
Towards Fully-Controllable Packet Steering
for AI Backend Networks with SRv6

Shaofeng Wu1,2, Zhixiong Niu2, Riff Jiang3, Guohan Lu3, Chen Tian4, Hong Xu1, Yongqiang Xiong2
1The Chinese University of Hong Kong, 2Microsoft Research, 3Microsoft, 4Nanjing University

ABSTRACT
Distributed AI training and inference demand precise traffic control
to achieve optimal network performance, yet current traffic man-
agement methods remain passive, coarse-grained, and fragmented.
We argue that future AI backend optimization requires holistic,
proactive, packet-level controllability. In this position paper, we
propose a new vision of leveraging Segment Routing over IPv6
(SRv6), a mature WAN technology, to achieve comprehensive traffic
controllability in AI backend networks.

We discuss the key advantages of SRv6, including enhanced
load balancing, improved failure recovery, and efficient network
monitoring. Through our preliminary design and experiments, we
demonstrate SRv6’s feasibility and potential performance bene-
fits. At the same time, we explicitly outline critical open prob-
lems and challenges in adopting SRv6, such as designing effective
path assignment algorithms in diverse workloads, scalable control-
plane design, high-performance data-plane integration, and effec-
tive hardware-software co-design. Furthermore, we identify and
present additional open research directions and questions necessary
for realizing fully controllable AI backend networks.

1 INTRODUCTION
Distributed AI training and inference heavily rely on high-speed
inter-node networks (a.k.a. AI backend networks) to interconnect
GPU nodes, enabling efficient parallelism and supporting ever-
increasing model sizes [25, 39, 46, 50]. This backend fabric intro-
duces a range of networking challenges, necessitating careful opti-
mizations to achieve high throughput and low latency.

Existing techniques address specific optimization problems indi-
vidually, such as load balancing [19, 25], failure recovery [19, 50],
network diagnosis [22, 34], and in-network aggregation [26, 30, 41,
44, 50]. For instance, load balancing algorithms like E-ECMP [25],
packet spraying [18], and flowlet switching [25] have been pro-
posed to improve upon traditional equal-cost multi-path (ECMP)
methods. While these solutions alleviate targeted issues, they re-
main fragmented without addressing the common fundamental
limitations in current traffic control mechanisms.

In this position paper, instead of continuing to optimize each
scenario individually, we investigate the foundational question:
What really limits existing traffic control approaches in AI backend
networks? We identify the root issue as the lack of a unified way
for full controllability that proactively steers each and every packet.
Specifically, existing methods exhibit three key limitations:
(1) Coarse-grained granularity. Current techniques, such as ECMP,

manage traffic at a per-flow granularity, making them ineffec-
tive for scenarios requiring precise per-packet path control,
including fine-grained load balancing or fast failure recovery.

(2) Passive traffic management.Most existing methods lack proac-
tive control and workload-awareness, failing to leverage pre-
dictable traffic patterns in distributed AI workloads.

(3) Poor interoperability. Individual techniques are tailored to spe-
cific scenarios and are hard to integrate or co-tune, complicating
overall traffic management.

To address these limitations and provide holistic traffic controlla-
bility, we propose Segment Routing over IPv6 (SRv6), a matureWAN
technique [8, 10, 11, 13, 16, 24], as the foundational mechanism
for AI backend networks. SRv6 enables end-hosts to proactively
specify the path of each packet through segment identifiers (SIDs)
embedded in packet headers. Compared to other traffic control tech-
niques [28, 37, 40, 49], SRv6 uniquely offers rich programmability,
application-awareness, and native IPv6 support, making it an ideal
candidate for future AI network infrastructures.

Our initial explorationswith SRv6 inAI backend scenarios demon-
strate its promise, but also highlight critical challenges in both
control-plane scalability and data-plane performance. We discuss
potential solutions and outline preliminary designs for enabling
the benefits of SRv6-based traffic control.

The contributions of this paper include:
(1) A comprehensive analysis demonstrating why existing traffic

control techniques fundamentally limit AI backend optimiza-
tion (§2.1).

(2) The introduction of SRv6 to AI backend networks, in which we
clearly articulate its advantages and demonstrate its suitability
(§2.2).

(3) Discussion of key design problems and challenges for integrat-
ing SRv6 into existing AI backend infrastructures (§3.1).

(4) A preliminary SRv6-based design (§3.2).
(5) An exploration of open research questions and limitations of ex-

isting related approaches regarding AI backend controllability
(§4).

2 NEED FOR FULL CONTROLLABILITY
In AI backend networks with tens of thousands of GPUs, thou-
sands of switches, and tens of thousands of links [25, 39, 46, 50],
effective traffic control is crucial yet challenging due to numerous
parallel paths, diverse workloads, and highly dynamic network
conditions. In the following, we first analyze the pitfalls of existing
traffic control schemes, highlighting their limitations in granular-
ity, responsiveness, and flexibility. Then, we introduce SRv6 as a
promising solution, illustrating how its programmability and proac-
tive nature overcome these limitations, paving the way for fully
controllable AI backend networks.

2.1 Pitfalls of Existing Schemes
We identify three common limitations in how traffic is controlled
in AI backend networks.

Shaofeng Wu, Zhixiong Niu, Riff Jiang, Guohan Lu, Chen Tian, Hong Xu, Yongqiang Xiong

Coarse granularity. Traffic is currently controlled at flow or sub-
flow granularity for simplicity and compatibility with RDMA trans-
port [25]. For example, ECMP forwards packets based on 5-tuple
hash (or QP-based hash in RoCE v2) and achieves load balancing
at per-flow granularity, which however performs poorly for traffic
generated by AI workloads due to hash collisions [25, 37, 50]. While
packet spraying [18] and adaptive routing [4] make improvements
with per-packet load balancing, they do not have precise control
on each packet’s path and are therefore not applicable for other
scenarios that do require such controllability, e.g., in-network ag-
gregation [30, 35, 41]. Most network optimization techniques in AI
networks still have to bear with the coarse control at flow level due
to infeasibility of manual configuration of routing tables and the
lack of efficient per-packet mechanisms [25, 34, 39, 50].
Passive control. Inter-node communication in AI backend net-
works is highly structured, showing predictable patterns and strong
correlation with AI workloads. For example, RDMA flows are equal
in size for collectives in dense models [19, 25]. However, how traf-
fic travels across the fabric is determined solely by the network
for most scenarios and lacks proactive control with awareness of
workload patterns and topology changes [25, 39, 50]. For example,
message size of a collective communication (CC) operation is de-
termined by the CC library like NCCL [6, 7]. So it is feasible to
obtain the sizes of the corresponding RDMA flows before the CC
operation actually starts and perform load balancing accordingly.
However, both ECMP and packet spraying rely on randomness
without assumption on traffic patterns [3, 18, 25, 37], and fail to
exploit flow size distribution known in advance.
Lack of synergy and coordination. We observe that although
different network optimization techniques work well for their spe-
cific scenarios, they may be incompatible and even contradicting in
terms of traffic control goals. For example, SHARP [26] constructs
a spanning tree that defines aggregation hierarchy of computa-
tion nodes and switches, and traffic of collective operations strictly
follows the pre-defined logical topology and static routing. The
deterministic path selection disables adaptive routing [4] since
the latter sprays traffic across paths, potentially breaking aggrega-
tion hierarchy and yielding hangs or incorrect results. However,
adaptive routing is still needed to deal with micro-bursts and load
balancing of traffic that do not participate in aggregation in complex
AI workloads [44, 50]. The root cause is that there lacks a uniform
way of controlling the traffic. When different network optimiza-
tion goals lead to different traffic control decisions, they have to be
configured case-by-case and coordinated carefully.

2.2 A Case for SRv6
SRv6 inWANs. Segment Routing over IPv6 (SRv6) extends IPv6 by
introducing a new Segment Routing Header (SRH), which carries
an ordered list of 128-bit Segment Identifiers (SIDs) [8, 13, 24]. Each
SID encodes either a topological locator (i.e., “go to this node”)
or a specific network function or behavior (e.g., steering, service
insertion, telemetry sampling). By interpreting the active SID in the
SRH, an SRv6-capable node applies the corresponding action and
advances the packet to the next segment, enabling path and network
service programmability. In addition, SRv6 offers an Optional TLV

(A)

64MB 256MB 1GB 2GB
Collective Size

0

20

40

60

80

100

N
or

m
. T

pu
t

(%
)

(B) ECMP Spray SRv6

64MB 1GB
Collective Size

101

102

C
C

T
 (

m
s)

(C)

Figure 1: (A) Example leaf-spine topology with 128 GPUs for
simulation [19, 25]. Each GPU is served with a dedicated NIC
and link speed is 400Gbps. (B) Normalized throughput of
AlltoAll with different collective message size. (C) Collective
completion time (CCT) of AlltoAll in logarithm scale with
different collective message size under link failure. Link fail-
ure happens in the link aggregation group (LAG) between
switch 128 and 136 and halves the aggregated bandwidth be-
tween these two switches.

(Type-Length-Value) after segment lists to carry irregular informa-
tion during packet transmission on a network, providing another
aspect of programmability to applications.

Leveraging the three levels of programmability and simplicity
of SRv6, major operators have widely adopted SRv6 in their carrier
and backbone networks for data center interconnects (DCI), traffic
engineering, segment-aware VPNs and 5G UPF chaining [10, 11, 16].
Potential in AI backend networks. SRv6 offers us the exact
controllability we seek within AI backend networks: traffic can be
programmed and managed at the finest granularity over routing
layer, i.e., per-packet, allowing each packet to take a unique path
and carry unique information from either end-hosts or network. We
demonstrate, with two examples, that SRv6 is an ideal data-plane
standard for addressing traffic controllability issues of existing
techniques and realizing our vision of progressively building a fully
controlled AI backend.

2.2.1 Traffic Load Balancing. Load balancing heavily determines
the performance of AI backend, i.e., whether it can achieve roofline
performance with the underlying network hardware and infrastruc-
ture when serving bursty, low-entropy and synchronous collective
traffic from AI workloads [25, 39, 50]. ECMP, a forwarding strategy
widely adopted by data centers to achieve load balancing [28, 37, 49],
performs poorly on collective communications driven by RDMA
in AI backends due to the lack of 5-tuple randomness and hash
polarization [25, 36, 39, 50]. To improve its performance, other load
balancing strategies have been proposed for use in AI backends,
including QP scaling [25, 39], flowlet switching [20, 25], and packet
spraying [18, 50].

SRv6 can help load balancing with its per-packet and host-driven
control in three-fold. (1) It is able to support and improve exist-
ing techniques considering their specific tradeoffs. We use packet
spraying as an example. (2) It is able to support the design of new
load balancing algorithms. (3) It is able to achieve fast re-routing
under link failures.
Packet spraying. Packet spraying works by randomly arbitrat-
ing packet paths among equal-cost paths and achieves even load
balancing for symmetric topologies [18, 19, 23, 45, 50]. A key fac-
tor limiting the deployability of packet spraying is its reliance on
proprietary switch hardware [2, 3, 18, 23]. SRv6 facilitates flexi-
ble host-based packet spraying as an alternative to switch-based

Towards Fully-Controllable Packet Steering for AI Backend Networks with SRv6

solutions by allowing hosts to randomly specify the SID of each
packet, which aligns with recent calls [18, 50] for standardizing
packet spraying in future AI backends.

Another factor limiting the adoption of packet spraying is its
poor compatibility with RDMA transport due to out-of-order packet
delivery [3, 19, 36]. Recent works [36, 43] require exact path control
and path tracing of RDMA traffic to mitigate this issue. They can
leverage SRv6 to achieve a simpler and standard design.
Application-aware load balancing. Existing load balancing strate-
gies fail to exploit the structural communication patterns of AI
workloads. For example, both ECMP and packet spraying rely on
randomness without prior knowledge of flow size distribution,
while in distributed training , flow sizes are determined before
collective starts and can be used to place flows on specific paths in
advance to achieve balanced load on these parallel paths. Compared
to letting the network distribute packets blindly, this “application-
aware load balancing” can potentially avoid packet re-ordering
in RDMA, which requires high-end RDMA NIC to solve [3]. The
proactive placement of traffic required by application-aware load
balancing can be supported gracefully with SRv6. Specifically, a
centralized AI scheduler can collect flow size information from
collective communication libraries on end-hosts, calculate the op-
timal flow placement scheme and distribute corresponding SRv6
SIDs to host NICs for packet encapsulation and path control, while
the switches simply interpret SRv6 SIDs without other advanced
features. We use astra-sim [9, 47] and conduct simulations on the
leaf-spine topology in Figure 1(A) as an example to demonstrate the
benefits of this approach. Figure 1(B) shows that application-aware
load balancing enabled by SRv6 can achieve similar normalized
bandwidth as packet spraying for a 128-GPU AlltoAll on symmet-
ric leaf-spine topology, without the complexity of multi-path and
proprietary hardware.
Re-routing. SRv6 is also straight-forward for enabling source-
driven re-routing when network failure happens. When the host
receives failure signals, e.g., ECN, it can proactively re-route packets
by modifying SRv6 SID list. For example, we set the link speed
between switch 128 and 136 to 200Gbps in the topology shown in
Figure 1(A). Hosts under switch 129-135 can proactively re-route a
portion of traffic traveling to switch 128 via switch 136 to other spine
switches. We conduct a simulation on this example and the result in
Figure 1(C) shows that AlltoAll completion time is reduced by 37.1%
and 21.6% for 64MB and 1GB message sizes compared to packet
spraying, which performs poorly under topology asymmetry.

2.2.2 Network Monitoring and Failure Localization. Distributed AI
training is extremely sensitive to network failures, e.g., switch port
flapping and link bottleneck [34], due to synchronized communi-
cation pattern between GPUs. To prevent single point of network
failure from degrading training throughput for a long time, network
monitoring and failure localization frameworks are developed to
quickly identify the failure type, location and root cause [34, 38].
These frameworks typically use probe packets to traverse links and
switches and localize network failures according to joint paths of
abnormal probes, e.g., high-RTT ones.
Enhancing R-Pingmesh with SRv6. We demonstrate significant
improvements to R-Pingmesh [34], a diagnostic framework for AI

0 8 16 24 32 40 48 56 64
Paths

0
2
4
6
8

10

N
or

m
. #

 P
kt

.

(A)

P=0.99 P=0.95 SRv6

100 101 102 103

Probe Frequency (PPS)

0

50

100

C
PU

 U
til

iz
at

io
n

(%
) (B)

Figure 2: (A) Number of packets (normalized by number of
paths) required at least to probe all paths with a possibility
of 𝑃 . 𝑃 is the possibility of covering all paths using random
5-tuple with ECMP in R-Pingmesh. For SRv6, packet path can
be explicitly specified so 𝑁 paths can always be 100% covered
with 𝑁 packets. (B) Switch CPU utilization with respect to
bi-directional traceroute frequency.

backend networks, through the adoption of SRv6. Originally, R-
Pingmesh exercises possible network paths by varying 5-tuples
of probe packets, collectively forming a pinglist. However, due
to black-box ECMP hashing on switches, even extensive pinglists
cannot guarantee traversal of every path between ToRs or spe-
cific desired paths. By explicitly encoding paths in SRv6 packets at
end-hosts, SRv6 replaces the pinglist approach with precise path
programmability. Our simulations show this dramatically reduces
the number of probe packets needed to enumerate all possible paths
between ToRs across varying topology scales. Figure 2(A) presents
the result, wherein the number of probe packets required to cover
all paths is greatly reduced with SRv6’s precise path control. This
is equivalent to O(TB) reduction of log footprint [27, 34] and ∼ 5×
faster detection of failures with the same number of probe packets.

Moreover, SRv6 further improves R-Pingmesh by streamlining
path tracing. Traditional R-Pingmesh relies on periodic traceroutes
to discover paths traversed by probe packets, as 5-tuples alone can-
not directly reveal these paths. However, the frequency of tracer-
outes in R-Pingmesh is restricted to avoid overwhelming switch
CPUs with ICMP packet generation, as shown in Figure 2(B). SRv6
inherently preserves path history within its SID stack, allowing
for direct extraction from collected probe packets. This eliminates
additional traceroute overhead and switch CPU usage, enabling the
detection of network failures at microsecond granularity without
taxing switch resources.

2.2.3 Other Usecases. In addition to load balancing and network
diagnosis, we opt for a set of network optimization techniques that
can potentially be improved or simplified with better traffic con-
trollability of SRv6. We list these unverified but promising usecases
non-exhaustively.
Micro-burst mitigation. AI workloads generate bursty traffic [19,
32, 50], which causes microsecond-level congestion even with load
balancing strategies that eliminate permanent congestion. Similar to
re-routing upon link failures, end-hosts can utilize SRv6 to explicitly
specify a new path when they receive congestion signals, e.g., ECN
or fine-grained telemetry information, and proactively shift packets
to a precise backup path according to topology information.
Flexible in-network aggregation (INA). INA offloads vector-sum
operations into the network, significantly reducing communication
overhead and latency for AllReduce [26, 30, 35, 41] and AlltoAll

Shaofeng Wu, Zhixiong Niu, Riff Jiang, Guohan Lu, Chen Tian, Hong Xu, Yongqiang Xiong

in MoE [29, 31, 50]. Existing solutions rely on specialized trans-
port layers [26, 30, 41] or proprietary hardware [26], limiting their
compatibility with adaptive routing and other dynamic techniques.
SRv6 uniquely integrates path selection and in-network functions
by defining an explicit Aggregate SID that specifies operation type
and aggregation locations. Controllers or hosts can flexibly ad-
just aggregation topologies, dynamically combining aggregation
with basic forwarding functions instead of using static spanning
trees [26]. This enables efficient network load balancing and op-
timal resource usage, ideal for MoE workloads with dynamic and
imbalanced communication patterns [29, 31, 50].

Additionally, SRv6 supports unified management of broader in-
network operations like multicast and compression from end-hosts
transparently [26, 35]. Future hardware adhering to open standards
will ensure compatibility and flexibility across evolving AI backend
generations [14].

3 IS SRV6 A FREE RIDE?
Although we have shown that SRv6 provides promising traffic
controllability and potential benefits to multiple usecases in AI
backends, it remains unclear how to integrate SRv6 with existing
infrastructure and build fully controllable AI backends. A quick anal-
ogy is: SRv6 is a set of nice wheels that should not be re-invented,
but to build a car, we still need to build or at least upgrade the
engine that drives the wheels.

3.1 Challenges
We identify major challenges in our initial explorations so far as
follows.

3.1.1 Path assignment algorithm problems and challenges. Design-
ing path computation algorithms with SRv6 is highly non-trivial.
The major complexity is that workload characteristic can heav-
ily affect its corresponding SRv6 path computation strategy. For
workloads with a deterministic traffic pattern, e.g., AllReduce with
uniform flow size for dense models [19, 25], pre-computing a flow
placement scheme based on information from AI scheduler before
the job starts is feasible and can achieve corresponding goals, e.g.,
evenly distributing flows across non-disjoint paths. And SRv6 can
be used for deterministic flow placement in this scenario by as-
signing pre-computed SIDs to hosts to control the path, and the
path assignment scheme can remain static throughout runtime. A
recent example is Ethereal [19], which assumes that flows have
uniform size and let each end-host place local flows evenly across
all uplinks in a fully distributed manner. However, emerging work-
loads often involve semi-predictable traffic pattern due to hybrid
parallelism [25, 46, 50], sparsity [32, 50] and multi-tenancy, which
prevents path pre-computation. Specifically, this includes:
Non-deterministic workload traffic.Workloads may have a non-
deterministic traffic pattern. For example, the flow size in AlltoAll
of MoE is skewed in both training and inference, and the flow
size distribution is dynamic for different micro-batches [31, 32,
50]. In this scenario, even if the collective types can be known
in advance, pre-computing a static SID assignment beforehand is
either infeasible or sub-optimal. Similar challenges can be seen for
pipeline parallelism [46]. A possible solution is predicting traffic

distribution and running light-weight path assignment algorithms,
but it requires further research on its effectiveness.
Private workload information. In the worst case, due to security
concerns in public AI backends, the path computation algorithm
has no visibility or prior knowledge of the application traffic pattern.
In this case, the algorithm needs to be either workload-agnostic or
adaptively learn from the ongoing traffic pattern.
Multi-tenancy. While a single job’s traffic can be deterministic,
multiple jobs can share the AI backend and their mixed traffic may
not be synchronous, leading to interference. In this case, reserving
bandwidth for some tasks may ensure their performance, but also
affects the completion time of other jobs. The algorithm needs to
coordinate traffic from jobs from different tenants.

3.1.2 System problems and challenges. In addition to developing
an effective path-selection algorithm to realize our vision, we must
also address various system-level issues and challenges to realize
the vision.
Scalable control-plane. SRv6 requires a separate control-plane to
calculate and assign SIDs based on real-time network conditions and
job placement in AI backends. While centralized SDN controllers
are effective in WAN scenarios with stable topologies [33, 42], the
dense connections, dynamic topology, and high flow concurrency
in AI backends make centralized SID computation challenging.
Frequent real-time events, such as link failures and job updates, can
quickly overload a centralized controller in a large AI backend.
High-performance data-plane.AI backends rely on RDMANICs [1,
5] for low-latency and high-throughput communication. Introduc-
ing SRv6 adds complexity, requiring NICs to manage topology and
path states for SID encapsulation and decapsulation. Current solu-
tions, such as eBPF-based software middle-boxes [12, 48], signifi-
cantly degrade throughput (68.0Gbps in our tests) and cannot meet
RDMA performance demands. Thus, we must develop hardware-
based SRv6 data-plane support to maintain line-rate performance.
Hardware-software co-design. Effective SRv6 deployment in AI
backends also requires hardware-software co-design. Challenges
include: (1) how workload information is collected for controller or
dataplane — whether by intercepting frameworks such as NCCL
or by introducing a proxy where applications explicitly report
workload status; and (2) how control-plane and data-plane inter-
act—whether the controller centrally computes and distributes path
decisions for each flow, or the data-plane independently computes
per-flow routes based on information and commands from the
controller.
Flexible policy expression. Another challenge lies in the defini-
tion and expression of path policy. As AI workloads continuously
evolve, we need clear interfaces and expressive mechanisms for
path algorithms, enabling network operators to flexibly adjust poli-
cies according to changing requirements. This flexibility ensures
rapid iteration and adaptation. Moreover, any chosen algorithm
must be deployable to ensure consistency and performance.

3.2 Preliminary Design
Given existing challenges, we outline a preliminary design for en-
abling SRv6 in AI backends as shown in Figure 3. We introduce
the three major components of our system, together with several
auxiliary components.

Towards Fully-Controllable Packet Steering for AI Backend Networks with SRv6

1 2

1 n

k

... ...

T2

T1

T0m1

...

Pod 1 Pod p

eSwitch

SR Policy DB

Local Link
Stat DB

IPv6 Hdr

Packet A

SID: Pod 1-T0-1
SID: Pod 1-T1-1

SID: T2-1
SID: Pod p-T1-1
SID: Pod p-T0-1

RDMA payload

IPv6 Hdr

Packet B

SID: Pod 1-T0-1
SID: Pod 1-T1-n

SID: T2-k
SID: Pod p-T1-n
SID: Pod p-T0-1

RDMA payload

Host

Global Link
Stat DB

Global SR Engine

AI Job
Scheduler

Global Controller

Local SR
Engine

SNIC

GPU

AI Workload

Path Algorithm

Traverse CSPF ...

SmartNIC

vPort

Data

Metadata

Control

Figure 3: Design overview of SRv6 integration with AI back-
ends.

Path algorithm module. The path algorithm module implements
configurable path-selection strategies. It specifies different algo-
rithms that can be used by both the global and local SR engines to
compute SID assignment scheme.
SR Engine. The system has two types of SR engines - local SR
engine and global SR engine, which are both responsible for calcu-
lating SID assignment scheme but operate at different timescales
and scenarios.

The global SR engine operates on a coarse timescale and com-
putes the initial SID assignment scheme based on global topology
information from global link stat database, e.g., available path and
link capacity, and workload information from the AI scheduler, e.g.,
collective type and its flow size distribution. The global SR engine
will initialize SR policy DB, which store active SRv6 policies, on
all related hosts with the globally-derived SID assignment scheme.
The local link stat DB will also be initialized with information from
global stat DB.

The local SR engine is responsible for path computation based on
local topology status and application information, and will update
the SR policy DB at runtime. Specifically, it can deal with two
scenarios: (1) Dynamic events including link failure and job arrival
or completion may frequently trigger path computation. (2) AI
workloads with non-deterministic traffic pattern, e.g., imbalanced
flow size in MoE AlltoAll. The local SR engine perform these path
computations locally without frequently triggering a heavy global
path computation on global SR engine, which avoids overloading
the global controller and ensures scalability. The global controller
only needs to periodically perform global computation and updates
both local SR policy DB and link stat DB.
SmartNIC-offloaded data plane. We facilitate rich SRv6 oper-
ations at line rate with SmartNICs on hosts. The global and local
SR engine configure the SR policy DB to program the eSwitch on
SmartNIC. For RDMA traffic, the eSwitch exposes a virtual port to
the AI workload and transparently enforces SRv6 operations based
on SID policies at line rate. In addition, the system does not require
switches to have advanced features other than being SRv6-capable,
i.e., being able to interpret SRv6 SID and functions, which have been

supported by SONiC [15, 17], further enhancing the deployability
of our preliminary design.

4 OPEN QUESTIONS
What are the switch-level requirements of SRv6? SRv6 typi-
cally forwards packets strictly according to the SIDs. However, it’s
still an open question how SRv6-enabled switches should handle
transient network issues, such as sudden congestion or temporary
link failures. For example, should switches proactively adapt the
SID-based routing decisions locally, or must they rely solely on
centralized controllers to recompute paths? Additionally, deploying
SRv6 encapsulation directly at ToR switches could potentially shift
path computation entirely onto the network layer, significantly
reducing decision-making latency compared to host-level encap-
sulation. Given that switches inherently possess faster awareness
and response to real-time network conditions, we remain open to
discussions on the feasibility and implications of ToR-based SRv6
encapsulation and routing adjustments.
Can we use SRv6 in AI frontend network and cloud data-
center network? AI frontend is responsible for data ingestion,
checkpointing, and logging [25], exhibiting different traffic patterns
compared to its backend counterpart. SRv6 can potentially resolve
the challenges that frontend networks face, e.g., network hetero-
geneity and congestion, while managing both frontend and backend
in a unified manner. Similarly, cloud networks handle heteroge-
neous and less predictable workloads, unlike the more predictable
aggregated WAN traffic, and tasks tend to be highly heterogeneous.
However, for certain cloud workloads such as MapReduce, which
involve predictable communication patterns during shuffle phases,
applying SRv6 could unlock significant optimization potential.
How to reduce SRv6 header overhead? Compared to raw IPv4
or IPv6 packets, SRv6 packets carry additional path information
in the SRH, reducing effective payload size. For example, a three-
layer CLOS topology path requires 6 SIDs, occupying 96 bytes.
While compressed SID encoding (e.g., uSID [21]) generally reduces
header size, scenario-specific optimizations—such as sparse SID
lists targeting hotspots or adaptively disabling SRv6 for non-incast
workloads—also merit further exploration.

5 CONCLUSION
We explore leveraging SRv6 as a promising solution to achieve
holistic, packet-level traffic controllability in AI backend networks.
Our preliminary investigations highlight the feasibility and perfor-
mance benefits of SRv6. Nevertheless, critical challenges remain in
both algorithmic and system aspects. Addressing these open ques-
tions and system-level challenges will be essential steps toward
realizing fully controllable and optimized AI backend networks.

REFERENCES
[1] 2021. NVIDIA CONNECTX-6 DX. https://www.nvidia.com/content/dam/en-

zz/Solutions/networking/ethernet-adapters/ConnectX-6-Dx-Datasheet.pdf.
[2] 2023. Broadcom AI Interconnect and Tomahawk AI Fabrics. https://techfieldday.

com/video/broadcom-ai-interconnect-and-tomahawk-ai-fabrics/.
[3] 2023. To Spray or Not to Spray. https://community.juniper.net/blogs/dmitry-

shokarev1/2023/11/21/to-spray-or-not-to-spray?.
[4] 2024. Adaptive Routing. https://docs.nvidia.com/networking/display/

ibclusterbringupprocedure/adaptive%2Brouting.
[5] 2024. ConnectX-7 400G Adapters. https://www.nvidia.cn/content/dam/en-zz/

Solutions/networking/infiniband/connectx-7-datasheet.pdf.

https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/ConnectX-6-Dx-Datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/ConnectX-6-Dx-Datasheet.pdf
https://techfieldday.com/video/broadcom-ai-interconnect-and-tomahawk-ai-fabrics/
https://techfieldday.com/video/broadcom-ai-interconnect-and-tomahawk-ai-fabrics/
https://community.juniper.net/blogs/dmitry-shokarev1/2023/11/21/to-spray-or-not-to-spray?
https://community.juniper.net/blogs/dmitry-shokarev1/2023/11/21/to-spray-or-not-to-spray?
https://docs.nvidia.com/networking/display/ibclusterbringupprocedure/adaptive%2Brouting
https://docs.nvidia.com/networking/display/ibclusterbringupprocedure/adaptive%2Brouting
https://www.nvidia.cn/content/dam/en-zz/Solutions/networking/infiniband/connectx-7-datasheet.pdf
https://www.nvidia.cn/content/dam/en-zz/Solutions/networking/infiniband/connectx-7-datasheet.pdf

Shaofeng Wu, Zhixiong Niu, Riff Jiang, Guohan Lu, Chen Tian, Hong Xu, Yongqiang Xiong

[6] 2024. NCCL Collective Communication Functions. https://docs.nvidia.com/
deeplearning/nccl/user-guide/docs/api/colls.html.

[7] 2024. NCCL Environment Variables. https://docs.nvidia.com/deeplearning/nccl/
user-guide/docs/env.html.

[8] 2024. What is SRv6? https://info.support.huawei.com/info-finder/encyclopedia/
en/SRv6.html.

[9] 2025. astra-sim. https://github.com/astra-sim/astra-sim.
[10] 2025. Cisco Supports SoftBank on First Segment Routing IPv6 Deployment in

Prep for 5G. https://newsroom.cisco.com/c/r/newsroom/en/us/a/y2019/m02/
cisco-supports-softbank-on-first-segment-routing-ipv6-deployment-in-prep-
for-5g.html.

[11] 2025. Driving Innovation: Alibaba and Cisco Co-dev SRv6 SONiC
Router. https://sonicfoundation.dev/driving-innovation-alibaba-and-cisco-co-
dev-srv6-sonic-router/.

[12] 2025. rocev2-srv6. https://github.com/netgroup/rocev2-srv6.
[13] 2025. Segment Routing. https://www.segment-routing.net/.
[14] 2025. SONiC. https://github.com/sonic-net/SONiC.
[15] 2025. SONiC 202505: Powering AI Fabrics and Enterprise Networks with Preci-

sion and Insight. https://sonicfoundation.dev/sonic-202505-powering-ai-fabrics-
and-enterprise-networks-with-precision-and-insight.

[16] 2025. SRv6: Deployed use-cases. https://blog.apnic.net/2020/05/08/srv6-
deployed-use-cases/.

[17] 2025. Static Configuration of SRv6 in SONiC HLD. https://github.com/sonic-
net/SONiC/blob/master/doc/srv6/srv6_static_config_hld.md.

[18] 2025. Ultra Ethernet Consortium. https://ultraethernet.org/.
[19] Vamsi Addanki, Prateesh Goyal, Ilias Marinos, and Stefan Schmid. 2025. Ethereal:

Divide and Conquer Network Load Balancing in Large-Scale Distributed Training.
arXiv:2407.00550 [cs.NI] https://arxiv.org/abs/2407.00550

[20] Peirui Cao, Wenxue Cheng, Shizhen Zhao, and Yongqiang Xiong. 2024. Network
Load Balancing with Parallel Flowlets for AI Training Clusters. In Proc. ACM
NAIC.

[21] Weiqiang Cheng, Clarence Filsfils, Zhenbin Li, Bruno Decraene, and Francois
Clad. 2025. Compressed SRv6 Segment List Encoding. RFC 9800. https://doi.
org/10.17487/RFC9800

[22] Yangtao Deng, Xiang Shi, Zhuo Jiang, Xingjian Zhang, Lei Zhang, Zhang Zhang,
Bo Li, Zuquan Song, Hang Zhu, Gaohong Liu, Fuliang Li, Shuguang Wang,
Haibin Lin, Jianxi Ye, and Minlan Yu. 2025. Minder: Faulty Machine Detection
for Large-scale Distributed Model Training. In Proc. USENIX NSDI.

[23] Advait Dixit, Pawan Prakash, Y. Charlie Hu, and Ramana Rao Kompella. 2013. On
the impact of packet spraying in data center networks. In Proc. IEEE INFOCOM.

[24] C. Filsfils, P. Camarillo, J. Leddy, D. Voyer, S. Matsushima, and Z. Li. 2021. RFC
8986: Segment Routing over IPv6 (SRv6) Network Programming.

[25] Adithya Gangidi, Rui Miao, Shengbao Zheng, Sai Jayesh Bondu, Guilherme Goes,
Hany Morsy, Rohit Puri, Mohammad Riftadi, Ashmitha Jeevaraj Shetty, Jingyi
Yang, Shuqiang Zhang, Mikel Jimenez Fernandez, Shashidhar Gandham, and
Hongyi Zeng. 2024. RDMA over Ethernet for Distributed Training at Meta Scale.
In Proc. ACM SIGCOMM.

[26] Richard L. Graham, Devendar Bureddy, Pak Lui, Hal Rosenstock, Gilad Shainer,
Gil Bloch, Dror Goldenerg, Mike Dubman, Sasha Kotchubievsky, Vladimir Koush-
nir, Lion Levi, Alex Margolin, Tamir Ronen, Alexander Shpiner, Oded Wertheim,
and Eitan Zahavi. 2016. Scalable Hierarchical Aggregation Protocol (SHArP): A
Hardware Architecture for Efficient Data Reduction. In Proc. COMHPC.

[27] Chuanxiong Guo. 2015. Pingmesh: A Large-Scale System for Data Center Net-
work Latency Measurement and Analysis. In Proc. ACM SIGCOMM.

[28] Shuihai Hu, Kai Chen, Haitao Wu, Wei Bai, Chang Lan, HaoWang, Hongze Zhao,
and Chuanxiong Guo. 2015. Explicit path control in commodity data centers:
design and applications. In Proc. USENIX NSDI.

[29] Chao Jin, Ziheng Jiang, Zhihao Bai, Zheng Zhong, Juncai Liu, Xiang Li, Ningxin
Zheng, Xi Wang, Cong Xie, Qi Huang, Wen Heng, Yiyuan Ma, Wenlei Bao, Size
Zheng, Yanghua Peng, Haibin Lin, Xuanzhe Liu, Xin Jin, and Xin Liu. 2025.
MegaScale-MoE: Large-Scale Communication-Efficient Training of Mixture-of-
Experts Models in Production. arXiv:2505.11432 [cs.LG] https://arxiv.org/abs/
2505.11432

[30] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi Chen, Wenfei Wu, Aditya
Akella, and Michael Swift. 2021. ATP: In-network Aggregation for Multi-tenant
Learning. In Proc. USENIX NSDI.

[31] Jiamin Li, Yimin Jiang, Yibo Zhu, Cong Wang, and Hong Xu. 2023. Accelerating
Distributed MoE Training and Inference with Lina. In Proc. USENIX ATC.

[32] Wenxue Li, Xiangzhou Liu, Yuxuan Li, Yilun Jin, Han Tian, Zhizhen Zhong,
Guyue Liu, Ying Zhang, and Kai Chen. 2024. Understanding Communication
Characteristics of Distributed Training. In Proc. APNet.

[33] Zhenbin Li, Shuping Peng, Xuesong Geng, and Mahendra Singh Negi. 2025.
PCE Communication Protocol (PCEP) Extensions for Using the PCE as a Central
Controller (PCECC) for Segment Routing over IPv6 (SRv6) Segment Identifier (SID)
Allocation and Distribution. Internet-Draft draft-ietf-pce-pcep-extension-pce-
controller-srv6-04. Internet Engineering Task Force. https://datatracker.ietf.org/
doc/draft-ietf-pce-pcep-extension-pce-controller-srv6/04/ Work in Progress.

[34] Kefei Liu, Zhuo Jiang, Jiao Zhang, Shixian Guo, Xuan Zhang, Yangyang Bai,
Yongbin Dong, Feng Luo, Zhang Zhang, Lei Wang, Xiang Shi, Haohan Xu, Yang
Bai, Dongyang Song, Haoran Wei, Bo Li, Yongchen Pan, Tian Pan, and Tao
Huang. 2024. R-Pingmesh: A Service-Aware RoCE Network Monitoring and
Diagnostic System. In Proc. ACM SIGCOMM.

[35] Shuo Liu, Qiaoling Wang, Junyi Zhang, Wenfei Wu, Qinliang Lin, Yao Liu, Meng
Xu, Marco Canini, Ray C. C. Cheung, and Jianfei He. 2023. In-Network Ag-
gregation with Transport Transparency for Distributed Training. In Proc. ACM
ASPLOS.

[36] Xiangzhou Liu, Wenxue Li, and Kai Chen. 2025. Enabling Packet Spraying over
Commodity RNICs with In-Network Support. In Proc. APNet.

[37] Yadong Liu, Yunming Xiao, Xuan Zhang, Weizhen Dang, Huihui Liu, Xiang Li,
Zekun He, Jilong Wang, Aleksandar Kuzmanovic, Ang Chen, and Congcong
Miao. 2025. Unlocking ECMP Programmability for Precise Traffic Control. In
Proc. USENIX NSDI.

[38] Qingkai Meng, Hao Zheng, Zhenhui Zhang, ChonLam Lao, Chengyuan Huang,
Baojia Li, Ziyuan Zhu, Hao Lu, Weizhen Dang, Zitong Lin, Weifeng Zhang,
Lingfeng Liu, Yuanyuan Gong, Chunzhi He, Xiaoyuan Hu, Yinben Xia, Xiang Li,
Zekun He, YachenWang, Xianneng Zou, Kun Yang, Gianni Antichi, Guihai Chen,
and Chen Tian. 2025. Astral: A Datacenter Infrastructure for Large Language
Model Training at Scale. In Proc. ACM SIGCOMM.

[39] Kun Qian, Yongqing Xi, Jiamin Cao, Jiaqi Gao, Yichi Xu, Yu Guan, Binzhang Fu,
Xuemei Shi, Fangbo Zhu, Rui Miao, Chao Wang, Peng Wang, Pengcheng Zhang,
Xianlong Zeng, Eddie Ruan, Zhiping Yao, Ennan Zhai, and Dennis Cai. 2024.
Alibaba HPN: A Data Center Network for Large Language Model Training. In
Proc. ACM SIGCOMM.

[40] E. Rosen, A. Viswanathan, and R. Callon. 2001. RFC3031: Multiprotocol Label
Switching Architecture.

[41] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,
Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan Ports, and Pe-
ter Richtarik. 2021. Scaling Distributed Machine Learning with In-Network
Aggregation. In Proc. USENIX NSDI.

[42] Siva Sivabalan, Clarence Filsfils, Jeff Tantsura, Wim Henderickx, and Jonathan
Hardwick. 2019. Path Computation Element Communication Protocol (PCEP)
Extensions for Segment Routing. RFC 8664. https://doi.org/10.17487/RFC8664

[43] Cha Hwan Song, Xin Zhe Khooi, Raj Joshi, Inho Choi, Jialin Li, and Mun Choon
Chan. 2023. Network Load Balancing with In-network Reordering Support for
RDMA. In Proc. ACM SIGCOMM.

[44] Haoyu Song. 2024. In-Network AllReduce Optimization with Virtual Aggregation
Trees. In Proc. ACM NAIC.

[45] Ying Wan, Haoyu Song, Yu Jia, Yunhui Yang, Tao Huang, and Zhikang Chen.
2025. LAPS: Joint Load Balancing and Congestion Control on Unequal-cost
Multi-path Data Center Networks. In Proc. ACM NAIC.

[46] Xizheng Wang, Qingxu Li, Yichi Xu, Gang Lu, Dan Li, Li Chen, Heyang Zhou,
Linkang Zheng, Sen Zhang, Yikai Zhu, Yang Liu, Pengcheng Zhang, Kun Qian,
Kunling He, Jiaqi Gao, Ennan Zhai, Dennis Cai, and Binzhang Fu. 2025. SimAI:
Unifying Architecture Design and Performance Tuning for Large-Scale Large
Language Model Training with Scalability and Precision. In Proc. USENIX NSDI.

[47] William Won, Taekyung Heo, Saeed Rashidi, Srinivas Sridharan, Sudarshan
Srinivasan, and Tushar Krishna. 2023. ASTRA-sim2.0: Modeling Hierarchical
Networks and Disaggregated Systems for Large-model Training at Scale. In
Proc. IEEE ISPASS.

[48] Mathieu Xhonneux, Fabien Duchene, and Olivier Bonaventure. 2018. Leverag-
ing eBPF for programmable network functions with IPv6 segment routing. In
Proc. ACM CoNEXT.

[49] Zhehui Zhang, Haiyang Zheng, Jiayao Hu, Xiangning Yu, Chenchen Qi, Xuemei
Shi, and Guohui Wang. 2021. Hashing Linearity Enables Relative Path Control
in Data Centers. In Proc. USENIX ATC.

[50] Chenggang Zhao, Chengqi Deng, Chong Ruan, Damai Dai, Huazuo Gao, Jiashi
Li, Liyue Zhang, Panpan Huang, Shangyan Zhou, Shirong Ma, Wenfeng Liang,
Ying He, Yuqing Wang, Yuxuan Liu, and Y.X. Wei. 2025. Insights into DeepSeek-
V3: Scaling Challenges and Reflections on Hardware for AI Architectures. In
Proc. ACM ISCA.

https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/api/colls.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/api/colls.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/env.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/env.html
https://info.support.huawei.com/info-finder/encyclopedia/en/SRv6.html
https://info.support.huawei.com/info-finder/encyclopedia/en/SRv6.html
https://github.com/astra-sim/astra-sim
https://newsroom.cisco.com/c/r/newsroom/en/us/a/y2019/m02/cisco-supports-softbank-on-first-segment-routing-ipv6-deployment-in-prep-for-5g.html
https://newsroom.cisco.com/c/r/newsroom/en/us/a/y2019/m02/cisco-supports-softbank-on-first-segment-routing-ipv6-deployment-in-prep-for-5g.html
https://newsroom.cisco.com/c/r/newsroom/en/us/a/y2019/m02/cisco-supports-softbank-on-first-segment-routing-ipv6-deployment-in-prep-for-5g.html
https://sonicfoundation.dev/driving-innovation-alibaba-and-cisco-co-dev-srv6-sonic-router/
https://sonicfoundation.dev/driving-innovation-alibaba-and-cisco-co-dev-srv6-sonic-router/
https://github.com/netgroup/rocev2-srv6
https://www.segment-routing.net/
https://github.com/sonic-net/SONiC
https://sonicfoundation.dev/sonic-202505-powering-ai-fabrics-and-enterprise-networks-with-precision-and-insight
https://sonicfoundation.dev/sonic-202505-powering-ai-fabrics-and-enterprise-networks-with-precision-and-insight
https://blog.apnic.net/2020/05/08/srv6-deployed-use-cases/
https://blog.apnic.net/2020/05/08/srv6-deployed-use-cases/
https://github.com/sonic-net/SONiC/blob/master/doc/srv6/srv6_static_config_hld.md
https://github.com/sonic-net/SONiC/blob/master/doc/srv6/srv6_static_config_hld.md
https://ultraethernet.org/
https://arxiv.org/abs/2407.00550
https://arxiv.org/abs/2407.00550
https://doi.org/10.17487/RFC9800
https://doi.org/10.17487/RFC9800
https://arxiv.org/abs/2505.11432
https://arxiv.org/abs/2505.11432
https://arxiv.org/abs/2505.11432
https://datatracker.ietf.org/doc/draft-ietf-pce-pcep-extension-pce-controller-srv6/04/
https://datatracker.ietf.org/doc/draft-ietf-pce-pcep-extension-pce-controller-srv6/04/
https://doi.org/10.17487/RFC8664

	Abstract
	1 Introduction
	2 Need for Full Controllability
	2.1 Pitfalls of Existing Schemes
	2.2 A Case for SRv6

	3 Is SRv6 a Free Ride?
	3.1 Challenges
	3.2 Preliminary Design

	4 Open Questions
	5 Conclusion
	References

