Improving Long-Context Summarization with Multi-Granularity
Retrieval Optimization

Xueyu Chen!, Kaitao Song?, Zifan Song', Dongsheng Li?, Cairong Zhao'*

'Department of Computer Science and Technology, Tongji University, China
2Microsoft Research Asia, China
{2310901, 2111139, zhaocairong} @tongji.edu.cn, kt.song @njust.edu.cn, dongsli@microsoft.com

Abstract

Retrieval-Augmented Generation (RAG) is an effective solu-
tion to overcome the limitations of Large Language Models
(LLMs) in terms of specific-domain knowledge and timely
information updates. However, current RAG methods typi-
cally respond to queries based on isolated segments, lack-
ing the ability to integrate information within the same docu-
ment. This undermines performance in real-world tasks re-
quiring coherent understanding across an entire document.
Notably, the human brain naturally integrates and summa-
rizes prior knowledge upon reading a given text, progres-
sively formulating a comprehensive understanding. Moti-
vated by this cognitive process, we propose the Hierarchical
Two-Stage Summarization-based Information Retrieval (HT-
SIR) method, which preprocesses the corpus prior to retrieval,
summarizes continuous texts to obtain integrated informa-
tion, and constructs a retrieval tree with varying summary
granularities. The retrieved information is then processed by
a Reranker based on the current question to serve as a context
for LLMs. Additionally, as single-step summarization is of-
ten imprecise in query-based summarization tasks, we further
apply a Refinement module, allowing LLMs to reflect and re-
vise their output to achieve the final result. By combining HT-
SIR with GPT-40 mini, we achieve state-of-the-art results on
complex question tasks across four long-text datasets (Nar-
rativeQA, QASPER, QuALITY, and QMSum), achieving an
improvement of about 6 points on the Question Answering
(QA) task in QUALITY-HRAD.

Introduction

Large Language Models (LLMs) have made significant con-
tributions and achieved notable advancements in the field of
generative Al. Despite their remarkable performance, LLMs
still face challenges in specialized domains and adapting to
the latest knowledge (Chang et al. 2024; Wang et al. 2025).
Retrieval-Augmented Generation (RAG) integrates genera-
tive models with information retrieval techniques (Fan et al.
2024), effectively overcoming these limitations of LLMs.
Existing LLMs are constrained by context length limi-
tations, hindering their ability to process excessively long
inputs in a single pass. Even within these limitations, per-
formance tends to degrade with longer inputs (Liu et al.

*Corresponding author.
Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2024b; Zhou et al. 2025). Therefore, the quality of the in-
formation recovered as a context for LLMs is critical (Ru
et al. 2024). Recognizing that selecting the appropriate re-
trieval granularity is a straightforward yet effective strategy,
Chen et al. designed a new retrieval granularity (Chen et al.
2023) called Propositions, defined as atomic expressions in
the text, presented in a concise, self-contained natural lan-
guage format, with an average of 42 propositions per page
of text. Although effective, this method may demand signif-
icant computational resources and complex pre-processing.
The RAPTOR (Sarthi et al. 2024) retrieval algorithm clus-
ters text fragments by grouping those with similar topics and
constructs a retrieval tree to summarize fragments related to
the same topic. However, it fails to consider that contextual
information is often more coherent and reflects the inherent
logic. Moreover, certain types of articles, such as academic
papers or technical reports, usually have clear sectional divi-
sions and logical hierarchies. Such structures not only help
readers better understand the content but also assist authors
in organizing and expressing complex research ideas. Even
in long texts without explicit hierarchical structures, such as
novels and essays, narrative coherence and artistic expres-
sion are often emphasized, while implicit logical hierarchies
remain present. In this paper, we treat the hierarchical struc-
ture of the article itself as essential information and construct
a retrieval corpus with varying levels of granularity, signifi-
cantly enhancing retrieval performance.

Figure 1(a) shows that most existing methods only re-
trieve smaller and shorter text segments, while (b) high-
lights how our approach utilizes text structure and sum-
marization techniques for information retrieval. This pa-
per aims to improve retrieval quality by employing ad-
vanced text segmentation and summarization generation
techniques. Specifically, we propose the Hierarchical Two-
stage Summarization-based Information Retrieval (HTSIR)
method, which leverages the hierarchical structure of doc-
uments as important information and constructs a retrieval
corpus with varying granularity levels to capture the text’s
inherent logic and structure. By generating summaries of
multiple text segments and further processing these sum-
maries, we construct a tree structure that integrates infor-
mation from lower to higher levels. This approach not only
accommodates diverse retrieval granularities, but also sig-
nificantly improves the accuracy of information retrieval and

~
/ S%m@anzat:on
// \ N\
\ \

N [. n VB '\

Split by Paragraph |
| /

/ |
[————— !
—
/ Split by Sentence !
i ﬁymvparizﬁkion /\ //\

| —
| e)
—
— (—
—_— |\ /] [\
| [

L [| [/ [
\Qaut by Fixed :_ength-[rr Py b v‘] [r‘r PEF r}

Section 1 Section 2
Common Methods Our Model

i
i
1
1
H
H
i
H
[_chunk3) i
E—
|
i
1
1

(2) (b)
Figure 1: Comparison of text segmentation methods: (a)
common model vs. (b) our model.

summarization by capturing the complete hierarchical struc-
ture of the text. In the summary generation phase, Refine-
ment module can be selectively applied to leverage feedback
from LLMs, producing summaries tailored to diverse needs.

To achieve fast response in large-scale searches, vector
retrieval techniques are widely used. This process encodes
text into vector representations and employs metrics such as
cosine similarity to measure the similarity between the text
and the query vector. However, this vectorization inevitably
leads to information loss (Singh et al. 2022). Furthermore,
the inability to foresee queries before they are received re-
sults in a lack of understanding of the query context, fur-
ther exacerbating the issue of information loss. Therefore,
we propose a two-stage retrieval process integrated with a
reranking mechanism that is triggered when a user query is
submitted. This enables query-specific document analysis,
rather than generating a generalized average meaning, thus
improving the system’s ability to retrieve relevant informa-
tion. We demonstrate notable improvements in retrieval per-
formance through comprehensive experiments on four long-
text datasets for knowledge-intensive questions.

Related Works

Retrieval Methods. In information retrieval, research on
retrieval methods remains central. (Shen et al. 2018; Li
et al. 2025). Traditional retrieval methods mainly include
Boolean retrieval, the Vector Space Model (VSM), and prob-
abilistic models such as BM25 (Jones, Walker, and Robert-
son 2000). These methods typically rely on lexical match-
ing and statistical properties, offering the advantages of
simple computation and intuitive understanding. However,
they exhibit limitations when processing queries that require
higher-level semantic understanding. Deep learning models
in Dense Retrieval map both queries and documents into
a continuous vector space, enhancing retrieval efficiency
and accuracy (Zhao et al. 2024; Chen et al. 2025). For
example, the Bidirectional Encoder Representations from
Transformers (BERT) model, through pre-training and fine-
tuning techniques, can capture complex semantic relation-
ships in the text, enhancing retrieval performance (Kenton

and Toutanova 2019). This approach typically uses Dual En-
coders to separately encode queries and documents into vec-
tor representations, with relevance assessed via vector sim-
ilarity. Dense Retrieval better processes semantic informa-
tion in natural language, particularly excelling in scenarios
involving long texts and complex queries.

Reranking Techniques. Reranking techniques refine ini-
tial retrieval results to improve effectiveness (Hambarde and
Proenca 2023; Mortaheb et al. 2025). The system first uses
vector search to filter candidate documents, then reranks
them with a sophisticated model for higher-quality results.
HTSIR adopts such a two-stage approach, which reranks
the retrieved contexts, not only reducing computational bur-
den and improving response speed but also enhancing the
ability to handle complex queries. Reranking techniques
are divided into Pointwise, Pairwise, and Listwise methods
based on different optimization goals and methods (Liu et al.
2009). The Pointwise method sorts documents by predicting
the relevance score of individual documents (Cossock and
Zhang 2006; Long et al. 2025), the Pairwise method sorts
by comparing the relevance between pairs of documents
(Boudin 2018; Wu et al. 2025), while the Listwise method
directly optimizes the ranking quality of the entire document
list (Yang et al. 2025). In recent years, deep learning (Huang
et al. 2013; Guo et al. 2020) and pre-trained language mod-
els (Fan et al. 2022) (such as BERT) have also been applied
to reranking tasks, boosting retrieval performance. LLMs
exhibit strong natural language processing capabilities and
are increasingly applied to reranking tasks. Through clever
prompt design, they can better achieve ranking and perform
exceptionally well in zero-shot or few-shot scenarios (Qin
et al. 2024; Chen, Pradeep, and Lin 2025).

Retrieval-Augmented Generation. RAG retrieves rele-
vant information from external resources to provide supple-
mentary knowledge to LLMs, enabling them to learn be-
yond their inherent parameters and mitigating the “lost in
the middle” phenomenon (Liu et al. 2024b). This approach
enhances the performance of LLMs in long-text tasks (Xu
et al. 2023). However, since the retrieved information is
not always reliable, SELF-RAG introduces special reflec-
tion markers during the generation process, enabling self-
assessment of both retrieved and generated content. This
method supports on-demand retrieval and self-reflection, en-
hancing the response quality and factual accuracy of the lan-
guage model (Asai et al. 2023). Wang et al. proposed an
iterative training framework that leverages a reward model
based on LLMs feedback to evaluate the quality of candi-
date examples and then trains a dense retriever based on
dual encoders using knowledge distillation (Wang, Yang,
and Wei 2024). Xu et al. further improved the quality of re-
trieval results by optimizing re-ranking and truncation tasks
in information retrieval (Xu et al. 2024). Kim et al. in-
troduced a method called Summarizing Retrievals (SuRe)
(Kim et al. 2024), which first uses LLMs to generate mul-
tiple candidate answers. That said, this process is not well-
suited for domain-specific information retrieval and ques-
tion answering tasks. Subsequently, the method summa-
rizes the retrieved content to enhance the efficiency of in-
formation verification. Even so, these RAG methods have

a significant limitation: they struggle to integrate informa-
tion across multiple passages, as the retrieval process typ-
ically treats passages independently. This constraint ham-
pers their ability to achieve a holistic understanding of the
information. Although several graph-based RAG methods
(e.g., HippoRAG, GraphRAG) have been proposed to ad-
dress this issue their practical deployment remains con-
strained by the prohibitively high computational costs of
knowledge graph construction—requiring extensive entity-
relation extraction, and resource-demanding embedding pre-
training (Jimenez Gutierrez et al. 2024; Gutiérrez et al. 2025;
Larson and Truitt 2024). In contrast, our proposed tree-based
method processes raw text data directly, achieving not only
a significant reduction in computational resource consump-
tion but also demonstrating competitive performance.

The HTSIR Retrieval Framework

We define the document set to be retrieved as D =
{di,da,...,d,}, where each d; represents a complete ar-
ticle. Our goal is to answer knowledge-intensive questions
Q@ from D. The overview of HTSIR is illustrated in Fig-
ure 2, comprises four key stages: HTSIR Tree Construction,
HTSIR Search, Reranking, and Response Generation. Sum-
mary generation serves as a critical step in tree construction.
We offer an optional optimization approach that leverages
LLMs feedback for adaptive refinement, allowing flexible
improvement of summaries as needed.

HTSIR Tree Construction

The HTSIR tree consists of three types of nodes: Root Node

5;, Intermediate Node py, and Leaf Node :13{ This hierar-
chical structure preserves the contextual and semantic con-
sistency of the text within each node and provides informa-
tion at varying levels of granularity. Primarily considering
two different types of articles: one type includes academic
papers, technical reports, etc., which inherently exhibit a hi-
erarchical structure with clear chapter divisions and logical
organization. The other type includes novels and essays that
typically lack a clear hierarchical structure. The process is
described in Algorithms 1.

Text Data with Hierarchical Structure. Each document
d; consists of various sections S = {s1, 2, ..., S, }. Each
section s; represents a distinct part or chapter of the docu-
ment, such as the Introduction, Methods, Results, etc. Since
each section provides independent and specific insights, we
integrate section-specific knowledge into the retrieval pro-
cess. However, supplying LLMs with the full content of one
or more sections would create an excessively long context,
and potentially leading to the “lost in the middle” issue.
Therefore, our approach is to summarize the text of each
section 5;, thereby retaining a more coarse-grained repre-
sentation of the information. These section summaries are
generated by LLMs.

To obtain fine-grained information, following the
paradigm of RAG techniques, we divide s; into short and
contiguous segments of length /, obtaining z as uniformly
sized chunks. Note that if a sentence exceeds the limit of
[tokens, we move the entire sentence to the next chunk

Algorithm 1: Construction of Hierarchical Document Re-
trieval Tree

Require: Hierarchical document d; with sections S =
{51, 82, ..., Sm}, hyperparameters [(chunk length) and
r (number of chunks for summarization).

Ensure: T = {X, P, S} - the hierarchical tree structure,
where X is the set of leaf nodes, P is the set of interme-
diate nodes, and S is the set of root nodes.

1: Initialize an empty tree 7.
2: for each section s; € .S do
3: Summarize the text of s; to create the root node 5;.

4: Add gj to S.
5: Divide s; into continuous text chunks X; =
{29, 23, ..., 23}, where each chunk xJ has length /.
6: for each chunk 27, € X; do
7: Add z, as a leaf node to X.
8: end for
9: Group 7 consecutive chunks from X into a set G =
{917927 s 7g|_n/rj}
10: for each group g, € G do
11: Summarize the text of g, to create an intermediate
node p,,.
12: Add p, to P, connected to 5; and the correspond-
ing leaf nodes in g,,.
13: end for
14: end for

15: return X, P, S

instead of splitting it in the middle. Py is the text summa-

rized from 7 chunks of xf to obtain intermediate-grained
information. To avoid mixing information from other topics,

these 7 chunks of 2] originate from the same section.

Text Data Without a Clear Hierarchical Structure. For
a document d; without a clear hierarchical structure, we can
manually divide it into different sections. By providing sim-
ple prompts to LLMs, we can segment the text into several
sections that share similar themes. To save costs, when deal-
ing with a dataset containing similar content, we can select a
few representative articles. Assuming an average text length
of 5000 words and that LLMs identify five themes within the
text, we can divide the text into sections of 1000 words each,
resulting in five sections. Similarly, we summarize these sec-
tions individually to obtain s;.

We then divide d; into short continuous texts of length [,
resulting in 2] as chunks of fixed size. P is the text sum-

i .
marized from r chunks of :cZ Finally, the summarized text,
the divided chunks, and the summaries of these chunks will

all be included in the corpus to be retrieved.

Collapsed Tree Search Strategy

The importance of nodes and the number of nodes required
for retrieval vary significantly across different levels of the
tree. Nodes at higher levels (e.g., root or intermediate lev-
els) typically represent broader concepts and may require
fewer retrievals, while nodes at deeper levels (e.g., leaf
nodes) tend to capture more specific details and may re-

=
{E External Database

Refinement |
\‘ Without a Clear §
— Hierarchical Structure /\ . /\
\§n\w\mawza§(on N\
/) / | \\
Manually - . = fFre
partition /|\Summiarization /| ||
/ T I /“ “ " ‘\ " | i ‘\
. . . | vl vl vl wl vl vl vl w
With Hierarchical ['] [' }
-
Structure

Document, section; Document, section,

Retrieval Units P " P

@‘?

Query Refinement
2 @ Utilize a LLM to create an initial output.
—— @ Send the output back to the LLM to
obtain feedback.
® Incorporate the feedback and return to
step @ for further refinement.

Retrieval

Reranker

Top-k Units. F'| 2 . F

+
Prompt

Combine Context and Prompts

Figure 2: Overview of the HTSIR framework: a retrieval tree is constructed using summarization. Segments are extracted and
ranked by semantic similarity to serve as LLMs context. The Refinement module is optional.

quire more retrievals to ensure comprehensive coverage. To
achieve this, we introduce the collapsed tree strategy. By ag-
gregating nodes from all levels into a single collapsed set C,
this method enables the comparison of nodes across differ-
ent levels within a unified framework. This approach elimi-
nates the need to predefine the number of nodes to retrieve
at each level, allowing the algorithm to dynamically select
the most relevant nodes based on their cosine similarity with
the query vector.

Compared to the traditional tree traversal method, which
processes nodes incrementally at each level (retrieving a
fixed number of nodes per level), the collapsed tree strat-
egy improves retrieval accuracy (Sarthi et al. 2024). Addi-
tionally, the collapsed tree strategy achieves higher compu-
tational efficiency. In practical implementation, there is no
need to explicitly construct the tree structure; instead, all
nodes can be placed into a single set, enabling batch compu-
tation of cosine similarities.

Reranking and Response Generation

Based on the cosine similarity scores computed in the pre-
vious step, we extract a subset of candidate nodes from the
collapsed set C', which are the most relevant to the query.
These candidate nodes form the input for a Reranker model
that further refines their order by reassessing the seman-
tic alignment between the query and the candidate texts.
Specifically, we utilize widely used reranking models (e.g.,
BGE-Reranker and Cohere) to perform this refinement. The
reranking process ensures that nodes with the highest rele-
vance to the query are prioritized. Finally, we integrate the
content of the Top-k nodes and incorporate it as part of the
LLMs prompt to generate the final answer to the question.

Feedback-Driven Refinement

In most cases, a single summary of the text is sufficient
to effectively improve the performance of the model. How-
ever, in some QA tasks focused primarily on summarization,
more attention needs to be paid to the details of the arti-
cle. Therefore, the content of the summary can be further
optimized to better meet the requirements. Inspired by self-
refine (Madaan et al. 2024), we designed a feedback loop
to refine the content of the summary. This optimization pro-
cess does not require additional training; it simply involves
returning the output obtained along with the corresponding
feedback to LLMs. The LLMs refine the summary based on
the feedback, and this process is repeated until the require-
ments are satisfied.

Experience
Experiment Settings

We selected several datasets specifically designed for long-
text QA tasks: QASPER (Dasigi et al. 2021a), QuAL-
ITY (Bowman et al. 2022), NarrativeQA (Kocisky et al.
2018), and QMSum (Zhong et al. 2021). Unless otherwise
specified, k£ set to 10 in this paper. The experiments can be
run on a consumer-grade computer, and we will open-source
the code after the paper is accepted.

In practical applications, the value of r is relatively easy
to determine. Taking the QASPER dataset as an example,
which consists of hierarchical text, the average text length
is approximately 5,000 words. The root node is constructed
by summarizing the content of each individual section in
the document (e.g., sections within a research paper), where
the text length of each section is generally no more than
500 words. Therefore, [is set to 100, and r is set to 2.
For sections shorter than 200 words, to avoid redundancy

Model ROUGE-L BLEU-1
BM25 w/o 26.52 21.59
BM25 w + HTSIR 30.47 27.27
SBert w/o 32.68 23.91
SBert w + HTSIR 36.43 28.66
DPR w/o 31.07 23.53
DPR w + HTSIR 34.20 29.76

Table 1: Comparison of the performance of retrieval meth-
ods (SBERT, BM25, DPR) with and without HTSIR on the
NarrativeQA dataset. The HTSIR model surpasses the base-
lines for all retrieval methods, achieving higher ROUGE-L
and BLEU-1 scores.

and resource waste, we perform summarization only once
when constructing the root node. Furthermore, for the Ab-
stract sections in the QASPER dataset, which already serve
as comprehensive document summaries, no further summa-
rization is implemented.

In cases without hierarchical information, the QUALITY
dataset is an example, where the average text length is also
around 5,000 words. The root node is generated from a sum-
mary of the text with a length of 1,000 words, while leaf
nodes are 100 words in length. Since the values of both the
leaf nodes and the root nodes can be easily determined, rea-
sonable values for r, which governs the intermediate nodes,
are 2, 3, 4, or 5.

We evaluate HTSIR across multiple LLMs, including
both closed-source (GPT-3.5-Turbo, GPT-40 mini) and
open-source (Llama3-8B). Our results demonstrate robust
performance improvements across different architectures.

Results Analysis

Comparative Baseline Evaluation. We evaluated the per-
formance of the model with and without HTSIR framework,
utilizing three embedding models: BM25 (Jones, Walker,
and Robertson 2000), SBERT (Reimers and Gurevych
2019), and Dense Passage Retrieval (DPR) (Karpukhin et al.
2020). ! Our evaluation encompassed three datasets: Narra-
tiveQA, QuALITY, and QASPER. W/o represents the per-
formance of the retrieval models without the hierarchical
tree structure.

As shown in Tables 1 and 2, the results indicate that HT-
SIR consistently outperforms its respective retrievers across
all datasets when combined with any retrieval model. This
finding further validates the ability of the HTSIR model in
answer generation tasks. The HTSIR method integrates in-
formation of varying granularity through summarization, en-
hancing the accuracy and relevance of the final responses.

Contrasting with Advanced Systems. Recent stud-
ies have explored the use of graph-based retrieval struc-
tures for RAG (Jimenez Gutierrez et al. 2024; Gutiérrez
et al. 2025; Larson and Truitt 2024), making it necessary
to compare with these methods. These graph-based ap-

'Summary generation and QA tasks both utilize the GPT-40
mini language model, noted for its affordability and outstanding
performance in natural language understanding tasks.

QuALITY QASPER
Model Accuracy Answer F1
BM25 w/o 51.83 26.56
BM25 w + HTSIR 57.34 28.36
SBert w/o 55.25 32.65
SBert w + HTSIR 61.61 34.48
DPR w/o 55.31 32.69
DPR w + HTSIR 62.57 36.95

Table 2: Performance comparison of Accuracy and Answer
F1 for various models (BM25, SBERT, DPR) with and with-
out HTSIR on the QuAIITY-HARD and QASPER dataset.
The HTSIR model consistently outperforms the baselines of
each respective model.

Model EM F1

GraphRAG (Larson and Truitt 2024) 54 209
HippoRAG (Jimenez Gutierrez et al. 2024) 2.1 16.1
HippoRAG 2 (Gutiérrez et al. 2025) 5.8 252
HTSIR 6.1 374

Table 3: Comparison of EM and F1 scores for different
graph-based approaches on the NarrativeQA dataset.

proaches first require the construction of knowledge graphs.
(Jimenez Gutierrez et al. 2024) employed Llama-3-70B-
Instruct for NER and GPT-4-mini as the QA reader. To en-
sure fair comparison, we adopted their reported results and
experimental setup (using the NarrativeQA dataset) with-
out reimplementing the knowledge graph. As shown in Ta-
ble 3, HTSIR achieved a F1 score of 37.4%, surpassing the
25.2% score of HippoRAG 2 and +16.5 points higher than
the GraphRAG method. The tree structure we proposed aims
to enhance the performance of text retrieval. In contrast,
graph-based approaches heavily rely on knowledge bases,
requiring documents to be effectively converted into entities
and relations, a process that entails significant computational
and memory costs.

On QASPER, our method uses GPT-40 mini as the base-
line in Table 4. HTSIR achieved a 36.9% Answer F1 score,
outperforming VCC (30.8%), a method for long-sequence
Transformers. And it improved by 0.2% compared to RAP-
TOR, which is another tree-based RAG method. Compared
to RAPTOR, which requires topic clustering of text blocks,
our method focuses more on the logical hierarchy of the
text itself. Moreover, we analyze the effectiveness of us-

Model Answer F1
LED-base + FullText (Dasigi et al. 2021b) 29.0
LongRAG (Jiang, Ma, and Chen 2024) 26.3
VCC (Zeng et al. 2024) 30.8
RAPTOR (Sarthi et al. 2024) 36.7
GPT-40 mini 31.5
HTSIR 36.9

Table 4: Answer F1 scores of various models on the
QASPER dataset.

Model Answer F1
PEAR Llama3-8B (Tan et al. 2025) 18.0
DePaC Llama3-8B (Ma et al. 2024) 17.6
SCPT Llama2-7B (Liu et al. 2024a) 19.7
Llama3-8B LoRA 21.7
HTSIR Llama3-8B LoRA 23.5

Table 5: Comparison of Answer F1 scores for various
Llama-based models on the QASPER dataset.

Model Accuracy
DPR and DeBERTaV3 (Bowman et al. 2022) 46.1
CoLISA (DeBERTaV3) (Dong et al. 2023) 54.7
VCC (Zeng et al. 2024) 56.0
RAPTOR (Sarthi et al. 2024) 56.6
GPT-40 mini 72.1
HTSIR 62.5
HTSIR + GPT-40 mini 74.0

Table 6: Accuracy scores of various models on the
QuALITY-HARD dataset.

ing open-source and smaller-scale LLMs as baselines. In
the summary generation phase, we employed the original
pre-trained model to retain its general language capabilities,
while in the QA phase, we utilized the model fine-tuned with
LoRA to enhance task specificity. Compared to directly us-
ing Llama3-8B LoRA as a baseline, our framework achieved
a two percentage point improvement in performance. The
result in Table 5 demonstrates that our approach HTSIR is
applicable not only to closed-source LLMs but also to open-
source small models, although the latter performs slightly
worse than the former.

Table 6 presents the accuracy scores of various models in
the QUALITY-HARD dataset. HTSIR + GPT-40 mini means
that the retrieved content from HTSIR is added at the start
of the input, followed by the full text, forming the combined
input for GPT-40 mini. By leveraging DPR, the HTSIR
model achieves higher accuracy compared to the decoding-
enhanced DeBERTaV3 model (Bowman et al. 2022). The
strengths of HTSIR are especially evident in hard questions,
which necessitate longer response times and a deeper com-
prehension of the articles. Additionally, experiments demon-
strate that, within the context window limitations of LLMs,
placing the key information retrieved by HTSIR as a supple-
ment at the beginning of the input can further improve the
accuracy of the model’s responses.

In the QMSum dataset, we compared UL2, which
demonstrates versatility and multi-tasking capabilities; and
Bart-SLED, which processes long texts using overlapping
chunks. Our comparison primarily focused on the results of
the ROUGE-L metric to reflect the coherence and complete-
ness of the summaries. As shown in Table 7, the HTSIR
model achieved excellent performance with a score of 23.8,
higher than the scores of the other comparison models.

Ablation Study on Parameter r. In Section 4.1, we dis-
cussed the process of determining the value of parameter r.
Table 8 illustrates that the method maintains stable perfor-

Model ROUGE-L
UL2 (Tay et al. 2023) 20.4
BART-SLED (Ivgi, Shaham, and Berant 2023) 23.3
RAPTOR (Sarthi et al. 2024) 22.1
GPT-40 mini 20.8
HTSIR 23.8

Table 7: ROUGE-L scores of various models on the QMSum
dataset.

T QuALITY-EASY QuALITY-HARD
2 83.61 62.48
3 83.74 62.74
4 84.17 62.99
5 83.91 62.68

Table 8: Effect of the value of 7 on Accuracy for QUALITY-
EASY and QuALITY-HARD datasets.

mance across a reasonable range of r values, as identified
through a quick manual evaluation. This observation high-
lights the robustness of the approach.

The Impact of the Refinement Module. We compared
the impact of the Refinement module in the QMSum-
Committee dataset. In this Refinement module, our goal is
to encourage the LLM to pay more attention to the opinions
of each participant and important details. It is evident that,
whether addressing general or summarization questions, our
tree-structured retrieval method can produce relatively re-
liable answers. DPR+Refinement often provides the most
comprehensive descriptions. For example, in response to the
question, “How did the National Police Chiefs’ Council help
in out-of-court disposals?” we provided detailed descrip-
tions of the specific measures taken by the Council, includ-
ing clear referral guidelines, enhanced collaboration with the
Crown Prosecution Service, and increasing transparency and
accountability through local oversight groups. We believe
that by incorporating the Refinement module, the LLM can
achieve feedback and self-improvement based on different
settings, thereby better meeting specific needs.

Contribution analysis of the tree structure. To demon-
strate performance improvements based on retrieval unit
granularity, this section analyzes the contribution of each
node layer to evaluating model performance with HTSIR
tree retrieval alone. In the QUALITY dataset, we constructed
HTSIR trees for each story. Table 9 presents the results for
handling hard and easy questions.

In the row labeled “1 layer”, the results for nodes con-
taining only x, only p, and only s are presented sequentially
from left to right. It is clear that the p node, which has un-
dergone a single summarization, contains the most compre-
hensive information. The row labeled “2 layers” shows the
results of simultaneously retrieving « and s nodes, x and p
nodes, and p and s nodes. Compared to the scenario with
only one type of node, the retrieval performance declines.
Both leaf nodes and intermediate nodes exhibit similar par-
tial information and fundamentally lack global context. We
propose that this decline is attributable to the introduction

Start Layer QuALITY-HRAD QuALITY-EASY

Layer 0 Layer 1 Layer 2 Layer 0 Layer 1 Layer 2
1 layer 60.57 (x) 61.54 (p) 54.81 (s) 79.31 (x) 81.61 (y) 70.11 (s)
2 layers 57.69 (x+s) 52.88 (p+x) 53.85 (s+p) 73.56 (x+s) 79.31 (y+x) 75.86 (s+y)
3 layers - - 62.50 (all) - - 83.91 (all)

Table 9: Performance of HTSIR tree when querying different tree layers for QUALITY-HRAD and QuALITY-EASY datasets.
Columns indicate the initial query layers (highest layers), rows represent different numbers of layers queried.

(b)

(d)

(a) (c)
*%TTopenal | [chunk_len=150) *°[[OpenAl | [chunk_len=100] ~ *°[[sBert | [chunk_len=150] “°[[sBert] [chunk_len=100
40 40 40 40
g g 3]
g 30 g 30 g 30 g 30
Q) = 1|8 | |8 |t |8 |
E 20 —-— Answer F1 g? 20 —-— Answer F1 E 20 —-— Answer F1 E 20 —~— Answer F1
10 —— Precision 10 —— Precision 10 —— Precision 10 —— Precision
Recall Recall Recall Recall
0 0 0 0

4 10 10

6 8 4 6 8
Chunk Number Chunk Number

10 10

4 6 8 4 6 8
Chunk Number Chunk Number

Figure 3: Comparison of different text segmentation methods on the QASPER dataset, evaluating F1 score, Precision, and
Recall across varying chunk numbers with OpenAl and SBert embeddings at different chunk lengths.

of redundant information between the two types of nodes,
which amplifies the impact of partial or misleading sum-
mary information. However, when all three types of nodes
are included, the retrieval performance reaches its optimal
level. The superior performance with three types of nodes is
primarily due to their inclusion of global information. The
three nodes provide complementary information: the x node
offers specific details, the p node provides a summary, and
the s node potentially offers global information, enabling the
retrieval system to capture information at multiple levels of
granularity.

Evaluation of Text Lengths in Summary Generation.
To further analyze the information density of the text, we
compared summary generation performance when selecting
texts of varying lengths. In this section, we do not construct
a tree structure; instead, the corpus consists solely of fixed
length text segments x and the corresponding summarized
content generated from varying amounts of x.

Figure 3 illustrates the performance metrics—Answer F1,
Precision and Recall—of OpenAl and SBert embeddings
in the QASPER dataset, with respect to different lengths
of text segmentation and the varying numbers of fragments
used for summarization. GPT-3.5-Turbo was used for both
summarization and QA tasks. The results demonstrate that
OpenAl embeddings consistently outperform SBert embed-
dings, particularly in terms of precision and recall; how-
ever, SBert embeddings exhibit relatively stable perfor-
mance across different chunk counts. A key observation is
that peak performance occurred with chunk lengths of 150
(for 5 chunks) and 100 (for 7 chunks), totaling approxi-
mately 750 and 700 tokens, respectively. Performance de-
clined when the text length deviated from this range, high-
lighting the importance of selecting an appropriate length
for effective summarization.

Although this approach performs slightly worse than HT-
SIR—which uses section-based segmentation and multi-
level summaries—it provides a simpler alternative by elim-
inating the need for tree construction. In contrast, HTSIR
reduces interference through section-wise content grouping
and enriches information via hierarchical summaries. There-
fore, if high retrieval accuracy is not pivotal, this method can
be used to determine an optimal text length without requir-
ing tree construction.

Conclusion

In this paper, we introduce HTSIR, a method that utilizes
the structural characteristics of text to perform summariza-
tion at different levels of granularity. This approach con-
structs a retrieval tree that integrates contextual informa-
tion from the text. In the first stage, we obtain a subset of
candidate nodes from the collapsed set C' that are seman-
tically relevant to the initial query through similarity com-
parisons. The Reranker module then reorders these nodes
and selects the top-k candidates as context for LLMs. Op-
tionally, the Refinement module can be flexibly integrated
into either the summarization or QA pipeline to accommo-
date specific requirements. Extensive experiments on four
benchmark datasets demonstrate that HTSIR significantly
outperforms existing RAG methods and state-of-the-art ap-
proaches, particularly in domain-specific QA tasks involving
long documents, while effectively handling summarization-
based question answering. And HTSIR demonstrates effec-
tiveness across both closed-source and open-source LLMs.

Acknowledgments

This work was supported by National Natural Science Fund
of China (No. U25A20527, 62473286).

References

Asai, A.; Wu, Z.; Wang, Y.; Sil, A.; and Hajishirzi, H. 2023.
Self-rag: Self-reflective retrieval augmented generation. In
NeurIPS 2023 Workshop on Instruction Tuning and Instruc-
tion Following.

Boudin, F. 2018. Unsupervised keyphrase extraction with
multipartite graphs. arXiv preprint arXiv:1803.08721.

Bowman, S. R.; Chen, A.; He, H.; Joshi, N.; Ma, J.; Nan-
gia, N.; Padmakumar, V.; Pang, R. Y.; Parrish, A.; Phang,
J.; et al. 2022. QuALITY: Question Answering with Long
Input Texts, Yes! NAACL 2022.

Chang, Y.; Wang, X.; Wang, J.; Wu, Y.; Yang, L.; Zhu, K;
Chen, H.; Yi, X.; Wang, C.; Wang, Y.; et al. 2024. A survey
on evaluation of large language models. ACM Transactions
on Intelligent Systems and Technology, 15(3): 1-45.

Chen, T.; Wang, H.; Chen, S.; Yu, W.; Ma, K.; Zhao,
X.; Yu, D.; and Zhang, H. 2023. Dense x retrieval:
What retrieval granularity should we use? arXiv preprint
arXiv:2312.06648.

Chen, X.; Miao, R.; Hu, L.; Zhang, Q.; Song, K.; Naseem,
U.; and Zhao, C. 2025. Beyond Topology-based Graph Min-
ing: Deep Analysis Research Networks via Evolutionary
Topology and Content Fusion. Information Fusion, 103922.

Chen, Z.; Pradeep, R.; and Lin, J. 2025. Accelerating List-
wise Reranking: Reproducing and Enhancing FIRST. In
Proceedings of the 48th International ACM SIGIR Con-
ference on Research and Development in Information Re-
trieval, 3165-3172.

Cossock, D.; and Zhang, T. 2006. Subset ranking using re-
gression. In Learning Theory: 19th Annual Conference on
Learning Theory, COLT 2006, Pittsburgh, PA, USA, June
22-25, 2006. Proceedings 19, 605-619. Springer.

Dasigi, P.; Lo, K.; Beltagy, I.; Cohan, A.; Smith, N. A
and Gardner, M. 2021a. A dataset of information-seeking
questions and answers anchored in research papers. arXiv
preprint arXiv:2105.03011.

Dasigi, P.; Lo, K.; Beltagy, I.; Cohan, A.; Smith, N. A.;
and Gardner, M. 2021b. A Dataset of Information-Seeking
Questions and Answers Anchored in Research Papers. In
Toutanova, K.; Rumshisky, A.; Zettlemoyer, L.; Hakkani-
Tur, D.; Beltagy, I.; Bethard, S.; Cotterell, R.; Chakraborty,
T.; and Zhou, Y., eds., Proceedings of the 2021 Confer-
ence of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies,
4599-4610. Online: Association for Computational Linguis-
tics.

Dong, M.; Zou, B.; Li, Y.; and Hong, Y. 2023. CoLISA:
inner interaction via contrastive learning for multi-choice
reading comprehension. In European Conference on Infor-
mation Retrieval, 264-278. Springer.

Fan, W.; Ding, Y.; Ning, L.; Wang, S.; Li, H.; Yin, D.; Chua,
T.-S.; and Li, Q. 2024. A survey on rag meeting 1lms: To-
wards retrieval-augmented large language models. In Pro-
ceedings of the 30th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining, 6491-6501.

Fan, Y.; Xie, X.; Cai, Y.; Chen, J.; Ma, X.; Li, X.; Zhang, R ;
Guo, J.; et al. 2022. Pre-training methods in information re-
trieval. Foundations and Trends® in Information Retrieval,
16(3): 178-317.

Guo, J.; Fan, Y.; Pang, L.; Yang, L.; Ai, Q.; Zamani, H.;
Wu, C.; Croft, W. B.; and Cheng, X. 2020. A deep look into
neural ranking models for information retrieval. Information
Processing & Management, 57(6): 102067.

Gutiérrez, B. J.; Shu, Y.; Qi, W.; Zhou, S.; and Su, Y. 2025.
From rag to memory: Non-parametric continual learning for
large language models. arXiv preprint arXiv:2502.14802.
Hambarde, K. A.; and Proenca, H. 2023. Information re-
trieval: recent advances and beyond. IEEE Access.

Huang, P.-S.; He, X.; Gao, J.; Deng, L.; Acero, A.; and Heck,
L. 2013. Learning deep structured semantic models for web
search using clickthrough data. In Proceedings of the 22nd
ACM international conference on Information & Knowledge
Management, 2333-2338.

Ivgi, M.; Shaham, U.; and Berant, J. 2023. Efficient long-
text understanding with short-text models. Transactions of
the Association for Computational Linguistics, 11: 284-299.
Jiang, Z.; Ma, X.; and Chen, W. 2024. Longrag: Enhanc-
ing retrieval-augmented generation with long-context llms.
arXiv preprint arXiv:2406.15319.

Jimenez Gutierrez, B.; Shu, Y.; Gu, Y.; Yasunaga, M.; and
Su, Y. 2024. Hipporag: Neurobiologically inspired long-
term memory for large language models. Advances in Neu-
ral Information Processing Systems, 37: 59532-59569.
Jones, K. S.; Walker, S.; and Robertson, S. E. 2000. A prob-
abilistic model of information retrieval: development and
comparative experiments: Part 2. Information processing &
management, 36(6): 809-840.

Karpukhin, V.; Oguz, B.; Min, S.; Lewis, P.; Wu, L.; Edunov,
S.; Chen, D.; and Yih, W.-t. 2020. Dense Passage Retrieval
for Open-Domain Question Answering. In Proceedings of
the 2020 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), 6769-6781. Online: Associa-
tion for Computational Linguistics.

Kenton, J. D. M.-W. C.; and Toutanova, L. K. 2019. Bert:
Pre-training of deep bidirectional transformers for language
understanding. In Proceedings of naacL-HLT, volume 1, 2.
Minneapolis, Minnesota.

Kim, J.; Nam, J.; Mo, S.; Park, J.; Lee, S.-W.; Seo, M.; Ha,
J.-W.; and Shin, J. 2024. SuRe: Summarizing Retrievals
using Answer Candidates for Open-domain QA of LLMs.
arXiv preprint arXiv:2404.13081.

Kodisky, T.; Schwarz, J.; Blunsom, P.; Dyer, C.; Hermann,
K. M.; Melis, G.; and Grefenstette, E. 2018. The narrativeqa
reading comprehension challenge. Transactions of the As-
sociation for Computational Linguistics, 6: 317-328.
Larson, J.; and Truitt, S. 2024. GraphRAG: Unlocking LLM
discovery on narrative private data. Microsoft Research
Blog.

Li, X.; Jin, J.; Zhou, Y.; Zhang, Y.; Zhang, P.; Zhu, Y.; and
Dou, Z. 2025. From matching to generation: A survey on
generative information retrieval. ACM Transactions on In-
Sformation Systems, 43(3): 1-62.

Liu, K.; Chen, Z.; Fu, Z.; Zhang, W.; Jiang, R.; Zhou, F,;
Chen, Y.; Wu, Y.; and Ye, J. 2024a. Structure-aware Domain
Knowledge Injection for Large Language Models. arXiv
preprint arXiv:2407.16724.

Liu, N. F; Lin, K.; Hewitt, J.; Paranjape, A.; Bevilacqua,
M.; Petroni, F.; and Liang, P. 2024b. Lost in the middle:
How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12: 157-173.

Liu, T.-Y.; et al. 2009. Learning to rank for information re-
trieval. Foundations and Trends® in Information Retrieval,
3(3): 225-331.

Long, K.; Li, S.; Xu, C.; Tang, J.; and Wang, T. 2025. Pre-
cise Zero-Shot Pointwise Ranking with LLMs through Post-
Aggregated Global Context Information. In Proceedings of
the 48th International ACM SIGIR Conference on Research
and Development in Information Retrieval, 2384-2394.
Ma,Z.; An, S.;Lin, Z.; Zou, Y.; Lou, J.-G.; and Xie, B. 2024.
Dehallucinating Parallel Context Extension for Retrieval-
Augmented Generation. arXiv preprint arXiv:2412.14905.
Madaan, A.; Tandon, N.; Gupta, P.; Hallinan, S.; Gao, L.;
Wiegreffe, S.; Alon, U.; Dziri, N.; Prabhumoye, S.; Yang,
Y.; et al. 2024. Self-refine: Iterative refinement with self-
feedback. Advances in Neural Information Processing Sys-
tems, 36.

Mortaheb, M.; Khojastepour, M. A. A.; Chakradhar, S. T.;
and Ulukus, S. 2025. Re-ranking the context for mul-
timodal retrieval augmented generation. arXiv preprint
arXiv:2501.04695.

Qin, Z.; Jagerman, R.; Hui, K.; Zhuang, H.; Wu, J.; Yan,
L.; Shen, J.; Liu, T.; Liu, J.; Metzler, D.; et al. 2024. Large
Language Models are Effective Text Rankers with Pairwise
Ranking Prompting. In Findings of the Association for Com-
putational Linguistics: NAACL 2024, 1504—1518.

Reimers, N.; and Gurevych, 1. 2019. Sentence-BERT: Sen-
tence Embeddings using Siamese BERT-Networks. In Con-
ference on Empirical Methods in Natural Language Pro-
cessing.

Ru, D.; Qiu, L.; Hu, X.; Zhang, T.; Shi, P.; Chang,
S.; Cheng, J.; Wang, C.; Sun, S.; Li, H.; et al. 2024.
RAGChecker: A Fine-grained Framework for Diagnos-
ing Retrieval-Augmented Generation. arXiv preprint
arXiv:2408.08067.

Sarthi, P.; Abdullah, S.; Tuli, A.; Khanna, S.; Goldie, A.;
and Manning, C. D. 2024. RAPTOR: Recursive Abstractive
Processing for Tree-Organized Retrieval. In International
Conference on Learning Representations (ICLR).

Shen, F.; Xu, Y.; Liu, L.; Yang, Y.; Huang, Z.; and Shen,
H. T. 2018. Unsupervised Deep Hashing with Similarity-
Adaptive and Discrete Optimization. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 40(12): 3034—
3044.

Singh, K. N.; Devi, S. D.; Devi, H. M.; and Mahanta, A. K.
2022. A novel approach for dimension reduction using word
embedding: An enhanced text classification approach. Inter-

national Journal of Information Management Data Insights,
2(1): 100061.

Tan, T.; Qian, Y.; Lv, A.; Lin, H.; Wu, S.; Wang, Y;
Wang, F.; Wu, J.; Lu, X.; and Yan, R. 2025. PEAR:
Position-Embedding-Agnostic Attention Re-weighting En-
hances Retrieval-Augmented Generation with Zero Infer-
ence Overhead. In Proceedings of the ACM on Web Con-
ference 2025, 1693-1702.

Tay, Y.; Dehghani, M.; Tran, V. Q.; Garcia, X.; Wei, J.;
Wang, X.; Chung, H. W.; Bahri, D.; Schuster, T.; Zheng, S.;
Zhou, D.; Houlsby, N.; and Metzler, D. 2023. UL2: Unify-
ing Language Learning Paradigms. In The Eleventh Inter-
national Conference on Learning Representations.

Wang, L.; Yang, N.; and Wei, F. 2024. Learning to Retrieve
In-Context Examples for Large Language Models. In Pro-
ceedings of the 18th Conference of the European Chapter
of the Association for Computational Linguistics (Volume 1:
Long Papers), 1752-1767.

Wang, M.; Stoll, A.; Lange, L.; Adel, H.; Schiitze, H.; and
Strotgen, J. 2025. Bring your own knowledge: A survey
of methods for llm knowledge expansion. arXiv preprint
arXiv:2502.12598.

Wu, J.; Yan, L.; Qin, Z.; Zhuang, H.; Liu, T.; Dong, Z.;
Wang, X.; Oosterhuis, H.; et al. 2025. Harnessing Pairwise
Ranking Prompting Through Sample-Efficient Ranking Dis-
tillation. arXiv preprint arXiv:2507.04820.

Xu, P.; Ping, W.; Wu, X.; McAfee, L.; Zhu, C.; Liu, Z.; Sub-
ramanian, S.; Bakhturina, E.; Shoeybi, M.; and Catanzaro,
B. 2023. Retrieval meets long context large language mod-
els. In The Twelfth International Conference on Learning
Representations.

Xu, S.; Pang, L.; Xu, J.; Shen, H.; and Cheng, X. 2024.
List-aware reranking-truncation joint model for search and
retrieval-augmented generation. In Proceedings of the ACM
on Web Conference 2024, 1330-1340.

Yang, E.; Yates, A.; Ricci, K.; Weller, O.; Chari, V,;
Van Durme, B.; and Lawrie, D. 2025. Rank-k: Test-
time reasoning for listwise reranking. arXiv preprint
arXiv:2505.14432.

Zeng, Z.; Hawkins, C.; Hong, M.; Zhang, A.; Pappas, N.;
Singh, V.; and Zheng, S. 2024. VCC: scaling transform-
ers to 128K tokens or more by prioritizing important tokens.
Advances in Neural Information Processing Systems, 36.

Zhao, W. X_; Liu, J.; Ren, R.; and Wen, J.-R. 2024. Dense
text retrieval based on pretrained language models: A survey.
ACM Transactions on Information Systems, 42(4): 1-60.
Zhong, M.; Yin, D.; Yu, T.; Zaidi, A.; Mutuma, M.; Jha,
R.; Awadallah, A. H.; Celikyilmaz, A.; Liu, Y.; Qiu, X.;
et al. 2021. QMSum: A new benchmark for query-
based multi-domain meeting summarization. arXiv preprint
arXiv:2104.05938.

Zhou, Y.; Liu, H.; Chen, Z.; Tian, Y.; and Chen, B. 2025.
GSM-Infinite: How Do Your LLMs Behave over Infinitely
Increasing Context Length and Reasoning Complexity?
arXiv preprint arXiv:2502.05252.

