Course OD20767C: Implementing a SQL Data Warehouse (90 Day)

Choose how you want to learn: online or in a classroom
Compare learning environments

On-demand training

Learn more

Classroom training

Learn more

Find a Microsoft Learning PartnerFind an on-demand training partnerFind a classroom training partner
Anytime accessYesNo
Anywhere access to recorded instructorYesNo
Microsoft official training contentYesYes
In-depth trainingYesYes
Hands-on labs Yes Yes
SATV redemption Yes Yes
Ask instructor questions in personNoYes
Attend live class in personNoYes
Attend live class remotelyNoYes
Time commitment Self-paced
(3 month access)
5 days
À propos de ce cours
Technologie :SQL Server
Niveau :Advanced
Cette révision :C
Durée :2 days
Langue(s) :English

Première publication :

07 June 2018
Présentation
À propos de ce cours

This course provides students with the knowledge and skills to provision a Microsoft SQL Server database. The course covers SQL Server provision both on-premise and in Azure, and covers installing from new and migrating from an existing install.

Profil du participant

The primary audience for this course are database professionals who need to fulfil a Business Intelligence Developer role.  They will need to focus on hands-on work creating BI solutions including Data Warehouse implementation, ETL, and data cleansing. 

À la fin du cours

After completing this course, students will be able to:

  • Describe the key elements of a data warehousing solution.
  • Describe the main hardware considerations for building a data warehouse.
  • Implement a logical design for a data warehouse.
  • Implement a physical design for a data warehouse.
  • Create columnstore indexes.
  • Implementing an Azure SQL Data Warehouse.
  • Describe the key features of SSIS.
  • Implement a data flow by using SSIS.
  • Implement control flow by using tasks and precedence constraints.
  • Create dynamic packages that include variables and parameters.
  • Debug SSIS packages.
  • Describe the considerations for implement an ETL solution.
  • Implement Data Quality Services.
  • Implement a Master Data Services model.
  • Describe how you can use custom components to extend SSIS.
  • Deploy SSIS projects.
  • Describe BI and common BI scenarios.
Détails du cours
Course OutlineModule 1: Introduction to Data WarehousingThis module describes data warehouse concepts and architecture consideration.Lessons
  • Overview of Data Warehousing
  • Considerations for a Data Warehouse Solution
Lab : Exploring a Data Warehouse Solution
  • Exploring data sources
  • Exploring an ETL process
  • Exploring a data warehouse

After completing this module, you will be able to:

  • Describe the key elements of a data warehousing solution

  • Describe the key considerations for a data warehousing solution
Module 2: Planning Data Warehouse InfrastructureThis module describes the main hardware considerations for building a data warehouse.Lessons
  • Considerations for data warehouse infrastructure.
  • Planning data warehouse hardware.
Lab : Planning Data Warehouse Infrastructure
  • Planning data warehouse hardware

After completing this module, you will be able to:

  • Describe the main hardware considerations for building a data warehouse

  • Explain how to use reference architectures and data warehouse appliances to create a data warehouse
Module 3: Designing and Implementing a Data WarehouseThis module describes how you go about designing and implementing a schema for a data warehouse.Lessons
  • Designing dimension tables
  • Designing fact tables
  • Physical Design for a Data Warehouse
Lab : Implementing a Data Warehouse Schema
  • Implementing a star schema
  • Implementing a snowflake schema
  • Implementing a time dimension table

After completing this module, you will be able to:

  • Implement a logical design for a data warehouse

  • Implement a physical design for a data warehouse
Module 4: Columnstore IndexesThis module introduces Columnstore Indexes.Lessons
  • Introduction to Columnstore Indexes
  • Creating Columnstore Indexes
  • Working with Columnstore Indexes
Lab : Using Columnstore Indexes
  • Create a Columnstore index on the FactProductInventory table
  • Create a Columnstore index on the FactInternetSales table
  • Create a memory optimized Columnstore table

After completing this module, you will be able to:

  • Create Columnstore indexes

  • Work with Columnstore Indexes

Module 5: Implementing an Azure SQL Data WarehouseThis module describes Azure SQL Data Warehouses and how to implement them.Lessons
  • Advantages of Azure SQL Data Warehouse
  • Implementing an Azure SQL Data Warehouse
  • Developing an Azure SQL Data Warehouse
  • Migrating to an Azure SQ Data Warehouse
  • Copying data with the Azure data factory
Lab : Implementing an Azure SQL Data Warehouse
  • Create an Azure SQL data warehouse database
  • Migrate to an Azure SQL Data warehouse database
  • Copy data with the Azure data factory

After completing this module, you will be able to:

  • Describe the advantages of Azure SQL Data Warehouse

  • Implement an Azure SQL Data Warehouse

  • Describe the considerations for developing an Azure SQL Data Warehouse

  • Plan for migrating to Azure SQL Data Warehouse

Module 6: Creating an ETL SolutionAt the end of this module you will be able to implement data flow in a SSIS package.Lessons
  • Introduction to ETL with SSIS
  • Exploring Source Data
  • Implementing Data Flow
Lab : Implementing Data Flow in an SSIS Package
  • Exploring source data
  • Transferring data by using a data row task
  • Using transformation components in a data row

After completing this module, you will be able to:

  • Describe ETL with SSIS

  • Explore Source Data

  • Implement a Data Flow

Module 7: Implementing Control Flow in an SSIS PackageThis module describes implementing control flow in an SSIS package.Lessons
  • Introduction to Control Flow
  • Creating Dynamic Packages
  • Using Containers
  • Managing consistency.
Lab : Implementing Control Flow in an SSIS Package
  • Using tasks and precedence in a control flow
  • Using variables and parameters
  • Using containers
Lab : Using Transactions and Checkpoints
  • Using transactions
  • Using checkpoints

After completing this module, you will be able to:

  • Describe control flow

  • Create dynamic packages

  • Use containers

Module 8: Debugging and Troubleshooting SSIS PackagesThis module describes how to debug and troubleshoot SSIS packages.Lessons
  • Debugging an SSIS Package
  • Logging SSIS Package Events
  • Handling Errors in an SSIS Package
Lab : Debugging and Troubleshooting an SSIS Package
  • Debugging an SSIS package
  • Logging SSIS package execution
  • Implementing an event handler
  • Handling errors in data flow

After completing this module, you will be able to:

  • Debug an SSIS package

  • Log SSIS package events

  • Handle errors in an SSIS package

Module 9: Implementing a Data Extraction SolutionThis module describes how to implement an SSIS solution that supports incremental DW loads and changing data.Lessons
  • Introduction to Incremental ETL
  • Extracting Modified Data
  • Loading modified data
  • Temporal Tables
Lab : Extracting Modified Data
  • Using a datetime column to incrementally extract data
  • Using change data capture
  • Using the CDC control task
  • Using change tracking
Lab : Loading a data warehouse
  • Loading data from CDC output tables
  • Using a lookup transformation to insert or update dimension data
  • Implementing a slowly changing dimension
  • Using the merge statement

After completing this module, you will be able to:

  • Describe incremental ETL

  • Extract modified data

  • Load modified data.

  • Describe temporal tables

Module 10: Enforcing Data QualityThis module describes how to implement data cleansing by using Microsoft Data Quality services.Lessons
  • Introduction to Data Quality
  • Using Data Quality Services to Cleanse Data
  • Using Data Quality Services to Match Data
Lab : Cleansing Data
  • Creating a DQS knowledge base
  • Using a DQS project to cleanse data
  • Using DQS in an SSIS package
Lab : De-duplicating Data
  • Creating a matching policy
  • Using a DS project to match data

After completing this module, you will be able to:

  • Describe data quality services

  • Cleanse data using data quality services

  • Match data using data quality services

  • De-duplicate data using data quality services

Module 11: Using Master Data ServicesThis module describes how to implement master data services to enforce data integrity at source.Lessons
  • Introduction to Master Data Services
  • Implementing a Master Data Services Model
  • Hierarchies and collections
  • Creating a Master Data Hub
Lab : Implementing Master Data Services
  • Creating a master data services model
  • Using the master data services add-in for Excel
  • Enforcing business rules
  • Loading data into a model
  • Consuming master data services data

After completing this module, you will be able to:

  • Describe the key concepts of master data services

  • Implement a master data service model

  • Manage master data

  • Create a master data hub

Module 12: Extending SQL Server Integration Services (SSIS)This module describes how to extend SSIS with custom scripts and components.Lessons
  • Using scripting in SSIS
  • Using custom components in SSIS
Lab : Using scripts
  • Using a script task

After completing this module, you will be able to:

  • Use custom components in SSIS

  • Use scripting in SSIS

Module 13: Deploying and Configuring SSIS PackagesThis module describes how to deploy and configure SSIS packages.Lessons
  • Overview of SSIS Deployment
  • Deploying SSIS Projects
  • Planning SSIS Package Execution
Lab : Deploying and Configuring SSIS Packages
  • Creating an SSIS catalog
  • Deploying an SSIS project
  • Creating environments for an SSIS solution
  • Running an SSIS package in SQL server management studio
  • Scheduling SSIS packages with SQL server agent

After completing this module, you will be able to:

  • Describe an SSIS deployment

  • Deploy an SSIS package

  • Plan SSIS package execution

Module 14: Consuming Data in a Data WarehouseThis module describes how to debug and troubleshoot SSIS packages.Lessons
  • Introduction to Business Intelligence
  • An Introduction to Data Analysis
  • Introduction to reporting
  • Analyzing Data with Azure SQL Data Warehouse
Lab : Using a data warehouse
  • Exploring a reporting services report
  • Exploring a PowerPivot workbook
  • Exploring a power view report

After completing this module, you will be able to:

  • Describe at a high level business intelligence

  • Show an understanding of reporting

  • Show an understanding of data analysis

  • Analyze data with Azure SQL data warehouse

Communauté

Vous recherchez des ressources de formation, des événements et des conseils d'homologues ? Rejoignez la communauté de formation et de certification Microsoft.

Vous vous préparez à un examen ? Trouvez votre groupe d'étude de certification Microsoft.

Parlez-nous sur les réseaux sociaux :