit Parameters with Static Overloading
Microsoft Research Technical Report, MSR-TR-2025-56, 2026-01-05 (v3)

DAAN LEIJEN, Microsoft Research, USA
TIM WHITING, Brigham Young University, USA

Implicits provide a powerful mechanism for term-based inference, where “obvious” arguments can be omitted
and inferred by the type checker. This can greatly reduce the programmer’s burden and improve the clarity of
expression. As such, many languages support a form of implicits in practice, such as type classes in Haskell or
Lean, or implicits in Scala. Unfortunately, many of these systems have become increasingly complex and often
require significant implementation effort.

In this paper we take a fresh look at the design space with an arguably simpler approach based on two
orthogonal features: syntactic implicit parameters and static overloading. Each of these features is limited in
scope and has a straightforward implementation. Taken together though, they are surprisingly expressive and
we believe they can cover many of the common usage scenarios of implicits in practice.

We formalize our system and provide various examples, and prove our elaboration is coherent. We also
give an inference algorithm and show it is sound and complete. Our system is fully implemented in the Koka
language, and we describe our experience with these features at scale, and discuss further extensions.

1 INTRODUCTION

Implicits provide a powerful mechanism for term-based inference, where “obvious” terms can be
omitted and inferred by the type checker. This can greatly reduce the programmers burden and
improve the clarity of expression. For example, without implicits, a programmer may have to write
show_list show_int [1] to show a list of integers, while a Haskell programmer instead can simply
write show [11, where the correct type class dictionary for showing lists of integers is provided
implicitly.

As such, many languages support a form of implicits in practice, such as type classes in Haskell
or Lean, implicits in Scala, or in systems like Rocq and Agda where the language can provide
obvious proof terms [Devriese and Piessens 2011; Odersky et al. 2017; Selsam et al. 2020; Sozeau
and Oury 2008; P. Wadler and Blott 1989]. However, the design of many such systems has become
increasingly complex and difficult to implement, and it is not always clear how the different
approaches in all these systems relate to each other.

In this paper we take a fresh look at the design space with an arguably simpler approach based on
two orthogonal features: syntactic implicit parameters and static overloading. Each of these features
is limited in scope and has a straightforward implementation. Taken together though, they are
surprisingly expressive and we believe they can cover many of the common usage scenarios of
implicits in practice. The first idea is to treat implicit parameters syntactically as a form of dynamic
binding:

Syntactic implicit parameters are parameter names that are supplied literally as arguments at the
call site.

For example, we can define a function with an implicit parameter base as:

fun show-int(x : int, ?base : int) : string
if x < base
then show-digit(x)
else show-int(x / base) ++ show-digit(x % base)
This function takes an implicit parameter base, denoted by the question mark, which can be used
inside the function as any regular parameter (like x < base). When calling show-int though, we do

not have to provide the ?base parameter explicitly and can leave it out: at each call site the name
base is syntactically used as the argument, and resolved in the scope of the call site. For example,

val base = 10 in show-int (42)
elaborates to
val base = 10 in show-int (42,base)

which evaluates to "42". We see this elaboration as well in the show-int function itself where
the expression show-int (x % base) elaborates to show-int (x%base,base) where it passes the implicit
parameter base again to the recursive call.

This view of implicit parameters as a form of dynamic binding (but with a static declaration!) is
quite straightforward and seems almost too simple to be of much use. However, it turns out to be
quite expressive in combination with static overloading. This brings us to the second idea, where
we define static overloading purely as a form of automatic qualification:

Static overloading elaborates plain names to fully qualified names based on the local type context.

The essence of this idea was first described by Leijen and Ye [2025] as an application of type
inference under a prefix. First, we allow functions to be declared with qualified names, for example:

fun int/show(x : int) : string
show-int (x,10)

fun float/show(f : float64) : string
show-float (f)

(where int/ and float/ can be arbitrary “module” names). Of course, such qualified names already
occur naturally as well in most languages when different modules are imported that export the
same (unqualified) name. We now allow the programmer to write an unqualified show and have it
be resolved to either definition based on the local type context. For example show (1) is elaborated
to the fully qualified int/show(1) based on the (static) type of the argument. This is already quite
convenient in practice, and is again a simple mechanism that is straightforward to implement —
for example the C language implements this form of static overloading for many common math
operations. However, static overloading by itself is quite limited as it does not allow for abstraction.
For example, consider a show function for lists:

fun list/show(xs : list<a>) : string

match xs
Cons (x,xx) -> show(x) ++ "::" ++ list/show(xx) // rejected
Nil o> ey

This is rejected since we cannot at this point statically resolve which show function is required for
the show(x) expression (as the type of the list elements is polymorphic). Here is where we can now
use our new syntactic implicit parameters to delay resolving which particular show to use:

fun list/show(xs : list<a>, ?show : a -> string) : string

match xs
Cons (x,xx) => show(x) ++ "::" ++ list/show(xx)
Nil > ey

Just like a Haskell programmer, we can now write show([1]1) to show a list of integers.

o Static overloading first elaborates the plain show to list/show([1]), based on the type list<int> of
the argument.

e Subsequently, the ?show implicit parameter is now supplied as list/show([1],show).

e Static overloading kicks in again and further disambiguates this (implicit) show to int/show (again
based on the local type context), which results in the final elaboration as list/show([1], int/show).

As an aside, in the recursive call in the 1ist/show function, the implicit parameter is also supplied as

list/show(xx,show); this does not need further disambiguation though as it is already bound locally.

Note also that an expression like show([1) is still rejected as the element type cannot be statically
determined (similar to unresolved overloading in Haskell). Here we either need to give an explicit
type signature, or provide the implicit parameter ourselves (as show([1,int/show) for example).

As we could see, the resolving of syntactic overloads and syntactic implicit parameters is applied
recursively. For example, we can show lists of lists of integers as show([[1],[2]1), which elaborates
to list/show([[1],[2]1, fn(xs) list/show(xs,int/show)) (where the implicit 1ist/show argument is
automatically eta-expanded in order to supply its own implicit argument).

Even though syntactic implicits and static overloading by themselves are straightforward features,
this recursive interaction between them makes them surprisingly expressive. We believe that they
can handle many situations that are usually addressed using more elaborate language extensions.
Also, our new features both are source-to-source elaborations and a programmer can always use
unambiguous fully qualified names, or provide implicit parameters explicitly. As a pure elaboration,
there are no new semantic features (like an “instance”), or special “implicit scopes” etc. — it is all
just names, functions, and parameters. We make the following contributions:

e We formalize syntactic implicit parameters and static overloading precisely (Section 2). The type
rules are specified using inference under prefix [Leijen and Ye 2025] to give unambiguous type
contexts which are necessary for static overloading. Our rules go beyond the original example
of static overloading by Leijen and Ye [2025] in that we study in particular its interaction with
syntactic implicit parameters and how we maintain coherence and stability (Section 2.10).

e We show that even though our two ideas look innocent enough, together they make general
type checking undecidable where we can encode a Turing machine on the type level which is
executed by the type checker (Section 3). We give an improved set of “finite” rules that recover
decidablity at the price of giving up completeness. We show though that our new finite rules are
still sound with respect to our original system.

e We give an inference algorithm for the finite rules (Section 3.4) and show it is sound and complete.
By specifying the algorithm under an effect handler we can modularly optimize the algorithm to
not explore unnecessary branches in the search space.

e Our system is fully implemented in the Koka language [Leijen 2019 2021] and we discuss various
implementation aspects of using these features at scale (Section 4).

e We also discuss the extension to phantom implicits where the compiler can resolve special
implicit parameters in other ways than by name. For example ?kk-1line:int may provide the line
number at the call site. Taking this further, we show how divergence constraints in the Koka
language [Leijen 2014] can be handled by phantom implicits instead (Section 4.3).

Proofs and appendices can be found in the supplementary material.

2 FORMALIZATION

We start with formalizing both syntactic implicits and static overloading within a single calculus.

2.1 Syntax

Figure 1 gives the syntax of our core calculus that has qualified names. A plain name is written
as x while a fully qualified name is written as z (or m for modules when needed). We use the hat
operator to unqualify a name. For example, if a qualified name z has the form x; /.. ./x,/x, then
z = x. All bindings can be specified with a qualified name z, and we can write Afoo/x. foo/x + 1
for example.

For simplicity, our calculus does not make implicit parameters first-class and we can only bind
them at let bindings. A let binding binds a term t which can start with a sequence of implicit
parameter bindings, followed by a regular expression e. For example,

let mod/plus = A?mod. Ax. Ay. (x + y) % mod
in (let mod = 8 in mod/plus 5 6)

zZ,m = m/x (qualified name) T ou= o« (type variable)

| x (plain name) | 7—71 (function arrow)
| int]|bool|... (type constants)
e =z (variable)
| ee (application) p u= TP (implicit arrow)
| Az.e (function) | (mono type)
| letz = tine (let binding) o == Yao|p (type scheme))
t = A?zt (implicit param) I' @= z:01,..,2,:0, (type env)
| e (expression) Q u= {a1=ny,...,a,=1n} (prefix)
mix = x (unqualify)

Fig. 1. Syntax of types and terms.

binds an implicit parameter mod (and evaluates to 3).

Expressions have a monomorphic type 7 which are either type variables «, or function types
71— 72. We also use types like int or bool in examples. Let-bound values are assigned a polymorphic
type scheme o. Since let-bound values can have implicit parameters, we extend the standard type
schemes with implicit parameter types p. An implicit parameter type ?x:t — p denotes a function
type that takes an implicit parameter x of type 7. The type of an implicit parameter binds stronger
than the function arrow, so ?x:7 — 7 should be read as (?x:7) — 7. A type scheme is generally of
the form Va. ?x1:7; — ... ?x,:7, — 7 and at every variable occurrence we fully instantiate the type
variables @ and supply all implicit parameters x; to x;.

2.2 Type Inference under a Prefix

For the purpose of static overloading, we formulate our rules as type rules under a prefix Q [Leijen
and Ye 2025]. This allows us to specify deterministic type rules with only principal derivations.
For example, consider Ax. show x — we should reject this as it is ambiguous which show function
to elaborate to. However, when using standard Hindley-Milner rules one is allowed to use more
specific types in derivations, and for example assume type int or bool for the parameter which makes
it well-typed. With type inference under a prefix we avoid this issue. Moreover, as shown by Leijen
and Ye [2025], specifying the type rules under a prefix also allows us to “read off” the inference
algorithm from the rules directly, while still being close to the clarity of standard Hindley-Milner
style type rules. We only briefly describe the essential details of prefixes and refer the interested
reader to the original work.

A prefix Q is essentially just a set of type variable bounds a=t. In general a prefix is a collection
of such bounds and can be inconsistent or have duplicate bindings, like {@¢=f— int, a=int—y} or
{a=bool, a=int}. We write 0 F Q if a substitution 0 is a solution to Q that satisfies all constraints
(with V(a=1) € Q. 8a = 07). If there exists any solution, we call Q consistent and write just F Q.

It turns out for any consistent Q there is also a least (or best) solution which we call the
prefix solution written as (Q). We often write Q[7] as a shorthand for applying the prefix so-
lution as {(Q)(r). Finally, two prefixes are equivalent whenever their solution substitutions are
equivalent where Q1 = O, & (Q1) = (Q2). For example, we have we have {a=f—int, a=y—y} =
{y=int, f=y, a=y—y} = {p=int, y=int, a=int—int}. Similar to a-renaming, we can always substi-
tute equivalent prefixes in type derivations.

Qrr=1 a ¢ fv(r)
O R | —————EQ-VAR ——— EQ-ID
out in in {a=t}+r a=~1 JrT=T
Ornrn QrFrn=nhy Or mp=n
EQ-FUN ———EQ-REFL
OL.LQ@brn—on = 3oy Or =~

Fig. 2. Type equivalence.

2.3 Type Equivalence under a Prefix

A consistent union is written as Qy, O, and denotes the union Q; U Q, where Q; U Q, is solvable.
We use this in the conclusion of derivation rules to concisely denote that we can only derive
consistent prefixes. This helps us write nice declarative type rules while avoiding having to thread
a substitution linearly through each sub-derivation. We see this when defining type equivalence as
shown in Figure 2.

Arule QF 1 = 1y states that a type 77 is equal to a type 7, under a (result) prefix Q. In particular,
in the rule [EQ-run] we can easily compose the prefixes Q; and Q, from each sub derivation. These
definitions are sound and complete [Leijen and Ye 2024]:

Theorem 2.1. (Type equivalence under a prefix is sound)
If Q+ 71 = 15 then Q[11] = Q[r].

Theorem 2.2. (Type equivalence under prefix is complete)
If 07, = 01y, then there exists a Q such that Q+ 7; = 75 and QL 6.

Soundness states that if we can derive that 7; and 7, are equivalent under a prefix Q, then the types
are syntactically equal under the prefix solution: Q[7;] = Q[r2]. Completeness shows that if there
exists any substitution 6 that makes two types equal, then we can also derive that these types are
equivalent under a prefix Q, and that this prefix is also the “best” (most-general) solution: (Q) C6.

The prefix Q gives us an elegant way to declaratively specify type rules where we are assured that
we can still implement this efficiently in a compiler using a linear substitution. In the case of the type
equivalence rules, this corresponds directly to the usual unification algorithm [Pierce [2002],§22.4.5].

2.4 Instantiation
For most of the type checking rules, we are using essentially the bidirectional inference rules under
a prefix as given by Leijen and Ye [2025]. For now, we look in particular at the checking rules for
resolving variables:
z:zoell Q|ITroE7T ~we
QIT IF z%7 ~ze

VAR-DIRECT
Here the typing judgement Q | T |- z % 7 ~» z e states that a variable z can be checked (%) to have
type 7 in a type environment I' under the (result) prefix Q, and returning an elaborated expression
z e (where e is a list of potentially instantiated implicit parameters). In particular, we must have
z:0 € I', and we must be able to instantiate the type scheme o to 7, writtenas Q [T+ 0 E 7 ~e.
Figure 3 shows the rules for type scheme instantiation. The rule [iNsT-MoNO] says that two
mono types need to be equivalent Q + 7; = 73, i.e. they need to be unifiable under Q. The rule
[insT-QuANTIFY] is also standard and instantiates a quantifier using a fresh type variable a.

Q|FI—O'ET'V->E Q]|ri—pETz ~e Qzll“ll-xTQl[rl] ~ e
LT T l — INST-IMPLICIT
out in in in out Ql: QZ | Tk ?x:r1 —p Cr, ~ee
Qr =1 QI|TFoC1 ~e fresha
INST-MONO — INST-QUANTIFY
QITFH T ~>- Q|T+VaocCr ~e
Fig. 3. Type scheme instantiation.
QITIFzTr ~ e z:zoel Q|T+ocE7T ~e
U T 71 l — VAR-DIRECT
out in in in out Q|I‘ IF z5717 ~ze

z¢dom(I') m/z:0€l Q|T'+oC 1 ~~e
QIT Ik z%7 ~m/ze

VAR-QUALIFY

Fig. 4. Variable rules.

2.5 Syntactic Implicit Parameters

For standard Hindley-Milner type schemes the previous rules suffice, but in our case we added one
more rule: the [insT-mmpriciT| rule instantiates an implicit parameter type ?x:7; — p. In this case
we can use the type rule for variables (recursively) to resolve the literal name x as:

Q2|I' I+ XTQ][Tl] e

This rule concisely captures the essence of syntactic implicit parameters: we resolve the name of an
implicit parameter ?x (recursively) in the local scopeT.

Note that we first instantiate O; | I' p E 7 which returns the prefix Q;, and then propagate this
information to check x under Qs [71]. This is important as the regular parameters often give rise to
further type constraints that can help to resolve the implicit parameters unambiguously. We will
show some examples after discussing static overloading.

Furthermore, each resolved implicit parameter is elaborated as e and added to the list of implicit
parameters that need to be applied (as e e). If we look at the example at the start of this section, we

can derive for the mod/plus expression:
I+ int = int

TrTxT mod :int € T | T+ intCint ~ -
F|T+HITET ~>- | T IF mod = @[int] ~ mod
mod/plus: ?mod:int—t € T @ | T+ ?mod:int—1 C 7 ~> mod

| T Ik mod/plus = © ~» mod/plus mod

where we use 7 = int—int—intand I' = {mod/plus: ?mod:int — 7, mod: int}. As we can see, the
variable mod/plus is now elaborated to mod/plus mod where the implicit parameter is passed to
the mod/plus function.

2.6 Static Overloading as Qualification

For our notion of static overloading we require another variable rule. In particular, when we have a
variable occurrence z that is not occurring exactly in the type environment I', we can attempt to
find a qualified name m/z that matches the required type. Figure 4 shows the new variable rule

[var-quaLiry| (together with the earlier [var-pirect] rule):

z¢dom(T) m/z:oe€l Q|T'+oC 71 ~e
QIT IF z%7 ~m/ze

VAR-QUALIFY

The first pre-condition states that z cannot occur directly in T, such that applying [var-pirect]
or [var-QuaLIFY]| is deterministic. We can satisfy the other conditions if there exists an m with
m/z: o in I' such that we can instantiate o to the required type 7, giving an elaborated expression
m/z e. Note that we keep the [insT-mpriciT] rule (in Figure 3) unchanged such that any implicit
parameters can now also be resolved to a qualified name with the [var-guariry] rule.

However, the rule as stated introduces incoherence: there might be multiple m with m/z in I that
can be instantiated to the required type, each elaborating to a different expression. Which one to
choose? In our case we eliminate incoherence by construction. The main type inference rule for
variables requires a unique elaboration:

dle. Q|T IF z57 ~e
Q|Trz1

VAR

where we use the notation 3'e for “there exists a unique e”.
These rules concisely capture the essence of static overloading: we can elaborate a name z to a fully

qualified name m/z as long as the solution is unique for a given type context t.

Although each of these rules is quite simple, the recursive nature of the rules [var-guariry] and
[insT-mpLIcIT] make it quite expressive. Note in particular that the elaboration from z to m/z may
include further implicit parameters e that were resolved recursively. Consider for example the
following type environment I':

int/show : int — string, list/show : Ya. ?show:(a — string) — list @ — string

When we type check the expression show [1,2] we can proceed as:

{a=int} v list a—string =~ list int— string int/show € I @ | T v int—string C int—string ~ -

{a=int} | T v list a—string C list int—string ~ - & |T I+ show T {a=int}[a—string] ~ int/show

{a=int} | T + ?show:(a—string) — list & — string C list int — string ~> int/show

list/show : ?show:(a—>string) — list & — string €T
{a=int} | T + Va. ?show:(a—string) — list « — string T list int — string ~ int/show

A {a=int} | T I+ show % list int — string ~ list/show int/show
VAR

{a=int} | T + show 7 list int — string

where the elaborated list/show is passed its implicit parameter as int/show (which is itself elaborated
from ?show). Here we also see the importance of applying Q; (as Q;[71]) in the [insT-mmpLICIT] rule:
in the above derivation this propagates the element type « as {a=int}|a—string| = int—string
to resolve the implicit ?show parameter recursively in the [var-quaLiry| rule — where it can now
be uniquely elaborated to int/show. As another example, the expression show [[1], [2]] from the
introduction is recursively elaborated to list/show (list/show int/show) [[1], [2]]. As an aside, we
do not need eta-expansion here since in our calculus all implicit parameters come first and thus we
can use partial applications instead.

2.7 Implicit Parameter Binding

Before we give the full type inference rules, we first consider the inference () rule for implicit

bindings:

Q|T,z:ar t7p fresha
Q|TF A?2zt7 ?22:a— p

IMPLICIT

Just like a regular lambda binding, the name z is added to the environment I" and is in scope when
checking the body t. Following the rules for type inference under a prefix, we assign an abstract
type a to z which can be bound in the result prefix Q (if so required).

Even though we can bind an implicit parameter with a qualified name z, we still always use a
unqualified plain name Z in the type: at each call site we always look for the unqualified name. This
is important when using multiple implicit parameters of the same name. Consider for example a
show function for tuples:

let tuple/show = A?fst/show. A?snd/show. Ax. fst/show (fst x) # ”,” 4 snd/show (snd x)
in show (1, True)

where tuple/show has type Va . ?show:(a — string) — ?show:(f — string) — (a, f) — string. Here
we use qualified implicit parameters to distinguish showing each component of the tuple in the
body, while at a call site we still resolve each one individually as a plain show.

The show function for tuples nicely illustrates how static overloading and implicit parameters
can really help in practice: consider an expression like show [([1], True)] which is automatically
elaborated to list/show (tuple/show (list/show int/show) bool/show) [([1], True)] — significantly
reducing the programmer’s burden.

2.8 Full Type Rules

Figure 5 gives the full type rules under a prefix. These are based mostly on the rules given by Leijen
and Ye [2025] and we refer to that work for in-depth discussion on the design. For our purposes,
the variable and instantiation rules are new, and we added the [wmpriciT] rule. For clarity, the rules
are stated without rewriting to an elaborated expression, but sometimes we make this explicit. In
particular, the full [var] rule would be:

Ale. QIT IF z%57 ~e

Q|I|Trz%1 ~e

VAR

where it elaborates z to e. For all other rules the elaboration is trivial as only the [var] rule qualifies
names and adds implicit parameters — all other expressions just propagate the elaboration of their
components in the obvious way. For example, the full rule for [run] with elaboration is:

Q|T,z:ti+F eT 1y ~é

FUN
Q|Tr AzeeT 1y > 15 ~Aze

An interesting aspect is that almost all rules are checking rules (%) with just three exceptions
for [inF], [cEN], and [1mpriciT] Which are inference rules (7). In the [rET] rule, the type of the
binding x must be inferred and we use [Gen] to infer a most general type, which uses in turn [inF]
and [1vmericiT] to infer a mono type. The [inF] rule infers a type by switching to checking if the
expression can be typed with a fresh monotype .

The [arr-arc] rule types applications where first the function expression is checked as a—17, and
then the argument is checked where we propagate the discovered type information as Q; [e]. This
order does not always work though as often we apply an overloaded variable and we need to first
check the argument expression to discover enough type information to disambiguate the variable.
Consider for example show [1]. This is where the [app-var] rule comes in. This rule is always
preferred over [arr-arG] when it can apply, and it matches syntactically over variable applications
zep...ep

QITrest|, |Q|Tre |, |Q|TrLtTp
U Y R l

l
out in in in out in in out out in in out out in in out

O |Then t 7 0| with EQ
T

We use T ¢ for checking type 7, and 7 7 for infering type 7.

Ale. QT IF 257 ~e Qi|TreTry Qb 11 ~1
— VAR — ANN
Q|Trz5T QL.Q|TF (e:m) T2
QIr,Z:Tll— B?TZ Q1|1"l— AZ.@?C{l—)az Qzl—al—mczza freshal,az
FUN IFUN
Q|TF Azet 11 > 1 0,Q |TF AzeeT a
Q|TreTa fresha Q| z:ar tTp fresha
INF - IMPLICIT
QITre7a QITF Azt7 2Z:a—>p
Qi Thkewt?o QI zioketr QITrt7p (Qo)=gen(QT,p)
— LET — GEN
O, |Trletz=tine~r Q|Tkgnt~o

O |ITreTa—-t Q|+ e T Qla] fresha
Q.Q|THeae"r

APP-ARG

least iwith0 <i<n freshapy,..., a0,

QlTre n ... QITre r; Q=00

QITrzT Q] —...> Q] Do — ... oan—7
Q1 ITF en1 T Qolaia] ... Ol TF e Qolan]

APP-VAR
Q(),Ql,...,Qn | I'ze ...ej...ep° T
gen : (Q,T,0) = (Q,0)
gen(Q-a=r1, I, p) = gen(Q, T, [a:=t]p) if a¢ ftv(Q,T)
gen(Q, T, o) = gen(Q, T, Ya.o) if a ¢ ftv(Q,T) A a € ftv(o)
gen(Q, T, o) = (Q,0) if (dom(Q) U ftv(o)) C ftv(T)

Fig. 5. Syntax-directed bidirectional type checking rules for static overloading with syntactic implicit param-
eters. We always prefer [APP-VAR] over [APP-ARGC] when applicable.

The [app-var] rule looks a bit intimidating but essentially it just tries to infer the least amount of
arguments i such that we can disambiguate z, and then propagates the remaining argument types
into the remaining argument expressions. This strategy is straightforward to implement: first try
to disambiguate z (without any inference of the arguments) and keep inferring one argument at a
time until z can be disambiguated, and eventually use checking rules for the remaining arguments.
Even though the rule has the drawback of a left-to-right bias, it seems to work well in practice with
the Koka language (but as remarked by Leijen and Ye [2025] further refinements are possible).

These type rules are all fully determined by the syntax (and the shape of the propagated type
in [run]/[1Fun]). Moreover, the rules are carefully constructed such that the (result) prefix Q only
contains constraints induced by the structure of the program and types: at all leaf nodes in the
derivation Q is empty, except for [EQ-var]. As a consequence, any well-typed program has only a

single possible derivation:

Theorem 2.3. (Principal type derivations)
For any derivations Q | T kgey e 70 ~>ep and Q' | T ke € T 07~ €2, we have Q= Q’, 0 =0/,
and e; = e,.

See the proof in Appendix B.3 of the supplement. This theorem is important as it also implies that
the elaboration is deterministic with coherent semantics.

2.9 Scope Based Disambiguation

The current rules do not take the scope of a qualified name into account. Sometimes that can be
inconvenient as we would like to be able to override definitions in an outer scope. For example,
fun secret-list()
fun myint/show(i:int) = "x"
show([1,2]1)
where we would like to elaborate to 1ist/show([1,2],myint/show). However, with the current rules
this example would be rejected as both int/show and myint/show match. In such cases though, one
might expect instead to prefer the definition that originated from an inner scope.

We can formalize this by changing the [var] rule to instead prefer a minimal solution instead
of unique solution. Suppose we annotate every variable z with its scope depth i as z'. The global
scope depth is 0 and increments inside every let bound definition. We write e < ¢’ if an elaborated
expression e is either equal to e’, or resolved to an inner scope relative to e’. We define this as:

ziel...en<z’je;...el’C =i>jV(z=Z Neg<Xef A... Aep < e)
(where we note that if z = z’ then n = k for elaborated expressions). Let’s write the condition on

the current [var] as P(Q,e) = Q|T IF z7 ¢ ~>e. We can then then rephrase [var] as:

Jle. P(Q,e) A(VQe'.P(Q',¢) = ex¢)
Q|Trz=T

VAR-SCOPE

Our Koka implementation uses this rule instead of [var] to prioritize qualified definitions in an
inner scope.

2.10 Coherence and Stability

Schrijvers et al. [2019] present the Cochis calculus of coherent implicits. In this paper they argue
that systems that support implicit programming should be coherent and stable.

Coherence is defined as a valid program always having exactly one meaning. Our system is
coherent: this follows from the [var] rule as it requires a unique elaboration in combination with
Theorem 2.3 which guarantees unique derivations. As an example of coherence, Schrijvers et al
present a classic example from Haskell as show (read ”3”). Such expressions are rejected in Haskell
as the type class resolution is ambigious. For example, we could use instances for Int or Bool and
many others to resolve the read. Similarly, assuming appropiate qualified read definitions, our
system would reject this since the type context cannot resolve read unambiguously. Unlike Haskell
though, we can disambiguate the example explicitly without needing a type signature, for example
as show (int/read ”3”). Since overloading in our system is just elaboration to fully qualified names
we can always disambiguate manually in our system without needing extra type annotations.

Schrijvers et al. [2019] also argue that implicit type systems should be stable, where instantiation
of type variables does not affect resolution. In essence, this means that using an overloaded variable
at a more specific type does not change the semantics. This is not always the case for systems that
would disambiguate based on a most specific type for example. We can show stability in our system
formally over the variable resolution rules:

10

Theorem 2.4. (Stability)
IfQ, |T+ z% 7 ~~ewithF (0, Q;), then we also have Q, | 0T + z T O ~~ e (with Q; C (6, Q,)).

See the proof in Appendix B.4 of the supplement. However, in the Cochis system the notion of
stability is stronger than this. They show the following example in Haskell where overlapping
instances are allowed:

class Trans a where trans :: a—a

instance Trans a where trans x = x

instance Trans Int where trans x = x+1

with the definition

bad :: Va. a—a

bad x = trans x

Due to the type signature, the type class can be resolved unambiguously to the generic one. However,
that also means that bad 1 evaluates to 1, while trans 1 evaluates to 2, and it is argued this breaks
equational reasoning. We do not necessarily agree with this: as we saw before, a type annotation
is essential to the Haskell semantics (as it does not have a dynamic untyped semantics), and we
cannot just leave it out and replace bad with trans directly. In our system there is a similar situation
where we can only do equational reasoning on fully qualified identifiers. Suppose we define:
generic/trans x = x and int/transx = x+1

then the expression:

bad = Ax. trans x

would be rejected as it is ambigious. We need to either qualify the trans variable, as for example:
generic/bad = Ax. generic/trans x or int/bad = Ax. int/trans x

or propagate trans explicitly as an implicit parameter:

bad = A?trans. Ax. trans x

In the last case, bad 1 indeed equals trans 1 (as it gets elaborated to bad int/trans 1).
But what about the original example in Cochis with the polymorphic type signature:

bad : Ya. a—a = Ax. trans x

In this case, we can argue there are two acceptable solutions. The first design (I) is that trans should
be resolved to generic/trans since the type of the argument is an abstract « and thus only the
generic/trans can match. The other argument (II), as made in Cochis, is that this example should be
rejected as the instantiation of Va. a—a with int would make this example ambiguous again (i.e. it
is not stable under type application).

Cochis uses a separate stable predicate to check for this form of ambiguity, but it turns out that
we can modularly describe either design in our system as two variants of the type scheme checking
rule. First we extend the syntax to allow type scheme annotations for o (with ftv(c) C ftv(T)) as
letz:o=tine

O |T+rtTc Q|T,zioreTr
O, |Trletzio=tineTr

LET-ANN
For checking mono-types, we already have the [ann] rule. For p types, we extend this now to check
implicit parameters:
z=x Q|T,z:trt%p
Q|Tr A%zt xt—p

ANN-IMPLICIT

11

This leaves us with checking polymorphic quantifiers Ya. Usually, such checking rules are expressed
algorithmically by replacing the polymorphic type variables with fresh type constants c (also called
skolem constants [Peyton Jones et al. 2007]):

QuITH T [a=clp (Q2()=gen(Q1.T,.()) <¢¢Q, freshc
0, [T+ t7Vap

ANN-SKOLEM

The condition ¢ ¢ Q, ensures that the fresh type constants do not escape the scope of their binding.
We need to use gen here to remove any unused constraints mentioning ¢ (which can occur due to
[insT-guanTIFY]). Consider for example:

{a=c} |T + a—a ~ c—c fresha

id:Va.a—a el {a=c} |T + Ya.a—a C c—c ~>-
Alid. {a=c} |T IF id T c—>c ~id
{a=c} | T+ id~ c—>c (2,) =gen({a=c},T,()) c¢ o
| Ttk id*Ya.a—a

VAR

VAR

This follows design (I) where our example gets resolved to generic/trans as the integer alternative
cannot match with the abstract skolem constant (i.e. ¥ ¢ = int). This is the rule that is used in the
Koka implementation.

However, we can also implement design (II) by not using skolem constants in the first place, and
instead checking afterwards whether a type variable was indeed used polymorphically [Leijen 2008]:

O Tar tTp (O, Va.p) =gen(Q,T,p) fresha
Q2 | Trts Vap

ANN-SCHEME

Here, we instantiate the polymorphic type as regular fresh type variables, but check afterwards
that these did not unify with any type, nor escaped the scope through any other type constraints.
To prevent generalizing early over the @ binders, we extend T’ to include type variable bindings as
well as T', @ (which can be seen as a shorthand for a sequence of anonymous bindings as I, _: a).
Interestingly, for standard Hindley-Milner either approach is valid and it makes no difference. In
our case though, by keeping « as regular type variables, higher up in the derivation there can now
be multiple matches for overloads, and we may no longer satisfy the unique 3!e condition in the
[var] rule. In particular, for the trans example, both generic/trans and int/trans now match (since
{a:=int} + a =~ int), and the example is rejected due to ambiguity - corresponding to the second
design (as advocated by Cochis).
In Cochis, the stability property is shown by translating from the core calculus into System-F
and showing that static reduction of type application preserves typing. For our case this stategy
does not quite work since once we elaborate to fully qualified names we already have an untyped
dynamic semantics. We can show stability more directly though over the [ann-scuemE] rule:

Theorem 2.5. (Polymorphic Stability)

IfQ,|T+ t%Vap ~ e (using [aNN-scHEME]), we also have Qp | T+ ¢ [a:=T]p ~» e (forany 7T
with ftv(7) C ftv(I)).

See Appendix B.4 of the supplement for the proof.

2.11 Definition Stability

There is another form of stability that is quite important in practice, which we call definition
stability. We call a system definition stable if the semantics of an existing function does not change

12

silently when adding a new definition. Consider for example the following Haskell program:

class Trans a where trans : a—a«a
instance Trans a where trans x = x
foo = trans 1

where foo = 1. However, suppose we enable overlapping instances and add a more specific definition
(maybe in an imported module):

instance Trans Int where transi =i+1

In this case, the trans is resolved now to the most specific instance and foo is now 2 (and thus
Haskell with overlapping instances is not definition stable). Dually, Scala prefers the most general
instance for implicits and is also not definition stable. In our system, adding either definition always
results in an ambiguity error (and is therefore definition stable). Even with the extension to scope
baced disambiguation (Section 2.9) our system is still definition stable as any outer definition is
never preferred to an inner one.

3 TYPE INFERENCE

We essentially extended the standard type rules with just two new rules for implicit parameter instan-
tiation ([insT-impriciT]) and variable overloading ([var-quatLiry]). We saw that even though each rule
is simple, their recursive nature makes the rules quite expressive. Perhaps even too expressive since
the potential recursion between these rules can easily lead to infinite derivations! Consider for exam-
ple a function foo that requires itself as an implicit parameter, as foo: ?foo:(int — int) — int — int.
This is a problem for type inference as trying to derive an application like foo 1 would lead to
infinite recursion.

3.1 Undecidability of Type Checking

As it is, general type checking for our current rules turns out to be undecidable! In particular,
we can show it is possible to encode a Turing machine on the type level, where type checking
becomes equivalent to showing termination of the encoded Turing machine. See Appendix A of
the supplement. for an example of encoding of a 3-state busy-beaver Turing machine [Rado 1962]
in Koka. In particular, we can create types for the symbols 0 and 1, and the tape of the machine as:

type symo@ type cons<a,b> // tape with head a and tail b
type syml type inf // infinite tape of zeros

Furthermore, we can create machine states and a full Turing machine configuration as:

type state-a type state-b type state-c

abstract type config<s,l,r> = Start // the machine config: <state, left tape, right tape>

val start : config<state-a,inf,inf> = Start // starting machine configuration with all zeros
We can then encode the machine state transitions in the types. For example, for the 3-state busy-
beaver, if we are in state A with the head being 0, we write 1 to the head, shift the tape to the right,
and continue in state B:

fun ab/transition(st : config<state-a,cons<x,l> cons<sym@,6r>>,

?transition : (config<state-b,l,cons<x,cons<syml,r>>>) -> ()) : () = QO

We write a overloaded function for each transition, as well as a halting rule (in state C):

fun cend/transition(st : config<state-c,l,cons<syml,r>>) : () = ()
See the full example in Appendix A of the supplement where we also show how can expand the inf
tape automatically to cons<syme, inf> when so required. We can then start the machine as transition
(start), where static overloading and implicit parameters elaborate the plain transition to a full
sequence of all state transitions — for the 3-state busy-beaver machine this elaborates to 14 state
transitions.

13

Q|Tl, z%1 ~~ e Q|Tkr, cC7 ~ €
N Y N N l N N | 1

out in jn in in out out in jn in in out

z:c€el Q|TH, 0 C7T ~e
- VAR-CUT - — VAR-DIRECTK
G| Tl z717 ~ 1L QITIh4 257 ~2ze

z¢dom(I) m/z:0€l Q| cC 1T ~e

- — VAR-QUALIFYK
Q|T I 2517 ~m/ze

(Fle. Q|TI z57 ~»e) Lée
QITrz=r

VAR-K

Fig. 6. Type rules with finite derivations (up to depth K). Instantiation passes n unchanged.

3.2 Recovering Decidability

In order to make the system decidable we need to impose some decreasing measure on the deriva-
tions to ensure termination of the type checking algorithm. One way to do this is to simply limit
the depth of the derivation tree ending in a [var] to be of at most K deep for some fixed K.

Figure 6 gives a new set of rules for variable derivations (and instantiation) as Q |T'I-, z % ¢
where we pass a decreasing bound n € N. Each application of [var-pIRECTK] or [VAR-QUALIFYK] de-
creases n (while nis passed unchanged through instantiation). Both [var-pDIRECTK] Or [VAR-QUALIFYK]
can now only be applied for n > 0. In the case n = 0, the [var-cur] rule applies which always elab-
orates to an “infinite” expression L. The new [var-x] rule is now extended to always reject any
solutions that contain L expressions.

These rules are clearly terminating since n strictly decreases. As such they are incomplete with
respect to the original rules since some derivations are now rejected as too deep. We do have
soundness though: any valid derivation using [var-x] is also valid in the original rules:

Theorem 3.6. (Soundness of the Finite Rules)
IfQ|T+ z% 1 ~ve with [varx], thenalso Q| T+ z % 7 ~ve with [var].

See the proof in Appendix B.2 of the supplement. It turns out that the soundness property is a bit
subtle. In particular, in an earlier design we left out the rule [var-cur] as it seems we can just not
have any valid derivation that requires n = 0. This would be unsound with respect to the original
rules though!

Currently, any potential infinite derivation has a solution containing L using [var-cut]. As such,
it might be that the 3'e condition in the [var-x] rule is now not satisfied as valid finite solutions
compete with such “infinite” solutions (which is also why the L ¢ e condition is outside the scope
of the uniqueness condition). If we leave out the [var-cur] rule though, there would be no valid
derivation instead for such “infinite” ones, and in that case a particular finite solution may suddenly
be unique and accepted. In such case though, the original rules may still find a finite derivation (of
depth > K) for our “infinite” one and reject it (as it becomes ambigious). Although we are the first
to formalize this, this issue with soundness was also remarked by White et al. [2015].

3.3 Maintaining History
Of course, our formalization based on a fixed depth K of [var-pDirecTK] or [var-QuaLiFyk] applica-

tions is clear but perhaps also a bit naive in practice. However, we can see that in principle any

14

decreasing measure would suffice to limit the depth of the derivation tree.

As our approach is name based, we observe that for any infinite recursion to happen, it must be
that we try to resolve the same qualified name more than once. Instead of a fixed K, we can instead
pass a history H of each name m/z: 7 in [var-guaLirFyk]| (and z: 7 in [var-pDirEcTK]). One way to
ensure termination is to simply reject any derivation that leads to a repeated name z in the history.
That would be too restrictive though as it would reject for example show [[1]] (where list/show is
resolved twice).

A better way is to only allow a derivation for z = 7 to proceed if for the last z: ¢’ appearing in
the history, we have that 7 is “smaller” than 7’. We can define smaller here for example as the count
of constructors in the type. This allows our earlier show [[1]] to be accepted again.

In the Koka implementation, we refine this a bit further where we require for z = z that there
are either fewer than N entries for z in the history, and otherwise that the 7 is smaller than any
one of the last N entries z: 7’ in the history (where N = 4 in our case). This allows for some limited
recursion where the size of the type stays can the same (or be larger) for some iterations. For
example, our implementation can now accept the 3-state busy beaver problem we discussed earlier
(but of course, still not arbitrary Turing machines).

3.4 Implementing Type Inference

As remarked by Leijen and Ye [2025], making the type rules syntax directed and under a prefix,
we can essentially “read off” the inference algorithm. This make the formalism particularly useful
not only for users to have a precise specification, but also for compiler implementors to ensure it
is implemented accordingly. As shown by Leijen and Ye [2025], we can represent valid prefixes
in a canonical form as a regular substitution, and implement unification and composition of two
prefixes as unify(ry, 72) : Q and compose(Q1, Q2) : Q (see Appendix C of the supplement). These
call an operation fail() of an effect handler [Leijen 2021] if no unification exists or when the
union of the two prefixes does not have a valid solution. We can now directly implement the
Q|TH, 0 E 1T ~verules for instantiation as:
inst : (I,N,7,7) = (Q,¢)
inst(T, n, 71, 72) (unify(r1,72), ")
inst(T, n,Ya.o, 1) = inst(T, n, o[a:=fresh()], 1)
inst(T, n, 2x:11—p, 72) =val (Qy,e) = inst(I', n, p, 12); (Qz,) = resolve(T, n,x, Q[r1])

in (compose(Qy, Qz), €e'e)
Here we assume an another operation fresh to generate fresh type variables. Each definition cor-
responds immediately to the instantiation rules [iNsT-MoNoO], [INsT-QUANTIFY], and [iNsT-IMPLICIT].
That leaves the resolve function to implement the Q | T' I, z T 7 ~- e variable rules:
resolve : (I,N, z,7) — (Q, e)
resolve(T, 0, z, T) = infinite()
resolve(T,n,z,7) | z:0 €T = val (Q,¢) = inst(I,n—1,0,7) in (Q,ze)
resolve(T, n, z, T) val (m/z, o) = forallq(T, z); (Q,e) = inst(T,n—1,0,7) in (Q, m/ze)
Again, each definition corresponds to the variable rules [var-curt], [var-pDIrRECTK], and [VAR-QUALIFYK].
However, we see two new operations here: infinite and forallq. The call to infinite() returns a bot-
tom expression as (&, L), but forallq(T, z) is special as it should return a list of all m/z: o € T. Here
is where we can use an effect handler to neatly express this in a modular way while keeping the

implementations of inst and resolve as close as possible to the type rules. In particular, we can

15

implement resolve under a handler that implements a list of successes [Philip Wadler 1985]:
explore : (T',z,7) — [(Q, e)]
explore(T, z,7) = handle resolve(T, K, z, 1)

return x - [x]

fail () =[]

infinite() — resume((, 1))

forallq(T,z) — [x| m/z:0 €T, x < resume(m/z,0)]

Normal results (return x) are wrapped in a singleton list [x], while failures return an empty list.
The infinite() operation just resumes at the call site with a bottom expression (as (&, L)). The
forallq(T', z) operation is the most interesting one as it resumes for each m/z:c € I' and appends
all returned solutions. In the type checking algorithm check, we can now call explore to implement

the variable case as:
check : (T',e,7) — (Q, e)

.c.h.eck(l‘, z,7) = match explore(T, z,)

[(Qe] | LEée— (Qe) unique and not L
[l — fail() unresolved
_ — fail() ambigious or infinite

This implements the 3!e condition by essentially exploring all possible derivations and returning
normally only if there is a single successful derivation. The connection between using a list of
successes and the J'e condition may not be immediately apparent, but we can show that the
algorithm is sound and complete with respect to our finite type rules:

Theorem 3.7. (Algorithmic Soundness)
If check(T, z,7) = (Q,e), thenalso Q | T+ z 7 7 ~ve (with [var-k]).

Theorem 3.8. (Algorithmic Completeness)
IfQ|T+ z% 1 ~e (with [var-x]), then also check(T, z,7) = (Q, e).

See the proofs in Appendix B.1 of the supplement.

3.5 Optimizing Exploration
Even though the previous theorems show our algorithm is correct, it is not the most efficient
implementation. We can make various improvements to the explore function to optimize the
exploration of the search space.

First, we observe that we never actually look at the individual solutions if there is more than
one solution. As such, we only consider a valid singleton solution [(Q, €)], an empty solution [], or
multiple solutions. We can represent this more efficiently using a specialized data type:
type sol @ = One(a) | None | Amb
Furthermore, we also observe that we never accept any infinite solution with L € e. Let’s only use
One((Q, e)) if L ¢ e, and directly use Amb for infinite solutions as well. We can then define check
as:
check(T, z,7) = match exploreopt(l“, Z,7)

One(x) — x

— fail()

16

We do not need to change the definitions of resolve or inst as these use abstract operations - instead
we only need to modify the handler to use our new representation:
exploreopt(l", z,7) = handle resolve(T, K, z, 1)

return x — One(x)

fail() — None

infinite() — Amb

Here we optimized the infinite operation: instead of resuming we observe that any evaluation with
infinite() will eventually have an Amb result, and thus we can directly return with an Amb result
without resuming. The main advantage of our new representation is in the definition of forallq as
we can now cut the evaluation short as soon as we encounter any Amb result without needing to
explore all possible derivations:

forallq(T, z) —
let find(current, candidates) = match candidates
Nil — current
Cons(m/z: o, rest) — match resume(m/z, o)
Amb — Amb
None — find(current, rest)
One(x) — match current
One(y) — Amb
None — find(One(x), rest)
in find(None, Vmo. m/z:0 €T)

The find(current, candidates) function iterates through all candidates using the current result which
is either None or One((Q, €)). As soon as we find an Amb result, we can immediately return with
Amb without trying more solutions. Similarly when already have a valid current solution, and we
find another valid solution, we can immediately return with Amb as well.

In our experience, cutting the exploration short as soon an ambigious or infinite derivation is
found is quite important in practice. In particular, the [arp-var] rule often requires backtracking to
get enough type information from the first argument expressions — failing fast is important here.
As shown in Section 2.9, we can also prefer inner scope definitions instead of requiring unique
solutions. This can actually be used to optimize the exploration even further. In particular, we can
directly skip trying resolving any m/z from an outer scope as soon as we found a solution for a
definition in an inner scope.

4 SYNTACTIC IMPLICITS AND STATIC OVERLOADING IN PRACTICE

The system described in this paper is fully implemented in the Koka language [Leijen 2019 2021],
and it is quite heavily used in the standard library for functions like show, (==), map, comparison, etc.
In Koka, application is not curried and all arguments are in between parenthesis. In contrast to our
calculus, the implicit arguments always come last which fits better with the uncurried syntax. In
particular, the programmer can now pass implicit parameters explicitly by adding them as regular
parameters. For example, we can write show([11, fn(x) "x") to display a list of integers where all
elements are shown as *. In the case of multiple implicit parameters, we can pass a subset of them
by name as well, show((1,True), ?snd/show=fn(x) "x") for example.

As described in Section 2.9, Koka prefers inner-scope definitions, and as discussed in Section 3.3,
instead of cutting the search off at an arbitrary depth our implementation maintains a history
where the size of the types of implicit parameters must decrease within 4 recursive elaborations.
This makes it possible to still accept the 3-state busy beaver program (see Appendix A of the
supplement).

17

A nice advantage of our system is that there is no need to declare overloaded functions in
advance, we just have regular function definitions. This also puts no constraints on the type of
these functions. This allows us in particular to overload tuple selectors for example:

fun tuple/fst (x : (a,b)) a

fun triple/fst(x : (a,b,c)) : a
and more generally selectors for fields in any datatype. This is not possible with type classes [Oder-
sky et al. 1995; P. Wadler and Blott 1989] as a specific type signature needs to be declared upfront.

4.1 Default Implementations
In the standard library, we have various definitions to compare basic types, like:

type order = Lt | Eq | Gt

fun bool/cmp(x : bool, y : bool) : order

fun int/cmp(x : int, y : int) : order

fun list/cmp(xs : list<a>, ys : list<a>, ?cmp : a -> order) : order

Given these definitions, we can now write a generic equality operator:

fun default/(==)(x : a, y : a, ?cmp : (a,a) -> order) : bool
match cmp(x,y)
Eq -> True
-> False
fun (!=)(x : a, y : a, ?eq : (a,a) -> bool) : bool
teq(x,y)
This way, for any new data type, we only need to define the comparison function cmp, and get
(in)equality for free. However, there is a problem with this as well. In particular, we may have a
new data type that can determine equality more efficiently without doing a full comparison. This
already happens in the standard library where equality between integers has a fast primitive:

fun int/(==)(x : int, y : int) : bool

prim-int-eq(x,y)
Unfortunately, since these definitions overlap, an expression like 1==2 will always be rejected as
both int/(==) and default/(==) could apply. Haskell type classes address this problem by allowing
default implementations in class definitions that are used unless an instance provides an explicit
implementation. In our case, one way around this is to name default/(==) differently, and at each
new data type require the user to write an explicit (==) definition that can either use the default
one based on cmp or be specialized for that data type.

In Koka we use a different approach though: we pretend that any definition in the default/

namespace is defined in a scope outside the global module scope, i.e. at scope depth —1 instead
of 0. This means that when there is a choice between a regular definition and a default one, the
regular one is preferred due to the scope disambiguation (Section 2.9). Our 1==2 example is now
unambiguous, and elaborated to int/(==)(1,2).
Unfortunately, the addition of default/ can cause definition instability (Section 2.11). We may have
a function that uses a variable that is resolved to a default/ definition. If we add a more specific
version, that one is now considered to be in an inner scope relative to default/, and is preferred
without an ambiguity error. This is not ideal and we would like extend the compiler to at least
warn in such cases (while preserving the convenience of the outer default/ scope).

4.2 Grouping Operations

Oftentimes, we need multiple operations that logically belong together. It can be cumbersome
to pass each one individually as an implicit parameter in general. Haskell type classes naturally
group operations together where for example the Num class has addition, multiplication, etc. No
such thing exists in our system but instead we can pass structures directly as an implicit parameter.

18

For example, we can define:

struct num<a>
(+): (a, a) > a
(*): (a, a) > a

. . »
and provide some “instances” as:
val int/num : num<int> = Num((+), (*))
However, using such structures can be a bit cumbersome, for example:

fun fadd(x : a, y : a, z : a, ?num : num<a>) : a
match num
Num((+), (¥)) => x + (y * z)
Fortunately, Koka provides dot notation to automatically unpack structures, and we can write:
fun fadd(x : a, y : a, z : a, .?num : num<a>) : a
x + (y * 2)
which is essentially syntactic sugar for the previous explicit version. The dot notation also recur-
sively unpacks any base members which allows for linear hierarchies, for example for monad<m> and
monadplus<m>. This simple mechanism can work surprisingly well, but of course it is limited as well
compared to more specialized mechanisms like type classes. We hope to gain more experience in
practice to evaluate its limits.

4.3 Phantom Implicits

The value passed at the call site for a syntactic implicit parameters, is just the plain name of the
parameter. If the name is not in scope at the call site the program is rejected. However, we can
imagine having a special set of implicit parameter names (and associated types) for which the
compiler can supply a more elaborate argument term. We call such special names phantom implicits.
For example, our Koka implementation defines the special implicit parameter names kk-line :int
and kk-file :string (in std/core/debug). If in [InsT-impLICIT] these names cannot be resolved, the
compiler can instead elaborate to specific value: in these cases the current source file line number
and name respectively. For example:

fun assert-line(condition : bool, msg : string, ?kk-line : int) : exn ()
if condition then () else throw("at " ++ kk-line.show ++ ": " ++ msg)
and then use it as assert-line(False,"failed"). Since kk-line is not defined at the call site, the
compiler instead provides the current source line number for the implicit parameter, and elaborate
to assert-line(False,"failed",42). Note that we can still define kk-line explicitly. Unlike a pre-
processor macro, we can abstract over these special names. For example, we can define:

fun assert-fline(condition : bool, msg : string, ?kk-line : int, ?kk-file : string) : exn ()

assert-line(condition, kk-file ++ ": " ++ msg)
Here, assert-line is elaborated to assert-line(condition, kk-file ++ ": " ++ msg, kk-line). Since
kk-line is in scope the compiler does not need to provide another value. However, when assert-fline
is used where kk-line and kk-file are not in scope, the current line number and file of the call site
are provided implicitly again.

For both the kk-line and kk-file phantom implicits, the compiler can supply their argument
value just based on their name. However, we can also imagine supplying the argument value of a
phantom implicit based on the caller’s type context. This would lead to a design that is more similar
to how type classes get resolved: we can imagine letting the user define type classes and instances
— when a “type class” phantom implicit needs to be resolved, for example num : num(int), the
instance declarations can be used to construct the correct dictionary to pass.

4.3.1 Divergence. Koka has at the moment a single phantom implicit that is resolved based on
its type, namely hdiv : hdiv<h,a,e>. The type hdiv is an abstract type and users can never create

19

a value of this type. Only the compiler is allowed to do so if the type contraints are satisfied. In
particular, the type hdiv<h,a,e> signifies that if the type a can contain a reference to the heap h,
then the effect e must contain the divergence effect (div). This is used in Koka to correctly infer
potential divergence where one stores self referential functions in a mutable heap. Leijen [2014]
gives the following example of Landin’s knot:

fun landin() : div () // div is inferred!
val r = ref(fn()) // initialize with a parameter-less function that returns unit
fun self ()
(ro // self calls the function stored in r
r := self // store self in r now
self () // and call it

Here we create a reference r in the global heap, and later store function self in there, where self
calls the function stored in r. Even though the function has no syntactic recursion, it diverges and
Koka needs to infer the div effect in the type of landin. In order to detect such sneaky divergence,
we define the dereference operation (!) with the hdiv phantom implicit:

fun ref/(!)(r : ref<h,a>, ?hdiv : hdiv<h,a,e>) : <read<h>|e> a
This reads a value of type a from a reference r in heap h, and has a read<h> effect and possibly more
effects e. By including the phantom implicit here, we make explicit that the e effect now must
contain the divergence effect div as well whenever the value type a can contain the same heap h
in its type, i.e. whenever it is self referential. In the landin example above, the name hdiv for the
phantom implicit is not bound so the compiler tries to supply a value instead, with the type hdiv<h
, () -> <read<h>|e> (), e>. Since h is clearly in the value type () -> <read<h>|e>, the compiler unifies
e with <div|_> to satisfy the constraint on hdiv implicits, and then supplies an internal dummy
value as the evidence for the hdiv phantom implicit. This ensures that the landin function indeed
gets the div effect.

In most cases in practice, the value type is a simple type like int and it is clear that it does
not contain h. In such cases, the compiler directly supplies an internal dummy value again as
evidence, but now without unifying e with the divergence effect. Sometimes though, the value type
is polymorphic and at the call site it may still be undetermined if h can be in a. Just like with the
previous kk-line example, we can then further abstract over the hdiv implicit to delay its evaluation
— the user may not be able to create hdiv evidence values, but they are able to pass them around:

fun read2(r : ref<h,a>, ?hdiv : hdiv<h,a,e>) : <read<h>|e> (a,a)

val x = !r in (x,x)
In this example, the polymorphic dereference !r is elaborated to ref/ (1) (r,hdiv), where we essen-
tially defer resolving the hdiv evidence to the call site of read2 instead.

5 RELATED WORK

Since the main idea of syntactic implicit parameters is so straightforward, it is not easy to directly
compare against more sophisticated systems like type classes or Scala implicits. Instead, we try to
highlight how particular usage scenarios are addressed in various systems.

Type classes [P. Wadler and Blott 1989] are a very elegant form of implicits that has seen
widespread success in languages like Haskell and Lean for example. An important difference
with our system is that type class constraints are automatically generalized if they cannot be
resolved locally, essentially introducing an implicit parameter for the dictionary at runtime. For
example, parens = Ax. ”(” + show x +# ”)” would result in the type parens: Show @ = « — String
in Haskell. In contrast, in our system this definition is rejected, and we need to explicitly state
that we are abstracting over show, as parens = A?show. Ax. ”(” # show x + ”)” (or qualify show
manually to disambiguate). Kovacs [2020] investigate how much to generalize the types of inferred
dictionary parameters in dependently typed languages.

20

Another difference is that type classes require global uniqueness of instances to be coherent. As
a consequence, instances live in another scope than regular values. Moreover, once we define say
an instance for Num Int, we cannot locally override this with another instance to do, say, modular
arithmetic; Sozeau and Oury [2008] and Dreyer et al. [2007] investigate how such first-class type
classes could look like. Kiselyov and Shan [2004] show how to use phantom types and rank-2
polymorphism with type classes to add implicit configuration modularly in a program and obtain
coherence without global uniqueness.

Scala [Odersky 2016; Odersky et al. 2017] is one of the first languages to use implicits extensively.
Like type classes, the implicits have a separate scope, and are resolved by their type. For example:

implicit val number : Int =1

def add(x : Int)(implicit y : Int) = x +y

add (2)
where the add(2) would be elaborated to add(2,number) as that is the only Int in the implicit scope.
Scala users usually declare new nominal types to avoid ambiguities. B. C. Oliveira et al. [2010] show
how Scala implicits can be used to express type classes as well. However, just like in our system,
one still needs to explicitly declare the required implicit parameters. Both type classes and Scala
style implicits resolve implicits by their type. B. C. d. S. Oliveira et al. [2012] and later Schrijvers et
al. [2019] develop an implicit calculus that expresses the essence of these systems. The latter paper
in particular studies the coherence and stability properties.

In contrast, a system that uses explicit names to resolve implicit parameters is presented
by Lewis et al. [2000] (and later by Jones [1999]). This design of implicit parameters is based
on type classes where using an implicit name ?x gives rise to an implicit constraint. For example,
let f =?y + 2in (f with ?y = 1) evaluates to 3. The ?y here is an implicit parameter, and, just
like type classes, the type of f is generalized to ?y:Int = Int. The with construct is used to resolve
such constraints with a particular value. Since names like ?y do not live in the usual lexical scope
but are instead type level constraints, this may lead to suprises. For example, consider the expres-
sion (let f =?y + 2inf + (f with?y = 1)) with ?y = 2 which evaluates to 7 (and not 8) even
though lexically it may appear as if the outer binding for ?y binds the occurrence in f.

White et al. [2015] describe an extension to the OCaml language for ad-hoc polymorphism
inspired by Scala implicits and modular type classes. Their modular implicits are based on type-
directed implicit module parameters, and elaborate straightforwardly into OCaml’s first-class
functors. Devriese and Piessens [2011] present instance arguments for the Agda language. These
are inspired by both Scala’s implicits and Agda’s existing implicit arguments.

Because we resolve implicits by name, we can use history (Section 3.3) to carefully avoid non-
termination of the search. In type based systems this can be more challenging. Agda’s search avoids
any recursion in the first place at the cost of needing to be more explicit. Rocq [2025 Rocq Prover
2025], has a configurable recursion limit (Typeclasses Depth), which defaults to infinite depth-first
search. Schrijvers et al. [2019], provides a termination property based on the type head (implicit
constraints), which ensures that the size of the type is decreasing. White et al. [2015] provides a
termination property similar to ours, where successive instantiations of the same implicit functor
must be decreasing in the size of collected constraints.

6 CONCLUSION

We presented a formal system for syntactic implicit parameters and static overloading. Even though
each feature is rather straightforward, their interaction turned out to be surprisingly expressive.
With the implementation in Koka we hope to gain more experience in using this at scale and extend
it in interesting ways. In particular, we would like to improve on grouping (Section 4.2), and study
the application of phantom implicits in future work.

21

REFERENCES

Devriese, and Piessens. 2011. On the Bright Side of Type Classes: Instance Arguments in Agda. ACM SIGPLAN Notices 46 (9).
ACM New York, NY, USA: 143-155.

Dreyer, Harper, Chakravarty, and Keller. 2007. Modular Type Classes. In Proceedings of the 34th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, 63-70.

Jones. 1999. Exploring the Design Space for Type-Based Implicit Parameterization. Technical report, Oregon Graduate Institute.

Kiselyov, and Shan. 2004. Functional Pearl: Implicit Configurations—or, Type Classes Reflect the Values of Types. In
Proceedings of the 2004 ACM SIGPLAN Workshop on Haskell, 33-44.

Kovacs. 2020. Elaboration with First-Class Implicit Function Types. Proceedings of the ACM on Programming Languages 4
(ICFP). ACM New York, NY, USA: 1-29.

Leijen. Sep. 2008. HMF: Simple Type Inference for First-Class Polymorphism. In Proceedings of the 13th ACM Symposium of
the International Conference on Functional Programming. ICFP’08. Victoria, Canada. doi:https://doi.org/10.1145/1411204.
1411245.

Leijen. 2014. Koka: Programming with Row Polymorphic Effect Types. In MSFP’14, 5th Workshop on Mathematically Structured
Functional Programming. doi:https://doi.org/10.4204/EPTCS.153.8.

Leijen. 2019. Koka Repository. https://github.com/koka-lang/koka.

Leijen. 2021. The Koka Language. https://koka-lang.github.io.

Leijen, and Ye. Sep. 2024. Principal Type Inference under a Prefix: A Fresh Look at Static Overloading (TR). MSR-TR-2024-34.
Microsoft Research.

Leijen, and Ye. Jun. 2025. Principal Type Inference under a Prefix: A Fresh Look at Static Overloading. Proceedings of ACM
Programming Languages (PLDI) 9 (PLDI). ACM. doi:https://doi.org/10.1145/3729308.

Lewis, Launchbury, Meijer, and Shields. 2000. Implicit Parameters: Dynamic Scoping with Static Types. In Proceedings of the
27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 108-118. POPL’00. ACM, Boston, MA,
USA.

Odersky. Dec. 2016. Implicit Function Types. https://www.scala-lang.org/blog/2016/12/07/implicit-function-
types.html. Blog post.

Odersky, Blanvillain, Liu, Biboudis, Miller, and Stucki. 2017. Simplicitly: Foundations and Applications of Implicit Function
Types. Proceedings of the ACM on Programming Languages 2 (POPL). ACM New York, NY, USA: 1-29.

Odersky, Wadler, and Wehr. 1995. A Second Look at Overloading. In Proceedings of the Seventh International Conference on
Functional Programming Languages and Computer Architecture, 135-146.

Bruno CdS Oliveira, Moors, and Odersky. 2010. Type Classes as Objects and Implicits. ACM Sigplan Notices 45 (10). ACM
New York, NY, USA: 341-360.

Bruno C.d.S. Oliveira, Schrijvers, Choi, Lee, and Yi. 2012. The Implicit Calculus: A New Foundation for Generic Programming.
In Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language Design and Implementation, 35-44. PLDI
’12. ACM, Beijing, China.

Peyton Jones, Vytiniotis, Weirich, and Shields. 2007. Practical Type Inference for Arbitrary-Rank Types. Journal of Functional
Programming 17 (1): 1-82. doi:https://doi.org/10.1017/50956796806006034.

Pierce. Feb. 2002. Types and Programming Languages (TAPL). 1st edition. The MIT Press, Cambridge, Massachusetts 02142.

Rado. 1962. On Non-Computable Functions. Bell System Technical Journal 41 (3). Wiley Online Library: 877-884.

Rocq Prover. 2025. https://rocq-prover.org/. Accessed: 2025-11-13.

Schrijvers, Oliveira, Wadler, and Marntirosian. 2019. COCHIS: Stable and Coherent Implicits. Journal of Functional Program-
ming. {bib-url}.

Selsam, Ullrich, and Moura. 2020. Tabled Typeclass Resolution. arXiv:cs.PL/2001.04301.

Sozeau, and Oury. 2008. First-Class Type Classes. In International Conference on Theorem Proving in Higher Order Logics,
278-293. Springer.

P. Wadler, and Blott. 1989. How to Make Ad-Hoc Polymorphism Less Ad Hoc. In Proceedings of the 16th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, 60-76. POPL’89. ACM, Austin, Texas, USA. doi:https://doi.
org/10.1145/75277.75283.

Philip Wadler. 1985. How to Replace Failure by a List of Successes a Method for Exception Handling, Backtracking, and
Pattern Matching in Lazy Functional Languages. In Functional Programming Languages and Computer Architecture, edited
by Jean-Pierre Jouannaud, 113-128. Springer Berlin Heidelberg, Berlin, Heidelberg.

White, Bour, and Yallop. 2015. Modular Implicits. In Proceedings ML Family/OCaml Users and Developers Workshops,
Gothenburg, Sweden, September 4-5, 2014, edited by Oleg Kiselyov and Jacques Garrigue, 198:22-63. Electronic Proceedings
in Theoretical Computer Science. Open Publishing Association. doi:https://doi.org/10.4204/EPTCS.198.2.

22

https://doi.org/10.1145/1411204.1411245
https://doi.org/10.1145/1411204.1411245
https://doi.org/10.4204/EPTCS.153.8
https://github.com/koka-lang/koka
https://koka-lang.github.io
https://doi.org/10.1145/3729308
https://www.scala-lang.org/blog/2016/12/07/implicit-function-types.html
https://www.scala-lang.org/blog/2016/12/07/implicit-function-types.html
https://doi.org/10.1017/S0956796806006034
https://rocq-prover.org/
http://arxiv.org/abs/2001.04301
https://doi.org/10.1145/75277.75283
https://doi.org/10.1145/75277.75283
https://doi.org/10.4204/EPTCS.198.2

A TURING ENCODING OF A 3-STATE BUSY BEAVER

This example encodes a 3-state “busy beaver” Turing machine program by Ivars Peterson! in the
type system. It has the following transition table:

current state A state B state C
symbol | write move next| write move next| write move next
0 1 R B 1 L A 1 L B

1 1 L C 1 R B 1 N HALT

We encode the symbols, tape, and states using abstract types. The tape is represented as a cons list
in the type language using phantom type parameters. The tape is encoded finitely with type inf

representing an infinite sequence of syme.

type symo@
type syml

// a
type
type

type
type
type

tape
cons<a,b>
inf

// all states also match on ‘inf‘ and produce ‘cons<sym@,inf>‘ to simulate infinite tape

state-a
state-b
state-c

// tape with head ‘a‘ and tail ‘b*¢

We encode the configuration as the current state of the finite state machine and the left and right
tape using phantom type parameters in the config type. The machine can read or write the first
symbol on the right tape (the head).

// the machine configuration: <state, left tape, right tape>

abstract type config<s,a,c>

Start

We give an explicit type annotation to initialize the phantom types for the starting machine
configuration.

// starting machine configuration with all zeros

val start : config<state-a,inf,cons<sym@,inf>> = Start
Transitions are encoded using functions with implicit ?trans constraints with the final halt transition
requiring no further implicits.

// halting state

fun halt/trans() : (O

O

When state == A, and head == 0 we encode the transition to write 1, shift the tape right and continue
in state B as follows:

// stateA: if head==0 then write 1, shift the tape right, and continue in state B

fun a/b/trans(st : config<state-a,cons<x,l>,cons<symo@,r>>,

?trans : (config<state-b,l,cons<x,cons<syml,r>>>) -> ()) : ()

0O
Similar transitions are encoded for the other states:

Ihttps://en.wikipedia.org/wiki/Turing_machine_examples#3-state_Busy_Beaver

23

https://en.wikipedia.org/wiki/Turing_machine_examples%233-state_Busy_Beaver

// stateA: if head==1 then write 1, shift the tape left, and continue in state C
fun a/c/trans(st : config<state-a,l,cons<syml,cons<x,r>>>,
?trans : (config<state-c,cons<syml,1> cons<x,r>>) -> ()) : ()

0O

// stateB: if head==0 then write 1, shift the tape left, and continue in state A
fun b/a/trans(st : config<state-b,l,cons<sym@,cons<x,r>>>,
?trans : (config<state-a,cons<syml,l>,cons<x,r>>) -> ()) : ()

O

// stateB: if head==1 then write 1, shift the tape right, and continue in state B
fun b/b/trans(st : config<state-b,cons<x,1>,cons<syml,r>>,
?trans : (config<state-b,l,cons<x,cons<syml,r>>>) -> ()) : ()

0O

// stateC: if head==0 then write 1, shift the tape left, and continue in state B
fun c/b/trans(st : config<state-c,l,cons<sym@,cons<x,r>>>,
?trans : (config<state-b,cons<syml,1>,cons<x,r>>) -> ()) : (O

0O

// stateC: if head==1 then write 1, do not move, and continue in state HALT
fun c/end/trans(st : config<state-c,l,cons<syml,r>>,
?trans : O > O) : O
0)

Because the tape encoding is finite, at times we must expand the tape by turning the infinite
portion into zeros. However, we cannot do so arbitrarily since that can lead to ambiguity. To ensure
uniqueness, we only expand the side of the tape that needs expansion in order for a transition to
happen. For example the a/b/trans shifts from the left tape to the right, so we need a corresponding
function that if given state-a and right hand tape with head syme expands inf. This is done in the
inf/a/b/trans rule below, which then allows the original a/b/trans to proceed.

fun inf/a/b/trans(st : config<state-a,inf,cons<sym@,r>>,

?trans : (config<state-a,cons<sym@,inf> cons<sym@,r>>) -> ()) : (O

0O
fun inf/a/c/trans(st : config<state-a,l,cons<syml,inf>>,
?trans : (config<state-a,l,cons<syml,cons<sym@,inf>>>) -> ()) : ()
O
fun inf/b/b/trans(st : config<state-b,inf,cons<syml, r>>,
?trans : (config<state-b,cons<sym@,inf>,cons<syml,r>>) -> ()) : (O
0O
fun inf/b/a/trans(st : config<state-b,l,cons<sym@,inf>>,
?trans : (config<state-b,l,cons<sym@,cons<sym@,inf>>>) -> ()) : ()
0O
fun inf/c/b/trans(st : config<state-c,l,cons<sym@,inf>>,
?trans : (config<state-c,l,cons<sym@,cons<sym@,inf>>>) -> ()) : ()
O
We can evaluate the program by using the following main function and the command: koka -e busy-beaver
.kk.
fun main()
trans(start)
println("done.")
In VSCode we can hover over the call which shows us the inferred implicit chain representing the
transitions. We show the resulting chain below where we have aligned the inf and corresponding
non-inf rules for readability.

24

// expands to a 14 state expansion (with the Koka termination check disabled),
// and matches the execution of:
// <https://en.wikipedia.org/wiki/Turing_machine_examples#3-state_Busy_Beaver>
/*
inf/a/b/trans(?trans=a/b/trans(_,

b/a/trans(_,

inf/a/c/trans(_,a/c/trans(_,

inf/c/b/trans(_,c/b/trans(_,

inf/b/a/trans(_,b/a/trans(_,

a/b/trans(_,

b/b/trans(_,

b/b/trans(_,

b/b/trans(_,

inf/b/b/trans(_,b/b/trans(_,

b/a/trans(_,

a/c/trans(_,

c/end/trans(_,

halt/trans)))>>)))))))))))
*/

To simplify the handling of infinite expansion, we can recognize that only a single function for
shifting left / shifting right is needed. Since infinite tapes are always expanded to add a syme we
need to know that there exists a rule that given the current head, state, and a symo where there
currently is inf, will shift that syme off of that side. However, this requires us to not only know the
shape of the head of the transition rule, but also the tail.

With higher-order implicit parameters (parameters whose types are contain implicit parameters),
we can expect an implicit parameter ?trans that shifts to the right (matching on the shape of both
the head and tail of the transition), and also require the same implicit matching only the head of
the transition rule, requiring further implicits to be handled by the caller.

// Expand the ‘inf‘ tape if the state would transition from the infinite side if it had a sym@.

fun inf/1/trans(st : config<s,inf, cons<h,r>>,

?a/trans : (config<s,cons<sym@,inf>, 6 cons<h,r>>,
?trans: (config<sl,inf,r2>) -> ()) -> (O,
?b/trans: (config<s,cons<sym@,inf> cons<h,r>>) -> ()) : O

0O
// Expand the ‘inf‘ tape if the state would transition from the infinite side if it had a sym@.
fun inf-r/trans(st : config<s,l,cons<h,inf>>,
?a/trans : (config<s,l,cons<h,cons<sym@,inf>>>,
?trans: (config<sl,12,cons<h2,inf>>) -> ()) -> (),
?b/trans: (config<s,l,cons<h,cons<sym@,inf>>>) -> ()) : ()

0O

25

B PROOFS
B.1 Algorithmic Soundness and Completeness

To prove that the algorithm is sound and complete, we first inline the handler in explore to make
the list of successes explicit without using operations.

resolve(T’, 0, z, T) = [(2,1)]

resolve(T,n,z,7) |z:0 €T = [(Q,z¢) | (Q,e) « inst(T,n—1,0,7)]

resolve(T, n, z, T) = [(Q,m/ze) | m/z:c €T, (Q,e) « inst(T,n—1,0,7)]
inst(T, n, 11, 72) = [(Q,) | Q « unify(r1, 72)]

inst(T, n,Ya.o, 1) = inst(T, n, o[a:=fresh()], 7)

inst(T, n, ity —p, 1) =

[(Q ee) | (Q1, e)—inst(T, n p,12), (Qy, €)—resolve(T, n,x, Q1[71]), Q—compose(Q1, Q»)]
Then check directly calls resolve, and does a case analysis on the list of results.
check : (T',e,7) — (Q,)

.c.h.eck(I‘, z,7) = match resolve(T,K, z, 1)

[(Qe)] | LEe— (Qe) unique and not 1
(] — fail() unresolved
_ — fail() ambigious or infinite

For soundness and completeness, we will need a uniqueness Lemma stating that the rules and
algorithm only produce corresponding unique results.

Lemma B.9. (Uniqueness)
Ale. Q| Tk, z% 7 ~ e iff resolve(T,n, z,7) = [(Q, €)].

If resolve were not complete, it could produce one solution instead of two, which could return a
value from check when there should be none. If it were not sound, it could produce one solution
instead of zero, which could return a value from check when the implicit is not derivable using the
rules. So before proving the uniqueness lemma and soundness and completeness of check we first
need to prove soundness and completeness of resolve.

Because resolve and inst are mutually recursive, we need to prove their soundness and complete-
ness together by mutual induction. To ensure completeness and termination for resolve we can use
stepwise induction on n, since n always decreases. However, instantiation does not affect n, and we
can simply prove by induction on the derivation given the soundness and completeness of resolve
at step n, this is well-founded because each inductive step of inst makes the type scheme smaller.

For the purposes of these proofs we consider Ik, as |-, with a premise n =0 and Ik,4; as |k,
with premisesn=n"+1 An>0 An’=n-1and nreplaced by n’ within the rule. This allows for
cleaner proofs where the conclusions are all in terms of n, and the inductive case can be in terms of
n — 1, matching the algorithm.

Additionally, we generalize the proofs over all solutions S = [(Q, e)] (resolve) and Ss = [(Q,)]
(instantiation) satisfying the inference rules, since the algorithm works via list comprehension over
all solutions.

Lemma B.10. (Resolution Soundness)
If resolve(T', n, z,7) = S at step n and inst is sound (1) at step n — 1 where n > 0, then also

V(Q,e) €S.Q|TIH z57 ~e.

Proof. Proceeding by cases on n first with n = 0.

Case We have resolve(T, 0, z,7) = [(&, L)] where n = 0, and need to show that (&, L) is derivable
in the rules. We can derive (&, 1) via [var-cut] since n = 0.

26

Case When n > 0 (2), we have two subcases.

subcase resolve(I',n,z,7) | z:0 €T (4) = [(Q,ze) | (Q,¢) « inst(I,n—1,0,7)] (3). By sound-
ness of inst (1), we have for each elementin (3), Q | I' +,—; 0 E 7 ~ e (5). And by [vAR-DIRECTK]
and (2,5), for each (Q, ze) wehave Q|Tlk, z7 7 ~ ze.

subcase resolve(I', n,z,7) = [(Q,m/z€) | m/z:0 €T, (Q,e) « inst(I,n—1,0,7)]. From the al-
gorithm we have (Q,e) « inst(I,n—1,0,7) (3),and m/z:0 € T (4) with z ¢ T (5) (implicitly by
falling through the match). We can derive Q | I' +,_; 0 £ 7 ~> e (6) by soundness of inst (1,3).
For each (Q, m/z'e) we can show Q |T' |, z % ¢ ~» m/z e by [var-QuaLIFYK] using (4,5,6).

Lemma B.11. (Instantiation Soundness)
If inst(T, n, 7y, 72) = Ss at step n and resolve is sound (1) at step n then also
V(Q,e) €Ss.Q0|TH, cC 7 ~e.

Proof. We prove by induction on the derivation.

Case The first case applies to mono types: inst(T, n, 71, 72) = [(Q,-) | Q « unify(ry, 2)]. We derive
QF 11 = 13 (2) by the soundness of unify (Lemma C.28). We then can show Q [T'H, 71 E 7, ~> -
for all (Q, e) in the resulting list by [insT-mono] and (2).

Case This case applies to type schemes with quantifiers: inst(T, n,Ya.o,7) = inst(T, n, o[a:=fresh()], 7).
Follows directly the inductive hypothesis (given that fresh is correct).

Case The last case applies to implicits types:
inst(T, n, ity —p, 1) =

[(Q.ee) | (O, e)—inst(T,n p,12), (Qz, €)—resolve(L, n, x, Q1[71]), Q—compose(Q1, Qz)]
From the algorithm we have (Qy,e)—inst(T, n, p, 72) (3), (Qz, €)«—resolve(T, n, x, Q1 [71]) (4), and
Q«compose(Q1, Q2) (5). By induction (2,3), we have Q; |T'+, p E 7z ~> e (6). By soundnes of
resolve (1,4), we have Q, | ' Ik, x = Qi[11] ~ e (7). We can derive from the soundness of compose
(Lemma C.29) and (5), that we have F (O, Q2) (8) We can apply [insT-mpLiciT] now by (6,7,8).

We also need completeness of resolve and inst.

Lemma B.12. (Resolution Completeness)
IfQ|TIH z% 7 ~ e atstep nand inst is complete at step n — 1 where n > 1 then
resolve(T,n,z,7) =S A (Q,e) €S.

Proof. We proceed by case analysis of the derivation. Because the rules have mutually exclusive
premises we can consider each case with respect to a single line of the algorithm.

Case From [var-cut| we have @ |T' Iy z % 7 ~» L and n = 0 which requires us to include (&, L)
in the result when n =0 : resolve(T, 0, z,7) = [(@, L)]. This is mutually exclusive with the other
cases where the conclusions require n > 0 which contracticts n = 0.

Case From [var-pDirecTk]| we have z:0 € ' (2),and Q | -y 0 C 7 ~> € (3). The corresponding
line in the algorithm is mutually exclusive with the other cases since the conclusion only applies
for n > 0, and ensures (2). From the inductive hypothesis and (3) we have

inst(T,n—1,0,7) = Ss A (Q,e¢) € Ss(4). From (4) we are required to include (Q, z e) in the results
in this case:

resolve(T,n,z,7) | z:o €T = [(Q,ze) | (Q,e) « inst(T,n—1,0,7)]

Case From [var-QuaLiryk]| we have that z¢ dom(T') (2) m/z:0 €T (3)and Q | T,y 0 C 7 ~ve
(4) with n > 0 (5). We do not match the first (5) or second (2) cases of the algorithm making this mutu-
ally exclusive. From the inductive hypothesis and (4), we have inst(I', n—1,0,7) = Ss A (Q,e) € Ss

27

(6). From (6) we must include (Q, m/z e) in the results:
resolve(T,n,z,7) = [(Q,m/ze) | m/z:0 €T, (Q,¢) « inst(T,n-1,0,7)].

Lemma B.13. (Instantiation Completeness)
If Q|T+, 0 C 7 ~e at step n and resolve (1) is complete at step n where n > 0 then also
inst(T,n,71,72) = Ss A (Q,e) € Ss.

Proof. We proceed by induction on the derivation tree.

CaseFrom Q |T'H, 71 E 7, ~»-wehave Q F 77 ® 1 and by the completeness of unification, we
are required to include (Q, .) in our result: inst(T, n, 71, 72) = [(Q,) | Q « unify(r1, 12)].

CaseFrom Q |T+, Va.o E 7 ~ewehave Q|TH, 0 C 7 ~¢(3)and fresh a. By the induc-
tion hypothesis and (3) we have that Q [T+, 0 E 7 ~> e requires us to include results from
inst(T, n, o[a:=fresh()], 7), given fresh type variables.

Case From Q, Q; |T'H, 2xi1y > pC 7, ~~eewehave Q1 |TH, pC 17, ~>e(3)and

Qo | Tl xT O1[r1] ~» e (4). By the induction hypothesis and (3) we have that we must consider
each (Qy,e)«inst(T, n, p, 72) and for each of those we derive (Q,, €)«—resolve(T, n, x, Q1[71]) via
the induction hypothesis and (4). Finally due to the completeness of compose we have that (Q;, Qz)
exists, requiring us to include (Q, e e) in the results for this case:

inst(T, n, 2x:11—p, 1) =

[(Q.ee) | (Que)—inst(T, n, p, 12), (Qs, €)—resolve(T, n, x, Q1[11]), Qe—compose(Qy, Q)]

Finally we need that uniqueness holds for both directions.

Proof. (Of Lemma B.9 (Uniqueness)) As a reminder, to prove soundness, we must first prove that
unique derivations correspond to unique resolutions in the algorithm:

AeQ|T Ik z% 1 ~ e iff resolve(T,n, z,7) = [(Q, e)].

Case In the forwards direction we have Q | T Ik, z 7 7 ~» e (1) and 3!e (2). From completeness and
(1) we have that resolve(T, n, z,7) = S where (Q, e) € S. Assume there are multiple (Q, e) in S: that
immediately contradicts (2). So we only have one result, and can show resolve(T, n, z, 7) = [(Q, €)]

Case In the backwards direction we have resolve(T, n, z, 7) = [(Q, €)] (1). By soundness and (1) we
havethat Q | T Ik, z T 7 ~> e (2). Furthermore, assume that there is someother Q' |T' I, z 7 17 ~ €/,
then via completeness and (1) we have a contradiction. Therefore the solution (2) is unique 3!e (3).
With (2) and (3) we are able to show the conclusion.

check : (T,e,7) — (Q,e)

check(T, z,t) = match resolve(T, K, z,)
[(Qe] [LEe—(Qe)
(] — fail() unresolved
— fail() ambigious or infinite

Proof. (Of Theorem 3.7 (Algorithmic Soundness)) We must prove that given check(T, z,7) = (Q, e),
then also

Q|T+F z% 1 ~e (1) (with [var-k]). The only case where check produces a result is when resolve
returns a unique result e with an associated Q (2). We can show (1) via the uniqueness lemma and

@).

28

Proof. (Of Theorem 3.8 (Algorithmic Completeness)) We must prove that given Q [T+ z T 7 ~ve
also check(T, z,7) = (Q, e) (1). The rule only produces a result if I, has a unique result e with an
associated Q (2). We can show (1) via the uniqueness lemma and (2).

B.2 Soundness of the Finite Type Rules

Proof. (Of Theorem 3.6) We must show that given Q | T' + z T ¢ ~ve (1) with [var-x], then
Q|T+F z% 1 ~ve with [var].

This reduces trivially to showing that if Q [T I, z T ¢ ~»e (1), 3le (2), and L ¢ e (3) then
Ale, Q|T IF 277 ~e (4).

We prove by cases on the number and kinds of solutions from the finite rules I+, .

Case None or multiple solutions: Contradiction that we have a solution (1) and that it is unique (2).

Case One solution:
subcase L € e: Contradiction that the solution is not infinite (3)
subcase L ¢ e: Straightforward proof by induction on the derivation, the rules are identical
except for passing n. We can proceed by case analysis on the derivation of L ¢ e in the inductive
cases, which allows us to eliminate rule [var-cut| which is the only other difference.

More detailed proof of last subcase.

Lemma B.14.
IfQ|TI, z%7 ~we AL¢ethenalsoQ|T IF z57 ~e

Lemma B.15.
IfQ|T'H, 07 ~~e AL¢ethenalsoQ|TFHoC 1 ~e

Proof. (Of Lemma B.14) Induction on the structure of the derivation, where we have
Q|Tl, z57 ~e(1)and L ¢ e(2).
Case Q| T'ly z7 1 ~> L:by contradiction with (2).

Case Q|TIH z: 7 ~>ze
subcase z:0 €T (3) We have that only [var-pirecTk] is the only match, and we can derive
[var-pirecT] via (3) and the inductive hypothesis.
subcase z:0 ¢ I' (3) We have that only [var-guaLiryk]| matches since (3) contradicts with
the other subcase and thus m/z: o €T (4), and we can derive [var-Quariry| from (3,4) and the
inductive hypothesis.

Proof. ((Of Lemma B.15)) Induction on the structure of the derivation where wehave Q | T'H, ¢ C 7
(1) and L ¢ e (2). Trivial by case analysis on the derivation of L ¢ e and passing n for the inductive
hypotheses.

B.3 Principal Derivations

Here we prove Theorem 2.3: For any derivations Q1 | T'kgen € 70 ~epand Qr | T hgen € 7 07~ €,
we have Q1 = 05, 0 = 0/, and e; = e,.
Leijen and Ye [2024] already show that type equivalence is principal (Theorem D.28):

Lemma B.16. (Principal type equivalence)
If O1 + 71 = 12, then for any other derivation Q, + 7; = 75, we have Q; = Q;.

Next we show that variable resolution is principal (and coherent) as well:

29

Lemma B.17. (Variable resolution is principal)
IfQ |T+z%7 ~e andalso Q; [T+ 27 7 ~> e, then Q) = Q; and e; = e,.

Proof. For the elaboration, the equality e; = e, is by construction due to the 3'e premise. We still
need to show though that we also have Q; = Q,. Suppose we have Q; | T IF z % 7 ~v eand also
Q2 | T IF z% 7 ~» e We proceed by induction over the variable rules and instantiation:

Case [var-pirecT|: by induction over the premise,for Q; [T+ 0 T 7 ~eandQ, [T+ o E 7 ~e
we have Q; = Q.

Case [var-quaLIry]: there is a choice here which m/z: o to pick from I'. However, since they rewrite
to the same m/z e both derivations use the same m/z: o and thus by induction over the instantiation
premises, we have Q; = Q,.

Case [insT-MoNo]: We have Q) + 71 = 1p and Q; + 77 = 72, and by Lemma B.16, we have Q; = Q,.

Case [inst-ivericit]: We have Qy; [TF pE o ~»eand Qp | '+ p E 7~ e and by induction
011 = Q1 (1). We also have Q1 | T IF x T Qi1[r] ~ e and Oy |T IF x 7 Qo1[r] ~~ €. How-
ever from (1) we have Qi;[7] = Qs1[7], and thus by induction e; = e; and Q; = Qs and thus

O11, Q12 = Qo1, Q2z.

Case [iNsT-QuaNTIFY]: From the premise we directly have by induction Q; = Q,.
]

With Lemma B.17 we can now follow the proof of Leijen and Ye [2024] (Appendix C) to show that
the full rules are principal:

Proof. (Of Theorem 2.3) Since the rules in Figure 5 are syntax directed (with preference for
[app-var] over [app-aRrG]), the structure of the two derivations must match exactly. Furthermore,
by Lemma B.16 and Lemma B.17, the premise Q + 7; = 7, (in [ann]) and the [var] rule are also
principal. Therefore both derivations are exactly equal with no derivation choices. In particular,
in a [var] leaf where Q [T + z T 7 ~~ ¢ we always have the same 7 for any derivation over e[z],
and it always elaborates to the same ¢’. O

B.4 Stability

First we show monomorphic substitution, then monomorphic stability, and finally polymorphic
stability.

B.4.1 Monomorphic Substitution. Note: we first want to show other derivations exist and only
later reason about unique derivations, so the lemmas are stated over I for now. Moreover, since we
need to reason about both the instance and variable rules together, we generally need to establish a
stronger extended lemma first to have strong enough invariants.

The following Lemma is the inverse of stability (Lemma B.21) which we need in order to show
that derivations are still unique in the stability theorem (Theorem 2.4).

Lemma B.18. (Extended Monomorphic Substitution)
IfQ; | 0T IF z % Ot ~> e, then for any 7’ C 7 (I) where 7 = 6’7’ such that 6'C (Qy, 0) (II), we also
have O, | T IF z% 7/ ~» e, with e; = e; and Q, C (6, Qy).

Lemma B.19. (Monomorphic Substitution)
IfQ; | 0T I+ z% 0 ~- e, thenwealsohave Q) |T I+ 277 ~~ e, with e; = e; and O, T (6, Oy).

Proof. This follows directly from Lemma B.18 where 7’ = 7. O

30

Note thatif Q; | T + z T 7 ~- e, then we cannot conclude Q; | T+ z T 7 ~- e also holds.

We have by the premise Jle. Q; | 0T |- z T 0t ~- e. By Lemma B.19, for all such derivations,
we also have Q, | T’ IF z T 7 ~v e with the same e (satisfying the Je part). However, we also need
to show that there are no other derivations Q, | T I z T 7 ~~ ¢’ with ¢’ # e (satisfying the unique
part). Unfortunately, that is not generally the case. Consider the example from Section 2.10 where we
have that @ | [a:=c]T + trans T [a:=c](a—a) ~- generic/trans holds, but _ | T ¥ trans T a—a
does not as it is ambiguous.

Proof. (Of Lemma B.18) We proceed by induction over the variable and instance rules. For the
instance rules, if Q; | T+ 60 C 67 ~-esy, then also O, | T+ 0 C 7/ ~ves, with e; = e; and
QE(0, Q).

Case [var-pIrecT]: By the premise, z: 0o € 0T (1a) and Q; | T I+ 6o C 0t ~- e; (1b). From (1a),
we also have z: 0 € T'. By induction on (1b), we have Q, | T IF 0 T 7’ ~> e, with e; = e, and we

o ’

can conclude Q, [T IF z7 7/ ~~e,.

Case [var-quaLiry|: By the premise, m/z: 0o € 0T (1a) and Q; | 0T I+ 0o C 0t ~> ¢; (1b). From
(1a), we also have m/z: o € I'. By induction on (1b), we have Q; |T' IF ¢ E 7/ ~v e; with ¢; = e,
and we can conclude Q; | T IF m/z T ¢/ ~> e

Case [insT-ivpriciT]: We have Qi1 | OT + Op C 07 ~~es; (la)and Qp, | OT I x T Qp1[071] ~> ¢
(1b). By induction on (1a), Qp; | T+ p E 7/ ~v'es; (2a) with es; = es, (2b) and Q1 E (011, 0) (2¢).

By Lemma B.23, Q11 0 8 = (011, 0), and by composition, = 0 o (Qy1, 0). From (1b) we therefore
have Q12 | 0T + x T 0((Q11,60)[71]) ~ e1.By(2c), wealso have (7" =) Qo1 [11] T (Q11, 0) [71] (= 7) ()
(and thus (Q11,0)[71] = (Q11, 0)[Q21[71]] where (Q11, 0) T (Q11, 6) (IT)). We can now use induction
on (1b) to conclude Oy | T+ x% Qs[11] ~ e, (3a), with e; = e, (3b) and Q,, C (6, Q12) (3¢c). We
can now derive from (2a,3a), (Q21, Q22) | T F 2x:ty—p T 77 ~> e; es; with e esy = e; es; (2b,3b),

and (Qa1, O22) C ((O11, Q12), 0) (2¢,3c¢).

Case [insT-mono|: We have Q; + O1; ~ Ot from the premise, and thus by Theorem B.25, Q + 7; = T
(1a) with (Q,0) = (0, 0) (1b) and also QC (Qy, 0) (1c). We can now derive:

(Q1,0)[]

= (QuO)[0[n]] { (10}

= (01,.9[0[r]] {(1a), Theorem2.1}

= (QuO)[r {(1c) }

= (Quo)fer] {(D)}

= (01,0 [7] {n}

And by Theorem 2.2, O, + 71 = ©/ with O, C(Qy, 0). O

Case [insT-guanTiFy]: We have Q; | 0T + 6o C 07 ~es;. By induction, Q, [T Fo C 7/ ~ves,
with es; = es; and Q, C (Qy, 8). With the same fresh a, we can conclude Q, | T FVa.o0 T 7/ ~~ es,.

B.4.2 Monomorphic Stability. To prove stability, we again first establish an extended lemma:

Lemma B.20. (Extended Monomorphic Stability)
IfQ; |T IF z% 17" ~ e, andF (6, Q1) (I), then for any 7’ C 7 (IT) where 7 = 6’7 such that 0’ C (Qy, 0)
(IIT), we have Q, | T I+ z % 67 ~~ e; with Q; C (6, Q).

Lemma B.21. (Monomorphic Stability over Derivations)
IfQ, | T IF z% 7 ~ ewithF (6, Qy), then we alsohave Q; | T I z = 0t ~» e with Q; C (6, Q,).

Proof. This follows directly from Lemma B.20 with 7/ = 7. O

31

Proof. (Of Lemma B.20) We proceed by induction over the variable and instance rules. For the
instance rules, if Q; | 0T+ 60 C 07 ~~esy, then also O, | T+ 0 C 7/ ~ves, with e; = e; and
Q:E(0, Q).

Case [var-pirect]: By the premise, z:0 € T (1a)and Q; [T IF 0 C 7/ ~> e; (1b) with F (Qy, 0)
(1c). From (1a), we also have z: fo € OT'. By induction on (1b,1c),wehave Q, | 0T |- 6o C 07 ~~ e,
with e; = e;, and we can conclude Q; | T I z T 07 ~~ e,.

Case [var-QuALIFY|: By the premise, m/z:0c € T (1a)and Q; | T I+ 0 C 7/ ~~ e; (1b) with = (Q4, 0)
(1c). From (1a), we also have m/z: 0o € OT. By induction on (1b,1c), wehave O, | 6T I 60 C 01 ~> e,
with e; = ey, and we can conclude Q; | T |+ m/z T 07" ~~ e,.

Case [insT-ivpriciT]: Wehave Qi1 |[TF p E 77 ~~es;(1a), Q12 | T IF x T Qi1[11] ~ e (1b), and
E (Q11, Q12, 0) (1c). By induction on (1a,1c), Qs | 0T + 0p E 07~ es, (2a) with es; = es, (2b) and
Qu € (Q21,0) (2¢).

By (2c), we also have (7 =) Q11 [71] E (Q21, 0) [71] (= 7) (II), (and thus (Qz1, 0) [71] = (Q21, 0) [Q11 [71]]

where (Qzl’ 9) - (th 6) (III))
By induction on (1b,1c) we now have Qy; | T + x7 0((Q21,0)[71]) ~~ € (3a), with e; = e, (3b)

and Q12 C (6, Qs2) (3¢). By composition, 6 o (Q,1,0) = (Qs1,6),andby Lemma B.23, (Q21,0) = Qs 00,
and thus from (3a), Qs | OT F x7 Qp1[071] ~ € (3d).
We can now derive from (2a,3d), (Qs1, Q22) | T + 0(?x:11—p) T O ~> e, esy with e; sy = e; esy

(2b,3b), and (Q11, O12) C ((Q21, Q22), 0) (2¢,3¢).

Case [insT-Mono]: We have Q; + 77 = ¢’ (1a) from the premise with F (Q;,). We can now derive:

(Q1,0)[071]

= (01,0)[n] {0E(01.0) }

= (0L,O[[n]] {AC(01,0)}

= (QuO)[Q[7']] { (1a), Theorem 2.1 }
= (Q1,0)[] {}

= (Quo)o7’] {dm}

= (01, 0)[7] { def. }

= (Qu0)[0r] {0C(01,0) }
And by Theorem 2.2, Q; + 07 = Ot with Q; C (O, 0).

Case [insT-QuaNTIFY|: We have from the premise Q; [T+ 0 T 7/ ~~'es; with F (6, Q;). By in-
duction, Q, | T FfOc C 01 ~ es, with es; = es, and Q; C (Qs, 0). With the same fresh «, we can
derive Q, | 0T + 6(Va.c) C Ot ~ es,.

O

Now we are able to establish stability over variable resolution: if Q; | T+ z % 7 ~» e with F (0, Qy)
(I), then we also have Q, | 0T + z T 0t ~» e with Q1 C (6, O,).

Proof. (Of Theorem 2.4) From the premise of [var], we have Jle (la) with Q; |+ z T 7 ~» e (1b).
By Theorem B.21 (1a,1b), we also have Q; | 0T + z % 07 ~~ e (2a) with Q; C (2, 0) (2b) satisfying
de. Now, we also need to show there are no other derivations Q | 0'T + z T 8’t ~~ ¢’ for some 6’
with e # ¢’. However, if such derivation exists, we also have by Lemma B.19, Q' | T+ z % 7 ~v ¢’
- but that contradicts (1a,1b). m]

B.4.3 Polymorphic Stability. We prove Theorem 2.5: If using the [ann-scuEmE] rule, we have
Q|T+ t%Vap ~ e, and for any 7 with ftv(7) C ftv(T) (I), then also Q" | T+ ¢t [a:==T|p ~e.

Proof. (Of Theorem 2.5) By the premise, Oy | [,a + t T p ~> e (1a), with (Q,Va.p) = gen(Qy, T, p)
(1b) and fresh @ (1c). By (1b), we must have a@ ¢ dom(Q;) (1d) and @ ¢ ftv(Q).

32

We can now show that we can also derive Q" [T+ t T [@:=T]p ~> e by exactly following the
derivation of (1a). The interesting cases are at the [var] leaf nodes. In the original derivation, we have
aleaf Q3 | I, @, I’ F z T 7 ~v e3(2a)andinthenew oneweneed Qy | I'[a:=7|I" + z 7 [a:=T]7 ~~ e3.
We must have @ ¢ dom(Qs) by (1d), and therefore F ([a:=7], Q3) (2b). We can now use Theorem 2.4
with (2a,2b), to derive Qy | [a:=7|T, @, I’ + z % [a:=T]r ~~ e (3a). Since the & bindings are anony-
mous, and fresh o, we have Qy | T, [a:=T|T’ + z T [@:=T]t ~- e3 (3b).

(As an aside, this is the situation where using skolem constants are unstable: with skolems, we
may originally have a leaf node in type equivalence as ¥ 7’ ~ r[a:=c]. But if we later instantiate
the @, we get _ + 7/ = [@:=7]| and now this may hold, which can lead to a new valid derivation, and
later on the 3!e condition in [var] cannot be satisfied.) O

B.4.4 Supporting Lemmas.
Lemma B.22. (Prefix composition can be composed)

If ftv(Q;) 7 dom(Qy), then (Q1, Q2) = Q1 0 Qs.

Lemma B.23.
IfQ| 0T+ B0 C Ot ~>'e, then ftv(Q) 7 dom(6), and by Lemma B.22, (Q,0) = Qo 6.

Lemma B.24.
IfQ|OT+ 6o C 0r ~ethenalso Q' |TFHo T 1 ~¢
We have [Leijen and Ye 2024,D.27)]:

Theorem B.25. (Type equivalent substitution)
IfO + Q] = Q[rz], then also Q; + 73 = 7, with (Q, Q1) = (Q, Q2).
and also [Leijen and Ye 2024,Lemma 3.9]:
Lemma B.26. (Extraction corresponds to composition of prefix solutions)
IfFQand Q = Q- a=r,then (Q) = (Q’) o [a:=1].
where
Q=Q U{a=t} a¢ftv(Q, 1)

Q=0 a=r

We can also simplify duplicate bindings [Leijen and Ye 2024, Theorem 2.7]:

Theorem B.27. (Simplify)
If Q'+ 71 ~ 1y, then QU {a=1;, a=12} = QU Q" U{a=r}

EXTRACT

C UNIFICATION AND PREFIX COMPOSITION

Leijen and Ye [2025] show how to implement prefix composition (compose) and type equivalence
(unify). Unfortunately, in the original publication their formulation is not technically complete
unless we assume prefixes are always well-formed.

The reason for this is rather subtle, and requires careful reasoning about equivalent substitu-
tions. We say two substitutions 0y, 0, are equivalent whenever each is an instance of the other:
0,05 A 6,20, (where C 6’ iff 8’ = 0” o 6 for some 0”’). This means that a substitution from a
type variable to another has no direction: [a:=f] = [f:=«] since each is an instance of the other.

Since equality of prefixes is defined as equivalence of the minimal solutions, this is also the case
for prefixes, where {a=p} = {f=a}. For the solve algorithm, we need to define an ordering on such
type variable equalities in order to make it easier to correctly detect cycles. We assume there is
some lexical ordering of type variables such that for every type variable equality a=f, we have

33

unify : (r,7) > 6

unify(a, @) = id

unify(a,) | o+ p = if a < f then [a:=f] else [f:=a]

unify(a,7) or (t,a) | a¢ ftv(r) = [a:=7]

unify(n—1, 7,-71,) = let 01 = unify(r1, 7)); 02 = unify(r, 7;) in solve(6; U 0,)
unify(_, _) = fail()

solve : Q — 0

solve(2) = id

solve(Q W {a=t1}) = solve(Q) o [a:=r] if a¢ ftv(Q, 1)

solve(Q W {a=11, a=12}) = solve(QU Q" U {a=11}) if Q' = unify(r,) A a ¢ ftv(ry, 7, rng(Q))

solve() fail ()

compose : (Q,Q) — 0
compose(Q1, Q2) = solve(Q; U Q)

Fig. 7. Unification and solving of prefixes (where we use W for disjoint union).

that @ < f§ (and f=a is never present). Moreover, we also assume we never have a=a constraints.
We call such prefixes well formed.

We can easily ensure well-formed prefixes by adapting the unify algorithm [Leijen and Ye 2025]
to include one extra case for type variable equalities, which ensures the constraint a=p is always
in the correct order with @ < f. The full rules for unify, solve, and compose are given in Figure 7.

Essentially the solve algorithm picks non-dependent bindings and composes them recursively,
while simplifying duplicate bindings away by unifying their types using the unify function. Note
that the extra case for variable equalities also ensures now that unify(ry, 72) = unify(zs, ©1).

As an aside, the need for well-formed prefixes can be illustrated by using the ill-formed pre-
fix {f=a, a=p, a=int}. In such case solve would fail while there actually exists a valid substi-
tution (i.e. solve is incomplete for ill-formed prefixes). In contrast, the well-formed equivalent
{a=p, a=p, a=int} solves indeed to [a:=int, f:=int].

C.1 Soundness

Lemma C.28. (Unification is Sound)
If (Q) = unify(r1,72), then Q + 7y = 75.

Lemma C.29. (Solve is sound)
If 6 = solve(Q) (with a well-formed Q), then FQ and 0 = (Q).

We establish soundness of unify and solve together, since they are mutually recursive.

Proof. (Of Lemma C.28 and Lemma C.29) By induction on the rules of unify and solve.
Case unify(a, a): we have (Q) = id and thus Q = @. By [eg-1p], we have & + a ~ a.

Case unify(a, p) with a # f: With a < f, we have Q = {a=f}, and by [EQ-var] we have Q + a =~ f.
For f < a, we have Q = {fi=a}, and by [EQ-var] and [EQ-rEFL], we also have Q + f ~ a.

Case unify(a, 7),a ¢ ftv(r): we have Q = {@=r}, and by [eQ-var] we have QF+ a =~ 7.
Case unify(r, a),a ¢ ftv(r): we have Q = {a=r}, and by [eQ-var] and [eQ-rEFL], we have Q + 7 = a.

Case unify(r;—1, 7/—1,): From the premises, we have Oy = unify(ry, 7{) (1a), Q; = unify(rn, 7;)
(1b),and Q = solve(Q; U Q») (1¢c). By induction over (1a,1b), we alsohave Q; + 7; = rjand O + 7 = 7.

34

Moreover, by induction on solve(Q; U Q,), we have E (Q; U Q;) with {(Q1, Q»)) = solve(Qy, Qz). We
can now use [EQ-FUN] to derive (Qy, Qo) + 11 —7 = T, —1T,.
Case unify(r, 72) = fail(): in this case the precondition is not satisfied.
For the rules of solve, we have:
Case solve(@): we have trivially F @, and 6 = id = ().
Case solve(Q W {a=r}) with a ¢ ftv(Q) (1a): we have 6 = solve(Q) o [a:=r] (1b). By induction on
solve(Q), we have solve(Q) = (Q) (2a) with F Q (2b). By (1a,2b), we also have F (Q U {a=1}). By
Theorem B.26, we have {(Q U {a=1})) = (Q) o [a:=7] (3). Therefore

0
= solve(Q) o [a:=1] { (1b)}
= Qo [a=1] {(2a)}
= (QU{a=t}) {3}
Case solve(Q W {a=11, a=1;}): we have (Q’) = unify(r1, 72) (1a) and 0 = solve(QU Q" U {a=11})
(1b). By induction on (1a), Q’ 1= 1, (2a), and by induction on (1b), F (Q U Q" U {a=r1}) (2b) where
0={(QU Q" U{a=t1})) (2¢). From Theorem B.27 and (2a), we also have (QU {a=r;} U {a=1r,}) =
(QU Q" U{a=11}), and thus 8 = {(Q U {a=11} U {a=12})) (2¢).

Case solve(Q) = fail(): in this case the precondition is not satisfied.

C.2 Completeness

Lemma C.30. (Unify is complete)
If QF 11 = 1y, then (Q) = unify(ry, 7).

Lemma C.31. (Solve is complete)
If E Q (with a well-formed Q), then 8 = solve(Q) with 6 = (Q).

Again, we establish completeness of unify and solve together since they are mutually recursive. For
clarity, we split the proofs and assume completeness of the other in each proof.

Proof. (Of Lemma C.30) We proceed by induction over the derivation (assuming solve is complete):
Case [eQ-1p]: We have @ + 7y ~ 7, with 11 = 7,. If we only have function arrows and variables,
we can repeatedly apply [eo-Fun] (with Q; = Q; = @), ending in @ « = a. In that case we have
unify(a,) = id (with id = (@)). For each [eo-run] we can apply the unify(r1—1y, 13—14) rules
where solve(d, @) = id again.

Case [EQ-var]|: We have {a=7} F a = r (1a) with a ¢ ftv(z) (1b). Suppose 7 = f (with a # f (1b)).
If « < B, unify(a, f) = [a=p] = {a=p}). If f < a, we have unify(a, f) = [f:=a] but that equals
also f:=a and = ({@=p}). Otherwise, 7 # f§, and by (1b), we have unify(a, r) = [a:=1] = {a=1}).
Case [eQ-reFL]: We have Q + 1, = 71 by the premise, and by induction unify (7, r;) = (Q). We have
unify(zy, 71) = unify(ry, 12), and therefore we also have (Q) = unify(ry, 7).

Case [eQ-run]: We have Q; + 71 = 13 (1a)and Q; + 72 &~ 74 (1b) by the premises. The unify(r; —1,, 73—14)
case applies, and we have by induction over (1a,1b), (Q1) = unify(r1, 73) and (Qz) = unify (s, 7a),
and by Lemma C.31, {(Q1, Q2)) = solve(Q1, Q»).

Case If no derivation rules apply, we also have that none of the previous unify cases apply, and we
have unify(r;, r2) = fail().

]

35

For showing completeness of solve, we also need to establish a decreasing measure for the induction.
For well-formed prefixes, we can define a stable degree of a prefix (which decreases in each

recursive step). First we define the dependencies of @ with respect to a Q as:

o [€ deps(a) if a=r € Q and f € ftv(7).

o y e deps(a) if € deps(a) and y € deps(f) (transitive closure).

We say « is independent of 5, @ < B, iff « ¢ deps(f) (where we have both @ < fand § < « for indepe-

dent type variables). The degree of Q is now the number of occurrences of distinct type variables in

the domain ordered by < (in some order). For example, degree({f=y, a=int— p, y=int, a=f— int})

=(2,1,1) (for (a, B, y)). We have that if « ¢ codom(Q), then VS € dom(Q). & < S (I).

Proof. (Of Lemma C.31) We proceed by induction on the degree and shape of Q:
Case Q = @ in that case solve(@) = id applies where id = ().
Otherwise Q # @. Suppose we have that for all « € dom(Q) that @ € codom(Q).

Since all domain variables appear in the co-domain, by the pigeon hole principle such prefix must
contain a cycle, for example, {a=int, f=a—y, y=f—p}. Since we order type variable equalities
in a well-formed prefix, it is not possible for such cycle to consist of only type variable equalities
(like {a=p, p=a}). Therefore, in such cycle there must be some a=r with 7 being a larger type (e.g.
71—73). However, that makes it no longer possible to create an idempotent substitution and ¥ Q,
contradicting the assumption.

Therefore, we know there must be at least some @ € dom(Q) where a ¢ codom(Q) (1). We
proceed now by case analysis:

Case Q = Q' W {a=r} with a ¢ dom(Q’). In that case, with (1) we have « ¢ ftv(Q’, 7) (2) and the
second case of solve applies. By induction on the decreasing degree, (Q) = solve(Q’) (3). By (2)
and [exTract], we have Q = Q' - {a=r} and by Lemma B.26, {(Q) = (Q’) o [a:=7]. With (3) we now
have (Q) = solve(Q’) o [a:=7].

Case Otherwise, we must have Q = Q' W {a=r;, a=12}. With (1), we have a ¢ ftv(r;, 2, rng(Q))
(1a), and the third case of solve applies. Since F Q, by simplification (Theorem B.27), we have
Q' U{a=r, a=12} = Q" U Q" U {a=1} (2a), with Q" + 71 = 1, (2b).

From the completeness of unify, and (2b) we have (Q”’) = unify(z, 72) (3). By (2b) ftv(Q”") C ftv(zy, 72),
and thus by (1a), we have oneless @ € dom(Q" U Q” U {a=11}). Moreover, since ¢ ¢ codom(Q" U Q")
and (I), the degree decreases, and by induction (Q) = solve(Q’ U Q" U {a=11}).

Since this covers all forms of Q with F Q, the fail case never applies. O

Created with Madoko.net.

36

https://www.madoko.net

	Abstract
	1 Introduction
	2 Formalization
	2.1 Syntax
	2.2 Type Inference under a Prefix
	2.3 Type Equivalence under a Prefix
	2.4 Instantiation
	2.5 Syntactic Implicit Parameters
	2.6 Static Overloading as Qualification
	2.7 Implicit Parameter Binding
	2.8 Full Type Rules
	2.9 Scope Based Disambiguation
	2.10 Coherence and Stability
	2.11 Definition Stability

	3 Type Inference
	3.1 Undecidability of Type Checking
	3.2 Recovering Decidability
	3.3 Maintaining History
	3.4 Implementing Type Inference
	3.5 Optimizing Exploration

	4 Syntactic Implicits and Static Overloading in Practice
	4.1 Default Implementations
	4.2 Grouping Operations
	4.3 Phantom Implicits
	4.3.1 Divergence

	5 Related Work
	6 Conclusion
	References
	A Turing Encoding of a 3-state Busy Beaver
	B Proofs
	B.1 Algorithmic Soundness and Completeness
	B.2 Soundness of the Finite Type Rules
	B.3 Principal Derivations
	B.4 Stability
	B.4.1 Monomorphic Substitution
	B.4.2 Monomorphic Stability
	B.4.3 Polymorphic Stability
	B.4.4 Supporting Lemmas

	C Unification and Prefix Composition
	C.1 Soundness
	C.2 Completeness

